S1F76610M0B0 [SEIKO]

SWITCHED CAPACITOR REGULATOR, 30kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, SOP5-14;
S1F76610M0B0
型号: S1F76610M0B0
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

SWITCHED CAPACITOR REGULATOR, 30kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, SOP5-14

开关 光电二极管
文件: 总15页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
-
MF302 12  
POWERSUPPLYIC
S1F76610 Technical Manual  
S1F76610 Series  
S1F76610 Series CMOS DC/DC Converter (Voltage  
Doubler / Tripler) & Voltage Regulator  
DESCRIPTION  
• External shut-down control  
The S1F76610 Series is a highly effecient CMOS DC/  
DC converter for doubling or tripling an input voltage.  
It incorporates an on-chip voltage regulator to ensure  
stable output at the specified voltage. The S1F76610  
Series offers a choice of three, optional temperature  
gradients for applications such as LCD panel power  
supplies.  
The S1F76610C0B0 is available in 14-pin plastic DIPs,  
the S1F76610M0B0, in 14-pin plastic SOPs, and the  
S1F76610M2B0 in 16-pin plastic SSOPs.  
• 2µA maximum output current when shut-down  
• Two-in-series configuration doubles negative output  
voltage.  
• On-chip RC oscillator  
• S1F76610C0B0 ...... Plastic DIP-14 pin  
S1F76610M0B0...... Plastic SOP5-14 Pin  
S1F76610M2B0...... Plastic SSOP2-16 pin  
APPLICATIONS  
• Power supplies for LCD panels  
• Fixed-voltage power supplies for battery-operated  
equipment  
FEATURES  
• 95% (Typ.) conversion efficiency  
• Up to four output voltages, VO, relative to the input  
voltage, VI  
• Power supplies for pagers, memory cards, calculators  
and similar hand-held equipment  
• Fixed-voltage power supplies for medical equipment  
• Fixed-voltage power supplies for communications  
equipment  
• On-chip voltage regulator  
• 20mA maximum output current at VI = –5V  
• Three temperature gradients : –0.1, –0.4 and –0.6%/  
°C  
• Power supplies for microcomputers  
• Uninterruptable power supplies  
BLOCK DIAGRAM  
V
DD  
OSC1  
OSC2  
CR  
oscilator  
TC1  
Reference  
Temperature  
gradient  
voltge  
V
I
generator  
selector  
TC2  
Voltage  
multiplier  
(1)  
CAP1–  
CAP1+  
P
OFF  
CAP2–  
CAP2+  
RV  
Voltage  
multiplier  
(2)  
Voltage regulator  
V
REG  
V
O
Multiplication  
stage  
Stabilization  
stage  
S1F70000 Series  
Technical Manual  
EPSON  
2–1  
S1F76610 Series  
PIN ASSIGNMENTS  
1
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
CAP+  
CAP–  
NC  
VDD  
CAP+  
VDD  
OSC1  
NC  
2
CAP–  
OSC1  
OSC2  
3
CAP2+  
CAP2+  
CAP2–  
TC1  
OSC2  
4
CAP2–  
POFF  
P
OFF  
5
TC1  
RV  
RV  
6
TC2  
V
V
REG  
TC2  
V
V
REG  
7
8
VI  
O
V
I
O
S1F76610C0B0/M0B0  
S1F76610M2B0  
PIN DESCRIPTIONS  
S1F76610C0B0/M0B0  
Pin name  
CAP1+  
CAP1–  
CAP2+  
CAP2–  
TC1  
Pin No.  
Description  
1
2
Positive charge-pump connection for ×2 multiplier  
Negative charge-pump connection for ×2 multiplier  
Positive charge-pump connection for ×3 multiplier  
3
4
Negative charge-pump connection for ×3 multiplier or ×2 multiplier output  
5
Temperature gradient selects  
TC2  
6
VI  
Negative supply (system ground)  
×3 multiplier output  
7
VO  
8
VREG  
RV  
Voltage regulator output  
9
Voltage regulator output adjust  
10  
11  
12  
13  
14  
POFF  
Voltage regulator output ON/OFF control  
Resistor connection. Open when using external clock  
Resistor connection. Clock input when using external clock  
Positive supply (system VCC)  
OSC2  
OSC1  
VDD  
2–2  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
SPECIFICATIONS  
Absolute Maximum Ratings  
Parameter  
Ratings  
Codes  
Units  
Remarks  
N = 2: Boosting to a double voltage  
N = 3: Boosting to a triple voltage  
OSC1, OSC2, POFF  
–20/N to VDD + 0.3  
V
Input supply voltage  
VI – VDD  
VI – 0.3 to VDD + 0.3  
VO – 0.3 to VDD + 0.3  
–20 to VDD + 0.3  
VO to VDD + 0.3  
Max. 300  
V
V
Input terminal voltage  
Output voltage  
VI – VDD  
TC1, TC2, RV  
V
VO  
Note 3)  
Note 3)  
VO – VDD  
V
VREG  
Allowable dissipation  
Working temperature  
Storage temperature  
PD  
mW  
°C  
°C  
Topr  
Tstg  
–40 to +85  
Plastic package  
At leads  
–55 to +150  
Soldering temperature  
and time  
°C • s  
Tsol  
260 • 10  
Notes  
1. Using the IC under conditions exceeding the aforementioned absolute maximum ratings may lead to permanent destruction of  
the IC. Also, if an IC is operated at the absolute maximum ratings for a longer period of time, its functional reliability may be  
substantially deteriorated.  
2. All the voltage ratings are based on VDD = 0V.  
3. The output terminals (VO,VREG) are meant to output boosted voltage or stabilized boosted voltage. They, therefore, are not the  
terminals to apply an external voltage. In case the using specifications unavoidably call for application of an external voltage,  
keep such voltage below the voltage ratings given above.  
Reconmmended Operating Conditions  
VDD = 0V, Ta = –40 to +85˚C unless otherwise noted  
Rating  
Parameter  
Symbol  
Conditions  
ROSC =1MΩ  
Unit  
Max.  
Min.  
Typ.  
C3 = 10 µF, CL/C3 1/20,  
Ta = –20 to +85˚C.  
See note 1.  
–1.8  
VSTA  
V
Oscillator startup voltage  
ROSC = 1MΩ  
ROSC = 1MΩ  
–2.2  
Oscillator shutdown voltage  
Load resistance  
VSTP  
RL  
V
–1.8  
RLmin.  
See note 2.  
Output current  
IO  
fOSC  
10.0  
680  
3.3  
mA  
kHz  
kΩ  
20.0  
30.0  
2,000  
Clock frequency  
CR oscillator network resistance  
Capacitance  
ROSC  
µF  
C1, C2, C3  
Stabilization voltage sensing resis-  
tance  
100  
kΩ  
RRV  
1,000  
Notes  
1. The recommended circuit configuration for low-valtage operation (when VI is between –1.2V and –2.2V) is shown in  
the following figure. Note that diode D1 should have a maximum forward voltage of 0.6V with 1.0mA forward current.  
2. RL min can be varied depending on the input voltage.  
S1F70000 Series  
Technical Manual  
EPSON  
2–3  
S1F76610 Series  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
+
C1  
R
OSC  
10µF  
1M  
C2  
10µF  
C
L
RL  
8
C3  
+
22µF  
D1  
3. RLmin is a function of V1  
5
4
3
2
1
V
STA2  
STA1  
V
Voltage  
tripler  
Voltage  
doubler  
0
1
1.5  
2
3
4
5
6
Input voltage (V)  
Electrical Characteristics  
VDD = 0V, V1 = –5V, Ta = –40 to +85°C unless otherwise noted  
Rating  
Typ.  
Parameter  
Input voltage  
Symbol  
Conditions  
Unit  
Min.  
–6.0  
Max.  
–1.8  
VI  
V
V
–18.0  
Output voltage  
VO  
RL = , RRV = 1M,  
–18.0  
Regulator voltage  
VREG  
–2.6  
V
VO = –18V  
Stabilization circuit operating voltage  
Multiplier current  
VO  
–18.0  
V
–3.2  
80  
IOPR1  
RL = , ROSC = 1MΩ  
RL = , RRV = 1M,  
VO = –15V  
µA  
40  
Stabilization current  
IOPR2  
12.0  
5.0  
µA  
Quiescent current  
Clock frequency  
IQ  
TC2 = TC1 = VO, RL = ∞  
ROSC = 1MΩ  
µA  
2.0  
fOSC  
16.0  
20.0  
24.0  
kHz  
2–4  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
Rating  
Symbol  
Conditions  
IO = 10mA  
Parameter  
Output impedance  
Unit  
Min.  
Typ.  
150  
Max.  
200  
RO  
Peff  
IO = 5mA  
Multiplication efficiency  
90.0  
95.0  
%
VO = –18 to –8V,  
VREG = –8V, RL = ,  
Ta = 25˚C  
VREG  
VO·VREG  
Stabilization output voltage  
differential  
0.2  
5.0  
8.0  
%/V  
VO = –15V,  
VREG = –8V, Ta = 25˚C,  
IO = 0 to 10µA,  
VREG  
IO  
Stabilization output load differential  
TC1 = VDD, TC2 = VO  
RSAT = (VREG – VO)/IO,  
IO = 0 to 10µA,  
RV = VDD, Ta = 25˚C  
Stabilization output saturation  
resistance  
RSAT  
RC2 = VO, TC1 = VDD,  
Ta = 25˚C  
–1.0  
–1.1  
–2.3  
–1.7  
–1.5  
–1.3  
TC2 = TC1 = VO,  
Ta = 25˚C  
Reference voltage  
VRV  
V
TC2 = VDD, TC1 = VO,  
Ta = 25˚C  
–0.9  
–0.8  
–1.1  
–0.1  
–0.4  
–0.6  
–0.01  
–0.3  
–0.5  
–0.25  
–0.5  
–0.7  
CT  
ILKI  
100  
See note.  
%/˚C  
Temperature gradient  
POFF, TC1, TC2, OSC1, and RV  
input leakage current  
2.0  
µA  
Note  
|VREG (50°C)| – |VREG (0°C)|  
CT =  
×
50°C – 0°C  
|VREG (25°C)|  
S1F70000 Series  
Technical Manual  
EPSON  
2–5  
S1F76610 Series  
Typical Performance Characteristics  
1000  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Ta = 25°C  
VI  
VI  
VI  
= –5V  
= –3V  
= –2V  
V
I
I
= –5.0V  
= –3.0V  
100  
10  
1
V
V
I
= –2.0V  
8
–40  
–20  
0
20  
Ta [°C]  
40  
60  
80  
100  
10  
100  
1000  
OSC [k]  
10000  
R
(1) Clock frequency vs. External resistance  
(2) Clock frequency vs. Ambient temperature  
150  
0
Ta = 25°C  
Ta = 25°C  
VI = –5.0V  
f
OSC = 40kHz  
100  
50  
0
–5  
–10  
–15  
f
OSC =  
×2 multiplier  
20kHz  
f
OSC = 10kHz  
×3 multiplier  
0
10  
20  
[mA]  
30  
40  
–7  
–6  
–5  
–4  
V
–3  
[V]  
–2  
–1  
0
I
O
I
(3) Multiplier current vs. Input voltage  
(4) Output voltage vs. Output current  
2–6  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
0
–1  
–2  
–3  
–4  
–5  
–6  
0
–5  
Ta = 25°C  
= –3.0V  
Ta = 25°C  
= –2.0V  
V
I
V
I
×2 multiplier  
×2 multiplier  
×3 multiplier  
×3 multiplier  
–10  
–15  
0
10  
20  
30  
0
1
2
3
4
5
6
7
8
9 10  
IO [mA]  
IO [mA]  
(5) Output voltage vs. Output current  
(6) Output voltage vs. Output current  
100  
100  
90  
100  
60  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
54  
48  
42  
36  
30  
24  
18  
12  
6
80  
Ta = 25°C  
= –3.0V  
Ta = 25°C  
= –5.0V  
70  
×2 multiplier  
Peff  
VI  
VI  
×2 multiplier 60  
Peff  
50  
40  
30  
20  
10  
0
×3 multiplier  
×3 multiplier  
×3 multiplier  
II  
Peff  
×3 multiplier  
Peff  
II  
×2 multiplier  
II  
×2 multiplier  
II  
0
0
5
10  
15  
[mA]  
20  
25  
30  
0
10  
20  
I
30  
[mA]  
40  
50  
O
IO  
(7) Multiplication efficiency/input current  
vs. Output current  
(8) Multiplication efficiency/input current  
vs. Output current  
S1F70000 Series  
Technical Manual  
EPSON  
2–7  
S1F76610 Series  
500  
400  
300  
200  
100  
0
100  
90  
40  
36  
32  
28  
24  
20  
Ta = 25°C  
= 6mA  
×2 multiplier  
I
O
Peff  
80  
Ta = 25°C  
= –2.0V  
70  
60  
50  
×3 multiplier  
VI  
Peff  
×3 multiplier  
40  
30  
20  
10  
16  
12  
8
×3 multiplier  
×2 multiplier  
II  
×2 multiplier  
II  
4
0
0
–7  
–6  
–5  
–4  
V
–3  
[V]  
–2  
–1  
0
0
1
2
3
4
5
6
7
8
9
10  
IO [mA]  
I
(9) Multiplication efficiency/input current  
vs. Output current  
(10) Output impedance vs. Input voltage  
500  
100  
Ta = 25°C  
IO = 10mA  
I
O
= 2mA  
= 5mA  
400  
300  
90  
80  
70  
IO  
IO = 10mA  
200  
100  
0
×3 multiplier  
×2 multiplier  
IO = 20mA  
60  
50  
IO = 30mA  
Ta = 25°C  
= –5.0V  
1000  
VI  
–7  
–6  
–5  
–4  
–3  
[V]  
–2  
–1  
0
1
10  
100  
f
OSC [kHz]  
V
I
(11) Output impedance vs. Input voltage  
(12) Multiplication efficiency vs. Clock frequency  
2–8  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
100  
90  
–7.850  
–7.900  
–7.950  
–8.000  
I
I
O
O
= 0.5mA  
= 1.0mA  
V
O
= –15V  
I
O
= 2.0mA  
Ta = 25°C  
I
O
= 4.0mA  
80  
70  
Ta = 25°C  
= – 3.0V  
60  
50  
V
I
0.0001  
0.0010  
0.0100  
0.1000  
1
10  
100  
1000  
IO [V]  
fOSC [kHz]  
(13) Multiplication efficiency vs. Clock frequency  
(14) Output voltage vs. Output current  
–2.850  
–5.850  
V
O
= –6V  
V
O
= –9V  
Ta = 25°C  
Ta = 25°C  
–5.900  
–5.950  
–6.000  
–2.900  
–2.950  
–3.000  
0.0001  
0.0010  
0.0100  
0.1000  
0.0001  
0.0010  
0.0100  
0.1000  
IO [V]  
IO [V]  
(15) Output voltage vs. Output current  
(16) Output voltage vs. Output current  
S1F70000 Series  
Technical Manual  
EPSON  
2–9  
S1F76610 Series  
50  
0.30  
Ta = 25°C  
0.25  
VO  
= –5V  
0.20  
0.15  
0.10  
0.05  
0.00  
V
V
O
O
= –10V  
= –15V  
0
CT0  
CT1  
CT2  
–50  
0
5
10  
15  
20  
–40 –20  
0
20  
40  
60  
80  
100  
I
O
[mA]  
Ta [°C]  
(17) Regulator voltage vs. Output current  
(18) Regulator output stability ratio vs.  
Ambient temperature  
Temperature Gradient Control  
The S1F7661C0B0 offers a choice of three temperature  
gradients which can be used to adjust the voltage regu-  
lator output in applications such as power supplies for  
driving LCDs.  
Temperature  
gradient  
(%/˚C)  
See note 2.  
POFF  
TC2  
TC1  
Voltage  
regulator  
output  
CR osciliator  
Remarks  
See note 1.  
ON  
ON  
ON  
ON  
1 (VDD)  
1 (VDD)  
1 (VDD)  
1 (VDD)  
Low (VO)  
Low (VO)  
Low (VO)  
High (VDD)  
Low (VO)  
–0.4  
–0.1  
–0.6  
–0.6  
ON  
ON  
High (VDD)  
High (VDD)  
ON  
High (VDD)  
OFF  
Serial connection  
OFF  
(high impedance)  
OFF  
0 (VI)  
0 (VI)  
0 (VI)  
0 (VI)  
Low (VO)  
Low (VO)  
Low (VO)  
High (VDD)  
Low (VO)  
OFF  
(high impedance)  
OFF  
OFF  
OFF  
(high impedance)  
High (VDD)  
High (VDD)  
OFF  
(high impedance)  
Multiplier  
operational  
OFF  
High (VDD)  
Notes  
1. The definition of LOW for POFF differs from that for TC1 and TC2.  
2. The temperature gradient affects the voltage between VDD and VREG.  
2–10  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
FUNCTIONAL DESCRIPTIONS  
CR Oscillator  
Voltage Multiplier  
The on-chip CR oscillator network frequency is deter-  
mined by the external resistor, ROSC, connected be-  
tween OSC1 and OSC2. This oscillator can be disabled  
in favor of an external clock by leaving OSC2 open and  
applying an external clock signal to OSC1.  
The voltage multiplier uses the clock signal from the  
oscillator to double or triple the input voltage. This re-  
quires three external capacitors–two charge-pump ca-  
pacitors between CAP1+ and CAP1– and CAP2+ and  
CAP2–, respectively, and a smoothing capacitor be-  
tween VI and VO.  
Oscillator  
External clock  
OSC1  
OSC1  
OSC2  
V
= 0 V  
DD  
External clock  
signal  
R
OSC  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C1  
+
+
OSC2  
R
RV  
10 µF  
R1  
R2  
100 kΩ  
to  
R
OSC  
1 M  
5 V  
1 MΩ  
C2  
Reference Volatge Generator and Voltage  
Regulator  
The reference voltage generator supplies a reference  
voltage to the voltage regulator to control the output.  
This voltage can be switched ON and OFF.  
10 µF  
+C4  
10 µF  
V
= –8 V  
REG  
V
= –15 V  
O
8
V = –5 V  
I
+
C3  
10 µF  
V
DD  
POFF  
Control signal  
R
RV = 100 kto 1 MΩ  
RV  
Double voltage potential levels  
V
REG  
V
CC  
(+5V)  
GND  
(–5V)  
V
V
DD = 0 V  
= –5 V  
I
V
CAP2 – = 2VI = –10 V  
Tripled voltage potential levels  
VDD = 0 V  
VI = –5 V  
VO = 3VI = –15 V  
S1F70000 Series  
Technical Manual  
EPSON  
2–11  
S1F76610 Series  
TYPICAL APPLICATIONS  
Voltage Tripler with Regulator  
Converting a Voltage Tripler to a Voltage  
The following figure shows the circuit required to triple  
the input voltage, regulate the result and add a tempera-  
ture gradient of –0.4%/°C. Note that the high input im-  
pedance of RV requires appropriate noise countermea-  
sures.  
Doubler  
To convert this curcuit to a voltage doubler, remove ca-  
pacitor C2 and short circuit CAP2– to VO.  
VDD = 0 V  
VDD = 0 V  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
C1 +  
10µF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C1  
+
+
ROSC  
10 µF  
1 M  
RRV  
100 k  
to  
R1  
R2  
5 V  
C2 +  
10µF  
ROSC  
1 MΩ  
5 V  
C2  
10 µF  
1 MΩ  
+C4  
10 µF  
VO = –15 V  
8
VREG = –8 V  
RRV  
VRV  
VI = –5 V  
+
VO = –15 V  
C3  
10 µF  
8
VI = –5 V  
=
+
R1  
C3  
10 µF  
Parallel Connection  
Connecting two or more chips in parallel reduces the  
output impedance by 1/n, where n is the number of de-  
vices used.  
quired when any number of devices are connected in  
parallel. Also, the voltage regulator in one chip is suffi-  
cient to regulate the combined output.  
Only the single output smoothing capacitor, C3, is re-  
VDD = 0 V  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
+
+
+
C1  
10 µF  
C1  
10 µF  
R
RV  
R
1 MΩ  
OSC  
R
1 MΩ  
OSC  
100 k  
to  
C2  
10 µF  
C2  
10 µF  
1 MΩ  
+
C4  
10 µF  
5 V  
VREG = –10 V  
8
8
V
O = –15 V  
VI = –5 V  
+
C3  
10 µF  
2–12  
EPSON  
S1F70000 Series  
Technical Manual  
S1F76610 Series  
Serial Connection  
Connecting two or more chips in series obtains a higher  
output voltage than can be obtained using a parallel  
connection, however, this also raises the output imped-  
ance.  
<Precautions when connecting loads>  
In case of series connections, when connecting loads  
between the first stage VDD (or other potential of the  
second stage VDD or up) and the second stage VREG as  
shown in Fig. 2-13, be cautions about the following  
point.  
the first stage VDD (or other potential of the second  
stage VDD or up) to cause a voltage exceeding the  
absolute maximum rating for the second stage VDD at  
the VREG terminal, normal operation of the IC may be  
hampered. Consequently, When making a series  
connection, insert a diode D1 between the second  
stage VI and VREG as shown in Fig. 2-13 so that a  
voltage exceeding the second stage VDD or up may  
not be applied to the VREG terminal.  
* When normal output is not occurring at the VREG ter-  
minal such as at times of starting up or when turning  
the VREG off by POFF signals, if current flows into the  
second stage VREG terminal through the load from  
VDD' = VI = –5V  
VDD = 0V  
10µF  
Load  
100k  
to  
1MΩ  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
+
10µF  
10µF  
10µF  
1M  
5V  
+
V
O
= –10V= VI  
V
REG' = –15V  
8
8
VO = –20V  
10µF  
V
I
= –5V  
+
10µF  
D1  
VDD = 0 V  
D1  
D2  
5 V  
D3  
Positive Voltage Conversion  
Adding diodes converts a negative voltage to a positive  
one.  
C1  
10 µF  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
+
To convert the voltage tripler shown earlier to a voltage  
doubler, remove C2 and D2, and short circuit D3. Small  
Schottky diodes are recommended for all these diodes.  
The resulting voltage is lowered by VF, the voltage drop  
in the forward direction for each diode used. For ex-  
ample, if VDD = 0V, VI = –5V, and VF = 0.6V, the re-  
sulting voltages would be as follows.  
• For a voltage tripler,  
C2  
ROSC  
1 MΩ  
10 µF  
+
+
8
V
O = 8.2 V C3  
10 µF  
VO = 10 – (3 × 0.6) = 8.2V  
• For a voltage doubler,  
VI = –5 V  
VO = 5 – (2 × 0.6) = 3.8V  
S1F70000 Series  
Technical Manual  
EPSON  
2–13  
S1F76610 Series  
Simultaneous Voltage Conversion  
Combining a standard voltage tripler circuit with one  
for positive voltage conversion generates both –15 and  
8.2V outputs from a single input, however, it also raises  
the output impedance.  
Using an External Gradient  
The S1F7661C0B0/M0B0 offers three built-in tem-  
perature gradients— –0.1, –0.4 and –0.6%/°C.  
To set the gradient externally, place a thermistor, RT, in  
series with the variable resistor, RRV, used to adjust the  
output voltage.  
A voltage doubler generates –10 and 3.8V outputs.  
VDD = 0 V  
VDD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
10 µF  
D1  
D2  
+
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
R1  
10 µF  
RRV  
+
10 µF  
R
1 MΩ  
OSC  
10 µF  
+
10 µF  
RT  
RP  
5 V  
D3  
VREG  
10 µF  
V
O1 = –15 V  
+
8
8
V
O2 = 8.2 V  
+
10 µF  
VI = –5 V  
Potential levels  
VO2 = 8.2V  
VDD = 0 V  
VI  
= –5 V  
V
O1 = –15 V  
2–14  
EPSON  
S1F70000 Series  
Technical Manual  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY