S1F81100F00A00M [SEIKO]

SWITCHING CONTROLLER, 1200kHz SWITCHING FREQ-MAX, PQFP48, 4 X 4 MM, QFP12-48;
S1F81100F00A00M
型号: S1F81100F00A00M
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

SWITCHING CONTROLLER, 1200kHz SWITCHING FREQ-MAX, PQFP48, 4 X 4 MM, QFP12-48

开关
文件: 总79页 (文件大小:1106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
-
MF1521 03  
Power Supply IC  
S1F81100  
Technical Manual  
NOTICE  
No part of this material may be reproduced or duplicated in any form or by any means without the written  
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.  
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material  
or due to its application or use in any product or circuit and, further, there is no representation that this material  
is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to  
any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty  
that anything made in accordance with this material will be free from any patent or copyright infringement of a  
third party. This material or portions thereof may contain technology or the subject relating to strategic  
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export  
license from the Ministry of International Trade and Industry or other approval from anther government agency.  
©SEIKO EPSON CORPORATION 2003, All rights reserved.  
Intel is registered trademark of Intel Corporation.  
XScale is trademark of Intel Corporation.  
All other product names mentioned herein are trademarks and/or registered trademarks of their respective  
companies.  
Configuration of product number  
DEVICES  
S1  
F
81100  
F
00A0  
00  
Packing specifications  
00: Besides tape & reel  
0A: TCP BL 2 directions  
0B: Tape & reel Back  
0C: TCP BR 2 directions  
0D: TCP BT 2 directions  
0E: TCP BD 2 directions  
0F: Tape & reel FRONT  
0G: TCP BT 4 directions  
0H: TCP BD 4 directions  
0J: TCP SL 2 directions  
0K: TCP SR 2 directions  
0L: Tape & reel LEFT  
0M:TCP ST 2 directions  
0N: TCP SD 2 directions  
0P: TCP ST 4 directions  
0Q: TCP SD 4 directions  
0R: Tape & reel RIGHT  
99: Specs not fixed  
Specifications  
Shape  
(F : QFP)  
Model number  
Model name  
(F : Power Supply)  
Product classification  
(S1:Semiconductors)  
CONTENTS  
1. DESCRIPTION....................................................................................................................................1  
1.1 Features .....................................................................................................................................1  
1.2 Block Diagram............................................................................................................................2  
1.3 Package Dimensions and Pin Assignment................................................................................4  
1.4 Pin Descriptions .........................................................................................................................6  
1.5 Mask Options .............................................................................................................................8  
2. INPUT VOLTAGE AND INITIAL RESET............................................................................................9  
2.1 Input Voltage ..............................................................................................................................9  
2.1.1 Main Battery <VIN>.......................................................................................................9  
2.1.2 Sub-Battery <VBAK> .....................................................................................................9  
2.1.3 Constant Voltage for Internal Circuits <VD1>...............................................................9  
2.1.4 Reference Voltage for Internal Circuits <VREF>.........................................................10  
2.1.5 Voltage for External Interface Pins <BATT_VCC>......................................................10  
2.2 Initial Reset...............................................................................................................................12  
2.2.1 Reset Input Pin <XRST>............................................................................................12  
2.2.2 Reset Output Pin <nRESET> ....................................................................................12  
2.3 Test Pin <XTEST0>..................................................................................................................12  
3. REGULATOR AND OPERATION ....................................................................................................13  
3.1 CH-1 (VCC1) Output Voltage.....................................................................................................14  
3.1.1 Main Regulator (PWM Controller)..............................................................................14  
3.1.2 Sub-Regulator (Backup Regulator)............................................................................14  
3.1.3 Light-Load Mode Function .........................................................................................15  
3.1.4 Soft Start Function .....................................................................................................16  
3.1.5 Output Voltage Setting Function ................................................................................16  
3.1.6 Power OFF Function..................................................................................................19  
3.1.7 Power Good Function ................................................................................................20  
3.1.8 CH-1 (VCC1) Mask Options of Output Voltage ...........................................................20  
3.1.9 CH-1 (VCC1) Output Voltage Proof Function..............................................................20  
3.2 CH-2 (VCC2) Output Voltage.....................................................................................................21  
3.2.1 Main Regulator (PWM Controller)..............................................................................21  
3.2.2 Sub-Regulator (Backup Regulator)............................................................................21  
3.2.3 Light-Load Mode Function .........................................................................................22  
3.2.4 Soft Start Function .....................................................................................................23  
3.2.5 Short-Circuit Proof Function.......................................................................................23  
3.2.6 Power OFF Function..................................................................................................23  
3.2.7 Power Good Function ................................................................................................24  
3.2.8 CH-2 (VCC2) Mask Options Concerning Output Voltage............................................24  
3.3 CH-3 (VCC3) Output Voltage.....................................................................................................25  
3.3.1 Main Regulator (PWM Controller)..............................................................................25  
3.3.2 Sub-Regulator (Backup Regulator)............................................................................25  
3.3.3 Light-Load Mode Function .........................................................................................26  
3.3.4 Soft Start Function .....................................................................................................27  
3.3.5 Short-Circuit Proof Function.......................................................................................27  
3.3.6 Power OFF Function..................................................................................................27  
3.3.7 Power Good Function ................................................................................................28  
3.3.8 CH-3 (VCC3) Mask Options Concerning Output Voltage............................................28  
Rev.1.4  
EPSON  
i
3.4 CH-4 (VCC4) Output Voltage.....................................................................................................29  
3.4.1 Main Regulator (Series Regulator) ............................................................................29  
3.4.2 Power OFF Function..................................................................................................29  
3.5 Output Timing of Regulator on Initial Startup...........................................................................30  
4. OPERATION MODES.......................................................................................................................31  
4.1 Description of Each Operation Mode.......................................................................................31  
4.2 Sleep Mode..............................................................................................................................31  
4.2.1 Transitioning to and Canceling the Sleep Mode........................................................31  
4.2.2 Transitioning to and Canceling the Sleep Mode When CH-1 Voltage Change  
is Made.......................................................................................................................32  
4.2.3 Transitioning to and Canceling the Sleep Mode When CH-1 Voltage Change  
is not Made.................................................................................................................33  
4.2.4 Mask Options Associated with the Sleep Mode ........................................................34  
4.3 Deep Sleep Mode ....................................................................................................................36  
4.3.1 Transitioning to and Canceling the Deep Sleep Mode ..............................................36  
4.3.2 Mask Options Associated with the Deep Sleep Mode...............................................37  
4.4 Ultra-Power-Saving Mode........................................................................................................38  
5. I2C CONTROLLER ...........................................................................................................................39  
5.1 Description ...............................................................................................................................39  
5.1.1 Basic Specifications ...................................................................................................39  
5.1.2 Start and Stop Conditions..........................................................................................39  
5.1.3 Data Transfer (command format)...............................................................................40  
5.1.4 Behavior During Malfunction Conditions....................................................................41  
5.2 Control Address & Control Data List........................................................................................42  
6. AUXILIARY FUNCTIONS AND OPERATIONS...............................................................................46  
6.1 Oscillator Circuit/Clock Selecting Function..............................................................................46  
6.2 Output Voltage Determining Function......................................................................................47  
6.3 Input Voltage Determining Function.........................................................................................48  
6.4 General-Purpose I/O Ports ......................................................................................................49  
6.4.1 Description .................................................................................................................49  
6.4.2 Mask Options Associated with the General-Purpose I/O Ports.................................50  
7. BASIC EXTERNAL CONNECTION DIAGRAMS............................................................................51  
8. ELECTRICAL CHARACTERISTICS ...............................................................................................53  
9. PACKAGE ........................................................................................................................................66  
10. PAD LAYOUT ...................................................................................................................................68  
11. TERMINAL EQUIVALENT CIRCUIT................................................................................................70  
APPENDIX SELECTION OF PWM CONTROLLER’S EXTERNAL COMPONENTS........................72  
ii  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
1. DESCRIPTION  
The S1F81100 is a power IC for the system equipped with a 4-channel regulator. Batteries such as lithium ion  
batteries are used to generate each output voltage via external devices. The 4-channel regulator consisting of  
PWM controller with 3 channels and series regulator with 1 channel are independent of each other and can be  
controlled separately.  
On this series, an I2C controller (for the slave function), input and output voltage detecting functions,  
general-purpose I/O pins, etc. are provided.  
Moreover, this series exhibits power saving performance by effectively using the normal, Sleep, Deep Sleep and  
ultra-energy-saving modes provided as operation mode according to the situation.  
The S1F81100 is also equipped with an I/O pin dedicated for interface to Intel’s PXA250/210 (XScaleTM)  
processor, and is most suitable for use as a power supply unit for mobile devices such as PDAs equipped with  
an XScaleTM and smart-phone.  
Product number  
Shipping forms  
Die form  
QFP12-48 Package  
QFN7-48 Package  
S1F81100D0 000  
**  
S1F81100F0 000  
**  
S1F81100F5 000  
**  
Note: The above is replaced with a serial number depending on the option.  
*
Product List  
The following optional products (including those under development) are currently prepared for the S1F81100.  
For the mask options, refer to Section 1.5.  
Table 1.1 Product List  
Mask Option  
Model  
Package  
[No.1]  
CH-2  
3.3V  
[No.2]  
[others]  
CH-3  
S1F81100F0E1000  
* S1F81100F0F0000  
* Under development  
QFP12-48  
QFP12-48  
3.3V  
2.5V  
standard  
standard  
3.3V  
1.1 Features  
The features of the S1F81100 include the following:  
Input voltage:  
Regulator:  
VIN  
3.3V to 5.5V (if at least either VCC2 or VCC3 is 3.3V) (Note 1)  
2.8V to 5.5V (if both VCC2 and VCC3 are 2.5V or lower)  
Note 1: When VIN falls to around 3.3V, output falls below 3.3V.  
4-channel  
CH-1 (VCC1): PWM controller  
High-speed synchronized rectification type PWM controller  
(Connected to an external component to configure a switching regulator.)  
Features include a fast response circuit using a current/voltage returning system, more compact external  
components thanks to a fast clock, and a sub-regulator (mask options).  
Output voltage  
1.5/1.4/1.3/1.2/1.1/1.0/0.9/0.8V  
Select one value from above via the I2C controller.  
Accuracy: within ±5%  
Output current  
Main  
Sleep mode  
Operating mode Max.: 500mA  
Sub [mask options] Max.: 20mA  
OFF  
CH-2 (VCC2): PWM controller  
High-speed synchronized rectification type PWM controller  
(Connected to an external component to configure a switching regulator.)  
Features include a fast response circuit using a current/voltage returning system, a short-circuit-proof circuit,  
more compact external components thanks to a fast clock, and a sub-regulator.  
Output voltage  
3.3/2.5/1.8V: One is to be selected from the mask options (1.8V is under development).  
Accuracy: within ±5%  
Rev.1.4  
EPSON  
1
S1F81100 Technical Manual  
Output current  
Main  
Sub  
Deep Sleep mode  
Operating mode  
Max.: 10mA  
OFF  
Max.: 1A  
CH-3 (VCC3): PWM controller  
High-speed synchronized rectification type PWM controller  
(Connected to an external component to configure a switching regulator.)  
Features include a fast response circuit using a current/voltage returning system, a short-circuit-proof circuit,  
more compact external components thanks to a fast clock, and a sub-regulator.  
Output voltage  
3.3/2.5/1.8V: One is to be selected from the mask options (1.8V is under development).  
Accuracy: within ±5%  
Output current  
Main  
Sub  
Deep Sleep mode  
Operating mode  
Max.: 10mA  
OFF  
Max.: 1A  
CH-4 (VCC4): Series regulator  
Low power consumption type series regulator  
Output voltage  
Output current  
1.5/1.4/1.3/1.2/1.1/1.0/0.9/0.8V…Same voltage as in CH-1 setting  
Sleep mode OFF  
Operating mode 20mA (@VCC3 = 3.3V), 5mA (@VCC3 = 2.5V)  
Typ.: 0.7µA(@VIN = 4.0V)  
Shutdown current:  
Current consumption:  
Normal mode 2mA(Typ.)  
Sleep mode  
100µA(Typ.)  
External interface:  
Built-in interfaces in the I2C controller (SCL, SDA and AD_EN; for the  
slave function only).  
Output voltage detecting function: 1 channel (nVCC_FLT)  
The output of power good circuit will be LOW if one of CH1 to CH3  
output is out of defined value.  
Input voltage detecting function: 1 channel (nBAT_FLT)  
The LOW output is applied if the detected input voltage fails to comply  
with the specs.  
Resetting function:  
Sleep function:  
1 channel (XRST(I),nRESET(O))  
1 channel (PWR_EN,WUP)  
1.2 Block Diagram  
The following is a block diagram of the S1F81100.  
[****]  
[****]  
[****]  
****  
: Input Power Terminal  
: Backup Power Terminal  
: GND Terminal  
: VIN Level I/O Terminal  
: VCC1 Level I/O Terminal  
: VCC2 Level I/O Terminal  
: VCC3 Level I/O Terminal  
: VCC4 Level I/O Terminal  
: BATT_VCC Level I/O Terminal  
: Analog Terminal  
****  
****  
****  
****  
****  
****  
Fig.1.2.1 Notation of Pin Voltage Levels in Fig.1.2.2.  
2
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
S1F81100  
[VIN  
]
[VIN1  
]
[VSS  
]
V
CC1  
CH-1  
PWM cont.  
Series Reg.  
Power-Good  
Soft start  
Err. Dtct.  
etc.  
CLKIN  
FB1M  
SW1OH  
SW1OL  
SSCAP1  
OSC  
SDA  
SCL  
[VSS1  
]
AD_EN  
P03  
[VIN2  
]
P02  
V
CC2  
CH-2  
P01  
PWM cont.  
Series Reg.  
Power-Good  
Soft start  
Err. Dtct.  
etc.  
P00  
FB2M  
SW2OH  
SW2OL  
SSCAP2  
XRST  
Reset  
Cont.  
nRESET  
[VSS2  
]
V
Dtct.  
IN  
nBAT_FLT  
nVCC_FLT  
[VIN3  
]
V
CC3  
CH-3  
VOUT  
Dtct.  
PWM cont.  
Series Reg.  
Power-Good  
Soft start  
Err. Dtct.  
etc.  
FB3M  
SW3OH  
SW3OL  
SSCAP3  
PWR_EN  
WUP  
Sleep  
Cont.  
Int. Power  
Reg.  
V
D1  
[VSS3  
]
V
CC4  
Ref. Power  
Reg.  
V
REF  
CH-4  
FB4  
XSDWN  
XTEST0  
BATT_VCC  
[VBAK  
Test  
Cont.  
Backup  
Switch  
]
Fig.1.2.2 S1F81100 Block Diagram  
Rev.1.4  
EPSON  
3
S1F81100 Technical Manual  
1.3 Package Dimensions and Pin Assignment  
[QFP12-48]  
9±0.4  
7±0.1  
9±0.4  
36  
25  
37  
24  
INDEX  
48  
13  
1
12  
+0.1  
0.5  
0.18  
-0.05  
0.125±0.05  
0°  
10°  
0.5±0.2  
1
Unit: mm  
Fig.1.3.1 QFP12-48 Package Diagram  
Table 1.3.1 QFP12-48 Pin Assignment  
Pin #  
1
2
3
4
5
6
7
8
Pin #  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Pin #  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Pin #  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Pin name  
FB3M  
SW3OL  
VSS3  
VCC1  
VIN1  
SW1OH  
FB1M  
SW1OL  
VSS1  
Pin name  
FB4  
VCC4  
VIN  
XRST  
XTEST0  
XSDWN  
AD_EN  
TCLK(N.C.)  
CLKIN  
VSS  
Pin name  
VD1  
Pin name  
XPOR(N.C.)  
VBAK  
P02  
P03  
VCC2  
VIN2  
SW2OH  
FB2M  
SW2OL  
VSS2  
VCC3  
VIN3  
BATT_VCC  
PWR_EN  
WUP  
nRESET  
nBAT_FLT  
nVCC_FLT  
P00  
9
10  
11  
12  
P01  
SCL  
SDA  
SSCAP3  
SSCAP2  
SSCAP1  
TIREF(N.C.)  
VREF  
SW3OH  
4
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
[QFN7-48]  
7
6.75  
+0.18  
0.42  
0.18  
13  
24  
12  
25  
1
36  
48  
37  
0.5  
Fig.1.3.2 QFN7-48 Package Diagram  
Table 1.3.2 QFN7-48 Pin Assignment  
Pin #  
1
Pin #  
13  
Pin #  
25  
Pin #  
37 XPOR(N.C.)  
Pin name  
FB3M  
Pin name  
FB4  
Pin name  
VD1  
Pin name  
2
3
4
5
6
7
8
9
SW3OL  
VSS3  
VCC1  
VIN1  
SW1OH  
FB1M  
SW1OL  
VSS1  
SSCAP3  
SSCAP2  
SSCAP1  
14  
15  
16  
17  
18  
19  
VCC4  
VIN  
XRST  
XTEST0  
XSDWN  
AD_EN  
26  
27  
28  
29  
30  
31  
VBAK  
38  
39  
40  
41  
42  
P02  
P03  
VCC2  
BATT_VCC  
PWR_EN  
WUP  
nRESET  
nBAT_FLT 43  
VIN2  
SW2OH  
FB2M  
SW2OL  
VSS2  
VCC3  
VIN3  
20 TCLK(N.C.) 32  
21  
22  
23 TIREF(N.C.) 35  
24  
nVCC_FLT  
P00  
44  
45  
46  
47  
48  
CLKIN  
VSS  
33  
34  
10  
11  
12  
P01  
SCL  
SDA  
VREF  
36  
SW3OH  
Rev.1.4  
EPSON  
5
S1F81100 Technical Manual  
1.4 Pin Descriptions  
Table 1.4.1(a) Pin Descriptions  
[Power supply/controlling pins]  
Pin name  
VIN  
I/O  
Level  
Function  
Voltage (+) input pin  
Voltage (-) input pin  
VSS  
Interface power supply input (Short-circuited to VCC2 outside  
IC)  
VBAK  
VD1  
VREF  
Internal constant voltage output pin  
Reference voltage output pin  
Interface power supply (Short-circuited to VCC2 outside IC)  
Output voltage detection result output pin  
Input voltage detection result output pin  
System reset signal output pin  
Sleep state setting input pin  
Sleep state flag output pin  
BATT_VCC  
nVCC_FLT  
nBAT_FLT  
nRESET  
PWR_EN  
WUP  
O
O
O
I
O
I
BATT_VCC  
BATT_VCC  
BATT_VCC  
BATT_VCC  
BATT_VCC  
VCC2  
CLKIN  
External clock input pin  
XRST  
I
VIN  
Resetting input pin  
XTEST0  
XSDWN  
P00 to 01  
P02 to 03  
SCL  
I
I
VIN  
Testing input pin  
Ultra-power-saving mode setting input pin  
General-purpose I/O pin  
VIN  
I/O  
I/O  
I
I/O  
I
VCC2  
VIN  
General-purpose I/O pin  
VCC2  
I2C clock input pin  
SDA  
AD_EN  
VCC2  
I2C data I/O pin  
VIN  
I2C Address enabling input pin  
[CH-1 Related Pins]  
Pin name  
VIN1  
I/O  
Function  
Voltage (+) input pin  
SW1OH  
SW1OL  
SSCAP1  
FB1M  
VCC1  
VSS1  
O
O
P-ch power MOS transistor drive signal output pin  
N-ch power MOS transistor drive signal output pin  
CH-1 soft start setting pin  
Output current feedback input pin  
Output voltage feedback input pin [sub-regulator output pin]  
Voltage (-) input pin  
I
I
6
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Table 1.4.1(b) Pin Description  
[CH-2 Related Pins]  
Function  
Pin name  
VIN2  
I/O  
Voltage (+) input pin  
SW2OH  
SW2OL  
SSCAP2  
FB2M  
VCC2  
VSS2  
O
O
P-ch power MOS transistor drive signal output pin  
N-ch power MOS transistor drive signal output pin  
CH-2 soft start setting pin  
Output current feedback input pin  
Output voltage feedback input pin [sub-regulator output pin]  
Voltage (-) input pin  
I
I
[CH-3 Related Pins]  
Function  
Voltage (+) input pin  
Pin name  
VIN3  
I/O  
SW3OH  
SW3OL  
SSCAP3  
FB3M  
VCC3  
VSS3  
O
O
P-ch power MOS transistor drive signal output pin  
N-ch power MOS transistor drive signal output pin  
CH-3 soft start setting pin  
Output current feedback input pin  
Output voltage feedback input pin [sub-regulator output pin]  
Voltage (-) input pin  
I
I
[CH-4 Related Pins]  
Function  
VCC4 voltage output pin  
Feedback input pin  
Pin name  
VCC4  
I/O  
O
I
FB4  
Notes: The following pins are dedicated to test use. Always indicate as N.C. when using.  
Operation without the indication of N.C. cannot be guaranteed.  
XPOR, TCLK, TIREF  
Rev.1.4  
EPSON  
7
S1F81100 Technical Manual  
1.5 Mask Options  
This section describes the mask options. These can be combined freely according to the user’s needs.  
Refer to the following chapter for further information on each mask options.  
[No.1] CH-2(VCC2) Output voltage  
1. 3.3V  
2. 2.5V  
3. 1.8V (under development)  
[No.2] CH-3(VCC3) Output voltage  
1. 3.3V  
2. 2.5V  
3. 1.8V (under development)  
[No.3] Sleep mode one-touch recovery function  
1. Disable  
2. Enable  
[No.4] Sleep mode Ch-2 main regulator operation  
1. ON  
2. OFF  
[No.5] Sleep mode Ch-3 main regulator operation  
1. ON  
2. OFF  
[No.6] Deep Sleep mode Ch-2 sub-regulator operation  
1. Enable (CH-2 sub-regulator, ON in Deep Sleep mode)  
2. Disable (CH-2 sub-regulator, OFF in Deep Sleep mode) *1  
[No.7] CH-1(VCC1) Sub-regulator function  
1. Disable  
2. Enable  
is for standard specification.  
*1 In the Deep Sleep mode, CH-2 output stops and VCC2 potential lowers down to the GND level. For this  
reason, once the unit enters the Deep Sleep mode, it can be restored from this mode only by LOW level  
input via the XRST pin. When power is externally supplied to VCC2 (CH-2) in the Deep Sleep mode,  
input via PWR_EN is also accepted.  
8
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
2. INPUT VOLTAGE AND INITIAL RESET  
This chapter describes the input voltage specifications and the initial reset specifications of the S1F81100.  
2.1 Input Voltage  
The S1F81100 requires power supply for its operation and internally generates internal constant voltage VD1  
and internal reference voltage VREF from its main battery. The external interface I/O voltage BATT_VCC and  
VBAK pins are required to be short-circuited to the VCC2 outside the S1F81100.  
This section describes the detailed specifications for each.  
V
V
V
V
IN  
V
D1  
IN1  
IN2  
IN3  
Regulator  
Other  
Peripheral  
Circuits  
(oscillation, I2C  
digital circuit  
etc.)  
VD1  
Main  
Battery  
CH-1  
CH-2  
CH-3  
CH-4  
VSS1  
VSS2  
VSS3  
VSS  
VCC1  
VCC2  
VCC3  
VCC4  
BATT_VCC  
VBAK  
Fig.2.1.1 Power Supply System Block Diagram  
2.1.1 Main Battery <VIN>  
The input voltage range of the S1F81100’s main battery is as follows:  
3.3 to 5.5V  
2.8 to 5.5V  
If at least either VCC2 or VCC3 is 3.3 V.  
If both VCC2 and VCC3 are 2.5V or lower.  
The S1F81100 is activated if a single power supply with the voltage of the above range is provided between VIN  
and VSS and generates 4-channel output voltage as well as constant voltage VD1 for the internal circuits.  
2.1.2 Sub-Battery <VBAK>  
Short-circuit the VBAK pin of the S1F81100 to the VCC2 outside the S1F81100.  
2.1.3 Constant Voltage for Internal Circuits <VD1>  
The S1F81100 generates constant voltage VD1 for the internal circuits from its main battery, eliminating the  
need for external input of such voltage. To stabilize the voltage, connect a 0.1µF external capacitor to the VD1  
pin.  
Notes: Driving an external load with internal constant voltage VD1 is not allowed.  
Rev.1.4  
EPSON  
9
S1F81100 Technical Manual  
2.1.4 Reference Voltage for Internal Circuits <VREF>  
The S1F81100 generates reference voltage VREF for the internal circuits from its main battery. Voltage VREF is  
used as the reference voltage for operations of the internal circuits such as the PWM controller, and is generated  
in the S1F81100. This voltage does not have to be input externally.  
To stabilize the output voltage, connect a 0.1µF external capacitor to the VREF pin.  
While the LOW level is input to the XRST pin, VREF voltage is at the same potential as VIN.  
Notes: Driving an external load with internal reference voltage VREF is not allowed.  
2.1.5 Voltage for External Interface Pins <BATT_VCC>  
The S1F81100 is equipped with the following external interface pins (which are provided for interface to the  
external processor):  
nVCC_FLT  
nBAT_FLT  
PWR_EN  
WUP  
(Output) Output voltage level detecting pin  
(Output) Input voltage level detecting pin  
(Input) Sleep state setting pin  
(Output) Sleep state output pin  
nRESET  
(Output) Reset output pin  
Short-circuit the power BATT_VCC for driving the above interface pins to the VCC2 outside the S1F81100.  
Fig.2.1.5.2 shows the external connection diagram.  
10  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
CH-2  
Regulator  
V
CC2  
VBAK  
BATT_VCC  
nVCC_FLT  
nBAT_FLT  
PWR_EN  
WUP  
S1F81100  
nRESET  
Fig.2.1.5.1 The Internal Configuration of BATT_VCC Pin  
CH-2  
Regulator  
V
CC2  
BAK  
VIN  
V
VIN1  
VIN2  
VIN3  
BATT_VCC  
nVCC_FLT  
nBAT_FLT  
PWR_EN  
WUP  
V
SS  
VSS1  
VSS2  
VSS3  
S1F81100  
nRESET  
Fig.2.1.5.2 External Connection Diagram of BATT_VCC and VBAK Pins  
Rev.1.4  
EPSON  
11  
S1F81100 Technical Manual  
2.2 Initial Reset  
The S1F81100 requires initial reset to initialize its circuits. The following is the initial reset factor:  
(1) External initial reset via the XRST pin.  
Initial reset initializes the internal circuit of the IC. To initialize the circuits, be sure to perform one of these  
actions.  
During the initial reset period, the LOW level signal is output from the nRESET pin.  
Fig.2.2.1 shows the initial reset circuit diagram.  
XRST  
nRESET  
Counter  
Circuit  
Power Good  
Circuit  
Input Voltage  
Detection  
Circuit  
Fig.2.2.1 Initial Reset Circuit Diagram  
2.2.1 Reset Input Pin <XRST>  
Initial reset can be performed by externally setting the reset (XRST) input pin to LOW level (VSS). After this,  
the internal circuits stay in the initial reset state until outputs of all the four channels are activated.  
Keep the XRST pin at LOW level for a period of 50µs or longer so that initial resetting can be performed.  
Notes: While the LOW level is input to the XRST pin, VREF voltage must be set to the same voltage as VIN.  
2.2.2 Reset Output Pin <nRESET>  
The S1F81100 can output a reset signal to external devices via the nRESET pin.  
The nRESET signal starts outputting the LOW level signal as soon as the S1F81100 unit has entered the initial  
reset state, and keeps the LOW level (initial reset state) until all output voltages of the four channels are  
activated. When all the output voltages are activated and the input level of the XRST pin attains the HIGH  
level (VIN level), the output level of the reset output signal nRESET becomes HIGH (BATT_VCC, VCC2 level).  
After the input voltage is turned ON, the nRESET signal maintains the LOW level for around 60 ms after all 4  
channels are activated.  
2.3 Test Pin <XTEST0>  
This pin is used for testing ICs before shipping. In normal operation, XTEST0 should be connected to VIN.  
12  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3. REGULATOR AND OPERATION  
The S1F81100 has a regulator with 4 channels (CH-1, CH-2, CH-3 and CH-4) optimally configured for Intel’s  
PXA250/210 processors.  
CH-1, CH-2 and CH-3 are mounted with PWM controller as a main regulator. PWM controllers can output  
stable voltage by configuring a switching regulator connecting external power MOS transistor and coil, etc.  
Moreover, each is equipped with a series regulator as a sub (backup) regulator. The current consumption of the  
system is controllable based on the load condition by simply setting the sub-regulator to operate when the load  
is light.  
CH-4 is a series regulator and can output voltage independently.  
This chapter provides detailed descriptions of each regulator.  
CH-1 (VCC1)  
CORE power (VCC) for PXA250/210  
Select 1 value from 1.5/1.4/1.3/1.2/1.1/1.0/0.9/0.8V: I2C controller  
Main regulator: PWM controller  
Sleep mode: OFF, Operating load: 500mA (Max.), Maximum conversion efficiency: about 80%.  
Sub-regulator: series regulator [Select available/unavailable in mask options]  
CH-2 (VCC2)  
Peripheral power (VCCQ) for PXA250/210  
3.3/2.5/1.8V: Select 1 value from mask options.  
Main regulator: PWM controller  
Deep Sleep mode: OFF, Operating load: 1A (Max.), Maximum conversion efficiency: about 90%.  
Sub-regulator: series regulator  
CH-3 (VCC3)  
Memory power (VCCN) for PXA250/210  
3.3/2.5/1.8V: Select 1 value from mask options.  
Main regulator: PWM controller  
Deep Sleep mode: OFF, Operating load: 1A (Max.), Maximum conversion efficiency: about 90%.  
Sub-regulator: series regulator  
CH-4 (VCC4)  
PLL power (PLL_VCC) for PXA250/210  
1.5/1.4/1.3/1.2/1.1/1.0/0.9/0.8V (Output value same with the VCC1 set value)  
Series regulator  
Sleep mode: OFF, Operating load: 20mA (Max.) (@VCC3 = 3.3V)  
5mA (Max.) (@VCC3 = 2.5V)  
Rev.1.4  
EPSON  
13  
S1F81100 Technical Manual  
3.1 CH-1 (VCC1) Output Voltage  
This section describes CH-1, a variable output type PWM controller. Fig.3.1.1 shows CH-1’s internal and  
external configurations.  
S1F81100  
V
CC1  
IN1  
Power  
Good  
Mask Option  
V
Sub-regulator  
(backup)  
TP1  
SW1OH  
-
-
+
CL1  
Error  
AMP  
CMP.  
FB1M  
SW1OL  
PWM  
Waveform  
Drive Circuit  
TN1  
SD1  
CC1  
VSS1  
PG1  
POFF1  
LMD1  
Power  
Manager  
V
S1n  
Output  
Voltage  
Control  
Circuit  
SSCAP1  
Soft Start  
CS1  
Fig.3.1.1 CH-1 Regulator Configuration  
3.1.1 Main Regulator (PWM Controller)  
The main regulator of CH-1 is a variable output type PWM controller. External components can be connected  
to it to form a switching regulator to allow constant voltage to be generated and output from input voltage VIN  
(VIN1) and internal constant voltage VD1.  
[Configuration of CH-1 Switching Regulator]  
Synchronized rectification type switching regulator.  
Clock  
Approximately 1 MHz (when the internal oscillator circuit is used)  
Required external components: P-ch power MOS transistor  
TP1  
TN1  
SD1  
CL1  
N-ch power MOS transistor  
Schottky diode  
Coil: 10µH  
Stabilizing capacitor (100µF) CC1  
Capacitor for soft start CS1  
The output value is variable; it can be externally set via the output voltage value selected with one of the VS17  
to 10 registers of the I2C controller.  
See section 5.2 for details of the VS17 to 10 register.  
3.1.2 Sub-Regulator (Backup Regulator)  
CH-1 can mount series regulator as a sub-regulator from mask options.  
Output value is the same with the main regulator set value.  
14  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Sub-regulator of CH-1 is generated from VCC3 voltage. Therefore, sub-regulator of CH-1 is not activated when  
CH-3 is in power OFF state.  
3.1.3 Light-Load Mode Function  
This function is enabled only when use of sub-regulator of CH-1 is selected from mask options.  
In normal operation (normal mode), the main regulator and the sub-regulator are both operating. During  
operation of the application, some conditions do not require a large load current. In this case, the mode can be  
switched to [Light-load mode].  
In light-load mode, the main regulator is OFF and only the sub-regulator is ON. Therefore, the current  
consumed by the main regulator can be restrained, effectively saving power for the application.  
Switching between the normal and light-load mode is optional in the application. The switching methods of the  
2 modes are as follows:  
[Switching from normal to light-load mode]  
To switch from normal to light-load mode, set the value of the LMD1 register to “1” via the I2C controller.  
Consequently, the main regulator of CH-1 is turned OFF and only the sub-regulator operates. Only the  
voltage of the sub-regulator is outputted.  
[Switching from light-load to normal mode]  
To switch from light-load to normal mode, set the value of the LMD1 register to “0” via the I2C controller.  
Fig.3.1.3.1 shows the normal and light-load states and the switching method.  
Notes: The sub-regulator is not activate when CH-3 is in power OFF state since the sub-regulator of CH-1 is  
generated from VCC3.  
[CH-1]  
Normal Mode  
Light-load Mode  
From Normal to Light-load  
Set LMD1 register to 1 via  
I2C.  
Main Regulator  
Main Regulator  
ON  
OFF  
Sub-Regulator  
Sub-Regulator  
From Light-load to Normal  
Set LMD1 register to 0 via  
I2C.  
ON  
ON  
Fig.3.1.3.1 Switching between normal/light-load mode in CH-1  
Rev.1.4  
EPSON  
15  
S1F81100 Technical Manual  
3.1.4 Soft Start Function  
With a capacitor connected to the SSCAP1 pin, CH-1 provides a soft start function that adjusts the rise time of  
the power when it is turned on. After a lapse of soft start time, voltage output of CH-1 starts Fig.3.1.4.1  
shows the relation between the soft start time and the soft start capacitor capacity (CS1). When voltage output  
of CH-1 is used as CORE power supply for the PXA250/210 (XScaleTM) processor, the CORE voltage must rise  
to 10 ms, Max. after the PWR_EN input attains the HIGH level. For this reason, 0.01µF is recommended as  
the Max. CS1.  
Soft Start Time v. s. CSn (Typ.)  
CSn [µF]  
Fig.3.1.4.1 The Relation between the Soft Start Time and the Soft Start Capacitor Capacity (CS1).  
3.1.5 Output Voltage Setting Function  
Output voltage of CH-1 can be selected from eight values via the I2C controller externally. The optimal output  
voltage can be set according to the operations of the driving device while the application is operating.  
See Table.3.1.5.1 for voltages that can be set.  
After the input voltage rises and after the initial reset signal is input from the XRST pin, 1.5V is applied.  
There are 2 methods of changing the voltage value:  
(1) Consecutive transition: Changes the voltage value while in normal mode via I2C.  
(2) Step transition: Changes the voltage value after transition to Sleep mode and then canceling it.  
The following describes the respective operation.  
Consecutive transition  
S1F81100 can change voltage value by consecutive transition by following the procedures below.  
1 Rewrite the VS17 to 10 register value via the I2C controller and set a new voltage value.  
2 Write “0” in the XC1TRG register via the I2C controller.  
3 The VS17 to 10 register value is loaded to CH-1 regulator at this point and CH-1 output voltage changes.  
When conducting consecutive transition, CH-1 output voltage value is controllable only via I2C controller.  
See section 5.2 for details of the VS17 to 10 and XC1TRG registers.  
Step transition  
S1F81100 can change voltage value by step transition by following the procedures below:  
1 Rewrite the VS17 to 10 register value via the I2C controller and set a new voltage value.  
2 The PWR_EN pin is externally controlled to the LOW level to set the S1F81100 unit to Sleep state.  
3 After the unit enters the Sleep state, the S1F81100 unit sets the WUP pin output to the HIGH level.  
4 After the WUP pin is externally detected, the PWR_EN pin is set back to the HIGH level, and the S1F81100  
is instructed to cancel the Sleep state.  
5 The S1F81100 starts recovering from the Sleep state.  
6 The WUP signal attains the LOW level.  
7 When returning to the normal state, VCC1 attains the new voltage value.  
If no new voltage value is set in step 1 above (that is, if the specified voltage is the same as the previous value),  
16  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
the WUP signal level does not attain the HIGH level in step 3 above.  
See section 5.2 for details of the VS17 to 10 register.  
Notes: When transitioning to Sleep state without changing the voltage value (without rewriting the VS17 to 10  
register value), setting the PWR_EN pin to LOW does not change the output level of the WUP pin.  
The example of controlling the CH-1 output voltage by step transition is shown below.  
Connect with a processor mounted with master function of the I2C controller and control the output voltage by  
software control.  
Fig.3.1.5.1 shows the example of connection with the Intel’s mobile processor PXA250/210. Only the signals  
related to changing of CH-1 output voltage is shown in the diagram.  
Fig.3.1.5.2 shows a timing chart illustrating the CH-1 output voltage control.  
Table.3.1.5.2 describes the procedures of software control from the processor side. By setting and conducting  
software control on the controller side following the procedure in the table, VCC1 voltage output value of  
S1F81100 is changed.  
Table 3.1.5.1 VS17 to 10 Set Value and VCC1 Output Voltage Corresponding Table  
VS17 to 10  
VCC1  
VS17 to 10  
VCC1  
11111*** B  
11110*** B  
11101*** B  
11100*** B  
11011*** B  
11010*** B  
11001*** B  
11000*** B  
10111*** B  
10110*** B  
10101*** B  
10100*** B  
10011*** B  
10010*** B  
10001*** B  
10000*** B  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
1.5V  
01111*** B  
01110*** B  
01101*** B  
01100*** B  
01011*** B  
01010*** B  
01001*** B  
01000*** B  
00111*** B  
00110*** B  
00101*** B  
00100*** B  
00011*** B  
00010*** B  
00001*** B  
00000*** B  
1.2V  
1.2V  
1.1V  
1.0V  
0.9V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
1.5V  
1.4V  
1.3V  
PXA250/210  
S1F81100  
V
CC  
VCC1  
SDA  
SCL  
SDA  
SCL  
PWR_EN  
GP[n]  
PWR_EN  
WUP  
(Note: GP[n] indicates general-purpose input port.)  
Fig.3.1.5.1 Connection example and PXA250/210 (only parts related to VCC1 control)  
Rev.1.4  
EPSON  
17  
S1F81100 Technical Manual  
VS17 to 10  
A
B
[Digital]  
PWR_EN  
[Digital]  
WUP  
[Digital]  
less than 1  
µs  
less than 1µs  
nVCC_FLT  
[Digital]  
less than 1 s  
µ
less than 1 s  
µ
A
VCC1  
B
The values in the chart are all typical values for reference.  
Fig.3.1.5.2 CH-1 Output Voltage Control Timing on Step Transition  
18  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Table 3.1.5.2 Software Control Procedure for Changing VCC1 Output Voltage  
Processor  
ex. PXA250/210  
Power IC  
S1F81100  
Status  
Operation  
Operation  
(software/hardware control)  
Normal Operation State  
Normal  
Operation  
PWR_EN Pin Output: HIGH  
Level  
Voltage Output VCC1/VCC4 Output turned ON.  
WUP Pin Output: LOW level  
[Setting]  
Enable input interruption of  
GP[n].  
c I2C Communication  
[Software Control]  
I2C  
Rewrites the VS17 to VS10  
register of the power supply IC  
via the I2C controller and sets  
the new voltage value.  
Command  
d Start transition to Sleep Transition to Starts transition to Sleep State.  
PWR_EN  
Signal  
(PWR_EN Pin Control) Sleep  
[Software Control]  
L
Sets the output of PWR_EN pin  
to LOW Level to transit to Sleep  
state.  
e CORE Voltage OFF  
Sleep  
Voltage Output VCC1/VCC4 Output OFF.  
X
Sets the output of WUP pin to HIGH  
level at the same time.  
WUP  
Signal  
H
f Sleep State Cancellation Sleep  
Receives interruption signal at  
PWR_EN  
Signal  
Start  
Cancellation GP[n] pin and starts cancellation  
of Sleep state.  
H
[Software (Hardware) Control]  
Sets the output of PWR_EN pin  
to HIGH level to cancel Sleep.  
g CORE Voltage Output  
Normal  
Operation  
Voltage Output VCC1/VCC4 Output ON.  
Outputs the newly set voltage value  
ON  
from this point.  
WUP  
Signal  
Sets output of the WUP pin to LOW  
level at the same time.  
L
Normal Operation State  
Normal  
Operation  
PWR_EN Pin Output: HIGH  
Level  
Voltage Output VCC1/VCC4 Output ON.  
WUP Pin Output: LOW Level  
3.1.6 Power OFF Function  
The voltage output of CH-1 can be turned off (powered off) via the I2C controller.  
Writing “1” in the POFF1 register assigned to the I2C controller’s register causes the CH-1 output to be turned  
off (powered off) and pulled down internally.  
The POFF1 register value attains “0” again through one of the following steps, and then voltage output is turned  
ON (powered on).  
(1) Write “0” in the POFF1 register via the I2C controller.  
(2) Perform initial reset.  
(3) Turn the input level of the PWR_EN pin to LOW once to cause the Sleep state, then assign the HIGH level  
again to the PWR_EN pin to allow recovery from the Sleep state.  
See section 5.2 for details of the POFF1 register.  
Rev.1.4  
EPSON  
19  
S1F81100 Technical Manual  
3.1.7 Power Good Function  
CH-1 has a Power Good function. The Power Good function refers to a function that monitors the output  
voltage value inside the S1F81100 unit and determines if it is normal or not. If a state approximately 10% or  
more below the typical output voltage exceeds approximately 10ms, it is determined to be “abnormal output.”  
The result of the Power Good judgement can be read via the PG1 plug (read-only) of the I2C controller.  
Moreover, it can be monitored by output level of nVCC_FLT pin.  
The Power Good function can be deactivated by writing “0” in the VFLT register on the I2C controller.  
See section 5.2 for details of the PG1 flag and VFLT registers.  
See section 6.2 for details of the nVCC_FLT pin.  
3.1.8 CH-1 (VCC1) Mask Options of Output Voltage  
The following items are provided as mask options related to CH-1 output voltage.  
[No.7] CH-1 Sub-regulator function  
1. Disable  
2. Enable  
The mask options can be used to enable/disable the CH-1 sub-regulator function.  
During operation, if a state which does not require a large load current for CH-1 exists, select “Enable” and if  
not, select “Disable”  
3.1.9 CH-1 (VCC1) Output Voltage Proof Function  
The CH-1 output is provided with a built-in output proof function. When output voltage is continuously  
reduced by 10% of the set output voltage approx. 110ms or more, the CH-1 switching regulator circuit operation  
stops. The output voltage reduction detection circuit serves as the CH-1 power good detection circuit as well.  
Output proof detection time: 110 ± 20 [ms]  
Restore from the short-circuit proof mode is possible by input via the RESET pin (XRST).  
20  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3.2 CH-2 (VCC2) Output Voltage  
This section describes CH-2, a PWM controller. Fig.3.2.1 shows CH-2’s internal and external configurations.  
S1F81100  
V
V
CC2  
IN2  
Power  
Good  
Sub-  
regulator(backup)  
TP2  
SW2OH  
-
-
+
CL2  
Error  
AMP  
CMP.  
FB2M  
SW2OL  
PWM  
Waveform  
Drive Circuit  
TN2  
SD2  
CC2  
V
SS2  
PG2  
POFF2  
LMD2  
Power  
Manager  
SSCAP2  
Soft Start  
CS2  
Fig.3.2.1 CH-2 Regulator Configuration  
3.2.1 Main Regulator (PWM Controller)  
The main regulator of CH-2 is a PWM controller. External components can be connected to it to form a  
switching regulator to allow a constant voltage to be generated and output from input voltage VIN (VIN2) and  
internal constant voltage VD1.  
[Configuration of CH-2 Switching Regulator]  
Synchronized rectification type switching regulator.  
Clock  
Approximately 1 MHz (when the internal oscillator circuit is used)  
Required external components: P-ch power MOS transistor  
TP2  
TN2  
SD2  
CL2  
N-ch power MOS transistor  
Schottky diode  
Coil: 10µH  
Stabilizing capacitor (100µF) CC2  
Capacitor for soft start  
CS2  
The output value is fixed to that set from the mask options.  
3.2.2 Sub-Regulator (Backup Regulator)  
CH-2 has a series regulator which serves as its sub-regulator.  
For output value, a value approximately 0.1V lower than the value set of the main regulator is outputted.  
Rev.1.4  
EPSON  
21  
S1F81100 Technical Manual  
3.2.3 Light-Load Mode Function  
In normal operation (normal mode), the main regulator and the sub-regulator are both operating. During  
operation of the application, some conditions do not require a large load current. In this case, the mode can be  
switched to [Light-load mode].  
In light-load mode, the main regulator is OFF and only the sub-regulator is on. Therefore, the current consumed  
by the main regulator can be restrained, effectively saving power for the application.  
Switching between the normal and light-load mode is optional in the application. The switching methods of the  
2 modes are as follows:  
[Switching from normal to light-load mode]  
To switch from the normal to the light-load mode, set the value of the LMD2 register to “1” via the I2C  
controller. Consequently, the main regulator of the CH-2 is turned OFF and only the sub-regulator operates.  
Only the voltage of the sub-regulator is outputted.  
[Switching from light-load to normal mode]  
There are 2 methods to switch from light-load to normal mode.  
(1) Set LMD2 register to “0” via I2C controller.  
(2) Use the automatic switching function by overload detection of the sub-regulator.  
The above automatic switching function is a function which automatically turns on the main regulator and  
switches to the normal mode when overload was detected in the sub-regulator caused by the increase of the  
load current (exceeding approximately 30mA) during the light -load mode.  
Fig.3.2.3.1 shows the normal and light-load modes and the switching method.  
Notes: For the output voltage value of the sub-regulator, a voltage about 0.1 V lower than the value selected  
from the mask options is output.  
[CH-2]  
Normal Mode  
Light-load Mode  
From Normal to Light-load  
Set LMD2 register to 1 via  
I2C.  
Main Regulator  
Main Regulator  
ON  
OFF  
Sub-Regulator  
Sub-Regulator  
From Light-load to Normal  
(1) Set LMD2 register to 0  
via I2C.  
ON  
ON  
(2) Use the auto-switching  
function by over load  
detection.  
Fig.3.2.3.1 Switching between Normal/Light-load Mode in CH-2  
22  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3.2.4 Soft Start Function  
With a capacitor connected to the SSCAP2 pin, CH-2 provides a soft start function that adjusts the rise time of  
the power when it is turned on. This function effectively works to prevent a system malfunction that may occur  
due to rush current when the power is activated. Fig.3.2.4.1 shows the relation between the soft start time and  
the soft start capacitor capacity (CS2).  
Soft Start Time v. s. CSn (Typ.)  
CSn [µF]  
Fig.3.2.4.1 The Relation between the Soft Start Time and the Soft Start Capacitor Capacity (CS2).  
3.2.5 Short-Circuit Proof Function  
The S1F81100 is provided with a built-in output proof function. When output voltage is continuously reduced  
below the detected value approx. 110ms or more, the CH-2 switching regulator circuit operation stops.  
Restore from the short-circuit proof mode is possible by input via the reset pin (XRST). For further  
information about it, see 3.2.6.  
Output reduction detection CH-2 output set value  
Output reduction detected value  
2.3V ± 0.2V  
3.3V  
2.5V  
1.9V ± 0.2V  
Output proof detection time 110 ± 20 [ms]  
Notes: Take short-circuit proof countermeasures other than above to increase the security of the application.  
3.2.6 Power OFF Function  
The voltage output of CH-2 can be turned off (powered off) via the I2C controller.  
Writing “1” in the POFF2 register assigned to the I2C controller’s register causes the CH-2 output to be turned  
off (powered off) and pulled down internally.  
Moreover, as mentioned in section 3.2.5, when short-circuit proof function was activated and CH-2 voltage  
output was turned off, this register is automatically rewritten to “1” in the IC.  
The POFF2 register value attains “0” again through one of the following steps, and then voltage output is turned  
ON.  
(1) Perform initial reset.  
See section 5.2 for details of the POFF2 register.  
Notes: When CH-2 voltage output is turned OFF, I2C controller cannot be used.  
Rev.1.4  
EPSON  
23  
S1F81100 Technical Manual  
3.2.7 Power Good Function  
CH-2 has a Power Good function. The Power Good function refers to a function that monitors the output  
voltage value inside the S1F81100 unit and determines if it is normal or not. If a state approximately 10% or  
more below the typical output voltage exceeds approximately 10ms, it is determined to be “abnormal output.”  
The result of the Power Good judgement can be read via the PG2 flag (read-only) of the I2C controller.  
Moreover, it can be monitored by output level of nVCC_FLT pin.  
The Power Good function can be deactivated by writing “0” in the VFLT register on the I2C controller.  
See section 5.2 for details of the PG2 flag and VFLT registers.  
See section 6.2 for details of the nVCC_FLT pin.  
3.2.8 CH-2 (VCC2) Mask Options Concerning Output Voltage  
The following items are provided as mask options related to CH-2 output voltage.  
[No.1] CH-2(VCC2) Output voltage  
1. 3.3V  
2. 2.5V  
3. 1.8V (under development)  
One CH-2 output voltage value is selectable from 3.3V, 2.5V and 1.8V from mask options.  
[No.4] Sleep mode CH-2 main regulator operation  
1. ON  
2. OFF  
The ON/OFF operation of CH-2 main regulator in Sleep mode is selectable from mask options.  
Selecting “Operation ON” if a large load current is required for CH-2 during Sleep mode and “Operation OFF”  
if a large load current is not required and restraining power consumption during Sleep mode as much as possible  
increases operating efficiency.  
When the LMD2 register is previously set at “1,” the main regulator in Sleep mode will be in “Operation OFF”  
state regardless of this mask option.  
See section 5.2 for details of the LMD2 register.  
[No.6] Deep Sleep mode CH-2 sub-regulator operation  
1. Enable (CH-2 sub-regulator, ON in Deep Sleep mode)  
2. Disable (CH-2 sub-regulator, OFF in Deep Sleep mode)  
The ON/OFF operation of CH-2 sub-regulator in the Deep Sleep mode is selectable from mask options.  
Selecting “OFF” stops CH-2 output and reduces the VCC2 potential down to the GND level. For this reason,  
once the unit enters the Deep Sleep mode, it can be restored from this mode only by LOW level input via the  
XRST pin. When power is externally supplied to VCC2 (CH-2) in the Deep Sleep mode, input via PWR_EN is  
also accepted.  
24  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3.3 CH-3 (VCC3) Output Voltage  
This section describes CH-3, a PWM controller. Fig.3.3.1 shows CH-3’s internal and external configurations.  
S1F81100  
V
CC3  
IN3  
Power  
Good  
V
Sub-regulator  
(backup)  
TP3  
SW3OH  
-
-
+
CL3  
Error  
AMP  
CMP.  
FB3M  
SW3OL  
PWM  
Waveform  
Drive Circuit  
TN3  
SD3  
CC3  
VSS3  
PG3  
POFF3  
LMD3  
Power  
Manager  
SSCAP3  
Soft Start  
CS3  
Fig.3.3.1 CH-3 Regulator Configuration  
3.3.1 Main Regulator (PWM Controller)  
The main regulator of CH-3 is a PWM controller. External components can be connected to it to form a  
switching regulator to allow a constant voltage to be generated and output from input voltage VIN (VIN3) and  
internal constant voltage VD1.  
[Configuration of CH-3 Switching Regulator]  
Synchronized rectification type switching regulator.  
Clock  
Approximately 1 MHz (when the internal oscillator circuit is used)  
Required external components: P-ch power MOS transistor  
TP3  
TN3  
SD3  
CL3  
N-ch power MOS transistor  
Schottky diode  
Coil: 10µH  
Stabilizing capacitor (100µF) CC3  
Capacitor for soft start  
CS3  
The output value is fixed to that set from the mask options.  
3.3.2 Sub-Regulator (Backup Regulator)  
CH-3 has a series regulator which serves as its sub-regulator.  
For output value, a value approximately 0.1V lower than the value set of the main regulator is outputted.  
Rev.1.4  
EPSON  
25  
S1F81100 Technical Manual  
3.3.3 Light-Load Mode Function  
In normal operation (normal mode), the main regulator and the sub-regulator are both operating. During  
operation of the application, some conditions do not require a large load current. In this case, the mode can be  
switched to [Light-load mode].  
In light-load mode, the main regulator is OFF and only the sub-regulator is on. Therefore, the current consumed  
by the main regulator can be restrained, effectively saving power for the application.  
Switching between the normal and light-load mode is optional in the application. The switching methods of the  
2 modes are as follows:  
[Switching from normal to light-load mode]  
To switch from the ordinary to the light-load mode, set the value of the LMD3 register to “1” via the I2C  
controller. Consequently, the main regulator of the CH-3 is turned OFF and only the sub-regulator operates.  
Only the voltage of the sub-regulator is outputted.  
[Switching from light-load to normal mode]  
There are 2 methods to switch from light-load to normal mode.  
(1) Set LMD3 register to “0” via I2C controller.  
(2) Use the automatic switching function by overload detection of the sub-regulator.  
The above automatic switching function is a function which automatically turns on the main regulator and  
switches to the normal mode when overload was detected in the sub-regulator caused by the increase of the  
load current (exceeding approximately 30mA) during the light-load mode.  
Fig.3.3.3.1 shows the normal and light-load modes and the switching method.  
Notes: For the output voltage value of the sub-regulator, a voltage about 0.1V lower than the value selected  
from the mask options is output.  
[CH-3]  
Normal Mode  
Light-load Mode  
From Normal to Light-load  
Set LMD3 register to 1 via  
I2C.  
Main Regulator  
Main Regulator  
ON  
OFF  
Sub-Regulator  
Sub-Regulator  
From Light-load to Normal  
(1) Set LMD3 register to 0  
via I2C.  
ON  
ON  
(2) Use the auto-switching  
function by over load  
detection.  
Fig.3.3.3.1 Switching between normal/light-load mode in CH-3  
26  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3.3.4 Soft Start Function  
With a capacitor connected to the SSCAP3 pin, CH-3 provides a soft start function that adjusts the rise time of  
the power when it is turned on. This function effectively works to prevent a system malfunction that may occur  
due to rush current when the power is activated. Fig.3.3.4.1 shows the relation between the soft start time and  
the soft start capacitor capacity (CS3).  
Soft Start Time v. s. CSn (Typ.)  
CSn [µF]  
Fig.3.3.4.1 The Relation between the Soft Start Time and the Soft Start Capacitor Capacity (CS3).  
3.3.5 Short-Circuit Proof Function  
The S1F81100 is provided with a built-in output proof function. When output voltage is continuously reduced  
below the detected value approx. 110ms or more, the CH-2 switching regulator circuit operation stops.  
Restore from the short-circuit proof mode is possible by input via the reset pin (XRST). For further  
information about it, see 3.2.6.  
Output reduction detection CH-2 output set value  
Output reduction detected value  
2.3V ± 0.2V  
3.3V  
2.5V  
1.9V ± 0.2V  
Output proof detection time 110 ± 20 [ms]  
Notes: Take short-circuit proof countermeasures other than above to increase the security of the application.  
3.3.6 Power OFF Function  
The voltage output of CH-3 can be turned off (powered off) via the I2C controller.  
Writing “1” in the POFF3 register assigned to the I2C controller’s register causes the CH-3 output to be turned  
off (powered off) and pulled down internally.  
Moreover, as mentioned in section 3.3.4, when short-circuit proof function was activated and CH-3 voltage  
output was turned off, this register is automatically written over to “1” in the IC.  
The POFF3 register value attains “0” again through one of the following steps, and then voltage output is turned  
on.  
(1) Perform initial reset.  
(2) Write “0” in the POFF3 register via the I2C controller.  
See section 5.2 for details of the POFF3 register.  
Rev.1.4  
EPSON  
27  
S1F81100 Technical Manual  
3.3.7 Power Good Function  
CH-3 has a Power Good function. The Power Good function refers to a function that monitors the output  
voltage value inside the S1F81100 unit and determines if it is normal or not. If a state approximately 10% or  
more below the typical output voltage exceeds approximately 10ms, it is determined to be “abnormal output.”  
The result of the Power Good judgement can be read via the PG3 flag (read-only) of the I2C controller.  
Moreover, it can be monitored by output level of nVCC_FLT pin.  
The Power Good function can be deactivated by writing “0” in the VFLT register on the I2C controller.  
See section 5.2 for details of the PG3 flag and VFLT registers.  
See section 6.2 for details of the nVCC_FLT pin.  
3.3.8 CH-3 (VCC3) Mask Options Concerning Output Voltage  
The following items are provided as mask options related to CH-3 output voltage.  
[No.2] CH-3(VCC3) Output voltage  
1. 3.3V  
2. 2.5V  
3. 1.8V (under development)  
One CH-3 output voltage value is selectable from 3.3V, 2.5V and 1.8V from mask options.  
[No.5] Sleep mode CH-3 main regulator operation  
1. ON  
2. OFF  
The ON/OFF operation of CH-3 main regulator in Sleep mode is selectable from mask options.  
Selecting “Operation ON” if a large load current is required for CH-3 during Sleep mode and “Operation OFF”  
if a large load current is not required and restraining power consumption during Sleep mode as much as possible  
increases operating efficiency.  
When setting LMD3 register to “1” previously, the main regulator in Sleep mode will be in “Operation OFF”  
state regardless of this mask options.  
See section 5.2 for details of the LMD3 register.  
28  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
3.4 CH-4 (VCC4) Output Voltage  
This section describes CH-4, a series regulator. Fig.3.4.1 shows CH-4’s internal and external configurations.  
S1F81100  
FB4  
VCC4  
Power  
Manager  
POFF4  
Fig.3.4.1 CH-4 Regulator Configuration  
3.4.1 Main Regulator (Series Regulator)  
CH-4 is a push/pull type series regulator that generates constant voltage via CH-3’s output voltage VCC3.  
Short-circuit the VCC4 and FB4 pins outside the IC and use after mounting the following required components.  
The following lists the required components.  
Required external components: Capacitor  
22µF  
CH-4 output voltage value is the same with the voltage value set in CH-1.  
CH-4 output is turned off in the following conditions:  
(1) When CH-3 is turned off  
(2) When set to Sleep mode (depends on the mask options).  
(3) When set to Deep Sleep mode  
(4) When “1” was written in POFF4 register via the I2C controller (see section 3.4.2)  
3.4.2 Power OFF Function  
The voltage output of CH-4 can be turned OFF (powered OFF) via the I2C controller.  
Writing “1” in the POFF4 register assigned to the I2C controller’s register causes the CH-4 output to be turned  
off (powered off) and pulled down internally.  
The POFF4 register value attains “0” again through one of the following steps, and then voltage output is turned  
on.  
(1) Perform initial reset.  
(2) Turn the input level of the PWR_EN pin to LOW once to cause the Sleep state, then assign the HIGH level  
again to the PWR_EN pin to allow recovery from the Sleep state.  
(3) Write “0” in the POFF4 register via the I2C controller.  
See the section 5.2 for details of the POFF4 register.  
Rev.1.4  
EPSON  
29  
S1F81100 Technical Manual  
3.5 Output Timing of Regulator on Initial Startup  
Describes about the regulator output after the initial startup (input voltage power-on).  
CH-2 and CH-3 are the first ones to rise after input voltage (VIN) power-on.  
After the Power Good function of each CH has determined that their output values are within the “specified  
range” for CH-2 and CH-3, CH-1 and CH-4 voltages start to rise.  
Subsequently, if the Power Good function determines that the output value is within the “specified range” for  
CH-1 (CH-4 does not have a Power Good function), the output voltage determining function considers the  
voltage to be “normal output voltage.”  
Then, set the output level of nVCC_FLT pin to HIGH.  
The initial reset state in the IC cancels in approximately 60ms. At the same time, set the output level of  
nRESET pin to HIGH and instruct reset cancellation to the external processor, etc.  
See section 6.2 for output voltage determining function.  
See section 2.2 for initial reset.  
Fig.3.5.1 shows a timing chart illustrating the initial startup.  
VIN  
VCC2/VCC3  
70ms  
VCC1/VCC4  
5ms  
nVCC_FLT  
[Digital]  
less than 1µs  
nRESET  
[Digital]  
60ms  
The values in the diagram are all typical values for approximation.  
Fig.3.5.1 Initial Startup Timing  
30  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
4. OPERATION MODES  
The SIF81100 provides the following operation modes (operation statuses).  
(1) Normal mode  
(2) Sleep mode  
(3) Deep Sleep mode  
(4) Ultra-Power-Saving mode  
The Normal mode refers to a state in which the IC operates normally.  
Each of the other three modes can be set using the control external to the IC or the control via the I2C controller.  
Because each of these three modes ensures power saving as compared to the Normal mode, it is possible to  
develop low-power consumption type products by efficiently set a mode when the application is operating.  
This chapter describes the Sleep, Deep Sleep and Ultra-Power-Saving modes in detail.  
4.1 Description of Each Operation Mode  
The S1F81100 enters the Sleep or Deep Sleep mode when the PWR_EN pin is set to LOW during operation.  
The switching between Sleep and Deep Sleep modes is accomplished by the EDS register in the I2C controller.  
The S1F81100 enters the Ultra-Power-Saving mode when the input level of the XSDWN pin is set to LOW.  
In these modes, a part or all of the voltage outputs and IC’s internal circuits can be turned OFF. Thus, using  
the mode appropriate for each individual situation allows the S1F81100 to deliver power saving performance.  
Table 4.1.1 shows the ON/OFF states of the internal circuits in each mode.  
Table 4.1.1 Regulator Operations in Each Mode  
Normal  
mode  
ON  
Deep Sleep  
mode  
Ultra-Power-  
Saving mode  
OFF  
Sleep mode  
CH-1 Main  
CH-2 Main  
Sub  
PWM  
controller  
PWM  
controller  
Series  
regulator  
PWM  
controller  
Series  
regulator  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON or OFF  
Mask Option -2  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF or ON  
Mask Option -4  
OFF  
CH-3 Main  
Sub  
ON or OFF  
Mask Option -3  
ON  
OFF  
OFF  
ON  
CH-4 Main  
Series  
regulator  
OFF  
ON  
Others  
(analog/logic)  
For Mask Option -2, see Section 4.2.4. (Option 4)  
For Mask Option -3, see Section 4.2.4. (Option 5)  
For Mask Option -4, see Section 4.3.4. (Option 6)  
4.2 Sleep Mode  
The S1F81100 enters the Sleep mode when the PWR_EN pin is set to LOW during operation. In the Sleep  
mode, CH-1 is turned OFF. In this mode the power consumed by the S1F81100 is lower compared to the  
Normal mode.  
4.2.1 Transitioning to and Canceling the Sleep Mode  
This section describes how to transition to and cancel the Sleep mode.  
The timing chart for transitioning to and canceling the Sleep mode varies depending on whether or not CH-1  
output voltage change is made. See sections 4.2.2 and 4.2.3.  
Transitioning to Sleep Mode  
To transition to the Sleep mode, set the EDS register to 0 (default) and input level of the PWR_EN pin to LOW  
using the I2C controller in the Normal mode.  
When the S1F81100 enters the Sleep mode,  
CH-1: Voltage output is turned OFF.  
CH-2: Depending on the mask option setting, the main regulator is turned OFF.  
Rev.1.4  
EPSON  
31  
S1F81100 Technical Manual  
CH-3: Depending on the mask option setting, the main regulator is turned OFF.  
CH-4: Voltage output is turned OFF.  
In the Sleep mode, current consumption is reduced due to deactivation of CH-1. Therefore, setting the unit to  
enter the Sleep mode via application software when VCC1 voltage is no longer required contributes to higher  
efficiency of the unit as the current consumption of the entire system is reduced.  
Canceling Sleep Mode  
To cancel the Sleep mode, set the input level of the PWR_EN pin to HIGH.  
In the Sleep mode, the internal register holds the same settings as ones before a transition to the Sleep mode.  
When the Sleep mode is canceled, the S1F81100 is restored to the same state as it was before a transition to the  
Sleep mode.  
4.2.2 Transitioning to and Canceling the Sleep Mode When CH-1 Voltage Change is Made  
As described in Section 4.1, to change the CH-1 output voltage using the step transition, it is required to  
transition to and cancel the Sleep mode after setting the VS17 to 10 register.  
This involves the software and hardware control as described in Section 3.1.5. Control the software and  
hardware on your application following the description in Table 3.1.5.2.  
Fig.4.2.2.1 shows its timing chart.  
See section 5.2 for details of the VS17 to 10 register.  
VS17 to 10  
[Digital]  
A
B
PWR_EN  
[Digital]  
WUP  
[Digital]  
less than 1  
µ
s
µ
less than 1 s  
nVCC_FLT  
[Digital]  
less than 1  
µs  
less than 1µs  
A
V
CC1  
B
The values in the figure indicate the typical values that serve as guide.  
Fig.4.2.2.1 Sleep Mode Control Timing when Changing CH-1 Output Voltage Using Step Transition  
32  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
4.2.3 Transitioning to and Canceling the Sleep Mode When CH-1 Voltage Change is not Made  
A transition to Sleep mode not aiming at changing the CH-1 output voltage (VS17 to 10 register value not  
changed) does not involve the change in the WUP signal in contrast to the conditions under which the output  
voltage change is made.  
Fig.4.2.3.1 shows its timing chart.  
Table 4.2.3.1 shows the flow for controlling the software. Follow that flow to control the software on your  
application.  
VS17 to 10  
[Digital]  
A
PWR_EN  
[Digital]  
WUP  
[Digital]  
nVCC_FLT  
[Digital]  
less than 1  
µs  
less than 1µs  
V
CC1  
A
A
The values in the figure indicate the typical values that serve as guide.  
Fig.4.2.3.1 Sleep Mode Control Timing when CH-1 Voltage Change is not Made  
Rev.1.4  
EPSON  
33  
S1F81100 Technical Manual  
Table 4.2.3.1 Steps for Controlling Software When the VCC1 Output Voltage Change is not Made  
Processor  
ex. PXA250/210  
Power supply IC  
S1F81100  
Status  
Operation  
(software/hardware-controlled)  
Operation  
Normal operation state  
Normal  
operation  
PWN_EN pin output: HIGH level Voltage output VCC1/VCC4 outputs turned ON.  
WUP pin output: LOW level  
[Setting]  
Enable the input interrupt of the  
GP[n] pin.  
[Software control]  
Rewrites the VS17 to VS10  
c I2C communication  
I2C  
command  
register of the power supply IC  
via the I2C controller and sets  
the new voltage value.  
d Start transitioning to  
Sleep  
Transition to Start transition to Sleep.  
Sleep  
PWR_EN  
signal  
(PWR_EN pin control)  
[Software control]  
Sets the output of PWR_EN pin  
to LOW Level to transit to Sleep  
state.  
L
e CORE voltage OFF  
Sleep  
Voltage output VCC1/VCC4 outputs OFF.  
X
(WUP pin held LOW.)  
(Stay in Sleep until an interrupt  
occurs.)  
[Interrupt occurred!]  
f Sleep State Cancellation Sleep  
Start canceling Sleep.  
PWR_EN  
signal  
Start  
Cancellation  
[Software (hardware)control]  
Sets the output of PWR_EN pin  
to HIGH level to cancel Sleep.  
H
g CORE voltage output  
Normal mode  
Voltage output VCC1/VCC4 outputs ON.  
ON  
Normal operation state  
Normal mode PWR_EN pin output: HIGH level Voltage output VCC1/VCC4 outputs ON.  
WUP pin output: LOW level  
4.2.4 Mask Options Associated with the Sleep Mode  
The S1F81100 provides the following mask options that are associated with the Sleep mode.  
[No.3] One-touch recovery function for the Sleep mode  
1. Disable  
2. Enable  
This mask option can be used to enable/disable the one-touch recovery function.  
The one-touch recovery function enables the S1F81100 unit to recover from the Sleep or Deep Sleep mode to  
the Normal mode by inputting a LOW-level signal to the P02 pin when the input level of the PWR_EN pin is  
held at LOW with the S1F81100 set in the Sleep or Deep Sleep mode.  
This function works effectively, for example, when the sub-battery is exhausted after maintaining the  
application in the Deep Sleep mode for a long period of time and it is no longer possible to set the PWR_EN pin  
to HIGH.  
See section 5.2 for details of the IOP02 register.  
34  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Fig.4.2.4.1 outlines the one-touch recovery function.  
Note: To use the one-touch recovery function, you must set the P02 port to “INPUT” using the IOP02 register.  
In addition, you must set the input level to HIGH before entering the Sleep mode.  
Normal Mode  
Sleep Mode  
Normal Mode  
PWR_EN  
[Digital]  
P02  
[Digital]  
Even though PWR_EN is kept LOW level  
input, sleep mode is canceled by one-  
touch recovery function.  
nVCC_FLT  
[Digital]  
V
CC1  
Fig.4.2.4.1 Description of One-Touch Recovery Function  
[No.4] CH-2 main regulator operation for the Sleep mode  
1. ON  
2. OFF  
This mask option can be used to turn the CH-2 main regulator for the Sleep mode ON or OFF.  
The mask option works effectively by selecting ON when the CH-2 requires a large load current in the Sleep  
mode or selecting OFF when the CH-2 does not require a large load current and the power consumption during  
the Sleep mode should be reduced as low as possible.  
Setting the LMD2 register to 1 forces the main regulator to turn OFF during the Sleep mode independently of  
this mask option.  
See section 5.2 for details of the LMD2 register.  
[No.5] CH-3 main regulator operation for the Sleep mode  
1. ON  
2. OFF  
This mask option can be used to turn the CH-3 main regulator for the Sleep mode ON or OFF.  
The mask option works effectively by selecting On when the CH-3 requires a large load current in the Sleep  
mode or selecting OFF when the CH-2 does not require a large load current and the power consumption during  
the Sleep mode should be reduced as low as possible.  
Setting the LMD3 register to 1 forces the main regulator to turn OFF during the Sleep mode independently of  
this mask option.  
See section 5.2 for details of the LMD3 register.  
Rev.1.4  
EPSON  
35  
S1F81100 Technical Manual  
4.3 Deep Sleep Mode  
The S1F81100 enters the Deep Sleep mode when the PWR_EN pin is set to LOW during operation with the  
EDS register set to “1”. In the Deep Sleep mode, CH-1 to CH-4 are turned OFF. In this mode the power  
consumed by the S1F81100 is significantly lower compared to the Sleep mode.  
4.3.1 Transitioning to and Canceling the Deep Sleep Mode  
This section describes how to transition to and cancel the Deep Sleep mode.  
Fig.4.3.1.1 shows a timing chart when transitioning to and canceling the Deep Sleep mode.  
Transitioning to Deep Sleep Mode  
To transition to the Deep Sleep mode, set the EDS register to “1” and input level of the PWR_EN pin to LOW  
using the I2C controller in the Normal mode.  
When the S1F81100 enters the Deep Sleep mode,  
CH-1: Voltage output is turned OFF.  
CH-2: Voltage output is turned OFF.  
Depending on the mask option setting, the sub-regulator is turned on.  
CH-3: Voltage output is turned OFF.  
CH-4: Voltage output is turned OFF.  
In the Deep Sleep mode, CH-1 to CH-4 are turned OFF, thereby current consumption is less than that for the  
Sleep mode. Therefore, setting the unit to enter the Deep Sleep mode via application software when all  
voltage output are no longer required contributes to reduction of current consumption of the entire system,  
resulting in higher efficiency of the unit. The unit can be restored from the Deep Sleep mode by LOW level  
input via the XRST pin.  
Canceling Deep Sleep Mode  
When the VCC2 (CH-2) is powered by the sub-regulator or external power supply in the Deep Sleep mode, this  
mode can be canceled by setting the input level of the PWR_EN pin to HIGH.  
When it is canceled, the S1F81100 is restored to the same state as it was before a transition to the Deep Sleep  
mode.  
It can be also canceled by the LOW level input to the XRST pin. In this case, each register in the S1F81100  
will be initialized.  
36  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
VS17 to 10  
[Digital]  
A
PWR_EN  
[Digital]  
WUP  
[Digital]  
nVCC_FLT  
[Digital]  
µ
less than 1 s  
µ
less than 1 s  
V
V
CC1/VCC4  
CC2/VCC3  
A
A
The values in the figure indicate the typical values that serve as guide.  
Fig.4.3.1.1 Deep Sleep Mode Control Timing  
4.3.2 Mask Options Associated with the Deep Sleep Mode  
The S1F81100 provides the following mask options that are associated with the Deep Sleep mode.  
[No.3] One-touch recovery function for the Sleep mode  
1. Disable  
2. Enable  
See section 4.2.2.  
(In the Deep Sleep mode, the S1F81100 operates in the same way as in the Sleep mode.)  
[No.6] CH-2 sub-regulator operation for the Deep Sleep mode  
1. Enable (CH-2 sub-regulator, ON in Deep Sleep mode)  
2. Disable (CH-2 sub-regulator, OFF in Deep Sleep mode)  
The ON/OFF operation of CH-2 sub-regulator in the Deep Sleep mode is selectable from mask options.  
Selecting “OFF” stops CH-2 output and reduces the VCC2 potential down to the GND level. For this reason,  
once the unit enters the Deep Sleep mode, it can be restored from this mode only by LOW level input via the  
XRST pin. When power is externally supplied to VCC2 (CH-2) in the Deep Sleep mode, input via PWR_EN is  
also accepted.  
Rev.1.4  
EPSON  
37  
S1F81100 Technical Manual  
4.4 Ultra-Power-Saving Mode  
The S1F81100 provides an Ultra-Power-Saving mode. This mode stops the functions of the entire IC  
functionality to minimize power consumption. The current consumption in this mode is on the order of a few  
microamperes. This mode is useful for shipping the product or for maintaining applications what are not to be  
used for a long period of time.  
To set the Ultra-Power-Saving mode, set the input level of the XSDWN pin to LOW. Maintaining the input  
level at LOW allows the S1F81100 to stay in the Ultra-Power-Saving mode.  
To recover from the Ultra-Power-Saving mode, follow the procedures below.  
(1) Set the input level of the XRST pin to LOW.  
(2) Set the input level of the XSDWN pin to HIGH.  
(3) Set the input level of the XRST pin to HIGH.  
Setting the XSDWN pin back to HIGH with the XRST pin held HIGH, the IC’s internal circuitry becomes  
unstable. Thus, this input state should not be used.  
Fig.4.4.1 shows a timing chart when transitioning to and canceling the Ultra-Power-Saving mode.  
XSDWN  
[Digital]  
・・・  
・・・  
・・・  
・・・  
XRST  
[Digital]  
Ultra-  
Power-  
Saving  
mode  
Unstable  
state  
Ultra-Power-Saving  
mode  
Normal  
mode  
Normal mode  
Reset  
Reset  
Fig.4.4.1 Timing for Transitioning and Canceling the Ultra-Power-Saving Mode  
38  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
5. I2C CONTROLLER  
Being a system power supply IC, the S1F81100 is equipped with an I2C controller having a slave function for  
enhancing operability for operation from external devices. Sending specified commands to the I2C controller  
enables data inside the IC to be read and written, allowing detailed setting of the regulators and auxiliary  
circuits.  
This section provides detailed descriptions of the I2C controller.  
5.1 Description  
The I2C controller refers to the controller complying with the standard two-wire system serial interface  
specifications advocated by Phillips. S1F81100 products are licensed by Phillips.  
This section describes its communications mechanism.  
5.1.1 Basic Specifications  
The basic specifications of the I2C controller mounted on the S1F81100 are as follows:  
Address:  
000100xB (Bit length: 7 bits. LSB: Can be set with the AD_EN pin.) )  
Transmission speed: Maximum 400 kHz  
Pins used  
SDA:  
SCL:  
Data I/O pin  
Clock input pin  
AD_EN: Address enabling pin (LSB Select pin)  
Voltage level  
(SDA, SCL)  
(AD_EN)  
VCC2 level  
VIN level  
Reading/writing in the register assigned to the I2C controller enables this IC to be externally configured with  
detailed settings or updated operating conditions and to be subject to operation control as well as internal state  
monitoring.  
The function of the I2C controller of the S1F81100 is limited to the slave function. Thus, control is only possible  
externally, from the master side.  
Note: While VCC2 is OFF, the I2C controller cannot be used.  
5.1.2 Start and Stop Conditions  
In the transmission procedure involving the I2C controller, it is necessary to raise the controller-specific  
conditions, Start and Stop, upon starting and stopping communications respectively. Fig.5.1.2.1 shows a chart of  
these timings.  
Fig.5.1.2.1 Start and Stop Conditions for I2C Controller  
1) When SCL is at HIGH, SDA turns from HIGH to LOW.  
This forms a Start condition.  
2) When SCL is at HIGH, SDA turns from LOW to HIGH.  
This forms a Stop condition.  
Since this model only provides the slave function, the above Start or Stop conditions cannot be generated on  
this controller. Be sure to generate them on the master side.  
Both the Start and Stop conditions can be generated at a desired timing.  
Rev.1.4  
EPSON  
39  
S1F81100 Technical Manual  
5.1.3 Data Transfer (command format)  
Fig.5.1.3.1 shows the command format for data transmission.  
Transmit/  
Receive  
1 byte  
Transmit/  
Receive  
1 byte  
Transmit/  
Receive  
1 byte  
Transmit/  
Receive  
1 byte  
Start  
Stop  
Data-X0H  
SDA(DATA)  
Address  
Data-X1H  
Data-X5H  
.....  
. . . . .  
SDA(ACK)  
SCL  
. . . .  
. . . .  
. . . .  
. . . .  
. . . .  
Start  
condition  
Stop  
condition  
Fig.5.1.3.1 S1F81100 Command Format for I2C Controller  
Fig.5.1.3.2 shows a detailed chart of command sending/receiving timings.  
D7  
[A6]  
D6  
[A5]  
D5  
[A4]  
D4  
[A3]  
D3  
[A2]  
D2  
[A1]  
D1  
[A0]  
D0  
[R/W]  
SDA(DATA)  
SDA(ACK)  
SCL  
1
2
3
4
5
6
7
8
9
Fig.5.1.3.2 Send and Receive Single Byte Timing  
Starting Transmission  
Generating the Start condition described above from the master side starts transmission.  
Slave Address  
After a Start condition is generated, the slave address should be specified and sent from the master side. This  
slave address is composed of seven bits and is assigned a unique value for each IC. For the S1F81100, a 7-bit  
slave address (000100xB) is assigned by Philips. The LSB is specified by the input level of the AD_EN pin.  
When AD_EN = 0: The slave address is set to 0001000B.  
When AD_EN = 1: The slave address is set to 0001001B.  
This allows the AD_EN pin to be used as an Enable pin for the I2C.  
The slave address must be input from the master side starting with the MSB (A6). The address is stored in the  
slave (S1F81100) at the falling edge of the clock input in SCL. See section 4.1.3.2.  
Read/Write Specification Bit  
Immediately after the slave address has been specified, a bit to specify the transmission direction follows that  
indicates either read or write. The relationship between the bit value and the transmission direction is as  
follows:  
Bit value “0”: Receiving from the master (S1F81100)  
(write).  
Bit value “1”: Transmitting from the slave (S1F81100) (read).  
The read/write specification bit is input from the master side following the LSB (A0). This bit is stored in the  
S1F81100 at the rising edge of the clock input in SCL. See section 5.1.3.2.  
40  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
ACK Signal after Transferring Slave Address and Read/Write Specification Bit  
When the slave address and read/write specification bit is transferred from the master, the slave (S1F81100)  
checks the following:  
Transfer format  
Slave address value  
When they are properly stored, the slave sends an ACK (active LOW) to the master. This ACK output timing is  
synchronized with the rising edge of the clock input in SCL. See section 5.1.3.2.  
When ACK is output, the S1F81100 considers that transfer of the slave address and read/write specification bit  
has completed.  
Control Address, Control Data and ACK Signal  
Upon completion of transfer of the slave address and read/write specification bit, the slave (S1F81100) starts a  
control data read or write.  
The operation varies depending on the read/write specification bit. If “read” is specified, internal data is output  
(read)from the slave (S1F81100) to the master. If “write” is specified, data is input (written)from the master to  
the slave (S1F81100).  
Control data transfer starts from the X0H control address (see Table 5.2.1). For the sequence of data and data  
read timing, see Fig.5.1.3.2.  
When transmission of X0H is successfully completed, the ACK signal should be sent from the master to the  
slave (S1F81100) for “read” and from the S1F81100 to the master for “write.”  
When an ACK is output, the single-byte (X0H) data transfer terminates.  
After this, the control address is automatically incremented on the S1F81100, then transfer of X1H starts.  
The subsequent byte transfer takes place in the same fashion; the control address is incremented sequentially  
upon completion of each one byte.  
After the last X5H control address is transferred, the control address returns to X0H and data transfer starts  
again.  
To successfully terminate the transmission via the I2C bus, it is required to use the following command format  
as well as to generate the Stop condition.  
For a read: The last ACK to be sent from the slave to the master can be either ACK (SDA LOW) or non-ACK  
(SDA HIGH).  
For a write: The last ACK to be sent from the master to the slave must be non-ACK (SDA HIGH).  
Terminating Transmission  
Generating the Stop condition described above from the master side terminates transmission.  
Transmission cannot be successfully terminated unless the last ACK for both read and write operations  
conforms to the command format.  
Note: Data transfer continues looping until a Stop condition is issued from the master side. So be sure to  
generate a Stop condition on the master side when the transmission terminates.  
5.1.4 Behavior During Malfunction Conditions  
The following describes typical malfunctions along with the conditions that cause them.  
[Case 1] A Stop condition has started before transmission starts.  
The I2C controller does not operate.  
[Case 2] Transmission has started with a Start condition but a Start condition is generated again during the  
transmission (that is, before generation of a Stop condition).  
Transmission start from the beginning, that is, from specification of the slave address, then jumps to the X0H  
control address to start the rest of the transmission.  
[Case-3] When an ACK (SDA LOW) is issued from the master at the timing of ACK for a read operation, the  
S1F81100 continues the read operation. At the end of the read operation, be sure to transmit a non-ACK  
(SDA HIGH). If the read operation is terminated with an ACK transmitted (SCL stopped), the S1F81100 is  
no longer able to generate a Start condition since transmission fails to terminate successfully. In such a case,  
activate the clock (SCL) once to generate a non-ACK to get the unit back to normal.  
Rev.1.4  
EPSON  
41  
S1F81100 Technical Manual  
5.2 Control Address & Control Data List  
The I2C controller of the S1F81100 has the control addresses and control data (registers/flags) listed in Table  
5.2.1.  
Table 5.2.1 Control Address/Data for I2C  
Addr.  
X0H  
X1H  
X2H  
X3H  
X4H  
X5H  
Register  
Comment  
D7  
VS17  
R/W  
1
D6  
VS16  
R/W  
0
D5  
VS15  
R/W  
0
D4  
D3  
VS13  
R/W  
0
D2  
VS12  
R/W  
1
D1  
VS11  
R/W  
1
D0  
VS10  
R/W  
0
Name  
R/W  
Init  
VS14  
R/W  
1
VCC1 voltage control  
Name  
R/W  
Init  
RT17  
R/W  
1
RT16  
R/W  
1
RT15  
R/W  
1
RT14  
R/W  
1
RT13  
R/W  
1
RT12  
R/W  
1
RT11  
R/W  
1
RT10  
R/W  
1
General-purpose  
register  
Name XEECKH  
RT26  
R/W  
1
RT25  
R/W  
1
XC1TRG EOSH  
LMD1 POFF1  
PG1  
R
VCC1 setup register  
R/W  
Init  
R/W  
1
W
R/W  
1
R/W  
0
R/W  
0
Name  
R/W  
Init  
EDS  
R/W  
0
RT36  
R/W  
1
RT35  
R/W  
1
RT34  
R
RT33  
R/W  
1
RT32  
R
POFF4  
R/W  
0
VCC4 setup register  
and other controls  
R
1
1
Name EBFT  
LMD3 POFF3  
PG3  
R
EVFT  
R/W  
1
LMD2 POFF2  
PG2  
R
VCC2/VCC3 setup  
registers and other  
controls  
R/W  
Init  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Name IOP03 DTP03 IOP02 DTP02 IOP01 DTP01 IOP00 DTP00 General-purpose  
I/O port control  
R/W  
Init  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
The following describes the respective registers.  
VS17 to VS10 VCC1 output voltage setting register  
Default: VS17 to VS10 = 096H = 10010110B  
1.5V  
This is the VCC1 output voltage setting register for CH-1.  
The S1F81100 allows the user to select from eight output values, 1,5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9 and 0.8 V. The  
output voltage value can be modified programmably based on the 8-bit register value specified with VS17 to  
VS10.  
Example:  
(1) Setting for 1.3 V output:  
130D =10000010B =082H:  
(2) Setting for 1.1 V output:  
110D =01101110B=06EH:  
(3) Setting for 1.0 V output:  
100D =01100100B =064H:  
(4) Setting for 0.8 V output:  
080D =01010000B =050H:  
With VS17 to VS10 set to 082H, VCC1 = 1.3V.  
With VS17 to VS10 set to 06EH, VCC1 = 1.1V.  
With VS17 to VS10 set to 064H, VCC1 = 1.0V.  
With VS17 to VS10 set to 050H, VCC1 = 0.8V.  
If values other than the above examples are set for VS17 to VS10, the output value follows Table 5.2.1.  
42  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Table 5.2.1 VS17 to VS10 Settings and VCC1 Output Voltage  
VS17 to 10  
VCC1  
VS17 to 10  
VCC1  
11111*** B  
11110*** B  
11101*** B  
11100*** B  
11011*** B  
11010*** B  
11001*** B  
11000*** B  
10111*** B  
10110*** B  
10101*** B  
10100*** B  
10011*** B  
10010*** B  
10001*** B  
10000*** B  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
Setting inhibited  
1.5V  
01111*** B  
01110*** B  
01101*** B  
01100*** B  
01011*** B  
01010*** B  
01001*** B  
01000*** B  
00111*** B  
00110*** B  
00101*** B  
00100*** B  
00011*** B  
00010*** B  
00001*** B  
00000*** B  
1.2V  
1.2V  
1.1V  
1.0V  
0.9V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
0.8V  
1.5V  
1.4V  
1.3V  
An asterisk (*) in the table indicates an optional value.  
As shown in Table 5.2.1, the S1F81100 decodes the upper five bits (VS17 to VS13), ignoring the lower three  
bits (VS12 to VS10). The lower three bits can, therefore, be used as a general-purpose register.  
POFFn (n=1 to 4): CH-n Power OFF control register  
1
0
Output OFF (Power OFF)  
Output ON (Power ON) (Default)  
These are the registers for ON/OFF control of the CH-1 to CH-4 regulators. If these registers are set to “0,”  
output is disabled even during normal operation.  
If the PWR_EN pin is assigned the LOW level (set to the Sleep state) when these registers are set to “0,” they  
are automatically initialized to enable voltage output when recovering from the Sleep state.  
When a short-circuit protection function operates on the CH-2 (or CH-3), a “1” is written into the POFF2 (or  
POFF3) register, turning the output OFF.  
See sections 3.1.6, 3.2.6, 3.3.6 and 3.4.2 for details of the Power OFF function.  
The POFFn registers are read/write-enabled.  
PGn (n = 1 to 3): CH-n Power Good detecting flag  
1
0
Within the specified range.  
Outside the specified range.  
This flag indicates the Power Good detection result for each of the CH-1 to CH-3 regulators.  
If the flag value turns to “0,” the “0” level is maintained until this register is read once by the I2C controller.  
After the register is read, the level turns to “1.” Thus, the register can determine which output is abnormal when  
the nVCC_FLT pin output drops to “0.”  
The Power Good function operates even on an unstable state (including voltage output rise or fall for each CH).  
This may cause the PGn to misinterpret an output as “0” (outside the specified range) to be written into the flag.  
It is, therefore, required to read the PGn flag twice or more before using the Power Good function. At the initial  
startup, this must be done.  
See sections 3.1.7, 3.2.7 and 3.3.7 for details of the Power Good function.  
The PGn flag is read only.  
LMDn (n=2, 3): Mode Select (Normal or Light-Load mode) register  
1
0
Light-Load mode  
Normal mode (Default)  
These are the registers for selecting whether the main (PWM controller) or the sub-controller (backup LDO) is  
to be used for each of the CH-2 and CH-3 regulators.  
Rev.1.4  
EPSON  
43  
S1F81100 Technical Manual  
State “0” (Normal mode) that provides a high output current is effective when a high load current is required.  
State “1” puts the S1F81100 in the Light-Load mode. This significantly reduces the operating current  
consumption of the S1F81100 unit. Furthermore, greater efficiency is achieved by setting this state in an  
operating mode that does not require a high load current.  
If overload detection activates the automatic switching function, this register automatically turns to “0.”  
See sections 3.2.3 and 3.3.3 for details of the Normal and Light-Load modes, respectively.  
The LMDn registers are read/write-enabled.  
LMD1  
(*When CH-1 sub-regulator is set to OFF by the mask option.)  
CH-1 Power OFF control register  
1
0
Output OFF.  
Output ON. (Default)  
This register operates similarly to the POFF1 register.  
See section 3.1.6 for details of the Power OFF function.  
The LMD1 register is read/write-enabled.  
(*When CH-1 sub-regulator is set to On by the mask option.)  
Mode Select (Normal or Light-Load mode) register  
1
0
Light-Load mode  
Normal mode (Default)  
This is the register for selecting whether the Normal or Light-Load mode is to be used for the CH-1 regulator.  
State “0” (Normal mode) that provides a high output current is effective when a high load current is required.  
State “1” puts the S1F81100 in the Light-Load mode. This significantly reduces the operating current  
consumption of the S1F81100 unit. Furthermore, greater efficiency is achieved by setting this state in an  
operating mode that does not require a high load current.  
If overload detection activates the automatic switching function, this register automatically turns to “0.”  
See section 3.1.3 for details of the Normal and Light-Load modes.  
The LMD1 register is read/write-enabled.  
EDS  
Deep Sleep mode setting register  
Deep Sleep mode enabled.  
Deep Sleep mode disabled (Default)  
1
0
This is for specifying if the Deep Sleep mode is to be used or not.  
If the LOW level is input for the RWR_EN pin with this register set to “1,” the S1F81100 transits to the Deep  
Sleep mode and the voltage outputs from VCC1 through VCC4 are all switched OFF. This function is effectively  
used to control the power consumption to a level even lower than that in the Sleep mode.  
The “0” state is equivalent to the ordinary Sleep mode.  
The EDS register is read/write-enabled.  
EBFT  
Input voltage determining function activating register  
Input voltage determining function enabled. (Default)  
Input voltage determining function disabled.  
1
0
This is the register for enabling/disabling the input voltage determining function.  
When set to “1,” this register activates input voltage determining function, enabling it to monitor if the input  
voltage is within the specified range or not. If it is detected to be within the range, the outputs from the  
nBAT_FLT pins will be at the HIGH level, and if it is outside the range, the outputs will be LOW.  
When set to “0,” this register deactivates the input voltage determining function, and the outputs from the  
nBAT_FLT pins will always be HIGH.  
See section 6.3 for details of the input voltage determining function.  
The EBFT register is read/write-enabled.  
EVFT  
Output voltage determining function activating register  
Output voltage determining function enabled. (Default)  
Output voltage determining function disabled.  
1
0
This is the register for enabling/disabling the output voltage determining function (Power Good).  
When set to “1,” this register activates the CH-1 to CH-3 regulators’ Power Good function, enabling them to  
detect if the respective output voltages are within the specified range or not. If all are within the range, the  
44  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
outputs from the nVCC_FLT pins will be at the HIGH level, and if the output voltage from one or more of CH-1  
to CH -3 is outside the range, the outputs will be LOW.  
When set to “0,” this register deactivates the Power Good function, and the outputs from the nVCC_FLT pins  
will always be HIGH.  
See section 6.2 for details of the output voltage determining function.  
The EVFT register is read/write-enabled.  
XEECKH  
External clock input enabling register  
External clock input disabled. (Default)  
External clock input enabled.  
1
0
This is the register for enabling/disabling the external clock input.  
When set to “1,” this register specifies the clock (approx. 1 MHz) generated by CR oscillation inside the  
S1F81100 to be used as the reference clock. The reference clock is used as the operating clock for the PWM  
controller.  
When set to “0,” this register enables an external clock to be input from the CLKIN pin, making it possible for  
the external clock to be used as the reference.  
See section 6.1 for details of the external clock.  
The XEECKH register is read/write-enabled.  
EOSH  
Internal oscillator circuit activating register  
Oscillator circuit enabled. (Default)  
Oscillator circuit disabled.  
1
0
This is the register for activating/deactivating the S1F81100’s internal oscillator circuit.  
If the register is set for disabling the oscillator circuit, the value of the current consumed by the S1F81100 can  
be lowered. Note, however, that this setting eliminates the reference clock and disables operation. Therefore,  
it is necessary to set the XEECKH register to “0” and input the external clock from the CLKIN pin prior to  
setting it to “0.”  
See section 6.1 for details of the oscillator circuit.  
The EOSH registers are read/write-enabled.  
IOP0n (n=0 to 3) P0n port I/O setting registers  
1
0
Output  
Input (Default)  
These are the registers for setting the I/O properties of the P0n pins (general-use ports).  
The pins function as input pins when the relevant register is set to “0,” and as output pins when set to “1.”  
See section 6.4 for the P0n pins.  
The IOP0n registers are read/write-enabled.  
DTP0n (n=0 to 3) P0n port data registers  
1
0
HIGH  
LOW  
These are the P0n pin data registers.  
If the IOP0n registers are set to “input,” the P0n pin output levels can be read from these registers. If the IOP0n  
registers are set to “output,” data set for these registers are output from the P0n pins.  
See section 6.4 for the P0n pins.  
The DTP0n registers are read/write-enabled.  
XC1TRG  
CH-1 voltage change register  
No Change  
Trigger Change  
1
0
This is the register that directs a voltage change for the CH-1 regulator.  
When this bit is set to 0 by the I2C controller, the values set in VS17 to VS10 registers are loaded into the CH-1  
regulator. If the values currently output to the CH-1 differ from those set in the VS17 to VS10 registers, the  
output voltage value is changed.  
When it is set to “1”, those values are not loaded and a voltage change is not performed.  
See section 3.1.5 for details of the voltage change trigger,  
The XC1TRG register is read only.  
Rev.1.4  
EPSON  
45  
S1F81100 Technical Manual  
6. AUXILIARY FUNCTIONS AND OPERATIONS  
The S1F81100 has the following auxiliary functions that can be set via the I2C controller.  
1. Oscillator circuit/clock selecting function  
2. Output voltage determining function  
3. Input voltage determining function  
4. General-purpose I/O ports  
The following provides detailed descriptions of these functions.  
6.1 Oscillator Circuit/Clock Selecting Function  
The oscillator circuit generates the clock required for operations of the PWM controllers of CH-1 to CH-3. This  
is a CR oscillator circuit that does not require external components, and internally generates approximately 1  
MHz clock (Typ.).  
This circuit also provides the clock selecting function. The XEECKH register in the I2C controller can be used  
to select the clock from the internally generated clock and the clock externally input from the CLKIN pin. As  
the CLKIN voltage level is VCC2, the clock cannot be externally selected with CH-2 output set OFF.  
With the external clock selected, the S1F81100’s internal oscillator circuit can be deactivated. This way, power  
consumption on the IC can be reduced. This setting can also be selected using the EOSH register of the I2C  
controller.  
Fig.6.1.1 is its circuit diagram.  
CLKIN  
XEECKH  
EOSH  
Reference clock  
Oscillator  
circuit  
Fig.6.1.1 Clock Selecting Function Block Diagram  
See section 5.2 for details of the XEECKH and EOSH registers.  
46  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
6.2 Output Voltage Determining Function  
The S1F81100 has an output voltage determining function. This function exposes the reversed value of the  
output level of the nVCC_FLT pin to the external devices when at least one of the regulators’ Power Good  
circuits for CH-1 to CH-3 is determined to be “outside the specified range” during its operation.  
For the nVCC_FLT pins, the output level will be as follows:  
If the voltage is normal:  
If the voltage is abnormal:  
HIGH level  
LOW level  
For the nVCC_FLT pins, the voltage level will be BATT_VCC.  
For determining the output voltages of the respective regulators, see sections 3.1.7, 3.2.7, and 3.3.7.  
With this function, external components can detect the output level of this pin so that the application can be set  
to the Sleep mode, etc. as required.  
It is also possible to enable or disable this function by using the EVFT register of the I2C controller.  
Fig.6.2.1 shows a block diagram of the output voltage determining function.  
S1F81100  
EVFT  
PG1  
PG2  
Power Good  
(CH-1)  
nVCC_FLT  
Power Good  
(CH-2)  
Power Good  
(CH-3)  
PG3  
Fig.6.2.1 Output Determining Function Block Diagram  
See section 5.2 for details of the EVFT register.  
Rev.1.4  
EPSON  
47  
S1F81100 Technical Manual  
6.3 Input Voltage Determining Function  
The S1F81100 has an input voltage determining function. This function internally determines on the IC the  
voltage input to the VIN pin and exposes the reversed value of the output level of the nBAT_FLT pin to the  
external devices when the input value is determined to be “outside the specified range.”  
For the nBAT_FLT pins, the output level will be as follows:  
If the voltage is normal:  
If the voltage is abnormal:  
HIGH level  
LOW level  
For the nBAT_FLT pins, the voltage level will be BATT_VCC.  
With this function, external components can detect the output level of this pin so that the application can be set  
to the Sleep mode, etc. as required.  
It is also possible to enable or disable this function by using the EBFT register of the I2C controller.  
Fig.6.3.1 shows a block diagram of the input voltage determining function.  
S1F81100  
EBFT  
nBAT_FLT  
Input voltage  
determining circuit  
Fig.6.3.1 Input Voltage Detecting Function Block Diagram  
See section 5.2 for details of the EBFT register.  
48  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
6.4 General-Purpose I/O Ports  
The S1F81100 has four general-purpose I/O ports, P00 to P03. Fig.6.4.1 shows the configuration of the  
general-purpose I/O ports.  
IOP0n  
P0n  
DTP0n  
Fig.6.4.1 General-purpose I/O Port Block Diagram  
6.4.1 Description  
With the IOP00 to IOP03 registers of the I2C controller, you can select the I/O properties of the respective pins.  
Similarly, with the DTP00 to DTP03 registers, input data of the P00 to P03 ports can be read or output data can  
be set for these pins.  
See section 5.2 for details of the IOP00 to IOP03 and DTP00 to DTP03 registers.  
When these pins are set to “input,” the pull-up resistance installed on the pin functions to set the HIGH level  
input state even in the disconnected state.  
If these ports are set to “output”, the complementary output specifications are applied.  
The voltage levels of the P00 to P03 ports are as follows:  
P00 and P01:  
P02 and P03:  
VCC2 level  
VIN level  
Note: P00 and P01 pins do not function with the CH-2 set to OFF.  
Rev.1.4  
EPSON  
49  
S1F81100 Technical Manual  
6.4.2 Mask Options Associated with the General-Purpose I/O Ports  
The S1F81100 provides the following mask options that are associated with the general-purpose I/O ports.  
[No.3] One-touch recovery function for the Sleep mode  
1. Disable  
2. Enable  
This mask option can be used to enable/disable the one-touch recovery function.  
The one-touch recovery function enables the S1F81100 unit to recover from the Sleep or Deep Sleep mode to  
the Normal mode by inputting a LOW-level signal to the P02 pin when the input level of the PWR_EN pin is  
held at LOW with the S1F81100 set in the Sleep or Deep Sleep mode.  
This function works effectively, for example, when the sub-battery is exhausted after maintaining the  
application in the Deep Sleep mode for a long period of time and it is no longer possible to set the PWR_EN pin  
to HIGH.  
See section 5.2 for details of the IOP02 register.  
Fig.6.4.2.1 outlines the one-touch recovery function.  
Note: To use the one-touch recovery function, you must set the P02 port to “INPUT” using the IOP02 register.  
In addition, you must set the input level to HIGH before entering the Sleep mode.  
Normal Mode  
Sleep Mode  
Normal Mode  
PWR_EN  
[Digital]  
P02  
[Digital]  
Even though PWR_EN is kept LOW level  
input, sleep mode is canceled by one-  
touch recovery function.  
nVCC_FLT  
[Digital]  
V
CC1  
Fig.6.4.2.1 Outline of One-Touch Recovery Function  
50  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
7. BASIC EXTERNAL CONNECTION DIAGRAMS  
VCC  
VCCQ  
VCCN  
PLL_VCC  
*1  
CH-1  
CH-2  
CH-3  
*
1
*1  
PWR_EN  
nVDD_FAULT  
nBAT_FAULT  
GP(n)  
PWR_EN  
nVCC_FLT  
nBAT_FLT  
WUP  
FB4  
VCC4  
CC4  
nRESET  
nRESET  
SSCAP1  
SSCAP2  
SSCAP3  
CS3 CS2 CS1  
VCC2  
VCC2  
BATT_VCC  
VBAK  
CLKIN  
SDA  
SCL  
SDA  
SCL  
VIN  
XSDWN  
XTEST0  
AD_EN  
VD1  
VREF  
BAT1 CP1  
P03  
P02  
P01  
P00  
+
CR1 CD1  
VSS  
XRST  
Ext. Reset  
Controller  
[For *1 in figure, see Fig.7.2.]  
Fig.7.1 Basic External Connection Diagram (1)  
Rev.1.4  
EPSON  
51  
S1F81100 Technical Manual  
V
CCn  
For CH-n  
(n=1 to 3)  
V
INn  
TPn  
TNn  
SWnOH  
FBnM  
CLn  
V
CCn  
+
CCn +  
SWnOL  
CP0n  
SDn  
V
SSn  
Fig.7.2 Basic External Connection Diagram (2)  
Table 7.1 External Component List (for reference)  
Symbol  
Components  
Choke-type coil  
P-ch power MOS transistor  
N-ch power MOS transistor  
Schottky diode  
Capacitor  
Parameter  
10µH  
Coments  
CL1 to 3  
TP1 to 3  
TN1 to 3  
SD1 to 3  
CC1 to 3  
CC4  
*1  
*2  
*3  
*4  
*5  
100µF  
22µF  
Capacitor  
CS1  
CS2 to 3  
CD1  
Capacitor  
Capacitor  
Capacitor  
0.0068µF  
0.01µF  
0.1µF  
CR1  
Capacitor  
0.1µF  
CP1  
Capacitor  
100µF  
CP01 to 03 Capacitor  
47µF  
BAT1  
Lithium battery  
(2.8)3.3 to 5.5V  
(Recommended Components)  
*1 SUMIDA/CR43-100(@Imax=500mA), SUMIDA/CR54-100(@Imax=1A)  
*2 SANYO/CPH6315, HITACHI/HAT1043M  
*3 SANYO/CPH6415, HITACHI/HAT2053M  
*4 HITACHI/HRW0702A(@Imax=500mA), SANYO/SBS004, TOSHIBA/CMS06(@Imax=1A)  
*5 NEC-TOKIN/ESVB20J107M  
52  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
8. ELECTRICAL CHARACTERISTICS  
Absolute maximum ratings  
Parameter  
Input voltage (1)  
Input voltage (2)  
Input voltage (3)  
Allowable total output  
current  
Symbol  
VIN  
Applicable  
Rating  
Unit  
V
V
VIN  
*1  
*2  
-0.5 to +7.0  
-0.5 to +4.5  
-0.5 to +7.0  
VI2  
VI3  
V
10  
mA  
Σ IVIN  
Operating temperature  
Storage temperature  
Topr  
Tstg  
-40 to +85  
-65 to +150  
°C  
°C  
Soldering  
temperature/time  
Tsol  
260°C, 10s  
Allowable package loss  
PD  
250  
mW  
*1: VD1  
*2: All pins except for input voltages (1) and (2).  
Recommended operating range  
Parameter  
Input voltage  
range  
Symbol  
VIN,VIN1,VIN2,  
VIN3  
Condition  
3.3V output is selected for either  
CH-2 or CH-3.  
Min.  
3.3  
Typ.  
Max. Unit  
5.5  
V
Output of less than 2.5V is selected  
for both CH-2 and CH-3.  
2.8  
5.5  
V
Rev.1.4  
EPSON  
53  
S1F81100 Technical Manual  
Regulator characteristics  
[CH-1 characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC2=3.3V, VCC3=3.3V, CS1=0.01µF, IOUT1=100mA, Ta=25°C  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Normal operation (main and sub regulators)  
Output voltage  
VCC1  
VCC1=0.8V  
VCC1=0.9V  
VCC1=1.0V  
VCC1=1.1V  
VCC1=1.2V  
VCC1=1.3V  
VCC1=1.4V  
VCC1=1.5V  
0.76  
0.86  
0.95  
1.05  
1.14  
1.24  
1.33  
1.43  
15  
0.80  
0.90  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
40  
0.84  
0.95  
1.05  
1.16  
1.26  
1.37  
1.47  
1.58  
65  
V
IS1H  
VSW1On=0.9VIN1  
mA  
Output current with  
SW1OH and SW1OL  
pins held HIGH  
IS1LH  
VSW1OH=0.1VIN1  
VSW1OL=0.1VIN1  
-90  
-55  
-65  
-45  
2.5  
5
-40  
-35  
5.0  
15  
mA  
mA  
Output current with  
SW1OH pin held LOW  
IS1LL  
Output current with  
SW1OL pin held LOW  
Input stability  
Load stability  
dVCC1-input  
dVCC1-load  
dVCC1/dTaVCC1  
VPG1  
2.8V<VIN1<5.5V, IOUT1=100mA  
VCC1=1.5V  
10µA<IOUT1<500mA  
VCC1=1.5V  
IOUT1=100mA, -40°C<Ta<+85°C  
VCC1=1.5V  
VCC1=0.8V  
VCC1=0.9V  
VCC1=1.0V  
VCC1=1.1V  
VCC1=1.2V  
mV  
mV  
Output voltage  
temperature coefficient  
-500  
-430  
ppm/°C  
V
Power Good detection  
voltage  
0.68  
0.77  
0.85  
0.94  
1.02  
1.11  
1.19  
1.28  
0.72  
0.81  
0.90  
0.99  
1.08  
1.17  
1.26  
1.35  
80  
0.76  
0.86  
0.95  
1.05  
1.14  
1.24  
1.33  
1.43  
VCC1=1.3V  
VCC1=1.4V  
VCC1=1.5V  
VCC1=1.5V  
Maximum conversion  
efficiency  
EFF1  
%
V
IOUT1=500mA  
Sub-regulators only  
Output voltage  
VCC1L  
VCC1=0.8V  
VCC1=0.9V  
VCC1=1.0V  
VCC1=1.1V  
VCC1=1.2V  
VCC1=1.3V  
VCC1=1.4V  
VCC1=1.5V  
1.8V<VCC3<5.5V, IOUT1=2mA  
VCC1=1.5V  
10µA<IOUT1<20mA  
VCC1=1.5V  
0.76  
0.86  
0.95  
1.05  
1.14  
1.24  
1.33  
1.43  
0.80  
0.90  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
12  
0.84  
0.95  
1.05  
1.16  
1.26  
1.37  
1.47  
1.58  
22  
Input stability  
Load stability  
dVCC1L-input  
dVCC1L-load  
mV  
mV  
1
5
Output voltage  
temperature coefficient  
dVCC1/dTaVCC1  
IOUT1=2mA, -40°C<Ta<+85°C  
VCC1=1.5V  
-500  
-430  
ppm/°C  
54  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
[CH-2 characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC1=1.5V, VCC3=3.3V, CS2=0.1µF, IOUT2=100mA, Ta=25°C  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Normal operation (main and sub regulators)  
Output voltage  
VCC2  
VCC2=1.8V  
VCC2=2.5V  
VCC2=3.3V  
1.71  
2.38  
3.14  
15  
1.80  
2.50  
3.30  
40  
1.89  
2.63  
3.47  
65  
V
IS2H  
VSW2On=0.9VIN2  
mA  
Output current with  
SW2OH and SW2OL  
pins held HIGH  
IS2LH  
VSW2OH=0.1VIN2  
VSW2OL=0.1VIN2  
-90  
-55  
-65  
-45  
40  
-40  
-35  
100  
mA  
mA  
mV  
Output current with  
SW2OH pin held LOW  
IS2LL  
Output current with  
SW2OL pin held LOW  
Input stability  
dVCC2-input  
VCC2=3.3V  
3.4<VIN2<5.5V,IOUT2=300mA  
Any other conditions except  
VCC2=3.3V  
2.8<VIN2<5.5V,IOUT2=300mA  
10µA<IOUT2<1A  
40  
100  
30  
mV  
Load stability  
dVCC2-load  
10  
mV  
Output voltage  
temperature coefficient  
Maximum duty ratio  
Short circuit detection  
voltage  
dVCC2/dTaVCC2  
IOUT2=100mA, -40°C<Ta<+85°C  
-500  
100  
-430  
ppm/°C  
MaxDuty2  
VSHRT2  
%
V
0.3  
1
Short circuit detection  
time  
Power Good detection  
voltage  
TSHRT2  
VPG2  
ms  
V
VCC2=1.8V  
VCC2=2.5V  
VCC2=3.3V  
VCC3=3.3V  
IOUT2=600mA  
1.53  
2.13  
2.81  
1.62  
2.25  
2.97  
90  
1.71  
2.38  
3.14  
Maximum conversion  
efficiency  
EFF2  
%
V
Sub-regulators only  
Output voltage  
VCC2L  
VCC2=1.8V  
VCC2=2.5V  
VCC2=3.3V  
3.3V<VIN2<5.5V, IOUT2=2mA  
10µA<IOUT2<10mA  
IOUT2=2mA, -40°C<Ta<+85°C  
1.61  
2.28  
3.04  
1.70  
2.40  
3.20  
7
12  
-430  
1.79  
2.53  
3.37  
12  
Input stability  
Load stability  
Output voltage  
dVCC2L-input  
dVCC2L-load  
dVCC2/dTaVCC2  
mV  
mV  
ppm/°C  
35  
-500  
14  
temperature coefficient  
Overload detection  
current  
30  
mA  
Rev.1.4  
EPSON  
55  
S1F81100 Technical Manual  
[CH-3 characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC1=1.5V, VCC2=3.3V, CS3=0.1µF, IOUT3=100mA, Ta=25°C  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Normal operation (main and sub regulators)  
Output voltage  
VCC3  
VCC3=1.8V  
VCC3=2.5V  
VCC3=3.3V  
1.71  
2.38  
3.14  
15  
1.80  
2.50  
3.30  
40  
1.89  
2.63  
3.47  
65  
V
IS3H  
VSW3On=0.9VIN3  
mA  
Output current with  
SW3OH and SW3OL  
pins held HIGH  
IS3LH  
VSW3OH=0.1VIN3  
VSW3OL=0.1VIN3  
-90  
-55  
-65  
-45  
40  
-40  
-35  
100  
100  
mA  
mA  
mV  
mV  
Output current with  
SW3OH pin held LOW  
IS3LL  
Output current with  
SW3OL pin held LOW  
Input stability  
dVCC3-input  
VCC3=3.3V  
3.4V<VIN3<5.5V, IOUT3=300mA  
Any other conditions except  
VCC3=3.3V  
40  
2.8V<VIN3<5.5V, IOUT3=300mA  
10µA<IOUT3<1A  
Load stability  
dVCC3-load  
10  
30  
mV  
Output voltage  
temperature coefficient  
Maximum duty ratio  
Short circuit detection  
voltage  
dVCC3/dTaVCC3  
IOUT3=100mA, -40°C<Ta<+85°C  
-500  
100  
-430  
ppm/°C  
MaxDuty3  
VSHRT3  
%
V
0.3  
1
Short circuit detection  
time  
Power Good detection  
voltage  
TSHRT3  
VPG3  
ms  
V
VCC3=1.8V  
VCC3=2.5V  
VCC3=3.3V  
VCC3=3.3V  
IOUT3=600mA  
1.53  
2.13  
2.81  
1.62  
2.25  
2.97  
90  
1.71  
2.38  
3.14  
Maximum conversion  
efficiency  
EFF3  
%
V
Sub-regulators only  
Output voltage  
VCC3L  
VCC3=1.8V (IOUT3=2mA)  
VCC3=2.5V (IOUT3=2mA)  
VCC3=3.3V (IOUT3=2mA)  
3.3V<VIN3<5.5V, IOUT3=2mA  
10µA<IOUT3<10mA  
1.61  
2.28  
3.04  
1.70  
2.40  
3.20  
7
1.79  
2.53  
3.37  
12  
Input stability  
Load stability  
dVCC3L-input  
dVCC3L-load  
mV  
mV  
12  
35  
Output voltage  
temperature coefficient  
dVCC3/dTaVCC3  
IOUT2=2mA, -40°C<Ta<+85°C  
-500  
14  
-430  
ppm/°C  
Overload detection  
current  
30  
mA  
56  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
[CH-4 characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC1=1.5V, VCC2=3.3V, VCC3=3.3V, IOUT4=2mA, Ta=25°C  
Parameter  
Output voltage  
Symbol  
Condition  
Min.  
0.76  
0.86  
0.95  
1.05  
1.14  
1.24  
1.33  
1.43  
Typ.  
0.80  
0.90  
1.00  
1.10  
1.20  
1.30  
1.40  
1.50  
12  
Max.  
0.84  
0.95  
1.05  
1.16  
1.26  
1.37  
1.47  
1.58  
22  
Unit  
V
VCC4  
VCC4=0.8V  
VCC4=0.9V  
VCC4=1.0V  
VCC4=1.1V  
VCC4=1.2V  
VCC4=1.3V  
VCC4=1.4V  
VCC4=1.5V  
Input stability  
Load stability  
dVCC4-input  
1.8V<VCC3<5.5V, IOUT4=2mA  
VCC4=1.5V  
mV  
mV  
dVCC4-load  
10µA<IOUT4<20mA  
VCC4=1.5V  
1
5
Output voltage  
temperature coefficient  
dVCC4/dTaVCC4  
IOUT4=2mA, -40°C<Ta<+85°C  
VCC4=1.5V  
-500  
-430  
ppm/°C  
Rev.1.4  
EPSON  
57  
S1F81100 Technical Manual  
Miscellaneous characteristics  
[I/O characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V, VCC2=2.5V,  
VBAT=VCC2, BATT_VCC=VCC2, Ta=25°C  
Parameter  
HIGH-level input voltage  
Symbol  
VIH1  
VIH2  
VIH3  
VIH4  
VIH5  
VIH6  
VIL1  
VIL2  
VIL3  
VIL4  
VIL5  
VIL6  
IIH1  
IIH2  
IIH3  
IIH4  
IIH5  
IIH61  
IIH62  
IIL1  
IIL2  
IIL3  
Pin name  
PWR_EN  
P00,P01,CLKIN  
SCL,SDA  
AD_EN,P02,P03  
XRST  
XSDWN  
PWR_EN  
P00,P01,CLKIN  
SCL,SDA  
AD_EN,P02,P03  
XRST  
XSDWN  
PWR_EN  
P00,P01,CLKIN  
SCL,SDA  
AD_EN,P02,P03  
XRST  
XSDWN  
XSDWN  
PWR_EN  
P00,P01,CLKIN  
SCL,SDA  
AD_EN,P02,P03  
XRST  
Condition  
Min.  
0.8VBAT  
0.8VCC2  
0.8VCC2  
0.8VIN  
0.9VIN  
0.9VIN  
Typ.  
Max.  
VBAT  
VCC2  
VCC2  
VIN  
VIN  
VIN  
0.2VBAT  
0.2VCC2  
0.2VCC2  
0.2VIN  
0.1VIN  
0.1VIN  
Unit  
V
V
V
V
V
V
V
V
V
V
V
V
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
LOW-level input voltage  
HIGH -level input current  
0
0
0
0
0
0
VIH1=VBAT  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-0.5  
-4  
5
5
0
8
0
0
0
0
0
VIH2=VCC2  
VIH3=VCC2  
VIH4=VIN  
VIH5=VIN  
VIH6=VIN  
VIH6=0.8VIN  
VIL1=VSS  
VIL2=VSS  
VIL3=VSS  
VIL4=VSS  
0
-2.5  
7.5  
7.5  
-1  
10  
10  
0.5  
16  
16  
1.2  
3
LOW -level input current  
IIL4  
IIL5  
IIL6  
IOH1  
12  
12  
0.7  
2
VIL5=VSS  
VIL6=VSS  
VOH1=0.9VBAT  
8
0.2  
1
XSDWN  
HIGH -level output  
current  
WUP,nVCC_FLT,  
nBAT_FLT,nRESET  
P00,P01  
SDA  
P02,P03  
WUP,nVCC_FLT,  
nBAT_FLT,nRESET  
P00,P01  
SDA  
P02,P03  
IOH2  
IOH3  
IOH4  
IOL1  
VOH2=0.9VCC2  
VOH3=0.9VCC2  
VOH4=0.9VIN  
VOL1=0.1VBAT  
1
0
3
2
3
0.5  
6
mA  
µA  
mA  
mA  
4.5  
-2.5  
LOW -level output  
current  
-4  
-1  
IOL2  
IOL3  
IOL4  
VOL2=0.1VCC2  
VOL3=0.1VCC2  
VOL4=0.1VIN  
-4  
-30  
-8  
-2.5  
-15  
-6  
-1  
-5  
-4  
mA  
mA  
mA  
58  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
[Current consumption characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC1=VCC4=1.5V, VCC2=2.5V, VCC3=3.3V, Ta=25°C  
Parameter  
In Normal mode  
Symbol  
Condition  
IOUT1=1µA, IOUT2=1µA  
IOUT3=1µA, IOUT4=1µA  
IOUTB=1µA  
Min.  
Typ.  
2
Max.  
Unit  
mA  
Iexe  
3
CH-1,2,3: Main regulator turned ON  
IOUT2=1µA, IOUT3=1µA  
IOUTB=1µA  
CH-2,3: Main regulator turned ON  
IOUT2=1µA, IOUT3=1µA  
IOUTB=1µA  
In Sleep mode (1)  
In Sleep mode (2)  
In Deep Sleep mode  
Isleep1  
Isleep2  
Ids  
1.4  
100  
50  
2
mA  
µA  
µA  
130  
70  
CH-2,3: Main regulator turned OFF  
IOUTB=1µA  
[Miscellaneous characteristics]  
(Conditions applied unless otherwise specified)  
VIN=VIN1=VIN2=VIN3=4V, VSS=VSS1=VSS2=VSS3=0V, VBAK=3V,  
VCC1=VCC4=1.5V, VCC2=2.5V, VCC3=3.3V, VD1=2.2V, Ta=25°C  
Parameter  
BATT_VCC output  
voltage  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
VBAT  
IOUTB=1mA  
In Normal and Sleep modes  
In Deep Sleep mode  
VCC2  
VBAK  
2.80  
V
V
V
Input voltage abnormal  
detection voltage  
Built-in oscillator circuit  
frequency response  
Input frequency  
VSVD  
fOSH  
fCLK  
2.65  
0.8  
2.95  
1.2  
1
1
MHz  
MHz  
0.8  
1.2  
NOTES  
Use of the S1F81100 under conditions beyond the absolute maximum rating may cause malfunction or  
permanent damage to it. Although the S1F81100 may temporarily operate as intended, such use can  
significantly impair the reliability.  
The characteristics are not guaranteed if the S1F81100 is used outside the recommended operating range.  
Radiation-resistant design has not been provided for this chip.  
Although the S1F81100 is inherently short circuit proof, we recommend that you provide an overcurrent  
protection to enhance application safety.  
Rev.1.4  
EPSON  
59  
S1F81100 Technical Manual  
˜Examples of Main Characteristics (typical values)  
Current consumption vs. input voltage (Iexe) (Isleep1) (Isleep2) (Ids) (Istop)  
VIN (V)  
VIN (V)  
(
m
A)  
(mA)  
VIN (V)  
VIN (V)  
(mA)  
VIN (V)  
60  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Output voltage vs. input voltage (Light-Load mode)  
(CH-2/CH-3: For 2.5V output)  
CH2 input stability (LDO) @ sample No.1  
3
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VIN (V)  
(CH-2/CH-3: For 3.3V output)  
CH3 input stability (LDO) @ sample No.8  
4.00  
3.80  
3.60  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VIN (V)  
Rev.1.4  
EPSON  
61  
S1F81100 Technical Manual  
(CH-1/CH-4: For 1.1V output)  
CH4 input stability (LDO) @ sample No.1  
2.000  
1.800  
1.600  
1.400  
1.200  
1.000  
0.800  
0.600  
0.400  
0.200  
0.000  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VCC3 (V)  
62  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
˜Examples of Transient Response Characteristics (typical values)  
Output voltage rising waveform  
(CH-1: For 1.1V output)  
CH1 starting waveform 100mA load  
Ch1 cycle  
No cycle  
Ch1 frequency  
No cycle  
Load fluctuation  
(CH-1: For 1.1V output)  
Load response  
Load response  
250mA load --> No load  
No load --> 300mA load  
Ch1 cycle  
No cycle  
Ch 1 cycle  
Low resolution  
Ch 1 frequency  
Ch1frequency  
No cycle  
Low resolution  
No load  
No load  
L
I =300mA  
L
I =250mA  
(CH-2: For 2.5V output)  
Load response  
300mA load --> No load  
Load response  
No load --> 300mA  
Ch1 frequency  
Ch1 frequency  
Low resolution  
Insufficient  
amplitute  
No load  
L
I =300mA  
No load  
L
I =300mA  
Rev.1.4  
EPSON  
63  
S1F81100 Technical Manual  
Reference Data (typical values)  
Conversion efficiency vs. output current  
(CH-1: Conversion efficiency vs. load current)  
S1F81100 VCC1 efficiency v.s. Iload  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
at VCC1=0.8V  
at VCC1=1.2V  
at VCC1=1.5V  
0
100  
200  
300  
400  
500  
600  
700  
Iload [mA]  
[Measured Condition]  
VIN=3.6V, VSS=0V, Ta=25°C  
P-ch Power MOS (TP1): SANYO/CPH6315  
N-ch Power MOS (TN1): SANYO/CPH6415  
Schottky Diode (SD1): SANYO/SBS004  
Coil (CL1): SUMIDA/CR43-100  
Capacitor (CC1): NEC-TOKIN/ESVB20J107M  
64  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Conversion efficiency vs. output current  
(CH-2 and CH-3: Conversion efficiency vs. load current)  
S1F81100 VCCn efficiency v.s. Iload  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
at VCCn=3.3V  
at VCCn=2.5V  
0
200  
400  
600  
800  
1000  
1200  
Iload [mA]  
[Measured Condition]  
VIN=3.6V, VSS=0V, Ta=25°C  
P-ch Power MOS (TPn): SANYO/CPH6315  
N-ch Power MOS (TNn): SANYO/CPH6415  
Schottky Diode (SDn): SANYO/SBS004  
Coil (CLn): SUMIDA/CR54-100  
Capacitor (CCn): NEC-TOKIN/ESVB20J107M  
Note: n=2,3  
Rev.1.4  
EPSON  
65  
S1F81100 Technical Manual  
9. PACKAGE  
<QFP12-48>  
9±0.4  
7±0.1  
9±0.4  
36  
25  
37  
24  
INDEX  
48  
13  
1
12  
+0.1  
0.5  
0.18  
-0.05  
0.125±0.05  
0°  
10°  
0.5±0.2  
1
Unit: mm  
Fig.9.1 QFP12-48 Package  
66  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
<QFN7-48>  
7
6.75  
+0.18  
0.18  
0.42  
13  
24  
12  
25  
36  
1
48  
37  
0.5  
Fig.9.2 QFN7-48 Package  
Rev.1.4  
EPSON  
67  
S1F81100 Technical Manual  
10. PAD LAYOUT  
F8110D0**  
unit: mm  
Fig.10.1 Pad Layout  
68  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
Table 10.1 Pad Coordinates  
(Unit: µm)  
Pad #  
Pad Name  
X
Y
Pad #  
Pad Name  
X
Y
1
2
3
4
5
6
7
8
9
VBAK  
1336  
1557  
38 (DUMMY PAD)  
-926  
-1557  
(DUMMY PAD)  
BATT_VCC  
PWR_EN  
(DUMMY PAD)  
WUP  
nRESET  
nBAT_FLT  
nVCC_FLT  
587  
470  
356  
238  
124  
39 (DUMMY PAD)  
40 SW3OL  
41 (DUMMY PAD)  
42 VSS3  
43 VCC1  
44 VIN1  
45 (DUMMY PAD)  
46 SW1OH  
47 FB1M  
48 SW1OL  
49 (DUMMY PAD)  
50 VSS1  
51 (DUMMY PAD)  
52 SSCAP3  
53 SSCAP2  
54 SSCAP1  
55 (DUMMY PAD)  
-813  
-695  
-500  
-383  
-152  
-11  
127  
268  
410  
550  
663  
781  
894  
1012  
1128  
1243  
1520  
7
-107  
-224  
-338  
-453  
-571  
-684  
-807  
-1144  
-1289  
-1520  
10 (DUMMY PAD)  
11 P00  
12 P01  
13 (DUMMY PAD)  
14 SCL  
15 SDA  
16 (DUMMY PAD)  
17 XPOR(N.C.)  
18 (DUMMY PAD)  
1324  
1211  
-1321  
19 P02  
20 P03  
21 VCC2  
22 VIN2  
23 (DUMMY PAD)  
24 SW2OH  
25 FB2M  
26 SW2OL  
27 (DUMMY PAD)  
28 VSS2  
29 (DUMMY PAD)  
30 VCC3  
31 VIN3  
1071  
889  
405  
263  
126  
56 (DUMMY PAD)  
57 FB4  
58 VCC4  
-1203  
-1090  
-859  
-741  
-628  
-510  
-397  
-263  
-149  
-32  
82  
200  
340  
486  
627  
744  
858  
59 VIN  
60 (DUMMY PAD)  
61 (DUMMY PAD)  
62 (DUMMY PAD)  
63 XRST  
64 XTEST0  
65 XSDWN  
66 (DUMMY PAD)  
67 AD_EN  
68 TCLK(N.C.)  
69 CLKIN  
70 (DUMMY PAD)  
71 VSS  
72 TIREF(N.C.)  
-16  
-156  
-287  
-403  
-516  
-634  
-862  
-980  
-1093  
-1211  
-1324  
-1557  
32 (DUMMY PAD)  
33 (DUMMY PAD)  
34 SW3OH  
35 (DUMMY PAD)  
-1273  
-1160  
-1042  
36 (DUMMY PAD)  
37 FB3M  
73 VREF  
74 VD1  
975  
1440  
Rev.1.4  
EPSON  
69  
S1F81100 Technical Manual  
11. TERMINAL EQUIVALENT CIRCUIT  
S1F81100 I/O Terminal equivalent Circuit [Input]  
BATT_VCC BATT_VCC  
(PAD)  
(PAD)  
(PAD)  
PWR_EN  
VCC2  
VCC2  
SCL,CLKIN  
VIN  
VIN  
XRST,AD_EN  
XTEST0,XSDWN  
Fig.11.1(a) Terminal Equivalent Circuit  
70  
EPSON  
Rev.1.4  
S1F81100 Technical Manual  
S1F81100 I/O Terminal equivalent Circuit [Output]  
BATT_VCC (VCC2  
)
(PAD)  
S1F81100 I/O Terminal equivalent Circuit [I/O]  
V
CC2  
(CTRL)  
(PAD)  
P00,P01,SDA  
V
IN  
(CTRL)  
(PAD)  
P02,P03  
Fig.11.1(b) Terminal Equivalent Circuit  
Rev.1.4  
EPSON  
71  
S1F81100 Technical Manual  
APPENDIX SELECTION OF PWM CONTROLLER’S EXTERNAL  
COMPONENTS  
This section provides information regarding the selection of external components for the PWM controller to  
configure the switching regulators with respect to the CH-1, CH-2 and CH-3 in the S1F81100. Please use the  
information in this section as a basis of component selection.  
Note: For details of the specifications of the recommended components listed below, see their documents.  
Input capacitors (CP01, CP02, CP03)  
The key selection criteria for the input capacitors is their allowable ripple current values included in their  
specification values.  
First, the maximum load current on your application should be determined before selecting a capacitor with an  
allowable ripple current specification value that is at least equal to or greater than the determined maximum  
load current.  
Power MOS transistors (TP1, TP2, TP3, TN1, TN2, TN3)  
Select Power MOS transistors that have low on-resistance and small gate capacity for both P- and N-channels.  
Higher on-resistance means greater power loss in the power MOS transistors when the switching regulator in  
operation, which can impair conversion efficiency. The greater the gate capacity, the higher the charge and  
discharge power when the switching regulator in operation, which can also impair conversion efficiency.  
Schottky diodes (SD1, SD2, SD3)  
Select a Schottky diode that has forward current capability equal to or greater than the maximum load current  
value on your application or has a low forward voltage.  
Coils (inductors) (CL1, CL2, CL3)  
Select a coil with a low dc-resistance and a large rated current.  
Larger dc-resistance means greater power loss in the inductors when the switching regulator in operation, which  
can impair conversion efficiency.  
To prevent the inductors from being saturated, it is required to select a rated current that is far greater than the  
current value to use. If an inductor saturates, the ripple current increased, which may cause the outputs to  
become unstable. We, therefore, recommend that you select the rated current approximately twice the load  
current value on the application.  
The recommended inductance is 10 µH.  
Regulator output capacitors (CC1, CC2, CC3)  
For a regulator output capacitor, an aluminum or tantalum capacitor of approximately 100µF.  
Due to the internal circuit configurations, use of a low ESR capacitor may not ensure that the S1F81100  
provides normal voltage outputs. We, therefore, recommend that you select a capacitor that has approximately  
200 mof ESR. (To solve such output anomalies, an improved component is under development)  
Examples of Component Selection  
Type  
Maker  
SANYO  
HITACHI  
SANYO  
Model Number  
CPH6315  
HAT1043M  
CPH6415  
P-ch  
power MOS transistor  
N-ch  
power MOS transistor  
HITACHI  
HITACHI  
SANYO  
HAT2053M  
HRW0702A  
SBS004  
Schottky diode  
TOSHIBA  
SUMIDA  
CMS06  
Inductor  
CR43-100  
CR54-100  
CR75-100  
ESV20J107M  
Regulator output capacitor  
NEC TOKIN  
72  
EPSON  
Rev.1.4  
International Sales Operations  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
EPSON (CHINA) CO., LTD.  
HEADQUARTERS  
23F, Beijing Silver Tower 2# North RD DongSanHuan  
150 River Oaks Parkway  
ChaoYang District, Beijing, CHINA  
San Jose, CA 95134, U.S.A.  
Phone: 64106655  
FAX: 64107319  
Phone: +1-408-922-0200  
FAX: +1-408-922-0238  
SHANGHAI BRANCH  
SALES OFFICES  
West  
7F, High-Tech Bldg., 900, Yishan Road,  
Shanghai 200233, CHINA  
1960 E.Grand Avenue  
El Segundo, CA 90245, U.S.A.  
Phone: +1-310-955-5300  
Phone: 86-21-5423-5577  
FAX: 86-21-5423-4677  
FAX: +1-310-955-5400  
FAX: +1-815-455-7633  
FAX: +1-781-246-5443  
EPSON HONG KONG LTD.  
20/F., Harbour Centre, 25 Harbour Road  
Wanchai, Hong Kong  
Central  
101 Virginia Street, Suite 290  
Crystal Lake, IL 60014, U.S.A.  
Phone: +1-815-455-7630  
Phone: +852-2585-4600  
Telex: 65542 EPSCO HX  
FAX: +852-2827-4346  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
14F, No. 7, Song Ren Road,  
Northeast  
301 Edgewater Place, Suite 120  
Wakefield, MA 01880, U.S.A.  
Phone: +1-781-246-3600  
Taipei 110  
Phone: 02-8786-6688  
FAX: 02-8786-6660  
HSINCHU OFFICE  
Southeast  
13F-3, No. 295, Kuang-Fu Road, Sec. 2  
3010 Royal Blvd. South, Suite 170  
HsinChu 300  
Alpharetta, GA 30005, U.S.A.  
Phone: 03-573-9900  
FAX: 03-573-9169  
Phone: +1-877-EEA-0020  
FAX: +1-770-777-2637  
EPSON SINGAPORE PTE., LTD.  
No. 1 Temasek Avenue, #36-00  
EUROPE  
EPSON EUROPE ELECTRONICS GmbH  
HEADQUARTERS  
Millenia Tower, SINGAPORE 039192  
Phone: +65-6337-7911  
FAX: +65-6334-2716  
Riesstrasse 15  
SEIKO EPSON CORPORATION  
KOREA OFFICE  
50F, KLI 63 Bldg., 60 Yoido-dong  
80992 Munich, GERMANY  
Phone: +49-(0)89-14005-0  
FAX: +49-(0)89-14005-110  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
DÜSSELDORF BRANCH OFFICE  
Altstadtstrasse 176  
Phone: 02-784-6027  
FAX: 02-767-3677  
51379 Leverkusen, GERMANY  
GUMI OFFICE  
6F, Good Morning Securities Bldg., 56 Songjeong-Dong,  
Phone: +49-(0)2171-5045-0  
FAX: +49-(0)2171-5045-10  
Gumi-City, Seoul, 730-090, KOREA  
UK & IRELAND BRANCH OFFICE  
Unit 2.4, Doncastle House, Doncastle Road  
Bracknell, Berkshire RG12 8PE, ENGLAND  
Phone: 054-454-6027  
- JAPAN -  
FAX: 054-454-6093  
SEIKO EPSON CORPORATION  
Phone: +44-(0)1344-381700  
FAX: +44-(0)1344-381701  
ELECTRONIC DEVICES MARKETING DIVISION  
FRENCH BRANCH OFFICE  
1 Avenue de lAtlantique, LP 915 Les Conquerants  
IC Marketing Department  
IC Marketing & Engineering Group  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE  
Phone: +33-(0)1-64862350  
FAX: +33-(0)1-64862355  
Phone: +81-(0)42-587-5816  
FAX: +81-(0)42-587-5624  
BARCELONA BRANCH OFFICE  
Barcelona Design Center  
Edificio Testa, Avda. Alcalde Barrils num. 64-68  
ED International Marketing Department  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-(0)42-587-5814  
FAX: +81-(0)42-587-5117  
E-08190 Sant Cugat del Vallès, SPAIN  
Phone: +34-93-544-2490  
FAX: +34-93-544-2491  
Scotland Design Center  
Integration House, The Alba Campus  
Livingston West Lothian, EH54 7EG, SCOTLAND  
Phone: +44-1506-605040  
FAX: +44-1506-605041  
S1F81100  
Technical Manual  
SEIKO EPSON CORPORATION  
ELECTRONIC DEVICES MARKETING DIVISION  
EPSON Electronic Devices Website  
http://www.epsondevice.com/  
First issue September, 2002  
H
Printed March, 2003 in Japan  
A

相关型号:

S1F81100F00A099

SWITCHING CONTROLLER, 1200kHz SWITCHING FREQ-MAX, PQFP48, 4 X 4 MM, QFP12-48
SEIKO

S1F81100F0E1000

1A SWITCHING CONTROLLER, 1200kHz SWITCHING FREQ-MAX, PQFP48, QFP-48
SEIKO

S1F81100F5E1000

Switching Controller, 1A, 1200kHz Switching Freq-Max, QFN-48
SEIKO

S1F81100F5F0000

Switching Controller, 1A, 1200kHz Switching Freq-Max, QFN-48
SEIKO

S1F81100F5R1000

SWITCHING REGULATOR, 1200kHz SWITCHING FREQ-MAX, QCC48, QFN-48
SEIKO

S1F81150F0A2000

1A SWITCHING CONTROLLER, PQFP48, QFP-48
SEIKO

S1F81150F0C0000

1A SWITCHING CONTROLLER, PQFP48, QFP-48
SEIKO

S1F81150F5A2000

1A SWITCHING CONTROLLER, PQCC48, QFN-48
SEIKO

S1F81150F5C0000

1A SWITCHING CONTROLLER, QCC48, QFN-48
SEIKO

S1F81210M0B

SWITCHING REGULATOR, 1100kHz SWITCHING FREQ-MAX, PDSO6, SON-6
SEIKO

S1F81210Y0A

0.5A SWITCHING REGULATOR, 1100kHz SWITCHING FREQ-MAX, PDSO5, SOT-23, 5 PIN
SEIKO

S1F81300M0A

SWITCHED CAPACITOR REGULATOR, 550kHz SWITCHING FREQ-MAX, PDSO10, SON-10
SEIKO