S1D15B01T00 [SEIKO]

Liquid Crystal Driver, 197-Segment, CMOS, TCP;
S1D15B01T00
型号: S1D15B01T00
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

Liquid Crystal Driver, 197-Segment, CMOS, TCP

驱动 接口集成电路
文件: 总59页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
13. S1D15B01 Series  
Rev. 1.1a  
Contents  
1. DESCRIPTION ..............................................................................................................................................13-1  
2. FEATURES....................................................................................................................................................13-1  
3. BLOCK DIAGRAM.........................................................................................................................................13-2  
4. PIN LAYOUT .................................................................................................................................................13-3  
5. PIN DESCRIPTION .......................................................................................................................................13-6  
6. FUNCTIONAL DESCRIPTION ......................................................................................................................13-8  
7. COMMAND DESCRIPTION ........................................................................................................................13-24  
8. COMMAND SETTING .................................................................................................................................13-32  
9. ABSOLUTE MAXIMUM RATING.................................................................................................................13-36  
10. ELECTRICAL CHARACTERISTICS............................................................................................................13-37  
11. THE MPU INTERFACE (REFERENCE EXAMPLES) .................................................................................13-53  
12. CAUTION.....................................................................................................................................................13-54  
– i –  
Rev. 1.1a  
S1D15B01 Series  
1. DESCRIPTION  
2. FEATURES  
The S1D15B01 series is a single-chip liquid crystal  
display (=LCD) driver for dot-matrix LCDs that can be  
connected directly to a microprocessor (=MPU) bus. It  
accepts 8-bit parallel or serial display data from a MPU,  
stores it in an on-chip display data RAM (=DDRAM),  
and generates a LCD drive signal independent of the  
MPU clock.  
The use of the on-chip DDRAM of 65×132 bits and a  
one-to-one correspondence between LCD panel pixel  
dots and on-chip DDRAM bits offer high flexibility in  
graphic display.  
• Direct display by DDRAM :  
Bit data of DDRAM “0” .... a dot of display is OFF  
“1” .... a dot of display is ON  
(at Display normal)  
• DDRAM capacity : 65×132=8580bits  
• High-speed 8-bit Serial interface/8-bit MPU interface  
(The chip can be connected directly to both the 8080-  
series MPUs and the 6800-series MPUs) .  
• Many command functions :  
Display ON/OFF, Display normal/reverse, Display  
all points ON/OFF,  
The S1D15B01 series does not need external operation  
clock for DDRAM read/write operations, and has a on-  
chip LCD power supply circuit featuring very low  
current consumption with few external components,  
and moreover has a on-chip CR oscillator circuit.  
Consequently, the S1D15B01 can be realize a high-  
performance handy display system with a minimum  
current consumption and the fewest components.  
Page address set, Column address set, Display start  
line address set,  
Segment/Common driver direction select,  
Display data Read/Write ,Read modify write,  
Power control set, Electronic contrast control, LCD  
bias set,  
Power saver, Reset  
• On-chip low power supply circuit for LCD driving  
voltage generation  
Booster circuit (with boost ratios of Double/Triple/  
Quadruple/Quintuple)  
Voltage regulator circuit (with high-accuracy  
electronic voltage adjustment function)  
Voltage follower (with V1 to V4 voltage dividing  
resistors)  
• On-chip CR oscillation circuit (external clock can  
also be input.)  
• Very low power consumption  
• Power supply :  
Logic power supply : VDD-VSS=1.7 to 5.5V  
Booster reference supply : VDD2-VSS=1.7 to 5.5V  
LCD driving power supply : V0-VSS=4.5 to 16.0V  
• Wide range of operating temperatures -40 to 85°C  
• CMOS process  
• Package : Au bump chip and TCP  
• These ICs are not designed for strong radio/optical  
activity proof.  
Series Specifications  
Product Name Duty  
Bias  
SEG Dr  
COM Dr  
VREG  
Voltage  
Shipping Forms  
Temperature  
Gradient  
Condition  
S1D15B01D00B 1/65 1/9,1/7  
132  
132  
65  
65  
–0.05%/˚C  
–0.05%/˚C  
Internal voltage  
V0 or VOUT  
Bare Chip  
*
*S1D15B01D01B  
1/65 1/9,1/7  
1/65 1/9,1/7  
1/65 1/9,1/7  
Bare Chip  
external voltage  
*
*S1D15B01D02B  
132  
132  
65  
65  
–0.05%/˚C  
–0.05%/˚C  
V0 ~ V4 extarnal  
Bare Chip  
voltage  
*
*S1D15B01T00**  
TCP  
* : Start the development on demands  
** : Under development  
Rev. 1.1a  
EPSON  
13–1  
S1D15B01 Series  
3. BLOCK DIAGRAM  
• • • • • • • • • • • • • • • • • • • • • • • • •  
• • • • • • • • • •  
VDD  
V
0
1
2
3
4
V
V
V
V
SEG Drivers  
COM Drivers  
Shift register  
VSS  
Display data latch circuit  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3+  
CAP4+  
Display data RAM  
132 x 65  
V
DD2  
VOUT  
VR  
Column address  
CL  
Bus holder  
Command decoder  
Status  
MPU  
Interface  
13–2  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
4. PIN LAYOUT  
73  
1
74  
282  
y
D15B1D0B  
Die No.  
x
(0, 0)  
Alignment mark 1  
Alignment mark 2  
246  
247  
110  
111  
Chip size  
10.82mm×2.81mm  
70µm (Min.)  
Bump pitch  
Bump size  
PAD No.1 to 73  
91µm× 91µm  
91µm×45.5µm  
45.5µm× 91µm  
91µm×45.5µm  
PAD No.74 to 110  
PAD No.111 to 246  
PAD No.247 to 282  
Bump height  
Chip thickness  
Ground bias  
17µm (Typ.)  
625µm  
VSS  
Alignment mark 1 Center coordinates (µm)  
Size (µm)  
(–4965, –1231)  
31 70  
Alignment mark 2 Center coordinates (µm)  
Size (µm)  
(4947, –1224)  
81  
Rev. 1.1a  
EPSON  
13–3  
S1D15B01 Series  
Pad Center Coordinates  
Unit: µm  
PAD  
No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
Pin  
Name  
TEST13 –1882 1248  
PAD  
No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
Pin  
Name  
COM6 –5255 –631  
PAD  
No.  
1
2
3
4
5
6
7
Pin  
Name  
(NC)  
(NC)  
TEST0 4592  
TEST1 4462  
TEST2 4332  
X
Y
X
Y
X
Y
4852 1248  
4722  
VSS  
VR  
V0  
V1  
V2  
V3  
V4  
–2051  
–2181  
–2311  
–2441  
–2571  
–2701  
–2831  
COM5  
COM4  
COM3  
COM2  
COM1  
COM0  
COMS  
(NC)  
–701  
–771  
–842  
–912  
–982  
–1052  
–1122  
–1193  
–1263  
VSS  
4202  
TEST3 4072  
TEST4 3942  
TEST5 3812  
RES  
CS  
VSS  
WR  
RD  
VDD  
CL  
8
9
CAP2+ –2961  
CAP2+ –3091  
CAP2– –3221  
CAP2– –3351  
CAP4+ –3481  
CAP4– –3611  
VOUT –3741  
CAP1+ –3871  
CAP1+ –4001  
CAP1– –4131  
CAP1– –4261  
CAP3+ –4391  
CAP3+ –4521  
(NC) –4651  
(NC) –4781  
(NC) –5255 1264  
(NC)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
3682  
3552  
3422  
3292  
3162  
3032  
2902  
2772  
2642  
(NC) –4738 –1248  
(NC) –4668  
SEG0 –4598  
SEG1 –4528  
SEG2 –4458  
SEG3 –4388  
SEG4 –4317  
SEG5 –4247  
SEG6 –4177  
SEG7 –4107  
SEG8 –4037  
SEG9 –3966  
SEG10 –3896  
SEG11 –3826  
SEG12 –3756  
SEG13 –3686  
SEG14 –3615  
SEG15 –3545  
SEG16 –3475  
SEG17 –3405  
SEG18 –3335  
SEG19 –3264  
SEG20 –3194  
SEG21 –3124  
SEG22 –3054  
SEG23 –2984  
SEG24 –2913  
SEG25 –2843  
SEG26 –2773  
SEG27 –2703  
SEG28 –2633  
SEG29 –2562  
SEG30 –2492  
SEG31 –2422  
SEG32 –2352  
SEG33 –2282  
SEG34 –2211  
SEG35 –2141  
SEG36 –2071  
SEG37 –2001  
A0  
D7,SI  
D6,SCL 2512  
D5  
D4  
D3  
D2  
D1  
2382  
2252  
2122  
1992  
1862  
1732  
1602  
1472  
1342  
1212  
1082  
952  
822  
692  
562  
432  
302  
172  
3
D0  
(NC)  
1194  
1124  
1054  
984  
913  
843  
774  
703  
633  
562  
492  
422  
352  
282  
211  
141  
71  
COM31  
COM30  
COM29  
COM28  
COM27  
COM26  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
VDD  
VDD  
VDD  
VDD2  
VDD2  
VDD2  
TEST6  
VDD  
P/S  
C86  
VSS  
TEST7  
TEST8  
TEST9 –166  
VSS  
VSS  
–335  
–465  
–595  
–725  
–855  
–985  
–1115  
–1245  
VSS  
1
(NC)  
VOUT  
VOUT  
VOUT  
(NC)  
TEST10 –1414  
TEST11 –1583  
TEST12 –1713  
–69  
–140  
–210  
–280  
–350  
–420  
–491  
–561  
COM8  
COM7  
13–4  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Unit: µm  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
PAD  
No.  
Pin  
Name  
X
Y
X
Y
X
Y
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
SEG38 –1931 –1248  
SEG39 –1860  
SEG40 –1790  
SEG41 –1720  
SEG42 –1650  
SEG43 –1580  
SEG44 –1509  
SEG45 –1439  
SEG46 –1369  
SEG47 –1299  
SEG48 –1229  
SEG49 –1158  
SEG50 –1088  
SEG51 –1018  
SEG52 –948  
SEG53 –878  
SEG54 –807  
SEG55 –737  
SEG56 –667  
SEG57 –597  
SEG58 –527  
SEG59 –456  
SEG60 –386  
SEG61 –316  
SEG62 –246  
SEG63 –176  
SEG64 –105  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
SEG88 1579 –1248  
SEG89 1650  
SEG90 1720  
SEG91 1790  
SEG92 1860  
SEG93 1930  
SEG94 2001  
SEG95 2071  
SEG96 2141  
SEG97 2211  
SEG98 2281  
SEG99 2352  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
369  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
COM35 5248 –944  
COM36  
COM37  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
COM52  
COM53  
COM54  
COM55  
COM56  
COM57  
COM58  
COM59  
COM60  
COM61  
COM62  
COM63  
COMS  
–874  
–804  
–734  
–664  
–593  
–523  
–453  
–383  
–313  
–242  
–172  
–102  
–32  
38  
109  
179  
249  
319  
389  
460  
530  
600  
670  
740  
811  
881  
951  
1021  
1091  
1162  
1232  
213 SEG100 2422  
214 SEG101 2492  
215 SEG102 2562  
216 SEG103 2632  
217 SEG104 2703  
218 SEG105 2773  
219 SEG106 2843  
220 SEG107 2913  
221 SEG108 2983  
222 SEG109 3054  
223 SEG110 3124  
224 SEG111 3194  
225 SEG112 3264  
226 SEG113 3334  
227 SEG114 3405  
228 SEG115 3475  
229 SEG116 3545  
230 SEG117 3615  
231 SEG118 3685  
232 SEG119 3756  
233 SEG120 3826  
234 SEG121 3896  
235 SEG122 3966  
236 SEG123 4036  
237 SEG124 4107  
238 SEG125 4177  
239 SEG126 4247  
240 SEG127 4317  
241 SEG128 4387  
242 SEG129 4458  
243 SEG130 4528  
244 SEG131 4598  
SEG65  
SEG66  
SEG67  
SEG68  
SEG69  
SEG70  
SEG71  
SEG72  
SEG73  
SEG74  
SEG75  
SEG76  
SEG77  
SEG78  
SEG79  
–35  
35  
105  
175  
246  
316  
386  
456  
526  
597  
667  
737  
807  
877  
948  
(NC)  
(NC)  
SEG80 1018  
SEG81 1088  
SEG82 1158  
SEG83 1228  
SEG84 1299  
SEG85 1369  
SEG86 1439  
SEG87 1509  
245  
246  
247  
248  
249  
250  
(NC)  
(NC)  
(NC)  
COM32  
COM33  
COM34  
4668  
4738  
5248 –1225  
–1155  
–1085  
–1015  
Rev. 1.1a  
EPSON  
13–5  
S1D15B01 Series  
5. PIN DESCRIPTION  
Power supply pins  
Number of  
pins  
Name  
I/O  
Description  
VDD  
Supply Power supply. Connect to MPU power pin VCC.  
Supply Externally-input reference power supply for booster circuit.  
Supply This is a 0V terminal connected to the system GND.  
5
3
7
5
VDD2  
VSS  
V0, V1, V2 Supply Multi-level power supply for LCD drive. The voltages are  
V3, V4  
determined by LCD cell.The voltages should maintain the following  
relationship : V0 V1 V2 V3 V4 VSS.  
When on-chip power supply circuit turns on, V0 voltage are  
generated, and the following voltages are generated to V1 to V4.  
Either voltage can be selected by LCD bias set command.  
SED15B1  
V1  
V2  
V3  
V4  
6/7 • V0, 8/9 • V0  
5/7 • V0, 7/9 • V0  
2/7 • V0, 2/9 • V0  
1/7 • V0, 1/9 • V0  
LCD power supply circuit pins  
Number of  
pins  
Name  
I/O  
Description  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
CAP3+  
CAP4+  
VOUT  
O
O
O
O
O
O
O
I
Boosting capacitor positive connection pin.  
Boosting capacitor negative connection pin.  
Boosting capacitor positive connection pin.  
Boosting capacitor negative connection pin.  
Boosting capacitor positive connection pin.  
Boosting capacitor positive connection pin.  
Booster output.  
2
2
2
2
2
2
4
1
VR  
Voltage adjustment pin. Provides V0 voltage using external resistors.  
When internal resistors are used, this pin cannot be used.  
System bus connection pins  
Number of  
pins  
Name  
I/O  
Description  
D7 to D0  
I/O  
8-bit bi-directional data bus to be connected to the standard 8-bit or  
16-bit MPU data bus.  
8
(SI)  
(SCL)  
When the serial interface is selected (P/S=LOW) ;  
D7 : Serial data input (SI)  
D6 : Serial clock input (SCL)  
A0  
I
Control/data flag input.  
A0=HIGH : The data on D7 to D0 is display data.  
A0=LOW : The data on D7 to D0 is control data.  
1
CS  
I
I
Chip select input. Data input is enable when CS is low.  
1
1
When RES is caused to go low, initialization is executed.  
A reset operation is performed at the RES signal level.  
RES  
13–6  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Number of  
pins  
Pin name  
I/O  
Description  
RD  
(E)  
I
• When connected to an 8080-series MPU ;  
1
This is active-LOW. This pin is connected to the RD signal of the  
8080-series MPU. While this signal is low, SED15B1 series data  
bus is an output status.  
• When connected to an 6800-series MPU ;  
This is active-HIGH. This is used as an enable clock input pin of the  
6800-series MPU.  
WR  
(R/W)  
I
• When connected to an 8080-series MPU ;  
This is active-LOW. This pin is connected to the WR signal of the  
8080-series MPU. The signals on the data bus are latched at the  
rising edge of the WR signal.  
1
•When connected to an 6800-series MPU ;  
This is the read/write control signal input .  
R/W=HIGH : Read.  
R/W=LOW : Write.  
C86  
P/S  
I
I
MPU interface selection pin.  
1
1
C86=HIGH : 6800-series MPU interface  
C86=LOW : 8080-series MPU interface  
Serial data input/parallel data input selection pin.  
P/S=HIGH : Parallel data input  
P/S=LOW : Serial data input  
The following applies depending on the P/S status :  
P/S Data/Command  
Data  
Read/Write Serial Clock  
RD, WR  
HIGH  
LOW  
A0  
A0  
D7 to D0  
SI (D7)  
Write only  
SCL (D6)  
In serial mode, no data can be read from DDRAM.  
When P/S=LOW,D5 to D0 are HZ. D5 to D0 may be HIGH, LOW or  
Open, and moreover A0, RD, WR, C86 may be HIGH, LOW or  
Open.  
LCD driver pins  
Number of  
pins  
Name  
CL  
I/O  
Description  
I
External clock input. When external clock is halted, CL must be LOW.  
If internal clock (on-chip CR oscillation circuit) is selected, CL  
connected to VDD.  
1
SEG0 to  
SEG131  
O
O
O
LCD segment driver output.  
132  
64  
2
COM0 to  
COM63  
LCD common driver output.  
COMS  
LCD common driver output for the indicator. When it is not used,  
it is made open.  
Test pins  
Name  
Number of  
pins  
I/O  
Description  
TEST0 to  
TEST13  
I/O  
These are terminals for IC chip testing.  
TEST1 to TEST4 are recommended to connect to VDD or VSS.The others set to open.  
14  
Note and caution  
• If control signal from MPU is HZ, an over-current may flow through the IC. A protection is required to prevent  
the HZ signal at the input pins.  
Rev. 1.1a  
EPSON  
13–7  
S1D15B01 Series  
6. FUNCTIONAL DESCRIPTION  
Microprocessor Interface  
Interface type selection  
or LOW, it is possible to select either 8-bit parallel data  
input or 8-bit serial data input as shown in Table 1.  
The S1D15B01 series can transfer data via 8-bit bi-  
directional data buses (D7 to D0) or via serial data input  
(SI). Through selecting the P/S pin polarity to the HIGH  
Table 1  
P/S  
CS  
CS  
CS  
A0 RD WR C86 D7  
D6  
D5 to D0  
D5 to D0  
HIGH:Parallel Input  
LOW:Serial Input  
A0 RD WR C86 D7  
D6  
A0  
SI SCL  
– : HIGH, LOW or Open  
Parallel interface  
8080-series MPU or a 6800-series MPU (as shown in  
Table 2) by selecting C86 pin to either HIGH or LOW.  
When the parallel interface has been selected (P/S=  
HIGH), then it is possible to connect directly to either an  
Table 2  
C86  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
E
WR  
R/W  
WR  
D7 to D0  
D7 to D0  
D7 to D0  
HIGH:6800-series MPU bus  
LOW:8080-series MPU bus  
RD  
Moreover, the S1D15B01 series identifies the data bus  
signal according to A0, RD(E), WR(R/W) signals, as  
shown in Table 3.  
Table 3  
Common  
6800-series  
8080-series  
Function  
A0  
1
R/W  
RD  
0
WR  
1
1
0
0
Reads the display data  
Writes the display data  
1
1
0
0
1
0
Writes control data (command)  
Serial interface  
When the serial interface has been selected (P/S=  
LOW),only writing display data and control data is  
possible by four input signals. The serial data input (SI)  
and serial clock input (SCL) are enabled when CS is  
low. When chip is not selected, the shift register and  
counter which compose serial interface are reset.  
The serial data is read from the serial data input pin in  
the rising edge of the serial clocks D7,D6 through D0,  
in this order. This data is converted to 8 bits parallel data  
in the rising edge of the eighth serial clock for the  
processing.  
The A0 input is used to determine whether the serial  
data input is display data or command data; when  
A0=HIGH, the data is display data, and when A0=LOW  
then the data is command data. The A0 input is read and  
used for detection every 8th rising edge of the serial  
clock after the chip becomes active.  
Figure 1 is a serial interface signal chart.  
13–8  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
CS  
SI  
D7  
1
D6  
2
D5  
3
D4  
4
D3  
5
D2  
6
D1  
7
D0 D7  
D6  
10  
D5  
D4  
D3  
13  
D2  
14  
SCL  
8
9
11  
12  
A0  
Figure 1  
* When the chip is not active, the shift registers and the counter are reset to their states.  
* Reading is not possible while in serial interface mode.  
* Caution is required on the SCL signal when it comes to line-end reflections and external noise.  
We recommend that operation be rechecked on the actual equipment.  
In order to realize the higher speed accessing, the  
S1D15B01 series can perform a type of pipeline  
processing between LSIs using bus holder of internal  
data bus when data is sent from/to the MPU. For  
example, when the MPU writes data to the DDRAM,  
once the data is stored in the bus holder, then it is written  
to the DDRAM before the next data write cycle. And  
when the MPU reads the contents of the DDRAM, the  
first data read cycle (dummy read cycle) stores the read  
data in the bus holder, and then the data is read from the  
bus holder to the system bus at the next data read cycle.  
Thus, there is a certain restriction in the DDRAM read  
sequence. When an address is set, the specified address  
data is NOT output at the immediately following read  
instruction. The address data is output during second  
data read. A single dummy read must be inserted after  
address setup and after write cycle (refer to Figure 2).  
Chip select input  
The MPU interface (either parallel or serial) is enabled  
only when CS=LOW.  
When the chip select is inactive, D7 to D0 enter a high  
impedance state, and A0, RD and WR inputs are disabled.  
When the serial interface is selected, the shift register  
and the counter are reset.  
Access to DDRAM and internal registers  
In accessing the DDRAM and the internal registers of  
the S1D15B01 series, the MPU is required to satisfy the  
only cycle time (tCYC), and is not needed to consider the  
wait time. Accordingly, it is possible to transfer data at  
higher speed.  
Write  
WR  
DATA  
N
N+1  
N+2  
N+3  
Latch  
N
N+1  
N+2  
N+3  
BUS Holder  
Write Signal  
Read  
WR  
RD  
DATA  
N
N
n
n+1  
Address Preset  
Read Signal  
Column Address  
Bus Holder  
Preset N  
N
Increment N+1  
n
N+2  
n+1  
n+2  
Address Set  
#n  
Dummy  
Read  
Data Read  
#n  
Data Read  
#n+1  
Figure 2  
Rev. 1.1a  
EPSON  
13–9  
S1D15B01 Series  
DDRAM and page/column address circuit  
As is shown in Figure 3, the D7 to D0 display data from  
the MPU corresponds to the LCD common direction.  
The DDRAM stores pixel data for LCD. It is a 65-row  
(8 page by 8 bit + 1) by 132-column addressable array.  
D0 0 1 1 1  
D1 1 0 0 0  
D2 0 0 0 0  
D3 0 1 1 1  
D4 1 0 0 0  
0
0
0
0
0
COM0  
COM1  
COM2  
COM3  
COM4  
DDRAM  
Display on LCD  
Figure 3  
Each pixel can be selected when page address and  
column address are specified(refer to Figure 5).  
The MPU issues Page address set command to change  
the page and access to another page. Page address 8  
(D3,D2,D1,D0 = 1,0,0,0) is DDRAM area dedicate to  
the indicator, and display data D0 is only valid.  
automatically incremented by +1 when a Display data  
read/write command is entered. After the last column  
address (83H), column address returns to 00H and page  
address incremented by +1 (refer to Figure 4). After the  
very last address (column = 83H,page = 8H),both column  
address and page address return to 00H (column address  
= 00H, page address = 0H).  
The DDRAM column address is specified by Column  
address set command. The specified column address is  
Data  
D0  
D1  
D2  
D3  
D4  
D5  
0H  
0
1
2
130  
262  
394  
526  
658  
790  
922  
1054  
1186  
82H  
131  
263  
395  
527  
659  
791  
923  
1055  
1187  
83H  
D6  
D7  
1H 132 133 134  
2H 264 265 266  
Page address 3H 396 397 398  
4H 528 529 530  
5H 660 661 662  
6H 792 793 794  
7H 924 925 926  
8H 1056 1057 1058  
00H 01H 02H  
Column address  
D0  
Data for the page address 8H  
Figure 4  
The MPU reads from and writes to the DDRAM through  
the I/O buffer independent of the LCD controller  
operation. Therefore, data can be written to the DDRAM  
at the same time as data is being displayed, without  
causing the LCD to flicker.  
Furthermore, as is shown in Table 4, Segment driver  
direction select command can be used to reverse the  
relationship between the DDRAM column address and  
segment output. This allows flexible IC layout during  
LCD module assembly.  
13–10  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
82H 83H  
Table 4  
Column Address  
00H  
01H  
02H  
81H  
Normal Direction  
Reverse Direction  
SEG0  
SEG1  
SEG2  
SEG129 SEG130 SEG131  
SEG2 SEG1 SEG0  
SEG131 SEG130 SEG129  
Line address circuit  
common driver direction is normal, or the COM63  
output when common driver direction is reversed.And  
the display area is followed by the higher number line  
addresses in ascending order from the display start line  
address, corresponding to the duty cycle. This allows  
flexible IC layout during LCD module assembly.  
If the display start line address is changed dynamically  
using the Display start line address set command,then  
screen scrolling and page swapping can be performed.  
The line address circuit specifies the line address (as  
shown Figure 5) relating to the COM output when the  
contents of the DDRAM are displayed. The display start  
line address, what is normally the top line of the display,  
can be specified by Display start line address set  
command. And Common driver direction select  
command can be used to reverse the relationship between  
the DDRAM line address and common output. For  
example, as is shown in Table 5, the display start line  
address corresponds to the COM0 output when the  
Table 5 (at display start line address=1CH)  
Line Address  
Normal Direction  
Reverse Direction  
1CH  
1DH  
3FH  
00H  
1AH  
1BH  
COM0  
COM1  
COM35 COM36  
COM28 COM27  
COM62  
COM1  
COM63  
COM0  
COM63 COM62  
Display data latch circuit  
The display data latch circuit is a latch temporarily  
stored the display data that is output to the LCD driver  
circuit from the DDRAM.  
command, and Displayed all points ON/OFF command  
control only the data within the latch, and do not change  
the data within the DDRAM.  
Display ON/OFF command, Display normal/reverse  
Rev. 1.1a  
EPSON  
13–11  
S1D15B01 Series  
Display Data RAM  
The display data RAM stores pixel data for the LCD.  
It is a 132-colunm×65-row addressale array as shown in Figure 5.  
COM Output  
Normal Reverse  
Direction Direction  
Page Address  
Data  
Line  
Address  
D3  
0
D2  
0
D1  
0
D0  
0
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
COM0 COM63  
COM1 COM62  
COM2 COM61  
COM3 COM60  
COM4 COM59  
COM5 COM58  
COM6 COM57  
COM7 COM56  
COM8 COM55  
COM9 COM54  
COM10 COM53  
COM11 COM52  
COM12 COM51  
COM13 COM50  
COM14 COM49  
COM15 COM48  
COM16 COM47  
COM17 COM46  
COM18 COM45  
COM19 COM44  
COM20 COM43  
COM21 COM42  
COM22 COM41  
COM23 COM40  
COM24 COM39  
COM25 COM38  
COM26 COM37  
COM27 COM36  
COM28 COM35  
COM29 COM34  
COM30 COM33  
COM31 COM32  
COM32 COM31  
COM33 COM30  
COM34 COM29  
COM35 COM28  
COM36 COM27  
COM37 COM26  
COM38 COM25  
COM39 COM24  
COM40 COM23  
COM41 COM22  
COM42 COM21  
COM43 COM20  
COM44 COM19  
COM45 COM18  
COM46 COM17  
COM47 COM16  
COM48 COM15  
COM49 COM14  
COM50 COM13  
COM51 COM12  
COM52 COM11  
COM53 COM10  
COM54 COM9  
COM55 COM8  
COM56 COM7  
COM57 COM6  
COM58 COM5  
COM59 COM4  
COM60 COM3  
COM61 COM2  
COM62 COM1  
COM63 COM0  
COMS COMS  
Page 0  
Page 1  
Page 2  
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
Page 3  
Page 4  
Start  
0
0
1
1
0
1
1
0
Page 5  
Page 6  
0
1
1
0
1
0
1
0
Page 7  
Page 8  
Column Address  
00H 01H 02H 03H 04H 05H 06H  
7DH 7EH 7FH 80H 81H 82H 83H  
Regardless of the display start  
line address, S1D15B01  
accesses 65th line.  
Normal Direction  
Reverse Direction  
SEG  
Output  
Figure 5  
13–12  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
and the display data latch circuit. The display data is  
latched to the display data latch circuit and is output to  
the segment drive output pin by synchronizing to the  
display clocks. The read operation of display data to the  
liquid crystal drive circuit is completely independent of  
the access to the display data RAM from MPU. Therefore  
even when the display data RAM is asynchronously  
accessed during liquid crystal display, the access will  
not have any adverse effect on the display such as  
flickering.  
Oscillation circuit  
The S1D15B01 series has a complete on-chip CR  
oscillation circuit, and its output is used as the display  
timing signal source.  
The on-chip oscillation circuit is available when CL =  
HIGH.  
And the S1D15B01 series is also capable external clock  
input from CL pin. (When external clock is halted, CL  
must be LOW.)  
The circuit also generates COM scan signal and the  
LCD AC signal (FR) from the display clocks. As shown  
in Figure 6, the FR normally generates the 2- frame AC  
drive waveforms .  
Display timing generator circuit  
The display timing generator circuit generates the timing  
signals from the display clocks to the line address circuit  
2-frame AC drive waveforms  
64 65  
1
2
3
4
5
6
60 61 62 63 64 65  
1
2
3
4
5
6
CL  
FR  
V
V
0
1
COM0  
V
V
4
SS  
V
V
0
1
COM1  
V
V
4
SS  
RAM  
DATA  
V
V
V
V
0
2
SEGn  
3
SS  
Figure 6  
Rev. 1.1a  
EPSON  
13–13  
S1D15B01 Series  
LCD driver circuits  
These are multiplexers outputting the LCD panel driving  
4-level signal which level is determined by a combination  
of display data, COM scan signal, and LCD AC signal  
(FR). Figure 7 shows an example of SEG and COM  
output waveforms.  
COM0  
V
V
DD  
SS  
FR  
COM1  
COM2  
COM3  
COM4  
V
V
V
0
1
2
COM5  
COM6  
COM7  
COM0  
COM1  
COM2  
V
V
V
3
4
SS  
V0  
V1  
V2  
COM8  
V
V
V
3
4
SS  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
V0  
V1  
V2  
V
V
V
3
4
SS  
V0  
V1  
V2  
SEG0  
SEG1  
SEG2  
V
V
V
3
4
SS  
V0  
V1  
V2  
V
V
V
3
4
SS  
V0  
V1  
V2  
V
V
V
3
4
SS  
V5  
V4  
V3  
V
V
V
2
COM0—SEG0  
1
DD  
—V  
1
2
—V  
—V  
—V  
—V  
3
4
5
V5  
V4  
V3  
V
V
V
—V  
—V  
—V  
—V  
—V  
2
COM0—SEG1  
1
DD  
1
2
3
4
5
Figure 7  
13–14  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Power supply circuit  
The power supply circuit generates the voltage to drive  
the LCD panel at low power consumption.  
S1D15B01D00B which use a booster circuit, voltage  
*
regulator circuit, and voltage follower circuit, every  
circuit is required to be turnend ON or OFF at the same  
time by Power control set command. In the case of  
using S1D15B01D00B /S1D15B01D02B which need  
The power supply circuit consists of a booster circuit,  
voltage regulator circuit, and voltage follower circuit,  
and is controlled by Power control set command. Using  
this command, the booster circuit, the voltage regulator  
circuit, and the voltage follower circuit can be  
independently turned ON or OFF. In the case of using  
*
*
the external power supply and use part of on-chip power  
supply circuit, each must be set the appropriate state as  
shown in the Table 6.  
Table 6  
Power supply  
condition  
Product name*2 Booster Voltage Voltage  
circuit regulator follower  
External  
voltage  
input  
Boosting  
system pin*3  
circuit  
circuit  
On-chip power  
supply used  
S1D15B01D00B  
S1D15B01D01B  
ON  
ON  
ON  
VDD2  
Used  
Open  
*
*
Voltage regulator  
circuit and Voltage  
follower circuit only  
OFF  
ON  
ON  
VOUT  
Voltage follower  
circuit only  
S1D15B01D01B  
S1D15B01D02B  
OFF  
OFF  
OFF  
OFF  
ON  
V0=VOUT*4  
Open  
Open  
*
External power  
supply only  
OFF  
V0=VOUT*4  
V1 to V4  
*
*1 Combinations other than those shown in above table are possible but impractical.  
*2 Chose the appropriate product according to the power supply condition.  
*3 The boosting system pin indicates the CAP+, CAP1–, CAP2+, CAP2–, CAP3+, and CAP4+ pin.  
*4 Both V0 pin and VOUT pin should be connected to external power supply.  
Booster circuit  
Using the booster circuit, it is possible to produce  
Quintuple/Quadruple/Triple/Double boosting of the  
VDD2-VSS voltage level.  
boosted to quadruple toward the positive side and it is  
output at VOUT pin.  
Triple boosting :  
Quintuple boosting :  
Connect capacitor between CAP1+ and CAP1–, between  
CAP2+ and CAP2–, between VOUT and VDD2, and  
jumper between CAP3+, CAP4+ and VOUT, the triple  
boosted voltage appears at VOUT pin.  
Connect capacitor between CAP1+ and CAP1–, between  
CAP2+ and CAP2–, between CAP3+ and CAP1–,  
between CAP4+ and CAP2–, between VOUT and VDD2,  
the potential between VDD2 and VSS is boosted to  
quintuple toward the positive side and it is output at  
VOUT pin.  
Double boosting :  
Connect capacitor between CAP1+ and CAP1–, between  
VOUT and VDD2, open CAP2–, and jumper between  
CAP2+, CAP3+, CAP4+ and VOUT, the double boosted  
voltage appears at VOUT pin.  
Quadruple boosting :  
Connect capacitor between CAP1+ and CAP1–, between  
CAP2+ and CAP2–, between CAP3+ and CAP1–,  
between VOUT and VDD2, and jumper between CAP4+  
and VOUT, the potential between VDD2 and VSS is  
The boosted voltage relationships are shown in Figure  
8.  
Rev. 1.1a  
EPSON  
13–15  
S1D15B01 Series  
V
DD2 or VSS  
OUT  
V
DD2 or VSS  
OUT  
V
DD2 or VSS  
OUT  
V
DD2 or VSS  
OUT  
+
+
+
+
+
+
V
V
V
V
CAP3+  
CAP1–  
CAP3+  
CAP1–  
CAP3+  
CAP1–  
CAP3+  
CAP1–  
+
+
CAP1+  
CAP4+  
+
+
+
+
CAP1+  
CAP1+  
CAP1+  
CAP4+  
CAP2–  
CAP4+  
CAP2–  
CAP4+  
CAP2–  
CAP2–  
CAP2+  
OPEN  
+
+
CAP2+  
CAP2+  
CAP2+  
Quintuple Boosting  
Quadruple Boosting  
Triple Boosting  
Double boosting  
V
OUT = 5 x VDD2  
= 13.5V  
V
OUT = 4 x VDD2  
= 10.8V  
V
OUT = 3 x VDD2  
= 8.1V  
VOUT = 2 x VDD2  
= 5.4V  
V
DD2 = 2.7V  
V
DD2 = 2.7V  
SS = 0V  
V
DD2 = 2.7V  
SS = 0V  
V
DD2 = 2.7V  
VSS = 0V  
V
V
VSS = 0V  
Quintuple Boosting  
Quadruple Boosting  
Triple Boosting  
Double boosting  
Figure 8  
* VDD2 voltage must be set so that VOUT voltage does not exceed the absolute maximum rated value.  
* The Capacitance depend on the load of the LCD panel to be driven. Set a value that LCD driver voltage may be stable  
(reference value = 1.0 to 4.7 µF).  
Voltage regulator circuit  
The boosting voltage occurring at the VOUT pin is sent  
to the voltage regulator, and the V0 voltage (LCD driver  
voltage) is output.  
Because the S1D15B01 series has the high-accuracy  
constant voltage source, the 32-level electronic volume  
function and the internal resistor for the V0 voltage  
regulator (= V0-resistor), it is possible to construct a  
high-accuracy voltage regulator circuit without external  
component. And V0 voltage can be adjusted by  
commands only to adjust the LCD contrast.  
equations within the range of V0 < VOUT.  
V0 = (1+Rb/Ra)•VEV  
VEV = (1–α /200) •VREG (Equation A-1)  
VREG is the on-chip constant voltage as shown in Table  
7 at Ta=25°C.  
Table 7  
Model  
VREG Thermal Gradient  
1.3V –0.05%/°C  
(A) When the V0-resistor is used.  
S1D15B01*****  
Through the use of the V0-resistor and the electronic  
volume function, V0 voltage can be controlled by  
commands only (without adding any external resistors).  
The V0 voltage can be calculated using the following  
13–16  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Internal Rb  
Internal Ra  
+
V
0
V
EV (Constant voltage source  
+ electronic volume)  
VSS  
Figure 9  
α is a value of the electronic volume, and can be set to  
one of 32-states by Electronic volume command setting  
the 5-bit data in the electronic volume register. Table 8  
shows the value of α.  
Rb/Ra is the V0-resistor ratio, and can be set to one of  
7-states by V0-resistor ratio set command setting the 3-  
bit data in the V0-resistor ratio register. Table 9 shows  
the value of (1+Rb/Ra) ratio (reference value).  
Table 8  
Table 9  
1+Rb/Ra  
D4  
D3  
D2  
D1  
D0  
α
D3 D2 D1  
S1D15B01  
0
0
0
0
0
0
0
0
0
:
0
0
1
0
1
0
31  
30  
29  
:
:
2
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
5.60  
5.86  
6.15  
6.46  
6.81  
7.20  
7.64  
:
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0
External resistor can be used.  
Figure 10 shows V0 voltage measured by V0-resistor ratio and electronic voltage at Ta=25°C.  
V
0
- resister ratio  
11  
10  
9
110  
101  
100  
011  
010  
001  
000  
8
7
6
5
4
3
2
1
0
Electronic volume resister  
Figure 10  
Rev. 1.1a  
EPSON  
13–17  
S1D15B01 Series  
<Setup example>  
When selection Ta=25°C and V0=7V for S1D15B01 series on which temperature gradient=–0.05%/°C. Using Figure  
10 and equation A-1, the following setup is enabled.  
Table 10  
Commands  
Register  
D7  
0
D6  
0
D5  
1
D4  
D3  
0
D2  
0
D1  
0
D0  
1
V0-resister ratio set  
Electronic volume  
0
1
1
0
0
0
0
0
1
In this case, the variable range and the notch width of the V0 voltage is shown as Table 11, as dependent on the electronic  
volume.  
Table 11  
V0  
Min.  
Typ.  
Max.  
Units  
Variable range  
Notch width  
6.44[α=31]  
7.05[α=15]  
7.62[α=0]  
[V]  
[mV]  
37  
(B) When external resistors are used. (1)  
(The V0-resistor is not used.)  
The V0 voltage can also be set without using the V0-resistor by adding resistors Ra' and Rb' between VSS and VR, and  
between VR and V0, respectively. In this case, the electronic volume command makes it possible to adjust the contrast  
of the LCD by controlling V0 voltage. In the range where V0 < VOUT, the V0 voltage can be calculated using equation  
B-1 based on the external resistors Ra' and Rb'.  
V0=(1+Rb'/Ra')•VEV  
VEV=(1–α/200)•VREG  
(Equation B-1)  
VREG is the on-chip constant voltage as shown in Table 8 at Ta=25°C.  
External Rb'  
V0  
+
VEV (Constant voltage source + electronic volume)  
External Ra'  
VSS  
Figure 11  
13–18  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
<Setup example>  
When selection Ta=25°C and V0=11V for S1D15B01 series on which temperature gradient=–0.05%/°C.  
The central value of the electronic volume register is (D5, D4, D3, D2, D1, D0)=(1, 0, 0, 0, 0,), that is α =15.  
So, according to equation B-1 and VREG=1.3V, the Rb'/Ra' is shown as follows.  
V0 =(1+Rb'/Ra')•(1–α/200) •VREG  
11V=(1+Rb'/Ra')•(1–15/200) •1.3V  
(Equation B-2)  
Moreover, when the value of the current running through Ra' and Rb' is set to 5 µA,  
Ra'+Rb'=2.2MΩ  
(Equation B-3)  
Consequently, by equation B-2 and B-3,  
Rb'+Ra'=8.15  
Ra'=240kΩ  
Ra'=1960kΩ  
In this case, the variable range and the notch width of the V0 voltage is, as shown Table 12, as dependent on the electronic  
volume.  
Table 12  
V0  
Min.  
Typ.  
Max.  
Units  
Variable range  
Notch width  
10.01[α=31]  
11.0[α=15]  
11.9[α=0]  
[V]  
[mV]  
59  
(C) When external resistors are used. (2)  
(The V0-resistor is not used.)  
When the external resistors described above are used, adding a variable resistor as well make it possible to perform fine  
adjustments on Ra' and Rb', to set the V0 voltage. In this case, the electronic volume function makes it possible to control  
the V0 voltage by commands to adjust the LCD contrast. In the range where V0<VOUT the V0 voltage can be calculated  
by equation C-1 below based on the R1 and R2 (variable resistors) and R3 settings, where R2 can be subjected to fine  
adjustments (R2).  
V0 ={1+(R3+R2–R2)/(R1+R2)}•VEV  
={1+(R3+R2–R2)/(R1+R2)}• (1–α/200)•VREG  
[
VEV=(1–α/200)•VREG]  
(Equation C-1)  
External  
resistor R3  
Rb'  
Ra'  
R2  
VR  
External  
resistor R2  
+
V
0
External  
resistor R1  
VEV (Constant voltage source + electronic volume)  
V
SS  
Figure 12  
Rev. 1.1a  
EPSON  
13–19  
S1D15B01 Series  
<Setup example>  
When selection Ta=25°C and V0=5V to V0=9V (using R2) for S1D15B01 series on which temperature gradient=–  
0.05%/°C.  
The central value of the electronic volume register is (D5, D4, D3, D2, D1, D0)=(1, 0, 0, 0, 0,), that is α=15.  
So, according to equation C-1 and VREG=1.3V, the R1, R2, R3, are shown as follows. (when R2=0at V0=9V and  
R2=R2 at V0=5V)  
9V ={1+(R3+R2)/R1}•(1–15/200) •1.3V  
5V ={1+R3/(R1+R2)}•(1–15/200) •1.3V  
(Equation C-2)  
(Equation C-3)  
Moreover, when the value of the current running through V0 and VSS is set to 5 µ A at V0=7V (central value),  
R1+R2+R3=1.4MΩ  
(Equation C-3)  
With this, according to equation C-2, C-3 and C-4,  
R1=187kΩ  
R2=150kΩ  
R3=1063kΩ  
In this case, if V0 is set to 7V as central value, R2 becomes 53kΩ  
And, the variable range and the notch width of the V0 voltage is, as shown Table 13, as dependent on the electronic  
volume. (R2=53k)  
Table 13  
V0  
Min.  
Typ.  
Max.  
Units  
Variable range  
Notch width  
6.41[α=31]  
7.0[α=15]  
7.58[α=0]  
[V]  
[mV]  
37  
* When the V0-resistor or the electronic volume function is used, it is necessary to at least set the voltage regulator circuit  
and the voltage follower circuit to an operating mode using the power control set commands. Moreover, it is necessary  
to provide a voltage from VOUT when the Booster circuit is OFF.  
* The VR terminal is enabled only when the V0-resistor is not used. When the V0-resistor is used, then the VR terminal  
is left open.  
* Because the input impedance of the VR terminal is high, it is necessary to take into consideration short leads, shield  
cables, etc. to handle noise.  
Voltage Follower Circuit  
The V0 voltage is divided to generate the V1, V2, V3 and V4 voltages by on-chip resistor circuit. And the V1, V2, V3  
and V4 voltages are impedance-converted by voltage follower,and provide to LCD driver circuit.  
LCD bias ratio can be selected by LCD bias set command which is 1/7 bias or 1/9 bias for S1D15B01 series.  
Power supply turn off sequence  
Only S1D15B01D00B which is used as on-chip power supply LCD driver, has the faculty of VOUT shorts to VDD2  
*
when the RES pin is LOW, and V0 shorts to VSS when the RES pin is LOW or reset command is issued. When the on-  
chip power supply is turned off, it is recommended to be the RES pin is LOW., for the purpose of the electric discharge  
on the LCD panel.  
S1D15B01D00B /S1D15B01D02B which is used as external power supply LCD driver, don't have such a discharge  
*
*
faculty, so that VOUT and V0 need to short to VSS, when the external power supply turn off or power saver.  
See the section on the Command Description for details.  
13–20  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Reference Circuit Examples  
Figure 13 ~ 18 shoes reference circuit examples.  
(1) When used all of the booster circuit, voltage regulator circuit and V/F circuit [S1D15B01D00B ]  
*
1 Use the voltage regulator with V0-resistor  
(Example where VDD=VDD2, with 5 × boosting)  
2 Use the voltage regulator with external resistor  
(Example where VDD=VDD2, with 5 × boosting)  
VDD  
VDD  
VDD  
VDD  
VDD2  
VOUT  
VDD2  
VOUT  
C1  
C1  
CAP3+  
CAP3+  
C1  
C1  
CAP1-  
C1  
CAP1-  
C1  
CAP1+  
CAP1+  
CAP4+  
CAP4+  
C1  
C1  
CAP2-  
C1  
CAP2-  
C1  
CAP2+  
CAP2+  
R3  
R2  
V0  
V0  
VR  
VSS  
VR  
R1  
VSS  
V1  
V2  
V3  
V4  
V1  
V2  
V3  
V4  
VSS  
VSS  
Figure 13  
Figure 14  
(2) When used only the voltage regulator circuit and V/F circuit [S1D15B01D01B ]  
*
1 Use the voltage regulator with V0-resistor  
2 Use the voltage regulator with external resistor  
VDD  
VDD  
VDD  
VDD  
V
V
DD2  
OUT  
V
V
DD2  
OUT  
Extemal  
power  
Extemal  
power  
CAP3+  
CAP1-  
CAP1+  
CAP4+  
CAP2-  
CAP2+  
CAP3+  
CAP1-  
CAP1+  
CAP4+  
CAP2-  
CAP2+  
supply  
supply  
R3  
R2  
R1  
V
0
V0  
VR  
VR  
V
V
V
V
V
SS  
V
V
V
V
V
SS  
1
2
3
4
1
2
3
4
VSS  
VSS  
Figure 15  
Figure 16  
Rev. 1.1a  
EPSON  
13–21  
S1D15B01 Series  
(3) When used only the V/F circuit  
(4) When the on-chip power supply is not used  
[S1D15B01D01B ]  
[S1D15B01D02B ]  
*
*
VDD  
VDD  
VDD  
VDD  
V
V
DD2  
OUT  
V
V
DD2  
OUT  
Extemal  
power  
CAP3+  
CAP1-  
CAP1+  
CAP4+  
CAP2-  
CAP2+  
CAP3+  
CAP1-  
CAP1+  
CAP4+  
CAP2-  
CAP2+  
supply  
V0  
V0  
VR  
VR  
V
V
V
V
V
SS  
V
V
V
V
V
SS  
1
2
3
4
1
2
3
4
VSS  
VSS  
Extemal  
power  
supply  
Figure 17  
Figure 18  
Example of shared reference settings  
When V0 can vary between 8 and 12V  
ltem  
C1  
Set value  
1.0 ~ 4.7  
Units  
µF  
Figure 14  
* Because the VR terminal input impedance is high, use short leads and shield lines.  
13–22  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Reset Circuit  
When RES pin goes low,or when Reset command is  
used,this LSI is initialized.  
Initialized states :  
• V0-resistor ratio register (D2, D1, D0) = (0, 0, 0)  
• Electronic volume register (D4, D3, D2, D1, D0) =  
(1, 0, 0, 0, 0)  
• Serial interface internal shift register and counter  
clear  
• Power saver mode is entered.  
• Oscillation circuit is stopped.  
• The LCD power supply circuit is stopped.  
• Display OFF  
• LCD power supply bias ratio = 1/7 bias  
• Test mode is released.  
• V0 is shorted to VSS *1  
• VOUT is shorted to VDD2 *1*2  
When reset is detected, this LSI is set to above initialized  
states. However it has no effect on contents of DDRAM.  
As seen in “Microprocessor Interface (Reference  
Example)”, connect RES pin to the reset pin of the MPU  
and initialize the MPU at the same time. The initialization  
by RES pin is always required during power-on.  
• Display all points ON  
• Segment/common driver outputs go to the VSS  
level.  
• Display normal  
• Page address=0H  
• Column address=00H  
If the control signal from MPU is HZ, an overcurrent  
may flow through the LSI. A protection is required to  
prevent the HZ signal at the input pin during power-on.  
In case the S1D15B01 series does not use the on-chip  
LCD power supply circuit, RES pin must be HIGH  
when the external LCD power supply is turned on.  
• Display start line address=00H  
• Segment driver direction = normal  
• Common driver direction = normal  
• Read modify write OFF  
• Power control register (D2, D1, D0) = (0, 0, 0)  
*1 This faculty is available only S1D15B01D00B .  
*
*2 This faculty is not available by reset command, it is abailable only when hard reset : RES=LOW is active.  
Rev. 1.1a  
EPSON  
13–23  
S1D15B01 Series  
7. COMMAND DESCRIPTION  
The S1D15B01 series identifies the data bus by a combination of A0, RD (E), WR (R/W) signals.  
In the 8080-series MPU interface, the command is activated when a low pulse is input to RD pin for reading and when  
a low pulse is input to WR pin for writing. In the 6800-series MPU interface, the S1D15B01 series enters a read mode  
when a high level is input to R/W pin and a write mode when a low level is input to R/W pin, and the command is activated  
when a high pulse is input to E pin. Therefore, in the command explanation and command table, the 6800-series MPU  
interface is different from the 8080-series MPU interface in that RD (E) becomes “1 (H)” in Display data read command.  
And when the serial interface is selected, the data is input in sequence starting with D7.  
Taking the 8080-series MPU interface as an example, commands will be explained below.  
Explanation of commands  
(1) Display ON/OFF  
This command turns the display ON and OFF.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Setting  
RD WR  
0
1
0
1
0
1
0
1
1
1
0
1
Display OFF  
Display ON  
When the Display OFF command is executed when in the Display all points ON mode , Power saver mode is entered.  
See the section on the Power saver for details.  
(2) Display normal/reverse  
This command can reverse the lit and unlit display without overwriting the contents of the DDRAM.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Setting  
RD WR  
0
1
0
1
0
1
0
0
1
1
0
Normal:DDRAM Data HIGH  
=LCD ON voltage  
Reverse:DDRAM Data LOW  
=LCD ON voltage  
1
(3) Display all points ON/OFF  
This command makes it possible to force all display points ON regardless of the content of the DDRAM. Even when  
this is done, the DDRAM contents are maintained. This command takes priority over the Display normal/reverse  
command.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Setting  
RD WR  
0
1
0
1
0
1
0
0
1
0
0
1
Normal display mode  
Display all points ON  
When the Display all points ON command is executed when in the Display OFF mode, Power saver mode is entered.  
See the section on the Power saver for details.  
13–24  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(4) Page address set  
This command specifies the page address of the DDRAM (refer to Figure 5).  
Specifying the page address and column address enables to access a desired bit of the DDRAM. After the last column  
address (83H), page address incremented by +1 (refer to Figure 4). After the very last address (column = 83H, page =  
8H), page address return to 0H.  
Page address 8H is the DDRAM area dedicate to the indicator, and only D0 is valid for data change.  
See the function explanation in “DDRAM and page/column address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Page address  
RD WR  
0
1
0
1
0
1
1
0
0
0
0
0
0
:
0
0
1
0
1
0
0H  
1H  
2H  
:
0
1
1
0
1
0
1
0
7H  
8H  
(5) Column address set  
This command specifies the column address of the DDRAM (refer to Figure 5).  
The column address is split into two sections (the upper 4-bits and lower 4-bits) when it is set (fundamentally, set  
continuously).  
Each time the DDRAM is accessed, the column address automatically increments by +1, making it possible for the MPU  
to continuously access to the display data. After the last column address (83H) ,column address returns to 00H (refer  
to Figure 4).  
See the function explanation in “DDRAM and page/column address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
0
0
0
1
0
A7 A6  
A3 A2  
A5  
A1  
A4  
A0  
Upper bit address  
Lower bit address  
A7 A6  
A5  
A4  
A3 A2  
A1  
A0  
Column address  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
1
0
1
0
00H  
01H  
02H  
:
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
1
82H  
83H  
(6) Display start line address set  
This command is used to specify the display start line address of the DDRAM (refer to Figure 5).  
If the display start line address is changed dynamically using this command, then screen scrolling, page swapping can  
be performed.  
See the function explanation in “Line address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Line address  
RD WR  
0
1
0
0
1
0
0
0
0
0
0
0
0
0
:
0
0
0
0
0
1
0
1
0
00H  
01H  
02H  
:
1
1
1
1
1
1
1
1
1
1
0
1
3EH  
3FH  
Rev. 1.1a  
EPSON  
13–25  
S1D15B01 Series  
(7) ADC Select (Segment driver direction select)  
This command can reverse the correspondence between the DDRAM column address and the segment driver output.  
See the function explanation in “DDRAM and page/column address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Setting  
RD WR  
0
1
0
1
0
1
0
0
0
0
0
1
Normal  
Reverse  
(8) Common driver direction select  
This command can reverse the correspondence between the DDRAM line address and the common driver output. See  
the function explanation in “Line address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Setting  
RD WR  
0
1
0
1
1
0
0
0
1
*
*
*
Normal  
Reverse  
*Disabled bit  
(9) Display data read  
This command reads 8-bit data from the specified DDRAM address. Since the column address is automatically  
incremented by +1 after each read ,the MPU can continuously read multiple-word data. One dummy read is required  
immediately after the address has been set. See the function explanation in “Access to DDRAM and internal registers”  
and “DDRAM and page/column address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
1
0
1
Read Data  
(10) Display data write  
This command writes 8-bit data to the specified DDRAM address. Since the column address is automatically  
incremented by +1 after each write ,the MPU can continuously write multiple-word data. See the function explanation  
in “DDRAM and page/column address circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
1
1
0
Write Data  
13–26  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(11) Read modify write  
This command is used paired with End command. Once this command is issued, the column address is not incremented  
by Display data read command, but is incremented by Display data write command. This mode is maintained until End  
command is issued. When End command is issued, the column address returns to the address it was at when Read modify  
write command was issued. This function makes it possible to reduce the MPU load when there are the data to change  
repeatedly in a specified display region, such as blinking cursor.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
1
1
0
0
0
0
0
*When End command is issued, only column address returns to the address it was at when Read modify write  
command was issued, but page address does not return. Consequently, Read modify Write mode cannot be used  
over pages.  
*Even if Read modify write mode, other commands besides Display data read/write can also be used. However,  
Column address set command cannot be used.  
The sequence for cursor display  
Page Address Set  
Column Address Set  
Read Modify Write  
Dummy Read  
Data Read  
Data Write  
No  
Completed?  
Yes  
End  
Figure 19  
Rev. 1.1a  
EPSON  
13–27  
S1D15B01 Series  
(12) End  
This command releases the Read modify write mode, and returns the column address to the address it was when Read  
modify write command was issued .  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
1
1
0
1
1
1
0
Return  
Column address  
N
N+1  
N+2  
N+3  
• • •  
N+m  
N
End  
Read Modify Write  
Figure 20  
(13) Power control set  
This command sets the on-chip power supply function ON/OFF. See the function explanation in “Power supply circuit”,  
for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Mode  
RD WR  
0
1
0
0
0
1
0
1
0
1
Booster : OFF  
Booster : ON  
0
1
Voltage regulator : OFF  
Voltage regulator : ON  
0
1
Voltage follower : OFF  
Voltage follower : ON  
(14) V0-resistor ratio set  
This command sets the internal resistor ratio “Rb/Ra” for the V0 voltage regulator to adjust the contrast of LCD panel  
display. See the function explanation in “Power supply circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
Rb/Ra : V0 voltage  
RD WR  
0
1
0
0
0
1
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SMALL  
LOW  
LARGE  
External resistor mode  
HIGH  
13–28  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(15) Electronic volume  
This command sets a value of electronic volume “α” for the V0 voltage regulator to adjust the contrast of LCD panel  
display. See the function explanation in “Power supply circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
α
:
V0 voltage  
RD WR  
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
1
0
31  
LOW  
1
1
1
1
1
1
0
1
0
HIGH  
(16) LCD bias set  
This command selects the voltage bias ratio required for the LCD. This command is enabled when the voltage follower  
circuit operates.  
E
R/W  
Bias  
S1D15B01  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
0
1
0
0
0
1
0
1
1/9 bias  
1/7 bias  
(17) Power saver  
When the display all points ON command is executed when in the display OFF mode, power saver mode is entered, and  
the power consumption can be greatly reduced.  
Power saver (Display OFF & Display all points ON)  
Power saver mode  
Power saver OFF (Display all points OFF)  
Power saver mode cancel  
Figure 21  
This mode stops every operation of the LCD display system, and can reduce current consumption nearly to a static  
current value if no access is made from the MPU. The internal states in the power saver mode is as follows:  
• The oscillation circuit is stopped.  
• The LCD power supply circuit is stopped.  
• The LCD driver circuit is stopped and segment/common driver outputs output the VSS level.  
• The display data and operation mode before execution of the Power saver command are held, and the MPU can  
access to the DDRAM and internal registers.  
Rev. 1.1a  
EPSON  
13–29  
S1D15B01 Series  
(18) Reset  
This LSI is in initialized by this command. And when S1D15B01D00B is used, V0 is shorted to VSS. (Only when RES=  
*
LOW, VOUT is shorted to VSS. So VOUT is not shorted to VSS by this commands.) See the function explanation in “Reset  
circuit”, for detail.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
1
1
0
0
0
1
0
(19) NOP  
Non-operation command  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
1
1
0
0
0
1
1
(20) Test  
This is a command for LSI chip testing. Please do not use. If the test command is issued by accident, it can be cleared  
by applying an LOW signal to the RES pin, or by issuing the Reset command or the Display ON/OFF command.  
E
R/W  
A0  
D7 D6  
D5  
D4  
D3 D2  
D1  
D0  
RD WR  
0
1
0
1
1
*
1
*
*
*
*
* Disabled bit  
(Note):  
The S1D15B01 series chip maintain their operating modes ,but excessive external noise, etc., may happen to change  
them. Thus in the packaging and system design it is necessary to suppress the noise or take measures to prevent the noise.  
Moreover, it is recommended that the operating modes are refreshed periodically to prevent the effects of unanticipated  
noise.  
13–30  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Command Table  
Table 14  
Code  
Command  
A0 XR XW D7 D6 D5 D4 D3 D2 D1 D0  
Function  
(1) Display ON/OFF  
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
1
0
0
0
0
0
0
1
0
1
1
1
1
0
0
0
0
0
1
1
0
1
0
0
1
1
1
1
1
0
0
1
LCD display  
0:OFF, 1:ON  
(2) Display normal/reverce 0  
0
1
LCD display  
0:normal, 1:reverce  
(3) Display all points ON/OFF  
(4) Page address set  
0
0
0
0
0
0
0
1
LCD display  
0:normal display, 1:all points ON  
address  
address  
address  
Sets the DDRAM page address  
Sets the DDRAM column address  
(5) Column address set  
Upper 4-bit address  
Column address set  
Lower 4-bit address  
(6) Display start line  
address set  
address  
Sets the DDRAM display start line  
address.  
(7) Segment driver  
directuin select  
1
0
0
0
0
*
0
*
0
1
Sets the correspondence  
between the DDRAM column  
address and the SEG driver output.  
0:normal, 1:reverse  
(8) Common driver  
direction select  
0
1
0
1
1
0
0
1
*
Sets the correspondence  
between the DDRAM line address  
and the COM driver output.  
0:normal, 1:reverse  
(9) Display data read  
(10) Display data write  
(11) Read modify write  
(12) End  
1
1
0
0
0
0
0
0
-
0
1
1
1
1
1
1
1
-
1
0
0
0
0
0
0
0
-
Read data  
Write data  
Reads from the DDRAM.  
Writes to the DDRAM.  
1
1
0
0
1
1
-
1
1
0
0
0
0
-
1
1
1
1
0
1
-
0
0
0
0
0
1
1
0
0
1
0
1
0
0
Column address increment  
at write:+1, at read:0.  
Releases Read modify write mode.  
(13) Power control set  
(14) V0-resistor ratio set  
(15) Electronic volume  
(16) LCD bias set  
(17) Power saver  
(18) Reset  
Operating Sets the on-chip power supply  
mode  
circuit operating mode.  
Resistor  
ratio  
Sets the V0-resistor ratio value.  
Electronic volume  
value  
Sets the electronic volume value.  
0
0
0
1
0
1
Sets the LCD drive voltage bias ratio.  
S1D15B01 0:1/9bias, 1:1/7bias  
-
-
-
-
-
Compound command of Display  
OFF and Display all points ON  
0
0
0
1
1
1
0
0
0
1
1
1
1
1
1
1
1
*
0
0
1
0
0
*
0
0
*
1
1
*
0
1
*
Internal reset  
(19) NOP  
Non-operation  
(20) Test  
IC test command. Do not use.  
(Note)*:disabled bit  
Rev. 1.1a  
EPSON  
13–31  
S1D15B01 Series  
8. COMMAND SETTING  
Instruction Setup of S1D15B01D00B : Reference  
*
(1) Initialization  
Turn on the VDD - VSS,  
the RES pin = LOW *1  
VDD2 - VSS keeping  
When the power is stabilized  
Release the reset state. (RES pin = HIGH)  
Initialize state (Default) *2  
Function set up by command input (user setup)  
(2)Display normal/reverse *3  
(7)Segment driver direction set *4  
(8)Common driver direction set *5  
(16)LCD bias set *6  
Function set up by command input (user setup)  
(14)Setting built-in resistance ratio for  
regulation of the V0 voltage *7  
(15)Electronic volume control set *8  
Power saver OFF  
(17)Display all points OFF *9  
Function set up by command input (user setup)  
(13)Power control set *10  
This concludes the initialization  
Notes: Refer to respective sections or paragraphs listed below  
*1: Description of Timing characteristics; Notes for Power on Sequence  
*2: Description of functional; Reset Circuit  
*3: 7.Command Description; Display normal/reverse  
*4: 7.Command Description; Segment driver direction select  
*5: 7.Command Description; Common driver direction select  
*6: 7.Command Description; LCD bias set  
*7: Description of functions; Power supply circuit & Command description; V0-resistor ratio set  
*8: Description of functions; Power supply circuit & Command description; Electronic volume  
*9: 7.Command Description; Power saver  
*10: Description of functions; Power supply circuit & Command description; Power control set  
13–32  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(2) Data display  
End of initialization  
Function set up by command input (user setup)  
(6) Display start line address set *11  
(4) Page address set *12  
(5) Column address set *13  
Function set up by command input (user setup)  
(10) Display data write *14  
Function set up by command input (user setup)  
(1) Display ON/OFF *15  
End of data display  
Notes: Reference items  
*11: 7.Command Description; Display start line address set  
*12: 7.Command Description; Page address set  
*13: 7.Command Description; Column address set  
*14: 7.Command Description; Display data write  
*15: 7.Command Description; Display ON/OFF  
(3) Power OFF *16  
Optional status  
Function set up by command input (user setup)  
(17)Power saver *17  
Reset active  
(18)RES pin = LOW or reset command *18  
(19)Turn OFF the VDD2 - VSS, VDD - VSS *19  
Notes: Reference items  
*16: After turning OFF the internal power supply, turn OFF the power supply of this IC.  
(Function Description; Power supply circuit)  
When the power of this IC is turned OFF with the internal power supply is held in the ON status, since the where  
the voltage is supplied, even though an only little, to on chip LCD drive circuit is still continued, it is featured  
to ill affect the display quality of the LCD panel. To avoid this, be sure to observe the power OFF sequence  
strictly.  
*17: 7.Command Description; Power saver  
*18: It is recommended to be RES pin=LOW. Only if it is not possible to be RES pin=LOW, ase reset command.  
*19: Set the time tL from reset active to turning off the VDD2/VDD power, longer then the time tH when the potential  
of V0 ~ V4 becomes below the threshold voltage (approximately 1V) of the LCD panel. (tL > tH) If tL < tH, an  
irregular display may occur.  
Refer to the < Reference Data > as below. When tH is too long, insert a resis for between V0 and VSS to reduce  
it.  
Rev. 1.1a  
EPSON  
13–33  
S1D15B01 Series  
<Reference Data>  
Condition: VDD=VDD2=1.8V, Quintuple boosting, Boosting Capacitance 1 µ F,  
Set the V0 voltage to 8V  
tH (µ s) is calculated the following equation.  
tH=tH0×V0+tH×CL×V0  
CL  
tH0  
:The capacitance of LCD panel connected between V0 and VSS  
:tH at the CL=0  
tH :tH when the V0 drops 1V per the CL=1pF.  
This is reference data, so it is needed to estimate a real LCD module since tH is depends on the VDD/VDD2 voltage and  
the capacitance of LCD panel.  
1 In case of RES pin=LOW  
RES = L  
Power OFF  
Power  
t
L
saver  
VDD2  
/VDD  
SEG  
COM  
1.7V  
As power VDD, VDD2 is  
shut off, it becomes  
V
SS  
SS  
impossible to fix output  
V
V0  
V
V1  
V2  
At or under Vth on LCD.  
Use 1.0[V] as a reference.  
V3  
VS4S  
t
H
Figure 22  
S1D15B01D00B has the discharge faculty that is shorted VOUT to VDD2, when RES pin=LOW.  
*
As tH0=70(µs/V), tH=0.079(µs/V/nF) by measurement, tH is calculated as follows, when V0=7V and CL=100pF.  
tH=tH0×V0+tH×CL×V0=70×7+0.079×100×7=545µs  
2 In case of reset command  
reset  
command  
Power OFF  
Power  
t
L
saver  
VDD2  
/VDD  
SEG  
COM  
1.7V  
As power VDD, VDD2 is  
shut off, it becomes  
V
SS  
SS  
impossible to fix output  
V
V0  
V
V1  
V2  
At or under Vth on LCD.  
Use 1.0[V] as a reference.  
V3  
VS4S  
t
H
Figure 23  
VOUT is not shorted to VDD2 by reset command, so tH is longer than the case of RES pin=LOW.  
As tH0=175(µs/V), tH=0.23(µs/V/nF) by measurement, tH is calculated as follows, when V0=7V and CL=100pF.  
tH=tH0×V0+tH×CL×V0=175×7+0.23×100×7=1386µs  
13–34  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(3) Refresh  
It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of  
unexpected noise.  
Refresh sequence  
Set all commands to ready state  
Test mode reset command  
(Display ON/OFF) *20  
Refreshing DDRAM  
Notes: Reference items  
*20: 7.Command description; Display ON/OFF  
Rev. 1.1a  
EPSON  
13–35  
S1D15B01 Series  
9. ABSOLUTE MAXIMUM RATING  
Unless otherwise noted, VSS = 0V.  
Table 15  
Parameter  
Symbol  
VDD  
Conditions  
–0.3 to 7.0  
–0.3 to 7.0  
–0.3 to 7.0  
–0.3 to 6.0  
–0.3 to 4.5  
–0.3 to 3.6  
Unit  
V
Power supply voltage (1)  
Power supply voltage (2)  
Double boosting  
VDD2  
V
Triple boosting  
Quadruple boosting  
Quintuple boosting  
Power supply voltage (3)  
Power supply voltage (4)  
Input voltage  
V0, VOUT  
V1, V2, V3, V4  
VIN  
–0.3 to 18.0  
–0.3 to V0  
V
V
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–40 to 85  
V
Output voltage  
VO  
V
Operating temperature  
TOPR  
°C  
°C  
Storage temperature  
TCP  
TSTR  
–55 to 100  
Bare chip  
–55 to 125  
V0, VOUT  
1 to  
V
V4  
V
CC  
VDD, VDD2  
VSS  
GND  
VSS  
System  
S1D15B01 series  
Notes and Conditions  
1. Voltage V0 V1 V2 V3 V4 VSS must always be satisfied.  
2. If the LSI exceeds its absolute maximum rating, it may be damage permanently. It is desirable to use it under electrical  
characteristics conditions during general operation. Otherwise, a malfunction of the LSI may be caused and LSI  
reliability may be affected.  
13–36  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
10. ELECTRICAL CHARACTERISTICS  
DC Characteristics  
Table 16  
VSS=0V, VDD=3V±10%, Ta=–40 to 85°C unless otherwise noted.  
Item  
Recommended  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit Pin used  
Power  
VDD  
(Relative to VSS)  
1.8  
3.6  
V
VDD *1  
voltage(1) operation  
Operational  
1.7  
1.8  
5.5  
3.6  
V
V
Power  
Recommended  
VDD2  
(Relative to VSS)  
VDD2 *1  
voltage(2) operation  
Operational  
Booster circuit  
operatinal  
voltage  
1.7  
3.0  
2.0  
1.7  
1.7  
6.0  
5.5  
5.5  
5.0  
4.0  
3.0  
16.0  
Double boosting  
Triple boosting  
Quadruple boosting  
Quintuple boosting  
(Relative to VSS)  
Voltage regulator  
VOUT  
V
V
VOUT  
operational voltage  
Voltage follower  
V0  
V1, V2  
V3, V4  
VREG  
VIH  
4.5  
0.6×V0  
VSS  
16.0  
V0  
V0 *2  
V1,V2  
V3,V4  
*3  
operational voltage  
0.4×V0  
1.34  
Reference voltage  
Ta=25°C  
1.26  
1.30  
V
V
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Input leakage current  
Output leakage current  
LCD driver ON resistance  
0.8×VDD  
VSS  
VDD  
*4  
VIL  
0.2×VDD  
VDD  
V
VOH  
VOL  
ILI  
IOH=-0.5mA  
IOL=0.5mA  
0.8×VDD  
VSS  
V
*5  
0.2×VDD  
–1.0  
V
–1.0  
µA  
µA  
kΩ  
*6  
*7  
ILO  
–3.0  
–3.0  
RON  
V0=8V  
2.0  
5.0  
SEGn,  
Ta=25°C  
COMn *8  
Static current  
consumption  
IDDQ  
I0Q  
Ta=25°C  
0.01  
0.01  
20  
5
15  
µA  
µA  
VDD,  
VDD2  
V0=16V  
Ta=25°C  
V5  
Input terminal  
capacitance  
CIN  
f =1MHz  
Ta=25°C  
35  
pF  
Oscillation frequency  
fOSC  
Ta=25°C  
4.55  
5.2  
5.85  
kHz  
*9  
Relationship between oscillation frequency fosc and frame rate frequency fFR : fFR = fosc/ 65  
Relationship between external clock (CL) frequency fCL and frame rate frequency fFR : fFR =fCL/ 8/ 65  
Rev. 1.1a  
EPSON  
13–37  
S1D15B01 Series  
Current consumption  
Dynamic current consumption (1) : During display, when the internal power supply circuit is OFF  
(external power supply is used).  
Table 17  
Item  
Display Pattern OFF  
Ta=25˚C  
Symbol  
Condition  
Min.  
Typ.  
20  
Max.  
33  
Unit  
Notes  
S1D15B01*****  
I0(1)  
VDD=VDD2=2.7V, V0=8.0V  
VDD=VDD2=2.7V, V0=11.0V  
µA  
*10  
29  
48  
Table 18  
Item  
Display Pattern Checker  
Ta=25˚C  
Symbol  
Condition  
Min.  
Typ.  
24  
Max.  
40  
Unit  
Notes  
S1D15B01*****  
I0(1)  
VDD=VDD2=2.7V, V0=8.0V  
VDD=VDD2=2.7V, V0=11.0V  
µA  
*10  
33  
55  
Dynamic current consumption (2) : During display, when the internal power supply circuit is ON.  
Table 19  
Item  
Display Pattern OFF  
Ta=25˚C  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD+IDD2  
VDD=VDD2=2.7V, V0=8.0V  
Triple boosting  
75  
125  
µA  
*9  
S1D15B01*****  
(2)  
VDD=VDD2=2.7V, V0=8.0V  
Quadruple boosting  
96  
160  
198  
VDD=VDD2=2.7V, V0=8.0V  
Quadruple boosting  
119  
Table 20  
Item  
Display Pattern Checker  
Ta=25˚C  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD+IDD2  
VDD=VDD2=2.7V, V0=8.0V  
Triple boosting  
86  
143  
µA  
*9  
S1D15B01*****  
(2)  
VDD=VDD2=2.7V, V0=8.0V  
Quadruple boosting  
110  
136  
183  
227  
VDD=VDD2=2.7V, V0=8.0V  
Quadruple boosting  
Table 21  
Item  
Power saver  
Ta=25˚C  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD(2)  
VDD=VDD2=1.7V to 3.6V  
0.01  
5
µA  
*9  
S1D15B01*****  
13–38  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Reference data  
Dynamic current consumption (1) : During display, when the internal power supply circuit is OFF  
(external power supply is used).  
Conditions : Internal power supply OFF. External supply in use.  
V0=8.0V, Display pattern : OFF, Ta=25˚C  
50  
40  
30  
V0 = 11.0V  
20  
V0 = 8.0V  
10  
0
0
1
2
3
4
5
6
7
8
VDD = VDD2 [V]  
Figure 24  
Conditions : Internal power supply OFF. External supply in use.  
V0=8.0V, Display pattern : Checker, Ta=25˚C  
50  
40  
30  
20  
10  
V0 = 11.0V  
V0 = 8.0V  
0
0
1
2
3
4
5
6
7
8
VDD = VDD2 [V]  
Figure 25  
Rev. 1.1a  
EPSON  
13–39  
S1D15B01 Series  
Dynamic current consumption (2) : During display, when the internal power supply circuit is ON.  
Conditions : Internal power supply ON.  
V0=8.0V, Display pattern : OFF, Ta=25˚C  
140  
×5  
120  
×4  
100  
×3  
80  
×2  
60  
40  
20  
0
0
1
2
3
4
5
6
VDD + VDD2 [V]  
Figure 26  
Conditions : Internal power supply ON.  
V0=8.0V, Display pattern : Checker, Ta=25˚C  
160  
140  
120  
100  
80  
×5  
×4  
×3  
×2  
60  
40  
20  
0
0
1
2
3
4
5
6
VDD + VDD2 [V]  
Figure 27  
13–40  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Dynamic current consumption (3) : During access and display (Checker pattern is constantly written at fCYC and  
displayed), when the on-chip power supply circuit is ON.  
10  
1
0.1  
0.01  
0.001  
0.001  
0.01  
0.1  
1
10  
fCYC [MHz]  
Figure 28  
Rev. 1.1a  
EPSON  
13–41  
S1D15B01 Series  
VDD, VDD2 and V0 (VOUT) operation voltage range  
(1) S1D15B01D00B  
1 VDD=VDD2  
*
In the range of VDD=VDD2<3.2V, the maximum V0 voltage is determined by VOUT voltage of the quintuple boosting.  
It is necessary to keep VOUT > V0 for preventing irregular display. The voltage of VOUT - V0 is determined by LCD  
panel, so it is recommended to check the actual LCD module and set them.  
20  
16  
15  
Operating range  
10  
8.5  
4.5  
5
0
1.7  
2
3.2  
5.5  
0
1
3
4
5
6
V
DD = VDD2 [V]  
Figure 29  
2 VDD<VDD2  
In the case, it is necessary to keep 1.7VVDDVDD23.6V. And the VDD2 should be set to keep VOUT>V0.  
20  
16  
15  
11  
10  
5
Operating range  
4.5  
1.7  
3.6  
4
0
0
1
2
3
5
6
V
DD [V]  
Figure 30  
13–42  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
(2) S1D15B01D01B  
*
If VDD=VDD2, the operating range of VDD/VDD2 is 1.7VVDD=VDD24.5V. And if VDD<VDD2, the operating range  
of VDD/VDD2 is 1.7VVDD<VDD23.6V  
1 Eternal voltage : VOUT  
In this case, the relationship between VOUT and VDD/VDD2 is required as shown in Figure 31.  
20  
VDD < VDD2  
VDD = VDD2  
16  
15  
Operating range  
10  
5
8
6
1.7  
2.4  
3.6  
4
4.5  
0
0
1
2
3
5
6
V
DD / VDD2 [V]  
Figure 31  
2 Eternal voltage : V0  
In this case, the relationship between V0 and VDD/VDD2 is required as shown in Figure 32.  
20  
V
DD < VDD2  
VDD = VDD2  
16  
11  
15  
Operating range  
10  
5
4.5  
1.7  
2
3.6  
4.5  
0
0
1
3
4
5
6
V
DD / VDD2 [V]  
Figure 32  
(3) S1D15B01D02B  
*
Eternal voltage: V0, V1 to V4  
In this case, V0 operating range is same as Figure 32, and V0V1V2V3V4VSS is required.  
Rev. 1.1a  
EPSON  
13–43  
S1D15B01 Series  
*1. Though the wide range of operating voltage is guaranteed, performance cannot be guaranteed if there are sudden  
fluctuations to the voltage during being accessed from MPU.  
This VDD, VDD2 operational voltage range (1.7V to 5.5V) is in case of VDD=VDD2. If VDDVDD2, it becomes to  
be 1.7VVDD<VDD23.6V.  
*2. VDD, VDD2 and V0 operating voltage range is shown in Figure.  
*3. VREG is internal constant voltage source for V0 voltage regulator circuit.  
*4. D7 (SI), D6 (SCL), D5 to D0, A0, CS, RES, RD (E), WR (R/W),C86, P/S and CL pins  
*5. D7 to D0 pins  
*6. A0, CS, RES, RD (E), WE (R/W), C86, P/S and CL pins  
*7. D7 (SI), D6 (SCL) and D5 to D0 pins  
*8. Resistance value when 0.1V is applied between the output pin SEGn or COMn and each power supply pin (V0, V1,  
V2, V3, V4, VSS). This is specified in the “Voltage follower operating voltage” range. RON = 0.1V/I (I : Current  
flowing when 0.1V is applied between that output pin and those power supply pin).  
*9. Current that each IC unit consumes. It does not include the current of the LCD panel capacity, wiring capacity, etc.  
13–44  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Timing Characteristics  
System Bus Read/Write Characteristics 1 (For the 8080-series MPU)  
A0  
tAW8  
tAH8  
CS1  
(CS2="1")  
tCYC8  
*1  
tCCLR, tCCLW  
WR, RD  
tCCHR, tCCHW  
CS1  
(CS2="1")  
*2  
tf  
tr  
WR, RD  
tDS8  
tDH8  
D0 to D7  
(Write)  
tACC8  
tOH8  
D0 to D7  
(Read)  
Figure 33  
Table 22  
[VDD=4.5V to 5.5V, Ta=–40 to 85°C]  
Item  
Signal  
Symbol  
tAH8  
Condition  
Min.  
0
Max.  
Units  
Address hold time  
A0  
ns  
Address setup time  
tAW8  
0
System cycle time  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
160  
30  
70  
30  
30  
Control LOW pulse width(Write)  
Control LOW pulse width(Read)  
Control HIGH pulse width(Write)  
Control HIGH pulse width(Read)  
WR  
RD  
WR  
RD  
Data setup time  
Data hold time  
Access time  
D7 to D0  
tDS8  
tDH8  
20  
0
tACC8  
tOH8  
CL=100pF  
70  
50  
Output disable time  
5
Rev. 1.1a  
EPSON  
13–45  
S1D15B01 Series  
Table 23  
[VDD=2.7V to 4.5V, Ta=–40 to 85°C]  
Item  
Signal  
Symbol  
tAH8  
Condition  
Min.  
0
Max.  
Units  
Address hold time  
A0  
ns  
Address setup time  
tAW8  
0
System cycle time  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
260  
60  
120  
60  
60  
Control LOW pulse width(Write)  
Control LOW pulse width(Read)  
Control HIGH pulse width(Write)  
Control HIGH pulse width(Read)  
WR  
RD  
WR  
RD  
Data setup time  
Data hold time  
Access time  
D7 to D0  
tDS8  
tDH8  
35  
0
tACC8  
tOH8  
CL=100pF  
120  
100  
Output disable time  
10  
Table 24  
[VDD=1.7V to 2.7V, Ta=–40 to 85°C]  
Item  
Signal  
Symbol  
tAH8  
Condition  
Min.  
0
Max.  
Units  
Address hold time  
A0  
ns  
Address setup time  
tAW8  
0
System cycle time  
tCYC8  
tCCLW  
tCCLR  
tCCHW  
tCCHR  
700  
120  
240  
120  
120  
Control LOW pulse width(Write)  
Control LOW pulse width(Read)  
Control HIGH pulse width(Write)  
Control HIGH pulse width(Read)  
WR  
RD  
WR  
RD  
Data setup time  
Data hold time  
Access time  
D7 to D0  
tDS8  
tDH8  
90  
0
tACC8  
tOH8  
CL=100pF  
240  
200  
Output disable time  
10  
*1. This is in the case of making the access by WR and RD, setting the CS1=LOW.  
*2. This is in the case of making the access by CS1, setting the WR, RD=LOW.  
*3. The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the system cycle  
<
<
time at high speed, they are specified for (tr+tf) (tCYC8-tCCLW) or (tr+tf) (tCYC8-tCCLR-tCCHR).  
=
=
*4. All timings are specified based on the 20 and 80% of VDD.  
*5. tCCLW and tCCLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and WR,RD are at  
the LOW level.  
13–46  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
System Bus Read/Write Characteristics 2 (For the 6800-series MPU)  
A0  
R/W  
tAW6  
tAH6  
CS1  
(CS2="1")  
tCYC6  
*1  
*2  
tEWHR, tEWHW  
E
tEWLR, tEWLWW  
CS1  
(CS2="1")  
tr  
tf  
E
tDS6  
tDH6  
D0 to D7  
(Write)  
tACC6  
tOH6  
D0 to D7  
(Read)  
Figure 34  
Table 25  
[VDD=4.5V to 5.5V, Ta=–40 to 85°C]  
Item  
Signal  
A0,  
Symbol  
tAH6  
Condition  
Min.  
0
Max.  
Units  
Address hold time  
Address setup time  
System cycle time  
Enable  
ns  
WR  
tAW6  
0
tCYC6  
tEWHW  
tEWHR  
tEWLW  
tEWLR  
tDS6  
160  
30  
70  
30  
30  
20  
0
Width  
E
E
HIGH pulse width Read  
Enable  
Width  
Read  
LOW pulse width  
Data setup time  
Data hold time  
Access time  
D7 to D0  
tDH6  
tACC6  
tOH6  
CL=100pF  
70  
50  
Output disable time  
5
Rev. 1.1a  
EPSON  
13–47  
S1D15B01 Series  
Table 26  
[VDD=2.7V to 4.5V, Ta=–40 to 85°C]  
Item  
Address hold time  
Address setup time  
System cycle time  
Enable  
Signal  
A0,  
Symbol  
tAH6  
Condition  
Min.  
0
Max.  
Units  
ns  
WR  
tAW6  
0
tCYC6  
tEWHW  
tEWHR  
tEWLW  
tEWLR  
tDS6  
260  
60  
120  
60  
60  
35  
0
Width  
E
HIGH pulse width Read  
Enable  
Width  
Read  
LOW pulse width  
Data setup time  
Data hold time  
D7 to D0  
tDH6  
Access time  
tACC6  
tOH6  
CL=100pF  
120  
100  
Output disable time  
10  
Table 27  
[VDD=1.7V to 2.7V, Ta=–40 to 85°C]  
Item  
Address hold time  
Address setup time  
System cycle time  
Enable  
Signal  
A0,  
Symbol  
tAH6  
Condition  
Min.  
0
Max.  
Units  
ns  
WR  
tAW6  
0
tCYC6  
tEWHW  
tEWHR  
tEWLW  
tEWLR  
tDS6  
700  
120  
240  
120  
120  
90  
Width  
E
HIGH pulse width Read  
Enable  
Width  
Read  
LOW pulse width  
Data setup time  
Data hold time  
D7 to D0  
tDH6  
0
Access time  
tACC6  
tOH6  
CL=100pF  
240  
200  
Output disable time  
10  
*1. This is in the case of making the access by E, setting the CS1=LOW.  
*2. This is in the case of making the access by CS1, setting the E=HIGH.  
*3. The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the system cycle  
<
<
time at high speed, they are specified for (tr+tf) (tCYC6-tEWLW-tEWHW) or (tr+tf) (tCYC6-tEWLR-tEWHR).  
=
=
*4. All timings are specified based on the 20 and 80% of VDD.  
*5. tEWLW and tEWLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and E is at the HIGH  
level.  
13–48  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Serial interface  
t
CSS  
t
CSH  
CS  
t
SAS  
t
SAH  
A0  
t
SCYC  
t
SLW  
SCL  
t
SHW  
t
f
t
r
t
SDS  
t
SDH  
SI  
Figure 35  
Table 28  
VDD=4.5 to 5.5V, Ta=–40 to 85°C  
Item  
Signal  
Symbol  
tSCYC  
tSHW  
Condition  
Min.  
40  
Max.  
Units  
Serial clock cycle  
SCL  
ns  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
15  
tSLW  
15  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
10  
20  
Data setup time  
Data hold time  
tSDS  
tSDH  
3
3
CS serial clock time  
CS  
tCSS  
tCSH  
10  
25  
Table 29  
VDD=2.7 to 4.5V, Ta=–40 to 85°C  
Item  
Signal  
Symbol  
tSCYC  
tSHW  
Condition  
Min.  
70  
Max.  
Units  
Serial clock cycle  
SCL  
ns  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
25  
tSLW  
25  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
20  
40  
Data setup time  
Data hold time  
tSDS  
tSDH  
5
5
CS serial clock time  
CS  
tCSS  
tCSH  
15  
50  
Rev. 1.1a  
EPSON  
13–49  
S1D15B01 Series  
Table 30  
VDD=1.7 to 2.7V, Ta=–40 to 85°C  
Item  
Signal  
Symbol  
tSCYC  
tSHW  
Condition  
Min.  
150  
50  
Max.  
Units  
Serial clock cycle  
SCL  
ns  
Serial clock HIGH pulse width  
Serial clock LOW pulse width  
tSLW  
50  
Address setup time  
Address hold time  
A0  
SI  
tSAS  
tSAH  
45  
90  
Data setup time  
Data hold time  
tSDS  
tSDH  
10  
10  
CS serial clock time  
CS  
tCSS  
tCSH  
50  
100  
Note : 1. The input Signal rise and fall times must be with in 10ns.  
2. Every timing is specified on the basis of 20% and 80% of VDD.  
13–50  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
Reset timing  
t
RW  
RES  
t
R
Internal circuit  
state  
During reset  
Normal operation  
Figure 36  
Table 31  
Parameter  
Reset time  
VDD=4.5 to 5.5V, Ta=–40 to 85°C  
Signal  
Symbol  
tR  
Condition  
Condition  
Condition  
Min.  
Max.  
250  
Units  
ns  
Reset LOW pulse width  
RES  
tRW  
250  
Table 32  
VDD=2.7 to 4.5V, Ta=–40 to 85°C  
Parameter  
Reset time  
Signal  
Symbol  
Min.  
Max.  
Units  
tR  
500  
ns  
Reset LOW pulse width  
RES  
tRW  
500  
Table 33  
VDD=1.7 to 2.7V, Ta=–40 to 85°C  
Parameter  
Reset time  
Signal  
Symbol  
Min.  
Max.  
Units  
tR  
1000  
ns  
Reset LOW pulse width  
RES  
tRW  
1000  
Note : 1. The input Signal rise and fall times must be with in 10ns.  
2. Every timing is specified on the basis of 20% and 80% of VDD.  
Rev. 1.1a  
EPSON  
13–51  
S1D15B01 Series  
Notes for Power on Sequence  
It is preferable to turn on power supply VDD and VDD2  
at the same time, but if VDD turn on after VDD2, then it  
is necessary that the below 3 conditions are satisfied.  
V
DD2  
DD  
t1  
V
CS  
t2  
RES  
Figure 37  
A. t1 < 1ms, during this timing, all input pins are fixed to VSS.  
B. CS becomes HIGH simultaneously with VDD.  
C. t2 > 100ns (Reset is canceled after VDD2 and rise up).  
13–52  
EPSON  
Rev. 1.1a  
S1D15B01 Series  
11. THE MPU INTERFACE (REFERENCE EXAMPLES)  
The S1D15B01 series can directly be connected to the 80 system MPU and 68 series MPU. It can also be operated with  
a fewer signal lines by using the serial interface.  
After the initialization using the RES pin, the respective input pins of the S1D15B01 series need to controlled normally.  
(1) 80 series MPU  
VDD  
V
DD  
V
CC  
C86  
P/S  
A0  
A0  
A1 to A7  
IORQ  
CS  
Decoder  
RESET  
D0 to D7  
D0 to D7  
RD  
WR  
RD  
WR  
RES  
RES  
V
SS  
GND  
V
SS  
DD  
Figure 38  
(2) 6800 series MPU  
V
V
DD  
V
CC  
C86  
P/S  
A0  
A0  
A1 to A15  
VMA  
CS  
Decoder  
RESET  
D0 to D7  
D0 to D7  
E
R/W  
RES  
E
R/W  
RES  
V
SS  
GND  
VSS  
Figure 39  
(3) Using serial interface  
VDD  
VDD  
VCC  
C86  
P/S  
A0  
A0  
A1 to A7  
Decoder  
RESET  
CS  
SI  
SCL  
RES  
Port1  
Port2  
VDD or VSS  
RES  
VSS  
GND  
VSS  
Figure 40  
Rev. 1.1a  
EPSON  
13–53  
S1D15B01 Series  
12. CAUTION  
Please be advised on the following points in the use of  
this development specification.  
1. This development specification is subject to change  
without previous notice.  
[Precaution on light]  
Property of semiconductor devices may be affected  
when they are exposed to light, possibly resulting in  
malfunctioning of the ICs. To prevent such  
malfunctioning of the ICs mounted on the boards or  
products, make sure that:  
(1) Your design and mounting layout done are so that  
the IC is not exposed to light in actual use.  
(2) The IC is protected from light in the inspection  
process.  
2. This development specification does not guarantee or  
furnish the industrial property right not its execution.  
Application examples in this development  
specification are intended to ensure your better  
understanding of the product. Thus the manufacturer  
shall not be liable for any trouble arising in your  
circuits from using such application example.  
Numerical values provided in the property table of  
this manual are represented with their magnitude on  
the numerical line.  
(3) The IC is protected from light in its front, rear and  
side faces.  
[Precautions when installing the COG]  
3. No part of this development specification may not be  
reproduced, copied or used for commercialpurpose  
without a written permission from the manufacturer.  
When installing the COG, it is necessary to duly  
consider the fact that there exists a resistance of the  
ITO wiring occurring between the driver chip and the  
externally connected parts (such as capacitors and  
resistors). By the influence of this resistance, non-  
conformity may occur with the indications on the  
liquid crystal display.  
In handling of semiconductor devices, your attention is  
required to following points.  
Therefore, when installing the COG design the module  
paying sufficient considerations to the following three  
points.  
1. Suppress the resistance occurring between the  
driver chip pin to the externally connected parts  
as much as possible.  
2. Suppress the resistance connecting to the power  
supply pin of the driver chip.  
3. Make various COG module samples with different  
ITO sheet resistance to select the module with the  
sheet resistance with sufficient operation margin.  
13–54  
EPSON  
Rev. 1.1a  
International Sales Operations  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
HEADQUARTERS  
150 River Oaks Parkway  
San Jose, CA 95134, U.S.A.  
EPSON (CHINA) CO., LTD.  
28F, Beijing Silver Tower 2# North RD DongSanHuan  
ChaoYang District, Beijing, CHINA  
Phone : 64106655  
Fax : 64107319  
Phone : +1-408-922-0200  
Fax : +1-408-922-0238  
SHANGHAI BRANCH  
4F, Bldg., 27, No. 69, Gui Jing Road  
Caohejing, Shanghai, CHINA  
SALES OFFICES  
West  
1960 E. Grand Avenue  
Phone : 21-6485-5552  
Fax : 21-6485-0775  
El Segundo, CA 90245, U.S.A.  
EPSON HONG KONG LTD.  
20/F., Harbour Centre, 25 Harbour Road  
Wanchai, Hong Kong  
Phone : +1-310-955-5300  
Fax : +1-310-955-5400  
Central  
Phone : +852-2585-4600  
Fax : +852-2827-4346  
101 Virginia Street, Suite 290  
Crystal Lake, IL 60014, U.S.A.  
Phone : +1-815-455-7630  
Telex : 65542 EPSCO HX  
Fax : +1-815-455-7633  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
10F, No. 287,Nanking East Road, Sec. 3  
Taipei  
Northeast  
301 Edgewater Place, Suite 120  
Wakefield, MA 01880, U.S.A.  
Phone : 02-2717-7360  
Fax : 02-2712-9164  
Telex : 24444 EPSONTB  
Phone : +1-781-246-3600  
Fax : +1-781-246-5443  
HSINCHU OFFICE  
13F-3, No.295, Kuang-Fu Road, Sec. 2  
HsinChu 300  
Phone : 03-573-9900  
Southeast  
3010 Royal Blvd. South, Suite 170  
Alpharetta, GA 30005, U.S.A.  
Phone : +1-877-EEA-0020 Fax : +1-770-777-2637  
Fax : 03-573-9169  
EPSON SINGAPORE PTE., LTD.  
No. 1 Temasek Avenue, #36-00  
EUROPE  
EPSON EUROPE ELECTRONICS GmbH  
HEADQUARTERS  
Millenia Tower, SINGAPORE 039192  
Phone : +65-337-7911  
Fax : +65-334-2716  
Riesstrasse 15  
SEIKO EPSON CORPORATION  
KOREA OFFICE  
80992 Munich, GERMANY  
Phone : +49- (0) 89-14005-0  
Fax : +49- (0) 89-14005-110  
50F, KLI 63 Bldg., 60 Yoido-dong  
SALES OFFICE  
Altstadtstrasse 176  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
Phone : 02-784-6027  
Fax : 02-767-3677  
51379 Leverkusen, GERMANY  
Phone : +49- (0) 2171-5045-0 Fax : +49- (0) 2171-5045-10  
SEIKO EPSON CORPORATION  
ELECTRONIC DEVICES MARKETING DIVISION  
UK BRANCH OFFICE  
Unit 2.4, Doncastle House, Doncastle Road  
Bracknell, Berkshire RG12 8PE, ENGLAND  
Phone : +44- (0) 1344-381700 Fax : +44- (0) 1344-381701  
Electronic Device Marketing Department  
IC Marketing & Engineering Group  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-(0)42-587-5816  
Fax: +81-(0)42-587-5624  
FRENCH BRANCH OFFICE  
1 Avenue de l’ Atlantique, LP 915 Les Conquerants  
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE  
Phone : +33- (0) 1-64862350 Fax : +33- (0) 1-64862355  
ED International Marketing Department  
Europe & U.S.A.  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-(0)42-587-5812  
Fax: +81-(0)42-587-5564  
BARCELONA BRANCH OFFICE  
Barcelona Design Center  
Edificio Prima Sant Cugat  
ED International Marketing Department  
Asia  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Avda. Alcalde Barrils num. 64-68  
`
E-08190 Sant Cugat del Valles, SPAIN  
Phone: +81-(0)42-587-5814  
Fax: +81-(0)42-587-5110  
Phone : +34-93-544-2490 Fax: +34-93-544-2491  
In pursuit of Saving” Technology, Epson electronic devices.  
Our lineup of sem iconductors, liquid crystal displays and quartz devices  
assists in creating the products of our custom ers’ dream s.  
Epson IS energy savings.  
S1D15000 Series  
Technical Manual  
ELECTRONIC DEVICES MARKETING DIVISION  
EPSON Electronic Devices Website  
http://www.epson.co.jp/device/  
First issue December,1992 U  
Printed May,2001 in Japan H B  
This manual was made with recycle paper,  
and printed using soy-based inks.  

相关型号:

S1D15B10D00B0

LIQUID CRYSTAL DISPLAY DRIVER, UUC294, DIE-294
SEIKO

S1D15B10T

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP
SEIKO

S1D15E00D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC342, DIE-342
SEIKO

S1D15E00T00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC, TCP
SEIKO

S1D15E05D00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E05D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E05D00E

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06

Direct RAM data display by display data RAM
EPSON

S1D15E06D00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06D00B

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06D00E

LIQUID CRYSTAL DISPLAY DRIVER, UUC412, DIE-412
SEIKO

S1D15E06D01B000

Direct RAM data display by display data RAM
EPSON