S1D17E01D00A100 [SEIKO]

LIQUID CRYSTAL DISPLAY DRIVER, UUC200, DIE-200;
S1D17E01D00A100
型号: S1D17E01D00A100
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC200, DIE-200

驱动 接口集成电路
文件: 总35页 (文件大小:433K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MF1515-02  
S1D17E01 Series  
Rev.1.0  
NOTICE  
No part of this material may be reproduced or duplicated in any form or by any means without the written  
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.  
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material  
or due to its application or use in any product or circuit and, further, there is no representation that this material is  
applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any  
intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that  
anything made in accordance with this material will be free from any patent or copyright infringement of a third  
party. This material or portions thereof may contain technology or the subject relating to strategic products  
under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license  
from the Ministry of International Trade and Industry or other approval from anther government agency.  
All other product names mentioned herein are trademarks and/or registered trademarks of their respective  
companies.  
©SEIKO EPSON CORPORATION 2003, All rights reserved.  
CONTENTS  
1. DESCRIPTION....................................................................................................................................1  
2. FEATURES .........................................................................................................................................1  
3. BLOCK DIAGRAM .............................................................................................................................2  
4. PAD LAYOUT......................................................................................................................................3  
5. PAD CENTRAL COORDINATES .......................................................................................................4  
6. PIN DESCRIPTION.............................................................................................................................6  
7. FUNCTIONAL DESCRIPTION ...........................................................................................................8  
8. ABSOLUTE MAXIMUM RATINGS...................................................................................................18  
9. ELECTRICAL CHARACTERISTICS................................................................................................19  
10. LCD DRIVE POWER SUPPLY.........................................................................................................27  
11. EXAMPLES OF CONNECTION .......................................................................................................29  
12. NOTES ..............................................................................................................................................32  
i-  
Rev.1.0  
S1D17E01 Series  
1. DESCRIPTION  
The S1D17E01 is a 160-output, low On resistance, common (row) driver suitable for driving a medium capacity  
dot matrix LCD panel and has a built-in, low current consumption LCD drive power supply circuit.  
When used in combination with the S1D17A07, it enables a high-performance handy display system with  
minimum power consumption.  
2. FEATURES  
Number of LCD drive outputs: 160  
High duty drivability: 1/320 (Reference)  
Common output On resistance: 1 k(Typ.)  
Pin selection in output shift direction  
No-bias display-off function  
Built-in, low-consumption LCD drive power supply circuit  
Boosting circuit (boosting multiples: 3, 4, 5, 6, 8, 10 and 12)  
Voltage adjusting circuit  
Voltage follower (built-in split resistors for V1 to V4 voltage generation)  
Supply voltages  
Logic power supply:  
LCD power supply:  
VDD-VSS = 2.7 to 6.0 V  
V0-GND = 11 to 36 V  
Wide range of operating temperature: -25 to +85°C  
CMOS process  
Available packages: Chip: S1D17E01D00A100 (Al pad)  
No light- and radiation-resistance design is provided for this chip.  
Rev.1.0  
EPSON  
1
S1D17E01 Series  
3. BLOCK DIAGRAM  
ꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁꢁ  
VDD  
V0  
V1  
LCD driver (160-bit)  
V2  
V3  
V4  
VSS  
VR  
CAPL+  
CAPL-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
CAP3+  
CAP4+  
CAP5+  
VDD2  
Level shifter (160-bit + 1)  
FR  
Bi-directional shift register (160-bit)  
VOUT  
BIAS1  
BIAS2  
BIAS3  
EV0  
EV1  
EV2  
EV3  
EV4  
EV5  
WR  
MS  
HPM  
DC  
POR  
2
EPSON  
Rev.1.0  
S1D17E01 Series  
4. PAD LAYOUT  
161  
162  
101  
100  
Die No.  
Y
X
(0,0)  
200  
62  
1
61  
Chip size:  
6.63 mm × 4.09 mm  
100 µm  
Pad pitch:  
Chip thickness:  
525±25 µm  
Al Pad model (S1D17E01D00A100)  
Scribe parallel Scribe vertical  
(X)  
(Y)  
93.2µm  
83.2µm  
Pad opening dimension A  
Pad opening dimension B  
83.2µm  
93.2µm  
×
×
PAD No. 1 to 61, 101 to 161  
PAD No. 62 to 100, 162 to 200  
Rev.1.0  
EPSON  
3
S1D17E01 Series  
5. PAD CENTRAL COORDINATES  
Unit: µm  
PAD NO. Pin Name  
X
Y
PAD NO. Pin Name  
X
Y
PAD NO. Pin Name  
X
Y
1
2
DUMMY  
OUT 159  
OUT 158  
OUT 157  
OUT 156  
OUT 155  
OUT 154  
OUT 153  
OUT 152  
OUT 151  
OUT 150  
OUT 149  
OUT 148  
OUT 147  
OUT 146  
OUT 145  
OUT 144  
OUT 143  
OUT 142  
OUT 141  
OUT 140  
OUT 139  
OUT 138  
OUT 137  
OUT 136  
OUT 135  
OUT 134  
OUT 133  
OUT 132  
OUT 131  
OUT 130  
OUT 129  
OUT 128  
OUT 127  
OUT 126  
OUT 125  
OUT 124  
OUT 123  
OUT 122  
OUT 121  
OUT 120  
OUT 119  
OUT 118  
OUT 117  
OUT 116  
OUT 115  
OUT 114  
OUT 113  
OUT 112  
OUT 111  
OUT 110  
OUT 109  
OUT 108  
OUT 107  
OUT 106  
OUT 105  
OUT 104  
OUT 103  
OUT 102  
OUT 101  
-3000  
-2900  
-2800  
-2700  
-2600  
-2500  
-2400  
-2300  
-2200  
-2100  
-2000  
-1900  
-1800  
-1700  
-1600  
-1500  
-1400  
-1300  
-1200  
-1100  
-1000  
-900  
-800  
-700  
-600  
-500  
-400  
-300  
-200  
-100  
0
-1895  
61  
62  
OUT 100  
OUT 99  
OUT 98  
OUT 97  
OUT 96  
OUT 95  
OUT 94  
OUT 93  
OUT 92  
OUT 91  
OUT 90  
OUT 89  
OUT 88  
OUT 87  
OUT 86  
OUT 85  
OUT 84  
OUT 83  
OUT 82  
OUT 81  
OUT 80  
OUT 79  
OUT 78  
OUT 77  
OUT 76  
OUT 75  
OUT 74  
OUT 73  
OUT 72  
OUT 71  
OUT 70  
OUT 69  
OUT 68  
OUT 67  
OUT 66  
OUT 65  
OUT 64  
OUT 63  
OUT 62  
OUT 61  
OUT 60  
OUT 59  
OUT 58  
OUT 57  
OUT 56  
OUT 55  
OUT 54  
OUT 53  
OUT 52  
OUT 51  
OUT 50  
OUT 49  
OUT 48  
OUT 47  
OUT 46  
OUT 45  
OUT 44  
OUT 43  
OUT 42  
OUT 41  
3000  
3167  
-1895  
-1900  
-1800  
-1700  
-1600  
-1500  
-1400  
-1300  
-1200  
-1100  
-1000  
-900  
-800  
-700  
-600  
-500  
-400  
-300  
-200  
-100  
0
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
OUT 40  
OUT 39  
OUT 38  
OUT 37  
OUT 36  
OUT 35  
OUT 34  
OUT 33  
OUT 32  
OUT 31  
OUT 30  
OUT 29  
OUT 28  
OUT 27  
OUT 26  
OUT 25  
OUT 24  
OUT 23  
OUT 22  
OUT 21  
OUT 20  
OUT 19  
OUT 18  
OUT 17  
OUT 16  
OUT 15  
OUT 14  
OUT 13  
OUT 12  
OUT 11  
OUT 10  
OUT 9  
OUT 8  
OUT 7  
OUT 6  
OUT 5  
OUT 4  
OUT 3  
OUT 2  
OUT 1  
OUT 0  
VR  
1000  
900  
1895  
3
63  
800  
4
64  
700  
5
65  
600  
6
66  
500  
7
67  
400  
8
68  
300  
9
69  
200  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
70  
100  
71  
0
72  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
-1200  
-1300  
-1400  
-1500  
-1600  
-1700  
-1800  
-1900  
-2000  
-2100  
-2200  
-2300  
-2400  
-2500  
-2600  
-2700  
-2800  
-2900  
-3000  
-3167  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
100  
83  
200  
84  
300  
85  
400  
86  
500  
87  
600  
88  
700  
89  
800  
90  
900  
91  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
1895  
100  
92  
200  
93  
300  
94  
400  
95  
500  
96  
600  
97  
700  
98  
800  
99  
900  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
2600  
2700  
2800  
2900  
3000  
2900  
2800  
2700  
2600  
2500  
2400  
2300  
2200  
2100  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
V0  
V1  
V2  
V3  
V4  
VOUT  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP4+  
CAP2+  
CAP2-  
VDD2  
800  
700  
600  
500  
CAPL+  
CAPL-  
MS  
400  
300  
200  
HPM  
100  
4
EPSON  
Rev.1.0  
S1D17E01 Series  
Unit: µm  
PAD NO. Pin Name  
X
Y
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
DC  
EV0  
-3167  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
-1200  
-1300  
-1400  
-1500  
-1600  
-1700  
-1800  
-1900  
EV1  
EV2  
EV3  
EV4  
EV5  
WR  
BIAS1  
BIAS2  
BIAS3  
DIO2  
YSCL  
FR  
______  
DSPOF  
VSS  
SHL  
VDD  
DIO1  
POR  
Rev.1.0  
EPSON  
5
S1D17E01 Series  
6. PIN DESCRIPTION  
Power Supply Pins  
Number  
of pins  
1
Pin name  
I/O  
Function  
VDD  
Power Supplies electric power to the internal logic and built-in power supply circuit.  
supply VDD = 2.7 to 6.0V  
VSS  
Power 0V pin connected to the system ground.  
supply  
1
5
V0, V1, V2  
V3, V4  
Supply Multi-level, LCD drive power supply pins. The voltage specified according to  
LCD cells is impedance-converted by a split resistor or operational amplifier  
and applied. The voltages need to be specified based on the VSS to  
establish the following relationship:  
V0V1V2V3V4VSS  
LCD Power Supply Circuit Pins  
Number  
of pins  
Pin name  
I/O  
Function  
CAPL+  
CAPL-  
VDD2  
O
O
It is connects the positive going side of primary boosting circuit capacitor.  
It is connects the negative going side of primary boosting circuit capacitor.  
It is primary boosting circuit output pin. Outputs twice as mulch voltage as  
the VDD.  
1
1
1
I/O  
Connect to VDD when boosting with the secondary booster circuit only and  
not the primary booster circuit.  
CAP1+  
CAP1-  
O
O
It is connects the positive going side of secondary boosting circuit capacitor.  
It is connects the negative going side of secondary boosting circuit  
capacitor.  
1
1
CAP2+  
CAP2-  
O
O
It is connects the positive going side of secondary boosting circuit capacitor.  
It is connects the negative going side of secondary boosting circuit  
capacitor.  
1
1
CAP3+  
CAP4+  
CAP5+  
VOUT  
O
O
O
O
It is connects the positive going side of secondary boosting circuit capacitor.  
It is connects the positive going side of secondary boosting circuit capacitor.  
It is connects the positive going side of secondary boosting circuit capacitor.  
It is secondary boosting circuit output pin. Outputs twelve-times as much  
voltage as the VDD at maximum boosting.  
1
1
1
1
VR  
I
Voltage regulating pin. Applies V0 voltage using an external connection  
resistor.  
1
6
EPSON  
Rev.1.0  
S1D17E01 Series  
System Bus Connection Pins  
Number  
of pins  
1
Pin name  
I/O  
Function  
MS  
I
Master/slave switch pin.  
MS = HIGH (master): boosting circuit, voltage regulating circuit and V/F  
circuits are turned on.  
MS = LOW (slave): boosting circuit, voltage regulating circuit and V/F  
circuits are turned off.  
POR  
POR  
HPM  
I
I
Resets the device when set to LOW.  
1
1
Reset operation depends on the POR signal level.  
Valid only in master operation. The pin is fixed to LOW in slave operation.  
Power control pin of the LCD drive power supply circuit.  
HPM = HIGH: High power mode  
HPM = LOW: Normal mode  
Valid only in master operation. The pin is fixed to HIGH or LOW in slave  
operation.  
DC  
BIAS1 to BIAS3  
EV0 to EV5  
WR  
I
I
I
I
Used to discharge the residual power from the LCD panel, power supply  
pins and others before turning the built-in power supply off. It is  
recommended that the power be turned off after setting DC to LOW.  
The pin is fixed to LOW in slave operation.  
Bias setting pins (1/12 to 1/19 bias ratios are available).  
Valid only in master operation. The pin is fixed to HIGH or LOW in slave  
operation.  
1
3
6
1
EV0 to EV5  
Data bus: V0 voltage regulating pins.  
The V0 voltage can be regulated at 64 levels.  
Valid only in master operation. The pin is fixed to HIGH or LOW in slave  
operation.  
Inputs data bus read clocks.  
Reads data at the rise time.  
Only valid for master function. When POR is in LOW level during master  
function, fix WR to HIGH level. Fix to HIGH level during slave function.  
Inputs built-in power supply circuit boosting clocks.  
Inputs common driver serial data shift clocks.  
Shifts scan data at the fall edge.  
YSCL  
I
I/O  
I
1
2
1
DIO1  
DIO2  
Bi-directional shift register scan pulse.  
I/O is set depending on an input from the SHL.  
The output changes at the YSCL fall edge.  
Inputs shift direction select signals and I/O control signals of the DIO pin.  
SHL  
SHL  
LOW  
HIGH  
COM output shift direction  
159  
DIO1  
Input  
DIO2  
Output  
Input  
0
159  
0
Output  
FR  
I
I
1
1
Inputs LCD drive output AC signals.  
Inputs LCD blanking control signals.  
______  
DSPOF  
All common outputs are set to the VSS level when LOW is input.  
Liquid Crystal Drive Pins  
Number  
of pins  
160  
Pin name  
I/O  
Function  
COM0 to  
COM159  
Outputs LCD drive common (row) signals.  
Changes at the YSCL fall edge.  
O
Total: 199  
Rev.1.0  
EPSON  
7
S1D17E01 Series  
7. FUNCTIONAL DESCRIPTION  
7.1 Bi-directional Shit Register  
Bi-directional shit register for transferring common data. The shift direction is selected depending on an input  
from the SHL. Scan data is read at the YSCL fall edge and the output is sent to the level shifter.  
7.2 Level Shifter  
Voltage level interface circuit for converting the signal voltage level from the logic system level to the LCD drive  
system level.  
7.3 LCD Driver  
Outputs LCD drive voltages.  
______  
The table below shows the relationship among display blanking signal DSPOF, shift register contents, AC signal  
FR and common output voltage:  
______  
DSPOF  
HIGH  
LOW  
Shift register contents  
FR  
Common output voltage  
HIGH  
LOW  
HIGH  
LOW  
VSS  
HIGH  
(Select level)  
V0  
V1  
LOW  
(Non-select level)  
V4  
VSS  
7.4 Power Supply Circuit  
Low-consumption, power supply circuit to generate voltages required for driving LCD, which consists of  
boosting circuit, voltage regulating circuit and voltage follower circuits. The power supply circuit turns the  
boosting circuit, voltage regulating circuit and voltage follower circuits on and off using an input from the MS  
pin.  
To set the power supply circuit in the slave state and drive the common driver only using external power supply,  
be sure to set each circuit as shown in the table below:  
Voltage  
regulating  
circuit  
Voltage  
follower  
circuit  
Boosting  
system pin  
*1  
Boosting  
circuit  
External  
voltage input  
Operating state  
MS pin  
Internal power  
supply only  
HIGH  
LOW  
ON  
ON  
ON  
VDD  
Used  
External power  
supply only  
VDD, V0  
V1, V4  
OFF  
OFF  
OFF  
Open  
*1 Boosting system pins refer to CAPL+, CAPL-, VDD2, CAP1+, CAP1-, CAP2+, CAP2-, CAP3+, CAP4+  
and CAP5+, VOUT.  
8
EPSON  
Rev.1.0  
S1D17E01 Series  
7.5 Boosting Circuit  
The boosting circuit consists of primary and secondary boosting circuits as follows:  
Using the primary and secondary boosting circuits enables the VDD-VSS voltage to be amplified 12, 10, 8, 6 and 4  
times. Using the secondary boosting circuit solely enables the VDD-VSS voltage to be amplified 6, 5, 4 and 3  
times.  
Primary booster circuit  
Secondary booster circuit  
VOUT pin  
VDD2 pin  
12 times as much voltage as VDD-VSS  
VSS pin  
6 times  
VDD pin  
VSS pin  
Double  
VSS pin  
Boosting Circuit Diagram  
12-times boosting (primary + secondary boosting circuits)  
Connect capacitors between CAPL+ and CAPL-, CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-,  
CAP4+ and CAP2-, CAP5+ and CAP1-, VDD2 and VDD or VSS, and VOUT and VDD2 or VSS. This amplifies the  
positive VDD-VSS voltage 12 fold, which is output to the VOUT pin.  
10-times boosting (primary + secondary boosting circuits)  
Connect capacitors between CAPL+ and CAPL-, CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-,  
CAP4+ and CAP2-, VDD2 and VDD or VSS, and VOUT and VDD2 or VSS, and jumper between CAP5+ and VOUT.  
This amplifies the positive VDD-VSS voltage 10 fold, which is output to the VOUT pin.  
8-times boosting (primary + secondary boosting circuits)  
Connect capacitors between CAPL+ and CAPL-, CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-,  
VDD2 and VDD or VSS, and VOUT and VDD2 or VSS, and jumper between CAP5+, CAP4+ and VOUT. This  
amplifies the positive VDD-VSS voltage 8 fold, which is output to the VOUT pin.  
6-times boosting (primary + secondary boosting circuits)  
Connect capacitors between CAPL+ and CAPL-, CAP1+ and CAP1-, CAP2+ and CAP2-, VDD2 and VDD or  
VSS, and VOUT and VDD2 or VSS, and jumper between CAP5+, CAP4+, CAP3+ and VOUT. This amplifies the  
positive VDD-VSS voltage 6 fold, which is output to the VOUT pin.  
6-times boosting (secondary boosting circuit only)  
Connect capacitors between CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-, CAP4+ and CAP2-,  
CAP5+ and CAP1-, and VOUT and VDD2 or VSS, open CAPL+ and CAPL-, and jumper between VDD2 and VDD.  
This amplifies the positive VDD-VSS voltage 6 fold, which is output to the VOUT pin.  
5-times boosting (secondary boosting circuit only)  
Connect capacitors between CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-, CAP4+ and CAP2-,  
and VOUT and VDD2 or VSS, open CAPL+ and CAPL-, and jumper between CAP5+ and VOUT, and VDD2 and  
VDD. This amplifies the positive VDD-VSS voltage 5 fold, which is output to the VOUT pin.  
4-times boosting (primary + secondary boosting circuits)  
Connect capacitors between CAPL+ and CAPL-, CAP1+ and CAP1-, VDD2 and VDD or VSS, and VOUT and  
VDD2 or VSS, open CAP2-, and jumper between VOUT and CAP5+, CAP4+, CAP3+ and CAP2+. This amplifies  
the positive VDD-VSS voltage 4 fold, which is output to the VOUT pin.  
4-times boosting (secondary boosting circuit only)  
Connect capacitors between CAP1+ and CAP1-, CAP2+ and CAP2-, CAP3+ and CAP1-, and VOUT and VDD2  
or VSS, open CAPL+ and CAPL-, and jumper between CAP5+ and VOUT, CAP4+ and VOUT, and VDD2 and  
VDD. This amplifies the positive VDD-VSS voltage 4 fold, which is output to the VOUT pin.  
3-times boosting (secondary boosting circuit only)  
Connect capacitors between CAP1+ and CAP1-, CAP2+ and CAP2-, and VOUT and VDD2 or VSS, open CAPL+  
and CAPL-, and jumper between VOUT and CAP5+, CAP4+ and CAP3+, and VDD2 and VDD. This amplifies the  
positive VDD-VSS voltage 3 fold, which is output to the VOUT pin.  
Rev.1.0  
EPSON  
9
S1D17E01 Series  
The figures below show the connections and voltage relationships:  
VDD or VSS  
VDD2  
VDD or VSS  
VDD2  
VDD or VSS  
VDD2  
+
+
+
+
+
+
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
+
+
+
+
+
+
+
CAP4+  
CAP2+  
CAP2-  
CAP4+  
CAP2+  
CAP2-  
CAP4+  
CAP2+  
CAP2-  
+
+
+
+
+
+
CAPL+  
CAPL-  
CAPL+  
CAPL-  
CAPL+  
CAPL-  
+
+
12-times Boosting Circuit  
(Primary + Secondary Boosting Circuits)  
10-times Boosting Voltage Relationship  
(Primary + Secondary Boosting Circuits)  
8-times Boosting Circuit  
(Primary + Secondary Boosting circuits)  
VOUT=12×VDD  
=36.0V  
VOUT=10×VDD  
=30.0V  
VOUT=8×VDD  
=24.0V  
VDD=3.0V  
VSS=0V  
VDD=3.0V  
VSS=0V  
VDD=3.0V  
VSS=0V  
12-times Boosting Voltage Relationship 10-times Boosting Voltage Relationship 8-times Boosting Voltage Relationship  
(Primary + Secondary Boosting Circuits)  
(Primary + Secondary Boosting Circuits)  
(Primary + Secondary Boosting Circuits)  
10  
EPSON  
Rev.1.0  
S1D17E01 Series  
VDD or VSS  
VDD2  
VDD  
VDD  
+
+
VDD2  
VDD2  
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
+
+
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
+
+
+
CAP3+  
+
CAP1+  
+
+
CAP1-  
CAP4+  
CAP2+  
CAP2-  
CAP4+  
CAP2+  
CAP2-  
CAP4+  
+
+
+
CAP2+  
+
+
+
CAP2-  
CAPL+  
CAPL-  
OPEN  
OPEN  
CAPL+  
CAPL-  
OPEN  
OPEN  
CAPL+  
CAPL-  
6-times Boosting Circuit  
6-times Boosting Circuit  
5-times Boosting Circuit  
(Primary + Secondary Boosting Circuits)  
(Secondary Boosting Circuits Only)  
(Secondary Boosting Circuit Only)  
VOUT=6×VDD  
=33.0V  
VOUT=5×VDD  
=27.5V  
VOUT=6×VDD  
=18.0V  
VDD=5.5V  
VSS=0V  
VDD=5.5V  
VSS=0V  
VDD=3.0V  
VSS=0V  
6-times Boosting Voltage Relationship 6-times Boosting Voltage Relationship 5-times Boosting Voltage Relationship  
(Primary + Secondary Boosting Circuits)  
(Secondary Boosting Circuit Only)  
(Secondary Boosting Circuit Only)  
Rev.1.0  
EPSON  
11  
S1D17E01 Series  
VDD or VSS  
VDD  
VDD  
+
+
VDD2  
VDD2  
VDD2  
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
VDD2 or VSS  
VOUT  
+
+
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
CAP5+  
CAP3+  
CAP1+  
CAP1-  
+
+
+
+
+
CAP4+  
CAP2+  
CAP2-  
CAP4+  
CAP2+  
CAP2-  
CAP4+  
CAP2+  
CAP2-  
+
OPEN  
CAPL+  
CAPL-  
OPEN  
OPEN  
CAPL+  
CAPL-  
OPEN  
OPEN  
CAPL+  
CAPL-  
+
4-times Boosting Circuit  
4-times Boosting Circuit  
3-times Boosting Circuit  
(Primary + Secondary Boosting Circuits)  
(Secondary Boosting Circuit Only)  
(Secondary Boosting Circuit Only)  
VOUT=4×VDD  
=22.0V  
VOUT=3×VDD  
=16.5V  
VOUT=4×VDD  
=12.0V  
VDD=5.5V  
VSS=0V  
VDD=5.5V  
VSS=0V  
VDD=3.0V  
VSS=0V  
4-times Boosting Voltage Relationship 4-times Boosting Voltage Relationship 3-times Boosting Voltage Relationship  
(Primary + Secondary Boosting Circuits)  
(Secondary Boosting Circuit Only)  
(Secondary Boosting Circuit Only)  
12  
EPSON  
Rev.1.0  
S1D17E01 Series  
* When using the primary and secondary boosting circuits for boosting, keep the VDD between 2.7V and 3.0V.  
* When using the secondary boosting circuit only for boosting, keep the VDD between 2.7V and 6.0V.  
* The VDD voltage times the boosting multiple is output to the VOUT pin as an ideal value.  
* The VOUT voltage drops depending on the load.  
Reference data: VOUT load current characteristic  
40 V  
Decuple booster  
30 V  
Setting condition  
VDD = 3V  
Octuple booster  
20 V  
10 V  
0 V  
Sextuple booster  
fYSCL=11.2kHz  
Boosting capacitor=2.2µF  
0.0 mA  
0.5 mA  
1.0 mA  
1.5 mA  
2.0 mA  
IOUT: power consumption of the whole LCD module  
* It is recommended that the V0 voltage be set to about 90% of the VOUT voltage or lower.  
* The boosting capacitor differs by the load of the LCD panel. Set a value that stabilizes the LCD drive voltage  
(standard value=1.0 to 4.7µF).  
* The tables below show the maximum VDD voltages and the ideal VOUT voltages corresponding to them:  
Maximum VDD Voltages  
bias  
1/12  
3V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
1/13  
1/14  
1/15  
1/16  
1/17  
1/18  
1/19  
4-times boosting  
6-times boosting  
8-times boosting  
10-times boosting  
12-times boosting  
3-times boosting  
4-times boosting  
5-times boosting  
6-times boosting  
Unavailable Unavailable Unavailable Unavailable Unavailable Unavailable Unavailable  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
3V  
3V  
3V  
3V  
6V  
6V  
6V  
6V  
Primary  
+ secondary  
Boosting  
Secondary  
Boosting  
only  
Ideal VOUT Voltages Corresponding to Maximum VDD Voltages  
bias  
1/12  
12V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
1/13  
1/14  
1/15  
1/16  
1/17  
1/18  
1/19  
4-times boosting  
6-times boosting  
8-times boosting  
10-times boosting  
12-times boosting  
3-times boosting  
4-times boosting  
5-times boosting  
6-times boosting  
Unavailable Unavailable Unavailable Unavailable Unavailable Unavailable Unavailable  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
18V  
24V  
30V  
36V  
Primary  
+ secondary  
Boosting  
Secondary  
Boosting  
only  
Rev.1.0  
EPSON  
13  
S1D17E01 Series  
7.6 Voltage Regulating Circuit  
The amplified voltage generated at the VOUT pin outputs LCD drive voltage V0 through the voltage regulating  
circuit.  
The S1D17E01 series incorporate a 64-level electronic volume function.  
When an external resistor is used1  
Set LCD supply voltage V0 by adding resistor Ra between VSS and VR, and resistor Rb between VR and V0.  
By using external resistors and the electronic volume function, the V0 voltage can be controlled with a relevant  
command only to adjust the LCD tone.  
The V0 voltage can be obtained from Expression A-1 within the range of V0 < VOUT.  
V0==((11++RRbb//RRaa))(V1-EαV /400)VDD  
[VEV=(1-α/400)VDD]  
(Expression A-1)  
VDD is the logic power supply inside the IC.  
External Rb  
VR  
V0  
+
External Ra  
VEV (VDD + electronic volume)  
VSS  
For α, one of 64 levels can be set by setting data in the 6-bit electronic volume latch circuit using the electronic  
volume function. The table below shows available α values:  
EV5  
0
0
EV4  
0
0
EV3  
0
0
EV2  
0
0
EV1  
0
0
EV0  
0
1
α
63  
62  
61  
0
0
0
0
1
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
2
1
0
<Setup example>  
When selecting V0 = 21.0 V, the intermediate value of the electronic volume resistor is (EV5, EV4, EV3,  
EV2, EV1, EV0) = (1, 0, 0, 0, 0, 0), resulting in α = 31.Therefore, from Expression A-1 and VDD = 3.0 V,  
Rb/Ra can be expressed as follows:  
V0=(1+Rb/Ra)(1-α/400)VDD  
21.0V=(1+Rb/Ra)(1-31/400)3.0V  
Assuming that the current flowing through Rb and Ra is 5µA:  
Ra+Rb= 4.2MΩ  
(Expression A-2)  
(Expression A-3)  
As a result, Ra and Rb can be obtained as follows from A-2 and A-3:  
Rb/Ra= 6.59  
Ra= 553.5kΩ  
Rb= 3646.5kΩ  
14  
EPSON  
Rev.1.0  
S1D17E01 Series  
In this case, the V0 voltage variable range and pitch width are controlled by the electronic volume function as  
shown below:  
V0  
Min.  
Typ.  
21.00 [α=31]  
55.9  
Max.  
Unit  
V
Variable range  
Pitch width  
19.18 [α=63]  
22.76 [α=0]  
mV  
When an external resistor is used2  
When using the above external resistor, LCD drive voltage V0 can also be set by adding a variable resistor to  
finely tune Ra and Rb. As in the above case, by using external resistors and the electronic control function,  
LCD drive voltage V0 can be controlled with a relevant command to adjust the LCD tone.  
The V0 voltage can be obtained from Expression B-1 as follows by setting external resistors R1, R2 (variable  
resistor) and R3 within the range of V0 < VOUT and finely tuning R2 (R2):  
V0=={{11++((RR33++RR22--RR22))//((RR11++RR22))}}(V1-EαV/400)VDD  
[VEV=(1-α/400)VDD]  
(Expression B-1)  
External  
resistor R3  
Rb  
Ra  
ΔR2  
VR  
+
External  
resistor R2  
VR  
V0  
External  
resistor R1  
VEV (VDD + electronic volume)  
VSS  
<Setup example>  
When selecting V0 = 15.0 to 19.0V (using R2), the intermediate value of the electronic volume resistor is  
(EV5, EV4, EV3, EV2, EV1, EV0) = (1, 0, 0, 0, 0, 0), resulting in α = 31.Therefore, from Expression B-1  
and VDD = 3.0 V, R1, R2 and R3 can be expressed as follows (whenR2 = 0 at V0 = 19.0V and R2 = R2  
at V0V=0=15{.10+V(R):3+R2-R2)/(R1+R2)}(1-α/400)VDD  
19.0V={1+(R3+R2)/R1}(1-31/400)3.0V  
15.0V={1+R3/(R1+R2)}(1-31/400)3.0V  
(Expression B-2)  
(Expression B-3)  
Assuming that the current flowing through V0 and VSS is 5µA at V0 = 17.0V (typical value):  
R1+R2+R3= 3.4MΩ  
(Expression B-4)  
As a result, R1, R2 and R3 can be obtained as follows from Expressions B-2, B-3 and B-4:  
R1= 495kΩ  
R2= 132kΩ  
R3= 2773kΩ  
Rev.1.0  
EPSON  
15  
S1D17E01 Series  
In this case, R2 is 59kwhen V0 is set to the typical value of 17.0V.  
The V0 voltage variable range and pitch width are controlled by the electronic control function as shown below:  
(R2=59k)  
V0  
Min.  
Typ.  
17.00 [α=31]  
45.3  
Max.  
Unit  
V
Variable range  
Pitch width  
15.51 [α=63]  
18.41 [α=0]  
mV  
* Since the VR pin has a high input impedance, noise reduction measures should be taken such as using short and  
shielded wires.  
7.7 LCD Voltage Generator Circuit  
The V0 voltage is divided by resistance within the IC chip to generate voltages V1, V2, V3 and V4 required for  
driving LCD. Then, voltages V1, V2, V3 and V4 are impedance-converted by the voltage follower circuit and  
supplied to the LCD drive circuit.  
The bias ratio between 1/12 and 1/19 can be selected using bias setting pins BIAS1, BIAS2 and BIAS3. The  
table below shows available bias settings:  
Bias Setting  
Bias setting  
BIAS3 BIAS2 BIAS1  
V1  
V2  
V3  
V4  
1/12  
LOW  
LOW  
LOW  
LOW  
HIGH  
HIGH  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
11/12V0  
12/13V0  
13/14V0  
14/15V0  
15/16V0  
16/17V0  
17/18V0  
18/19V0  
10/12V0  
11/13V0  
12/14V0  
13/15V0  
14/16V0  
15/17V0  
16/18V0  
17/19V0  
2/12V0  
2/13V0  
2/14V0  
2/15V0  
2/16V0  
2/17V0  
2/18V0  
2/19V0  
1/12V0  
1/13V0  
1/14V0  
1/15V0  
1/16V0  
1/17V0  
1/18V0  
1/19V0  
1/13  
1/14  
1/15  
1/16  
1/17  
1/18  
1/19  
16  
EPSON  
Rev.1.0  
S1D17E01 Series  
7.8 Timing Diagram  
SHL=LOW  
1/240 Duty  
1 frame  
(240 lines)  
DIO1  
YSCL  
FR  
XINH  
Q0  
Shift  
register  
Q1  
Q2  
DIO2  
160 lines  
V0  
V1  
COM0  
V4  
VSS  
V0  
V1  
COM1  
V4  
VSS  
V0  
V1  
COM2  
V4  
VSS  
Rev.1.0  
EPSON  
17  
S1D17E01 Series  
8. ABSOLUTE MAXIMUM RATINGS  
Item  
Symbol  
Rated value  
Unit  
Supply voltage (1)  
VDD  
-0.3 to +7.0  
V
Boosting using primary and secondary boosting circuits  
VDD  
-0.3 to +3.5  
-0.3 to +3.5  
-0.3 to +3.5  
-0.3 to +3.5  
-0.3 to +3.3  
-0.3 to +7.0  
V
4-times boosting  
6-times boosting  
8-times boosting  
10-times boosting  
12-times boosting  
Supply voltage (2)  
VDD2  
V
V
Boosting using secondary boosting circuit only  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +7.0  
-0.3 to +6.6  
-0.3 to +40  
-0.3 to V0  
VDD2  
3-times boosting  
4-times boosting  
5-times boosting  
6-times boosting  
Supply voltage (3)  
V0, VOUT  
V
V
Supply voltage (4)  
Input voltage  
V1,V2,V3,V4  
VI  
VO  
-0.3 to VDD+0.3  
-0.3 to VDD+0.3  
20  
V
Output voltage  
V
DIO output current  
Operating temperature  
IO  
mA  
°C  
°C  
Topr  
Tstg1  
-25 to +85  
-65 to +150  
Chip  
Storage  
temperature  
System side  
S1D17E01 series  
V0,VOUT  
V1  
V2  
40V  
VCC  
VDD  
V3  
3.5V  
3.5V  
V4  
GND  
VSS  
VSS  
Note 1: All voltages are based on the condition that the VSS is equal to 0V.  
Note 2: Voltages V0 to V4 must always satisfy the condition of V0V1V2V3V4VSS.  
Note 3: Do not let the logic system power float or drop under the function voltage range (VDD=2.7 to 6.0V)  
during application of LCD drive power supply since the LSI may get permanently broken. Especially  
be careful with the power sequence when turning ON and OFF the system power.  
Note 4: If the LSI chip is used in an environment exceeding the absolute maximum ratings, it may be destroyed  
permanently. During normal operation, electrical characteristics conditions should be observed.  
Otherwise, the LSI chip may malfunction or the LSI reliability may drop.  
18  
EPSON  
Rev.1.0  
S1D17E01 Series  
9. ELECTRICAL CHARACTERISTICS  
9.1 DC Characteristics  
Unless otherwise specified, VSS = 0V, VDD = 6.0, Ta = -25 to +85°C  
Applicable  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
pin  
Operating Operable  
VDD  
VDD  
2.7  
6.0  
V
voltage (1)  
boosting  
circuit  
operating  
voltage  
4-times boosting  
(primary + secondary boosting)  
6-times boosting  
(primary + secondary boosting)  
8-times boosting  
2.7  
3.0  
V
(primary + secondary boosting)  
10-times boosting  
(primary + secondary boosting)  
12-times boosting  
(primary + secondary boosting)  
Operating Operable  
VDD2  
VDD2  
2.7  
2.7  
6.0  
6.0  
V
V
voltage (2)  
boosting  
circuit  
3-times boosting  
(secondary boosting only)  
4-times boosting  
(secondary boosting only)  
5-times boosting  
operating  
voltage  
(secondary boosting only)  
6-times boosting  
(secondary boosting only)  
Voltage adjusting  
circuit operating  
voltage  
VOUT  
(VSS reference)  
VOUT  
11.0  
36.0  
V
Voltage follower  
operating voltage  
V0  
V1,V2  
V3,V4  
VIH  
V0  
V1, V2  
V3, V4  
*1  
11.0  
0.6 × V0  
VSS  
36.0  
V0  
V
V
0.4 × V0  
V
HIGH level input voltage  
LOW level input voltage  
HIGH level output voltage  
LOW level output voltage  
Input leak current  
0.8 × VDD  
V
VDD = 2.7 to 6.0V  
DIO1, DIO2  
VIL  
0.2 × VDD  
V
VOH  
VOL  
ILI  
VDD =  
2.7 to 6.0V  
IOH=-0.4mA  
IOL= 0.4mA  
VDD - 0.4  
V
DIO1, DIO2  
0.4  
2.0  
5.0  
V
VSS VIN VDD  
*1  
µA  
µA  
I/O leak current  
ILI/O  
VSS VIN VDD  
V0 = 11.0 to 36.0V , Ta = 25°C  
VIH = VDD, VIL = VSS  
DIO1, DIO2  
Static current  
IVSS  
VSS  
5
µA  
VIH = VDD, VIL = VSS  
VON  
= 0.5V  
Ta = 25°C  
V0=36.0V  
1/24bias  
V0=20.0V  
1/20bias  
0.9  
1.0  
1.3  
Output resistance  
RON  
O0 to O159  
kΩ  
1.5  
30  
50  
Input pin capacitance  
I/O pin capacitance  
CI  
Freq. =1MHz  
*1  
pF  
pF  
Ta = 25°C  
Chip unit  
CI/O  
DI01,DI02  
______  
*1 MS, HPM, DC, POR, EV0 to EV5, WR, BIAS1 to BIAS3, SHL, YSCL, FR, DSPOF  
Rev.1.0  
EPSON  
19  
S1D17E01 Series  
9.2 Current Consumption  
9.2.1 Dynamic current consumption values (1)  
When common output = ON and built-in power supply circuit = OFF  
Applicable  
pin  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
VDD = 6.0V, VIH = VDD  
VIL = VSS ,fYSCL = 22.4kHz  
fFR = 70Hz, Ta = 25°C,  
No load, Input data = 1/320  
VDD = 3.0V  
Logic system average  
current consumption  
(1)  
IDD(1)  
15  
30  
VDD  
µA  
Other conditions are the same  
as those of VDD = 6.0V.  
V0 = 30.0V, V1 = 28.0V  
V4 = 2.0V  
VDD = 6.0V, VSS = 0V  
Other conditions are the same  
as those of IDD(1).  
10  
10  
20  
Liquid crystal drive  
system average  
current consumption  
(1)  
IV0  
V0  
100  
µA  
9.2.2 Dynamic current consumption values (2)  
When common output and built-in power supply circuit = ON  
Common conditions: VIH = VDD, VIL = VSS, fYSCL = 11.2kHz, fFR = 70Hz, Ta = 25°C, no load,  
input data = 1/160  
The output is set to V0 = 21V by the voltage adjusting circuit.  
Primary and secondary boosting circuits  
Applicable  
Item  
Symbol  
Condition  
Min.  
Typ.  
0.61  
1.08  
0.77  
1.36  
0.94  
1.65  
Max.  
1.02  
1.80  
1.29  
2.27  
1.57  
2.76  
Unit  
pin  
Logic system  
average current  
consumption (2)  
VDD=3.0V  
Normal mode  
High power  
mode  
8-times  
boosting  
IDD(2) VDD=3.0V  
10-times  
Normal mode  
High power  
mode  
VDD  
mA  
boosting  
VDD=3.0V  
12-times  
boosting  
Normal mode  
High power  
mode  
Secondary boosting circuit only  
Applicable  
pin  
Item  
Symbol  
Condition  
Min.  
Typ.  
0.43  
0.84  
0.55  
1.06  
0.67  
1.29  
Max.  
0.72  
1.40  
0.92  
1.77  
1.12  
2.15  
Unit  
Logic system  
average current  
consumption (3)  
VDD=6.0V  
4-times  
boosting  
VDD=6.0V  
5-times  
boosting  
VDD=6.0V  
6-times  
Normal mode  
High power  
mode  
Normal mode  
High power  
mode  
VDD  
mA  
IDD(3)  
Normal mode  
High power  
mode  
boosting  
20  
EPSON  
Rev.1.0  
S1D17E01 Series  
Operating voltage range: VDD-VOUT (Master mode)  
As shown in the figures below, the VOUT voltage must be set within the VDD-VOUT operating voltage range using  
an appropriate amplifying method. Be sure to maintain the relationship of VOUT > V0 to avoid display failure.  
Since the|VOUT-V0|voltage is determined based on the LCD panel to be used, it is recommended that it be set  
after checking the LCD module.  
Operating Voltage Range When Primary and Secondary Boosting Circuits Are Used  
40  
36  
35  
32.4  
30  
25  
Operating voltage  
range  
20  
15  
11  
10  
5
0
2.7  
0
1
2
3
4
5
6
VDD [V]  
Operating Voltage Range When Only Secondary Boosting Circuit Is Used  
40  
36  
35  
30  
Operating voltage range  
25  
20  
16.2  
15  
11  
10  
5
0
2.7  
0
1
2
3
4
5
6
VDD [V]  
Rev.1.0  
EPSON  
21  
S1D17E01 Series  
Operating voltage range: VDD-V0 (Slave mode)  
As shown in the figures below, the V0 voltage must be set within the VDD-V0 operating voltage range.  
40  
36  
35  
Operating voltage  
30  
range  
25  
20  
15  
11  
10  
5
0
2.7  
0
1
2
3
4
5
6
7
VDD [V]  
22  
EPSON  
Rev.1.0  
S1D17E01 Series  
9.3 AC Characteristics  
9.3.1 Power supply circuit input timing characteristics  
Reset timing characteristics  
RW  
t
POR  
f
r
t
t
tRES  
Internal  
circuit status  
Reset period  
Normal operation  
VDD = 4.5 to 6.0V, Ta = -25 to +85°C  
Item  
Reset time  
Symbol  
Condition  
Min.  
Max.  
Unit  
ns  
tRES  
tRW  
tr  
250  
Reset LOW pulse width  
Input signal rise time  
Input signal fall time  
250  
ns  
50  
50  
ns  
tf  
ns  
VDD = 2.7 to 4.5V, Ta = -25 to +85°C  
Item  
Symbol  
Condition  
Min.  
Max.  
Unit  
ns  
Reset time  
tRES  
tRW  
tr  
500  
Reset LOW pulse width  
Input signal rise time  
Input signal fall time  
500  
ns  
50  
50  
ns  
tf  
ns  
Rev.1.0  
EPSON  
23  
S1D17E01 Series  
Data bus write characteristics  
tf  
tr  
WR  
WRL  
DSW  
t
t
tDHW  
EV0 to EV5  
VDD = 4.5 to 6.0V, Ta = -25 to +85°C  
Item  
Symbol  
tWRL  
tDSW  
tDHW  
tr  
Condition  
Min.  
60  
Max.  
Unit  
ns  
WR LOW level width  
Data setup time  
60  
ns  
Data hold time  
10  
ns  
Input signal rise time  
Input signal fall time  
50  
50  
ns  
tf  
ns  
VDD = 2.7 to 4.5V, Ta = -25 to +85°C  
Item  
Symbol  
tWRL  
tDSW  
tDHW  
tr  
Condition  
Min.  
60  
Max.  
Unit  
ns  
WR LOW level width  
Data setup time  
60  
ns  
Data hold time  
10  
ns  
Input signal rise time  
Input signal fall time  
50  
50  
ns  
tf  
ns  
24  
EPSON  
Rev.1.0  
S1D17E01 Series  
9.3.2 Common driver input timing characteristics  
FR  
*1  
tWCLH  
DFR  
t
tf  
tWCLL  
YSCL  
tr  
tCCL  
DLS  
t
tDLH  
DIO1  
DIO2  
(IN)  
VDD = 4.5 to 6.0V, Ta = -25 to +85°C  
Item  
Symbol  
Condition  
Min.  
400  
25400  
60  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
YSCL cycle  
tCCL  
tWCLH  
tWCLL  
YSCL HIGH pulse width  
YSCL LOW pulse width  
400  
330  
25000  
50  
Data setup time  
Data hold time  
Input signal rise time  
Input signal fall time  
tDLS  
tDLH  
tr  
40  
50  
50  
tf  
VDD = 2.7 to 4.5V, Ta = -25 to +85°C  
Item  
Symbol  
Condition  
Min.  
800  
25400  
80  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
MS = LOW: Slave mode  
MS = HIGH: Master mode  
YSCL cycle  
tCCL  
YSCL HIGH pulse width  
YSCL LOW pulse width  
tWCLH  
tWCLL  
400  
660  
25000  
90  
Data setup time  
Data hold time  
Input signal rise time  
Input signal fall time  
tDLS  
tDLH  
tr  
70  
50  
50  
tf  
*1 tDFR: Set in the range that the On output waveform remains normal when the FR signal change point and  
the LP signal fall timing are basically 0ns.  
Rev.1.0  
EPSON  
25  
S1D17E01 Series  
9.3.3 Common driver output timing characteristics  
FR  
YSCL  
tpdYDO  
DIO1  
DIO2  
(IN)  
tpdYSCL  
______  
DSPOF  
tpdFR  
tpdXDSP  
On  
(COM)  
VDD = 4.5 to 6.0V, V0 = 11.0 to 36.0V, Ta = -25 to +85°C  
Item  
Symbol  
tpdYDO  
tpdYSCL  
tpdXDSP  
tpdFR  
Condition  
Min.  
Max.  
100  
800  
800  
800  
Unit  
CL = 15pF  
YSCL fall DIO output delay time  
ns  
YSCL fall ON output delay time  
ns  
______  
CL = 50pF  
DSPOF ON output delay time  
FR ON output delay time  
ns  
ns  
VDD = 2.7 to 4.5V, V0 = 11.0 to 36.0V, Ta = -25 to +85°C  
Item  
Symbol  
tpdYDO  
tpdYSCL  
tpdXDSP  
tpdFR  
Condition  
Min.  
Max.  
Unit  
YSCL fall DIO output delay time  
CL = 15pF  
200  
ns  
YSCL fall ON output delay time  
1200  
1200  
1200  
ns  
______  
CL = 50pF  
DSPOF ON output delay time  
FR ON output delay time  
ns  
ns  
26  
EPSON  
Rev.1.0  
S1D17E01 Series  
10. LCD DRIVE POWER SUPPLY  
Since the voltage of the LCD drive system of this LSI is high, if the voltage is applied to the LCD drive system  
while the logic system power is floating or lower than the function voltage range (VDD=2.7 to 6.0V), and LCD  
drive signal is output before the applied voltage of the LCD drive is stabilized, the LSI may be permanently  
broken with overcurrent.  
______  
It is recommended that the display-off function (DSPOF) be used to keep the LCD drive output voltage at the  
VSS level until the LCD drive voltage is stabilized.  
When turning the power on and off, observe the following sequences:  
______  
Power ON: Logic system ON LCD drive system ON Display ON (DSPOF = HIGH)  
(Built-in power supply ON: Boosting)  
______  
Power OFF: Display OFF (DSPOF = LOW) LCD drive system OFF  
(Built-in power supply OFF: Boosting stopped)  
Discharge (DC = LOW) Logic system OFF  
Built-in power supply ON sequence  
To turn the built-in power supply on, it is recommended that the following sequences be observed:  
VDD  
Internal Boosting clock operation  
POR  
DC  
YSCL  
______  
LOWHIGH after V0 to V4  
power supplies are stabilized  
DSPOF  
V0,V1,V4,VSS  
Common  
V
SS  
Common driver operation  
V0  
V1  
V2  
V3  
V4  
Power supply output  
VSS  
Boosting  
* The time to stabilization for the LCD drive power V0, V1, V2, V3 and V4 depends on the LCD module.  
During this period, set common driver scan pulse input DI01 or DI02 to the VSS level (check the condition on  
the actual module).  
Reference data: Rise time of  
built-in power supply  
1500 ms  
Setting condition  
VDD=3V  
1000 ms  
500 ms  
0 ms  
fYSCL=11.2kHz  
Boosting capacitor =2.2µF  
2 µF  
3 µF  
4 µF 5 µF  
0 µF 1 µF  
Capacity of V0 to V4  
Rev.1.0  
EPSON  
27  
S1D17E01 Series  
Built-in power supply OFF sequence  
To turn the built-in power supply off, it is recommended that the following sequence be observed to set the  
system in the power save state beforehand so that the residual power is discharged from the LCD panel, power  
supply pins and others.  
Power OFF  
2.7V  
VDD  
t
L
Internal Boosting clock  
POR  
DC  
YSCL  
______  
DSPOF  
V0,V1,V4,VSS  
Common  
output  
SS  
V
Common driver operation  
t
H
Rough guideline: Lower than  
liquid crystal Vth (1.0[V])  
0
V
1
V
Power  
supply  
output  
V2  
V3  
4
VSS  
V
Boosting  
Residual power discharged  
* Set the tL so that the relationship of tL > tH is protected.  
* The discharge time for residual charge depends on the LCD module.  
(Confirm with the actual module).  
Reference data: Fall time of built-in power supply  
500 ms  
400 ms  
300 ms  
200 ms  
100 ms  
0 ms  
Setting condition  
VDD=3V  
fYSCL=11.2kHz  
Boosting capacitor =2.2µF  
0 µF  
1 µF  
2 µF  
3 µF  
4 µF  
5 µF  
Capacity of V0 to V4  
ON/OFF sequence when using common driver with external power supply  
t1, t2, t3 > 0 sec  
V0  
V1,V4  
t1  
t2  
VDD  
VSS  
t3  
______  
t3  
DSPOF  
28  
EPSON  
Rev.1.0  
S1D17E01 Series  
11. EXAMPLES OF CONNECTION  
320 × 240 dot  
DIO1  
DIO1  
YSCL  
YSCL  
FR  
DSPOF  
FR  
DSPOF  
SHL  
______  
______  
S1D17E01(1)  
(master mode)  
12-times boosting  
BIAS1  
BIAS2  
BIAS3  
EV0 to EV5  
WR  
COM0  
EV0 to  
EV5  
WR  
DC  
COM159  
DC  
POR  
POR  
MS  
HPM  
DIO2  
320 × 240 dot  
1/320 duty  
DIO1  
YSCL  
FR  
______  
DSPOF  
SHL  
S1D17E01(2)  
(slave mode)  
BIAS1  
BIAS2  
BIAS3  
EV0 to EV5  
WR  
COM0  
COM159  
DC  
POR  
MS  
HPM  
DIO2  
…..  
…..  
SEG0  
DMS  
SEG119  
SEG0  
DMS  
SEG119  
S/C  
S/C  
S1D17A07(1)  
(segment mode)  
S1D17A07(2)  
(segment mode)  
EIO1  
SHL  
EIO2  
EIO1  
SHL  
EIO2  
XSCL  
D0 to D7  
Rev.1.0  
EPSON  
29  
S1D17E01 Series  
240 × 240 dot  
DIO1  
DIO1  
YSCL  
YSCL  
FR  
DSPOF  
FR  
DSPOF  
SHL  
______  
______  
S1D17E01(1)  
(master mode)  
BIAS1  
BIAS2  
BIAS3  
EV0 to EV5  
WR  
10-times boosting  
COM0  
EV0 to  
EV5  
WR  
COM159  
DC  
DC  
POR  
POR  
240 240 dot  
MS  
HPM  
1/240 duty  
DIO2  
EIO1  
LP  
COM0  
S1D17A07(1)  
(common mode)  
FR  
______  
DSPOF  
SHL  
COM79  
COM80  
XSCL  
DMS  
S/C  
COM119  
EIO2  
…..  
…..  
SEG0  
DMS  
SEG119  
SEG0  
DMS  
SEG119  
S/C  
S/C  
S1D17A07(2)  
S1D17A07(3)  
(segment mode)  
(segment mode)  
EIO1  
SHL  
EIO2  
EIO1  
SHL  
EIO2  
XSCL  
D0 to D7  
30  
EPSON  
Rev.1.0  
S1D17E01 Series  
160 × 240 dot  
DIO1  
DIO1  
YSCL  
YSCL  
FR  
DSPOF  
FR  
DSPOF  
______  
______  
S1D17E01(1)  
(master mode)  
8-times boosting  
SHL  
BIAS1  
BIAS2  
BIAS3  
EV0 to EV5  
WR  
COM0  
160240 dot  
EV0 to  
EV5  
1/160 duty  
WR  
DC  
COM159  
DC  
POR  
POR  
MS  
HPM  
DIO2  
…..  
…..  
SEG0  
DMS  
SEG119  
SEG0  
DMS  
SEG119  
S/C  
S/C  
S1D17A07(1)  
S1D17A07(2)  
(segment mode)  
(segment mode)  
EIO1  
SHL  
EIO2  
EIO1  
SHL  
EIO2  
XSCL  
D0 to D7  
160 × 120 dot  
DIO1  
DIO1  
YSCL  
YSCL  
FR  
DSPOF  
FR  
DSPOF  
______  
______  
S1D17E01(1)  
SHL  
(master mode)  
BIAS1  
BIAS2  
BIAS3  
EV0 to EV5  
WR  
8-times boosting  
COM0  
EV0 to  
EV5  
WR  
160120 dot  
1/160 duty  
COM159  
DC  
DC  
POR  
POR  
MS  
HPM  
DIO2  
…..  
SEG0  
DMS  
SEG119  
S/C  
S1D17A07(1)  
(segment mode)  
EIO1  
SHL  
EIO2  
XSCL  
D0 to D7  
Rev.1.0  
EPSON  
31  
S1D17E01 Series  
12. NOTES  
When using these development specifications, note the following points:  
1. The contents of these development specifications are subject to change without notice for improvement.  
2. There is no representation or warranty that anything made in accordance with this material will be free from  
any patent or copyright infringement of a third party.  
Examples shown in these development specifications are for understanding our products, and we are not  
responsible for any circuit problems that may occur when using them.  
Large” or “Small” in the characteristics table refers to the relationship on a numbered line.  
3. No part of this material may be reproduced or duplicated in any form or by any means without the written  
permission of Seiko Epson.  
The following S1D17E01 series handling notes must be used.  
IC handling notes on light:  
As a semiconductor chip is principally identical to a solar cell, its performance may change if exposed to  
bright light. Therefore, the IC may malfunction if exposed to light.  
1. Design and mount the IC so that it is not exposed to light during actual operation.  
2. In the test process, check the design and mounting of the IC so that it is not exposed to light.  
3. Take all surfaces, top, bottom and sides, of the IC chip into consideration when blocking out light.  
IC handling notes on ambient noise and others:  
1. The internal state of the S1D17E01 series may change if excessive ambient noise is inserted. Measures  
are required to prevent noise generation or influence in terms of mounting and the system itself.  
2. It is recommended that the operating state be periodically refreshed (by means of electronic control, for  
example) to avoid spike noise.  
32  
EPSON  
Rev.1.0  

相关型号:

S1D19105

S1D19105d01b000
ETC

S1D2140B03

R/G/B VIDEO AMPLIFIER WITH OSD INTERFACE FOR MONITORS
SAMSUNG

S1D2140B03-D0B0

R/G/B VIDEO AMPLIFIER WITH OSD INTERFACE FOR MONITORS
SAMSUNG

S1D2141X01

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2141X01-D0

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2141X01-D0B0

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2147A01

DEFLECTION PROCESSOR FOR MULTISYNC MONITORS
SAMSUNG

S1D2147A01-A0B0

DEFLECTION PROCESSOR FOR MULTISYNC MONITORS
SAMSUNG

S1D2500A

WIDE BAND ANALOG SWITCH FOR MONITORS
SAMSUNG

S1D2500A01-D0

I2C BUS CONTROLLED R/G/B VIDEO AMPLIFIER
SAMSUNG

S1D2500A01-D0B0

I2C BUS CONTROLLED R/G/B VIDEO AMPLIFIER
SAMSUNG

S1D2502A-D0B0

On-Screen Display IC, PDIP32, 0.600 INCH, DIP-32
SAMSUNG