SED1221DXA [SEIKO]

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC165, DIE-165;
SED1221DXA
型号: SED1221DXA
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC165, DIE-165

CD
文件: 总50页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SED1220  
• Built-in CR oscillation circuit (C and R contained)  
• Accepts external clock input  
• High-speed MPU interface  
Affords interface with both 68/80 system MPUs  
Affords interface through 4 bits and 8 bits  
• Affords serial interface  
OVERVIEW  
SED1220 is a dot matrix LCD controller/driver for  
character display. Using 4bits data, 8bits data or serial  
data being provided from the micro computer, it displays  
up to 36 characters, 4 user defined characters and up to  
120 symbols.  
Up to 256 types of built-in character generator ROMs are  
prepared. Each character font is consisted of 5 × 8 dots.  
It also contains the RAM for displaying 4 user defined  
characters each font consisting of 5 × 8 dots. It is symbol  
register allows character display with high degree of  
freedom. This handy equipment can be operated with  
minimum power consumption with its low power  
consumption design, standby and sleeping mode.  
• Character font consists of 5 × 8 dots  
1
• Duty ratio  
1/26 (SED1220D**)  
1/18 (SED1221D**, SED1222D**)  
2
• Simplified command setting  
• Built-in power circuit for driving liquid crystal  
Power amplifier circuit, power regulation circuit and  
voltage followers × 4  
• Built-in electronic volume function  
• Low power consumption  
80 µA max.  
(In normal operation, including  
operating current of the power  
supply).  
(In standby mode for displaying  
static icon).  
FEATURES  
• Built-in data display RAM – 36 characters + 4 user  
defined characters + 120 symbols.  
• CG ROM (For up to 256 characters), CG RAM (for 4  
characters) and symbol register (for 120 symbols).  
• No. of display digit and lines  
20 µA max.  
5 µA max.  
(In sleeping mode when display  
is turned off).  
< In normal mode >  
(12 digits + 4 segments for signal) × 3 lines + 120  
• Power supply  
1
VDD - VSS  
VDD - V5  
–2.4 V ~ –3.6 V  
–4.0 V ~ – 6.0 V  
symbols + 5 static symbols (SED1220D**)  
(12 digits + 4 segments for signal) × 2 lines + 120  
2
• Temperature range for wide range operation  
Ta = –30 ~ 85°C  
• CMOS process  
symbols + 5 static symbols (SED1221D**)  
12 digits × 2 lines + 120 symbols + 5 static symbols  
3
(SED1222D**  
(12 digits + 4 segments for signal) × 2 lines + 120  
symbols + 10 static symbols (SED122AD**)  
< In standby mode >  
5 static symbols  
5 static symbols  
5 static symbols  
10 static symbols  
)
• Shipping style  
4
Chip (Al pad product)  
Chip (Au bump product)  
TCP  
SED1222D*A  
SED122 D*B  
*
SED122 T**  
*
1
• This unit does not employ radiation protection design  
2
3
4
EPSON  
4–1  
SED1220  
BLOCK DIAGRAM  
LCD power circuit  
Oscillator  
Timing generatinon circuit  
Refresh address counter  
DD RAM  
symbol  
register  
CG ROM  
CG RAM  
Address counter  
Input buffer  
MPU interface  
4–2  
EPSON  
SED1220  
CHIP SPECIFICATION  
SED1220D /1221D /122AD  
**  
**  
**  
146  
74  
73  
147  
63  
62  
56  
55  
165  
54  
1
:DUMY PAD  
:PAD  
SED122 D**  
*
Digits prepared for CGROM pattern changes  
Chip size:  
Pad pitch:  
7.70 × 2.77 mm  
100 µm (Minimum)  
Chip thickness (for reference): 625 ± 25 µm (SED122 D*A)  
*
(SED122 D*B)  
*
1) A1 pad specifications  
Pad size on Y side:  
75 µm × 135 µm  
135 µm × 75 µm  
Pad size on X side:  
2) Au bump specifications  
Bump size on Y side:  
Bump size on X side:  
Bump height (for reference)  
69 µm × 129 µm  
129 µm × 69 µm  
22.5 µm ± 5.5 µm  
<Fuse Pines>  
1) Al pad. pad size  
2) Au bump  
Bump size  
86 µm × 75 µm  
80 µm × 69 µm  
EPSON  
4–3  
SED1220  
SED1222D  
**  
108  
52  
. . . . . . . . .  
109  
51  
y
41  
40  
x
Top View  
34  
33  
125  
. . .  
. . . . . . . . .  
. . .  
12  
27  
1
11  
28  
32  
: PAD  
SED1222D**  
Digits prepared for CGROM pattern changes  
Chip size:  
Pad pitch:  
7.70 × 2.77 mm  
124 µm (Minimum)  
Chip thickness (for reference): 625 ± 50 µm (SED1222D*A)  
1) A1 pad specifications  
Pad size on Y side:  
90 µm × 96 µm  
96 µm × 90 µm (PAD. No. 1 ~ 11, 28 ~ 32, 52 ~ 108)  
175 µm ×135 µm (PAD. No. 12 ~ 27)  
Pad size on X side:  
<Fuse Pines>  
1) Al pad. pad size  
86 µm × 75 µm  
4–4  
EPSON  
SED1220  
<SED1220D /1221D >  
** **  
Unit: µm  
PAD  
COORDINATES  
PAD  
COORDINATES  
No.  
Name  
X
Y
No.  
Name  
X
Y
1
2
3
4
5
6
7
8
9
NC  
NC  
NC  
A0  
WR  
CS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
–3700  
–3600  
–3500  
–3252  
–3132  
–3012  
–2892  
–2772  
–2652  
–2532  
–2412  
–2292  
–2172  
–2052  
–1836  
–1736  
–1556  
–1456  
–1276  
–1176  
–996  
–896  
–716  
–616  
–436  
–336  
–156  
–56  
–1204  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
VDD  
(FSA)  
(FSB)  
(FSC)  
(FS0)  
(FS1)  
(FS2)  
(FS3)  
VDD  
COMSA  
COMS1  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
NC  
NC  
NC  
SEGS1  
SEGS2  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
3670  
3603  
–910  
–796  
–696  
–596  
–496  
–396  
–296  
–196  
–82  
61  
203  
303  
403  
503  
603  
703  
803  
903  
1003  
1204  
3603  
3670  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
D0  
VDD  
VDD  
VSS  
VSS  
V5  
V5  
V4  
V4  
V3  
V3  
V2  
V2  
V1  
V1  
V0  
V0  
VR  
VR  
VOUT  
VOUT  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
CAP1–  
CAP1–  
CAP1+  
CAP1+  
VSS  
VSS  
VDD  
VDD  
CK  
VS1  
P/S  
I/F  
RES  
NC  
NC  
NC  
3670  
3700  
3600  
3500  
3319  
3219  
3119  
3019  
2919  
2819  
2719  
2619  
2519  
2419  
2319  
2219  
2119  
2019  
1919  
1819  
1719  
1619  
1519  
1419  
1319  
1219  
1119  
1019  
919  
124  
224  
404  
504  
684  
784  
964  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
1064  
1244  
1344  
1524  
1624  
1804  
1904  
2084  
2184  
2364  
2464  
2693  
2821  
2949  
3077  
3205  
3500  
3600  
3700  
100  
101  
102  
103  
104  
105  
106  
107  
108  
819  
719  
619  
519  
419  
319  
219  
–1204  
1204  
(FS*)  
: Being fuse adjusting pins, maintain them on floating state.  
CK pins : Should be VDD when not being used.  
EPSON  
4–5  
SED1220  
PAD  
COORDINATES  
No.  
109  
Name  
X
Y
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEGS4  
SEGS5  
COM24  
COM23  
COM22  
NC  
119  
19  
–81  
–181  
–281  
–381  
–481  
–581  
–681  
1204  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
–781  
–881  
–981  
–1081  
–1181  
–1281  
–1381  
–1481  
–1581  
–1681  
–1781  
–1881  
–1981  
–2081  
–2181  
–2281  
–2381  
–2481  
–2581  
–2681  
–2781  
–2881  
–2981  
–3081  
–3181  
–3281  
–3500  
–3600  
–3700  
–3670  
NC  
NC  
1204  
1000  
900  
800  
700  
600  
500  
400  
300  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COMS2  
SEGSA  
SEGSB  
SEGSC  
SEGSD  
SEGSE  
200  
100  
0
–100  
–200  
–300  
–433  
–533  
–633  
–733  
–833  
–3670  
4–6  
EPSON  
SED1220  
<SED1222D >  
**  
Unit: µm  
PAD  
COORDINATES  
PAD  
COORDINATES  
No.  
Name  
X
Y
No.  
Name  
X
Y
1
2
3
4
5
6
7
8
9
A0  
WR  
CS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VDD  
VSS  
V5  
V4  
V3  
V2  
V1  
V0  
VR  
VOUT  
CAP2–  
CAP2+  
CAP1–  
CAP1+  
VSS  
VDD  
CK  
VS1  
P/S  
I/F  
RES  
VDD  
(FSA)  
(FSB)  
(FSC)  
(FS0)  
(FS1)  
(FS2)  
(FS3)  
VDD  
COMSA  
COMS1  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
SEG1  
SEG2  
SEG3  
–3312  
–3180  
–3048  
–2916  
–2784  
–2652  
–2520  
–2388  
–2256  
–2124  
–1992  
–1786  
–1506  
–1226  
–946  
–666  
–386  
–106  
174  
–1228  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
3100  
2976  
2852  
2728  
2604  
2480  
2356  
2232  
2108  
1984  
1860  
1736  
1612  
1488  
1364  
1240  
1116  
992  
1228  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
–1228  
–1204  
868  
744  
620  
496  
372  
248  
124  
454  
734  
1014  
1294  
1574  
1854  
2134  
2414  
2692  
2836  
2980  
3124  
3268  
3694  
3603  
0
–1204  
–1228  
–124  
–248  
–372  
–496  
–620  
–744  
–868  
–992  
–1116  
–1240  
–1364  
–1488  
–1612  
–1736  
–1860  
–1984  
–2108  
–2232  
–2356  
–2480  
–2604  
–2728  
–2852  
–2976  
–3100  
–3224  
–3348  
–3472  
–1228  
–919  
–796  
–696  
–596  
–496  
–396  
–296  
–196  
–73  
63  
199  
323  
447  
571  
695  
819  
943  
1067  
1191  
1228  
1228  
1228  
3603  
3694  
100  
101  
102  
103  
104  
105  
106  
107  
108  
3694  
3472  
3348  
3224  
1228  
(FS*)  
: Being fuse adjusting pins, maintain them on floating state.  
CK pins : Should be VDD when not being used.  
EPSON  
4–7  
SED1220  
PAD  
COORDINATES  
No.  
109  
Name  
X
Y
SEG58  
SEG59  
SEG60  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COMS2  
SEGSA  
SEGSB  
SEGSC  
SEGSD  
SEGSE  
–3694  
1191  
1067  
943  
819  
695  
571  
447  
323  
119  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
75  
–49  
–173  
–335  
–459  
–583  
–707  
–831  
–3694  
4–8  
EPSON  
SED1220  
<SED122AD >  
**  
Unit: µm  
PAD  
COORDINATES  
PAD  
COORDINATES  
No.  
Name  
X
Y
No.  
Name  
X
Y
1
2
3
4
5
6
7
8
9
NC  
NC  
NC  
A0  
WR  
CS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
–3700  
–3600  
–3500  
–3252  
–3132  
–3012  
–2892  
–2772  
–2652  
–2532  
–2412  
–2292  
–2172  
–2052  
–1836  
–1736  
–1556  
–1456  
–1276  
–1176  
–996  
–896  
–716  
–616  
–436  
–336  
–156  
–56  
–1204  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
VDD  
(FSA)  
(FSB)  
(FSC)  
(FS0)  
(FS1)  
(FS2)  
(FS3)  
VDD  
COMSA  
COMS1  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
NC  
NC  
NC  
SEGS1  
SEGS2  
SEG1  
SEG2  
SEG3  
SEG4  
SEG5  
3670  
3603  
–910  
–796  
–696  
–596  
–496  
–396  
–296  
–196  
–82  
61  
203  
303  
403  
503  
603  
703  
803  
903  
1003  
1204  
3603  
3670  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
D0  
VDD  
VDD  
VSS  
VSS  
V5  
V5  
V4  
V4  
V3  
V3  
V2  
V2  
V1  
V1  
V0  
V0  
VR  
VR  
VOUT  
VOUT  
CAP2–  
CAP2–  
CAP2+  
CAP2+  
CAP1–  
CAP1–  
CAP1+  
CAP1+  
VSS  
VSS  
VDD  
VDD  
CK  
VS1  
P/S  
I/F  
RES  
NC  
NC  
NC  
3670  
3700  
3600  
3500  
3319  
3219  
3119  
3019  
2919  
2819  
2719  
2619  
2519  
2419  
2319  
2219  
2119  
2019  
1919  
1819  
1719  
1619  
1519  
1419  
1319  
1219  
1119  
1019  
919  
124  
224  
404  
504  
684  
784  
964  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
1064  
1244  
1344  
1524  
1624  
1804  
1904  
2084  
2184  
2364  
2464  
2693  
2821  
2949  
3077  
3205  
3500  
3600  
3700  
100  
101  
102  
103  
104  
105  
106  
107  
108  
819  
719  
619  
519  
419  
319  
219  
–1204  
1204  
(FS*)  
: This is a fuse adjusting terminal. Set it to floating state.  
CK pins : Set it to VDD when not used.  
EPSON  
4–9  
SED1220  
PAD  
COORDINATES  
No.  
109  
Name  
X
Y
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
SEG60  
SEGS4  
SEGS5  
NC  
119  
19  
–81  
–181  
–281  
–381  
–481  
–581  
–681  
1204  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
–781  
–881  
–981  
–1081  
–1181  
–1281  
–1381  
–1481  
–1581  
–1681  
–1781  
–1881  
–1981  
–2081  
–2181  
–2281  
–2381  
–2481  
–2581  
–2681  
–2781  
–2881  
–2981  
–3081  
–3181  
–3281  
–3500  
–3600  
–3700  
–3670  
NC  
NC  
NC  
NC  
NC  
1204  
1000  
900  
800  
700  
600  
500  
400  
300  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
COMS2  
SEGSA  
SEGSB  
SEGSC  
SEGSD  
SEGSE  
SEGSF  
SEGSG  
SEGSH  
SEGSI  
SEGSJ  
200  
67  
–33  
–133  
–233  
–333  
–433  
–533  
–633  
–733  
–833  
–3670  
4–10  
EPSON  
SED1220  
Q’ty  
DESCRIPTION OF PINS  
Power Pins  
Pin name  
VDD  
I/O  
Description  
Power supply Connected to logic supply. Common with MPU power terminal VCC.  
Power supply 0V power terminal connected to system ground.  
Power supply Multi-level power supply for liquid crystal drive.  
The voltage determined in the liquid crystal cell is resistance-  
divided or impedance-converted by operational amplifier, and the  
resultant voltage is applied.  
1
1
6
VSS  
V0, V1  
V2, V3  
V4, V5  
The potential is determined on the basis of VDD and the following  
equation must be respected.  
VDD = V0 V1 V2 V3 V4 V5  
VDD VSS V5 VOUT  
When the built-in power supply is ON, the following voltages are  
given to pins V1 to V4 by built-in power circuit:  
V1 = 1/5 V5  
V2 = 2/5 V5  
V3 = 3/5 V5  
V4 = 4/5 V5  
(1/4 V5)  
(2/4 V5)  
(3/4 V5)  
(4/4 V5) voltage ratings in ( ) are for optinal choices.  
VS1  
O
Power supply voltage output pin for oscillating circuit, and DC/DC  
source. Don’t connect this pin to an external load.  
1
LCD Power Circuit Pins  
Pin name  
I/O  
Description  
Q’ty  
CAP1+  
O
Capacitor positive side connecting pin for boosting.  
This pin connects the capacitor with pin CAP1–.  
Capacitor negative side connecting pin for boosting.  
This pin connects a capacitor with pin CAP+.  
Capacitor positive side connecting pin for boosting.  
This pin connects a capacitor with pin CAP2–.  
Capacitor negative side connecting pin for boosting.  
This pin connects a capacitor with pin CAP2+.  
Output pin for boosting. This pin connects a smoothing capacitor  
with VDD pin.  
1
CAP1–  
CAP2+  
CAP2–  
VOUT  
O
O
O
O
I
1
1
1
1
1
VR  
Voltage regulating pin. This pin gives a voltage between VDD and  
V5 by resistance-division of voltage.  
EPSON  
4–11  
SED1220  
Pins for System Bus Connection  
Pin name  
D7 (SI)  
D6 (SCL)  
D5 ~ D0  
I/O  
I
Description  
Q’ty  
8
8-bit input data bus. These pins are connected to a 8-bit or 16-bit  
standard MPU data bus.  
When P/S = “Low”, the D7 and D6 pins are operated as a serial data  
input and a serial clock input respectively.  
P/S RES I/F D7 D6 D5 D4  
“L” SI SCL  
“H” “H” “H” D7 D6 D5 D4  
“H” “L” “H” D7 D6 D5 D4  
“H” “L” “L” D7 D6 D5 D4  
RES: Indicates the active potential.  
D3-D0  
OPEN  
D3-D0  
D3-D0  
OPEN  
CS A0 WR  
CS A0  
CS A0  
E
CS A0 WR  
CS A0 WR  
OPEN:Though “OPEN” is available, fixing the potential is  
recommended for noise-withstnading characteristical reason.  
Indicates that it can be set at either “H” or “L”, but fixing the  
potential is required.  
—:  
A0  
I
I
Usually, this pin connects the least significant bit of the MPU address  
bus and identifies a data command.  
0 : Indicates that D0 to D7 are a command.  
1 : Indicates that D0 to D7 are display data.  
In case of a 68 series MPU, initialization can be performed by  
1
1
RES  
changing RES  
initialization can be performed by changing  
. In case of an 80 series MPU,  
.
A reset operation is performed by edge sensing of the RES signal.  
An interface type for the 68/80 series MPU is selected by input level  
after initialization.  
“L” : 68 series MPU interface  
“H” : 80 series MPU interface  
CS  
I
I
Chip select signal. Usually, this pin inputs the signal obtained by  
decoding an address bus signal. At the “Low” level, this pin is  
enabled.  
1
1
WR  
(E)  
<When connecting an 80 series MPU>  
Active “Low”. This pin connects the WR signal of the 80 series  
MPU. The signal on the data bus is fetched at the rise of the WR  
signal.  
<When connecting a 68 series MPU>  
Active “High”. This pin becomes an enable clock input of the 68  
series MPU.  
P/S  
I
This pin switches between serial data input and parallel data input.  
1
P/S  
“High”  
“Low”  
Chip Select Data/Command  
Data  
D0~D7  
SI  
Serial Clock  
CS  
CS  
A0  
A0  
SCL  
IF  
I
I
Interface data length select pin for parallel data input.  
“High”: 8-bit parallel input  
“Low”: 4-bit parallel input  
When P/S = “Low”, connect this pin to VDD or VSS.  
External input terminal  
1
1
CK  
It must be fixed to “High” when the internal oscillation circuit is used.  
4–12  
EPSON  
SED1220  
Liquid Crystal Drive Circuit Signals  
Dynamic drive terminal (SED1220D**/1221D**/122AD**)  
Pin name  
COM1~  
COM24  
COMS1,  
CMOS2  
SEG1~  
SEG60  
SEGS1, 2  
4, 5  
I/O  
Description  
Q’ty  
O
Common signal output pin (for characters)  
24  
Common signal output pin (except for characters)  
CMOS1, CMOS2: Common output for symbol display  
O
O
O
2
60  
4
Segment signal output pin (for characters)  
Segment signal output pin (except for characters)  
SEGS1, SEGS2: Segment output for signal output  
Dynamic drive terminal (SED1222D**)  
Pin name  
COM1~  
COM16  
COMS1,  
CMOS2  
SEG1~  
I/O  
Description  
Q’ty  
O
Common signal output pin (for characters)  
16  
Common signal output pin (except for characters)  
CMOS1, CMOS2: Common output for symbol display  
O
O
2
Segment signal output pin (for characters)  
60  
SEG60  
Static drive terminal  
Pin name  
COMSA  
I/O  
O
Description  
Common signal output pin (for icon)  
Q’ty  
1
SEGSA, B  
C, D, E  
F, G, H, I, J  
Segment signal output pin (for icon)  
SEGSF, G, H, I, J (only SED122A)  
5 to  
10  
O
Note: For the electrode of liquid crystal display panel to be connected to the static drive terminal, we recommend  
you to use a pattern in which it is separated from the electrode connected to the dynamic drive terminal.  
When this pattern is too close to the other electrode, both the liquid crystal display and electrode will be  
deteriorated.  
EPSON  
4–13  
SED1220  
FUNCTIONAL DESCRIPTION  
MPU Interface  
Selection of interface type  
In the SED1220 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting  
“High” or “Low” as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.  
Table 1  
P/S  
“High” Parallel Input  
“Low” Serial Input  
Type  
CS  
CS  
CS  
A0  
A0  
A0  
WR  
WR  
H, L  
SI  
SI  
SCL  
D0~D7  
D0~D7  
SCL  
Parallel Input  
In the SED1220 Series, when parallel input is selected (P/S = “High”), it can be directly connected to the 80 series MPU  
bus or 68 series MPU bus, as shown in Table 2, if either “High” or “Low” is selected as RES pin polarity after a reset input,  
because the RES pin has an MPU select function.  
Selection between 8 bits and 4 bits is performed by command.  
Table 2  
RES input polarity  
Type  
68 series  
80 series  
A0  
A0  
A0  
WR  
E
WR  
CS  
CS  
CS  
D0~D7  
D0~D7  
D0~D7  
active  
active  
Interface with 4-bit MPU interface  
When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.  
CS  
WR  
D7 to D4  
Upper (D7 to D4)  
Lower (D3 to D0)  
Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then  
perform writing.  
Serial interface (P/S = “Low”)  
The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled  
in the ship selected status (CS = “Low”).  
When no chip is selected, the shift register and counter are reset to the initial status.  
Serial data is input in the order of D7, D6 .... D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL).  
At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed.  
The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = “High”,  
it is regarded as display data. When A0 = “Low”, it is regarded as a command.  
The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection.  
Fig. 1 shows a timing chart of the serial interface.  
Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length.  
We recommend the user to perform an operation check with a real machine.  
We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.  
4–14  
EPSON  
SED1220  
CS  
SI  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
SCL  
A0  
1
2
3
4
5
6
7
8
9
Fig. 1  
Identification of data bus signals  
The SED1220 series identifies data bus signals, as shown in Table 3, by combinations of A0 and WR (E).  
Table 3  
Common  
68 series  
80 series  
Function  
A0  
1
0
E
1
1
WR  
0
0
Writing to RAM and symbol register  
Writing to internal register (command)  
Chip select  
The SED1220 series has a chip select pin (CS). Only when CS = “Low”, MPU interfacing is enabled.  
In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface  
is selected, the shift register and counter are reset.  
However, the Reset signal is input regardless of the CS status.  
Power Circuit  
This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive.  
The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.  
The power circuit incorporated in the SED1220 Series is set for a small-scale liquid crystal panel, so that its display quality  
may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity.  
In this case, an external power supply must be used.  
A power circuit function can be selected by power control command. With this, an external power supply and a part of  
the internal power supply can be used together.  
Amplifying  
circuit  
Voltage regulat-  
Voltage  
follower  
External  
voltage input  
Amplifying  
system pin  
Per specification  
OPEN  
ing circuit  
×
×
×
×
VOUT  
Note 1  
Note 2  
Note 3  
V5 = VOUT  
V1, V2, V3, V4, V5  
OPEN  
OPEN  
×
×
Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open  
and give a liquid crystal drive voltage to the VOUT pin from the outside.  
Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins  
open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.  
Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and  
V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.  
EPSON  
4–15  
SED1220  
Voltage Tripler Circuit  
If capacitors are connected between CAP+1 – CAP–1  
and CAP2+,CAP2– and VSS VOUT, VDD– VSS potential  
is negatively tripled and generated at VOUT terminal.  
When the voltage is boosted double, open CAP2+ and  
connect CAP2– to VOUT terminal.  
At this time, the oscillating circuit must be operating  
since the amplifying circuit utilize the signal from the  
oscillation output.  
VDD=0V  
VDD=0V  
=
=
VS1 -2V  
V
S1 -2V  
V
OUT=VS1=-4V  
=
OUT=3VS1 -6V  
V
Potential relationship of amplified voltage  
Voltage regulating circuit  
Amplified voltage generated at VOUT outputs liquid crystal drive voltage V5 through the voltage regulation circuit.V5  
1
voltage can be obtained from the expression below by adjusting the resistors Ra and Rb within the range of  
V5<VOUT.calculated by the following formula:  
V0  
VDD  
V5 = (1 + Rb) • VREG  
Ra  
..............................  
1
VREG  
R1  
Where, VREG is the constant power supply within IC.  
+
=
VREG is maintained constantly at VREG 2.0V.  
Ra  
V5  
Voltage regulation of V5 output is done by connecting to  
a variable register between VR, VDD and V5. It is  
recommended to combine fixed registers R1 and R3 with  
variable resistor R2 for fine adjustment of V5 voltage.  
VR  
R2  
-
R3  
Rb  
[Sample setting on R1, R2 and R3]  
• R1 + R2 + R3 = 1.2 M ohm (decided from the current  
value I05 passed between VDD – V5. Where, I055 µA  
is supposed).  
R1 = 400KΩ  
R2 = 200KΩ  
R3 = 600KΩ  
• Variable voltage range provided by R2 is from –4V to  
–6V (to be decided considering charecteristics of the  
liquid crystal).  
The voltage regulation circuit outputs VREG with the  
temperature gradient of approximately –0.04%/°C.  
Since VR terminal has high input impedance, anti-noise  
measures must be considered including use of shortened  
wiring distance and shield wire.  
• Since VREG = 2.0V, if the electronic volume register is  
set at (0, 0, 0, 0, 0), followings are derived from above  
1
conditions and expression  
:
4–16  
EPSON  
SED1220  
Voltage Regulation Circuit Using Electronic Volume  
Function  
The electronic volume function allows to control the  
liquid crystal drive voltage V5 with the commands and  
thus to adjust density of the liquid crystal display.  
Liquid crystal drive voltage V5 can have one of 32  
voltage values if 5-bit data is set to the electronic volume  
register.  
When using the electronic volume function, you need to  
turn the voltage regulation circuit on using the supply  
control command.  
[Sample constants setting when electronic volume function is used]  
V
0
...............................  
V5 = (1 + Rb ) • VEV  
Ra  
2
V
DD  
n
α
Where VEV = VREG α  
α = VREG / 150  
Ra  
V
REG  
α
V
EV  
0
+
-
V
5
V
R
Rb  
No. Electronic volume register  
a
V5  
0
1
2
3
(0, 0, 0, 0, 0)  
(0, 0, 0, 0, 1)  
(0, 0, 0, 1, 0)  
(0, 0, 0, 1, 1)  
0
1α  
2α  
3α  
Large  
30  
31  
(1, 1, 1, 1, 0)  
(1, 1, 1, 1, 1)  
(n-1)α  
nα  
Small  
When the electronic volume function is not used, select (0, 0, 0, 0, 0) for the electronic volume register.  
EPSON  
4–17  
SED1220  
Liquid crystal voltage generating circuit  
V5 potential is resistive divided within IC to produce V1,  
V2, V3 and V4 potentials required for driving the liquid  
crystal. V1, V2, V3 and V4 potentials are then subject to  
impedance conversion and provided to the liquid crystal  
drive circuit.  
The liquid crystal drive voltage is fixed to 1/5 (1/4) bias.  
The liquid crystal power terminals V1 – V5 must be  
externally connected with the voltage regulating capacitor  
C2.  
When a built-in supply is used  
When voltage is doubled  
When voltage is tripled  
V
SS  
VSS  
C1  
CAP1+  
CAP1–  
CAP1+  
CAP1–  
C1  
C1  
R3  
CAP2+  
CAP2–  
CAP2–  
V
C1  
C1  
OUT  
VOUT  
R3  
R1  
V
V
5
V5  
R2  
R2  
R
VR  
R1  
V
DD, V0  
V
DD, V0  
SED1220D✽  
SED1220D✽  
C2  
C2  
C2  
C2  
C2  
C2  
V
V
V
V
V
V
1
V
V
V
V
V
V
1
C2  
C2  
C2  
C2  
C2  
2
2
3
3
4
4
5
5
S1  
S1  
C1  
Reference setting values: C1: 0.1 - 4.7 µF We recommend the user to set the optimum values to capacitors C1  
C2: 0.1 µF  
and C2 according to the panel size watching the liquid crystal display  
and drive waveforms.  
4–18  
EPSON  
SED1220  
Example 2: When using the built-in power source  
(VC, VF, P) = (1, 1, 0)  
Example 3: When using the built-in power source  
(VC, VF, P) = (0, 1, 0)  
SED1220D  
SED1220D  
**  
**  
V
SS  
V
SS  
V
SS  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
CAP1+  
CAP1-  
CAP2+  
CAP2-  
V
OUT  
V
OUT  
External  
power  
source  
R
3
1
V
V
5
V
V
5
External  
power  
R2  
R
R
source  
R
V
DD, V0  
V
DD, V0  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
C2  
V
V
V
V
V
V
1
V
V
V
V
V
V
1
2
2
3
3
4
5
4
5
S1  
S1  
Reference setting values: C1: 0.47 - 4.7 µF We suggest you to determine the most appropriate capacitance values,  
C2: 0.1 - 4.7 µF fitting to the panel size, for respective capacitors C1 and C2 in consideration  
of the liquid crystal display and drive waveforms.  
When a built-in supply is used  
VSS  
CAP1+  
CAP1–  
VOUT  
V5  
VR  
VDD, VDD  
SED1220D✽  
V1  
V2  
V3  
V4  
V5  
External  
power  
supply  
EPSON  
4–19  
SED1220  
Low Power Consumption Mode  
Reset Circuit  
SED1220 is provided with standby mode and sleep mode  
for saving power consumption during standby period.  
Upon activation of the RES input, this LSI will be  
initialized.  
Standby Mode  
Initial State  
Switching between on and off of the standby mode is  
done using the power save command.  
In the standby mode, only static icon is displayed.  
1. Liquid crystal display output  
1. Display on/off control  
C = 0  
B = 0  
D = 0  
: Cursor off  
: Blink off  
: Display off  
COM1 ~ COM24, COMS1, COMS2 : VDD level  
2. Power save  
O = 0  
SEG1 ~ SEG60, SEGS1, 2, 4, 5  
: VDD level  
: Oscillation off  
: Power save off  
SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be  
PS = 0  
turned on by static drives.  
3. Supply control  
VC = 0  
VF = 0  
P = 0  
4. System setting  
Use the static icon RAM for controlling the static  
icon display done with SEGSA, B, C, D, E, COMSA.  
2. DD RAM, CG RAM and symbol register  
Written information is saved as it is irrespective of on  
or off of the stand-by mode.  
: Voltage regulation circuit off  
: Voltage follower off  
: Amplifying circuit off  
N2, N1 = 0 : 2 lines  
3. Operation mode is retained the same as it was prior  
to execution of the standby mode.  
S = 0  
CG = 0  
5. Electronic volume control  
: Left-hand shift  
: “CGRAM” blank  
The internal circuit for the dynamic display output is  
stopped.  
4. Oscillating circuit  
Address : 28H  
Data  
: (0, 0, 0, 0, 0)  
The oscillation circuit for the static display must be  
6. Static icon  
remained on.  
Address : 20H  
Data : (0, 0, 0, 0, 0)  
Address : 21H  
Sleep Mode  
To enter the sleep mode, turning off the power circuit and  
oscillation circuit using the commands, and then execute  
power save command. This mode helps to save power  
consumption by reducing current to almost resting cur-  
rent level.  
Data  
Address : 22H  
Data  
Address : 23H  
: (0, 0, 0, 0, 0)  
: (0, 0, 0, 0, 0)  
Data  
: (0, 0, 0, 0, 0)  
1. Liquid crystal display output  
As explained in the Section “MPU interface”, the RES  
terminal connects to the reset terminal of the MPU and  
initialization is being effected together with the MPU.  
However, when the bus, port, etc. of the MPU maintains  
high-impedance for a certain duration of time after  
resetting, make the resetting input to the SED1220 after  
the inputs to the SED1220 have become definite.  
As the resetting signal, like explained in the Section “DC  
characteristics”, active level pulses of minimum 10us or  
more should be used. Normal operation status can be  
obtained after 1us from the edge of the RES signal.  
By making the RES terminal active, respective registers  
can be cleared and the aforesaid setting state can be  
obtained.  
COM1 ~ COM24, COMS1, COMS2 : VDD level  
SEG1 ~ SEG60, SEGS1, 2, 4, 5  
: VDD level  
SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Clear all  
the data of the static icon registers to “0”.  
2. DD RAM, CG RAM and symbol register  
Written information is saved at it is irrespective of on  
or off the sleep mode.  
3. Operation mode mode is retained the same at it was  
prior to execution of the sleep mode.  
All internal circuits are stopped.  
4. Power circuit and oscillation circuit  
Turn off the built-in supply circuit and oscillation  
circuit using the power save command and supply  
control command.  
If initialization is not effected by the RES terminal when  
the supply voltage is applied, it may go into a state where  
cancellation is unworkable.  
In case the built-in liquid crystal power circuit will not be  
used, it becomes necessary that the RES input be active  
when the external liquid crystal power is being applied.  
4–20  
EPSON  
SED1220  
COMMAND  
Table 4 lists the commands. SED1220 identifies the data  
C
0
0
1
1
B
Cursor display  
bus signal using different combinations of A0 and WR  
(E). High speed command interpretation and execution  
are possible since only the internal timing is used.  
0 Non-display  
1 Non-display  
0 Underbar cursor  
1 Alternate display of display  
characters in black and white.  
The cursor position indicates the  
position of address  
Command Overview  
Command type  
Command name  
A0 WR  
Display control  
instruction  
Power control  
Cusor Home  
Display ON/OFF Control  
Power Save  
Power Control  
System set  
0
0
0
0
0
0
0
0
0
0
0
0
(C, B)  
(0, 0)  
(1, 0)  
(1, 1)  
System set  
Address control Address Set  
instruction  
Data input  
instruction  
Data Write  
1
0
f Blink  
The cursor position indicates the position of address  
counter.  
Instruction execution duration of dependents on the  
internal process time of SED1220, therefore it is neces-  
sary to provide a duration larger than the system cycle  
time (tCYC) between execution of two successive in-  
struction.  
Therefore, whenever moving the cursor, change  
the address counter value using the RAM address  
set command or the auto increment done by writing  
the RAM data.  
Description of Commands  
(1) Cursor Home  
This command presets the address counter to 30H  
ISelective flashing symbol display is possible by  
selecting (C, B) = (1, 0) and thus locating the  
address counter to the position of the symbol register  
through selecting (since the symbol is corresponding  
to the character at each 5 dots).  
and moves the cursor, when it is present, to the first  
digit of the first line.  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
1
*
*
*
*
(3) Power Save  
This command is used to controlling the oscillation  
: Don't Care  
circuit and setting or resetting the sleep mode.  
(2) Display ON/OFF Control  
This command performs on or off of display and  
cursor setting.  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
Note: Symbols driven by COMSA and SEGSA – E  
must be controlled through the static icon  
RAM.  
0
0
0
1
0
0
O
PS  
: Don't Care  
= 0 : Power save off (reset)  
: Power save on (set)  
*
*
PS  
1
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
1
1
C
B
D
*
O
= 0 : Oscillating circuit off (stop of  
oscillation)  
D
= 0 : Display off  
: Display on  
1
: Oscillating circuit on (oscilla  
tion)  
1
B
= 0 : Cursor blink off  
: Cursor blink on  
(4) Supply Control  
1
This command is used for controlling operation of  
the built-in power circuit.  
Blink displays characters in black and white,  
alternately. The alternating display will be repeated  
with approx. 1 second interval.  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
1
0
1
0
VC  
P
VF  
= 0 : Amplifying circuit off  
: Amplifying circuit on  
C
= 0 : Display of cursor  
: Does not display  
P
1
1
Following table shows relationship between B and  
C registers and the cursor.  
Note: The oscillation circuit must be turned on  
for the amplitying circuit to be active.  
EPSON  
4–21  
SED1220  
VF  
= 0 : Voltage follower off  
: Voltage follower on  
(6) RAM Address Set  
1
This command sets addresses to write data into the  
DD RAM, CG RAM and symbol register in the  
address counter.  
VC  
= 0 : Voltage regulation circuit off  
: Voltage regulation circuit on  
1
When the cursor is displayed, the cursor is dis-  
played at the display position corresponding to the  
DD RAM address set by this command.  
(5) System Set  
This command is used for selecting display line,  
common shift direction and use/non-use of CR  
RAM.  
When power on or resetting is done, execute this  
command first.  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
1
ADDRESS  
1
2
The settable address length is ADDRESS = 00H to  
7FH.  
Before writing data into the RAM, set the data  
write address by this command. Next, when data is  
written in succession, the address is automatically  
incremented.  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
1
1
0
S
CG  
N1 N2  
: Don't Care  
N2, N1 = 0, 0 : 2lines  
N2, N1 = 0, 1 : 3lines  
S
= 0 : COM left shift  
= 1 : COM right shift  
CG  
= 0 : Use CG RAM  
1
: Does not use RAM  
RAM Map  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0 0 H  
1 0 H  
2 0 H  
3 0 H  
4 0 H  
5 0 H  
6 0 H  
7 0 H  
C G R A M (0 0 H)  
C G R A M (0 2 H)  
C G R A M (0 1 H)  
C G R A M (0 3 H)  
EV Test  
For signals  
SI  
DDRAM line 1  
DDRAM line 2  
DDRAM line 3  
Symbol register  
Symbol register  
Unused  
"
"
"
"
:Unused  
:Output from SEGS1 to SEGS2, SEGS4, SEGS5  
For symbol register :Output from COMS1 to COMS2.  
For signals  
SI  
EV  
:Static icon register  
:Electronic volume register  
Test :Test register (Do not use)  
4–22  
EPSON  
SED1220  
(7) Data Write  
A0 WR D7 D6 D5 D4 D3 D2 D1 D0  
RAM Address Set  
1
0
DATA  
Data Writing  
1
2
This command writes data the DD RAM, CG RAM  
or symbol register.  
This command automatically increases the address  
counter by +1, thus enabling continuous writing of  
data.  
Note: When executing  
instructions in  
NO  
One Line Completed?  
YES  
succession, reserve a  
time exceeding tCYC  
and execute the next  
instruction.  
<Example of Data Writing>  
Following figures illustrates an example of con-  
tinuous writing of one line data to DD RAM.  
EPSON  
4–23  
SED1220  
Table 4 SED1220 Series Command List  
Code  
Command  
Function  
A0 WRD7 D6 D5 D4 D3 D2 D1 D0  
(1) Cursor Home  
0
0
0
0
0
0
0
0
0
1
1
1
*
*
*
*
*
Moves the cursor to the home position.  
(2) Display ON/OFF  
Control  
C
B
D
Sets cursor ON/OFF (C), cursor blink ON//OFF (B),  
and display ON/OFF (D).  
C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON)  
0 (blink OFF), D = 1 (display ON)  
D = 0 (display OFF)  
(3) Power Save  
0
0
0
0
0
0
1
1
0
0
0
1
*
*
0 PS Sets power save ON/OFF (PS) and oscillating circuit  
ON/OFF (0).  
PS = 1 (power save ON) 0 (power save OFF),  
0 = 1 (oscillating circuit ON) 0 (oscillating circuit  
OFF)  
(4) Power Control  
0 VC VF P Sets voltage regulating circuit ON/OFF and boosting  
circuit ON/OFF (P).  
VC = 1 (voltage regulating circuit ON) 0 (voltage  
regulating circuit OFF) VF = 1 (voltage follower  
ON) 0 (voltage follower OFF), P = 1 (boosting  
circuit ON) 0 (boosting circuit OFF)  
(5) System Set  
0
0
0
1
1
1
0 N2 N1 S CG Sets the use or non-use of CG RAM and shifting  
direction of display line (N1, N2) and COM  
CG = 1 (use of CG RAM), 0 = (Does not use  
CG RAM),  
M2, N1 = 0, 0 (2 lines) 0, 1 (3 lines).  
S = 0 (left shift), 1 (right shift).  
(6) RAM Address Set  
(7) RAM Write  
0
1
0
0
ADDRESS  
DATA  
Sets the DD RAM, CG RAM or symbol register  
address.  
Writes data into the DD RAM, CG RAM or symbol  
register address.  
(8) NOP  
0
0
0
0
0
0
0
0
0
0
0
0
0
*
0
*
0
*
0
*
Non-operation command  
(9) Test Mode  
Command for IC chip test. Don’t use this command.  
system command selects on which of CG ROM and CG  
RAM they are to be used.  
SED1220 CG ROM is mask ROM and compatible with  
customized ROM. Contact us for its use in your system.  
Product name of modified CG ROM is defined as below:  
CHARACTER GENERATOR  
Character Generator ROM (CG ROM)  
Character Generator ROM (CG ROM)  
SED1220 cntains the character generator ROM (CG  
ROM) consisted of up to 256 types of characters.  
Character size is 5 × 8 dots.  
Tables 5 though 7 show the SED1220** character code.  
Concerning the 4 characters from 00H through 03H, the  
(Example) S E D 1 2 2 0 D 0 B  
Digit for CG ROM  
pattern change  
4–24  
EPSON  
SED1220  
SED1220DA  
*
Lower 4 Bit of Code  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
EPSON  
4–25  
SED1220  
SED1220DB  
*
Lower 4 Bit of Code  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
4–26  
EPSON  
SED1220  
SED1220DG  
*
Lower 4 Bit of Code  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
EPSON  
4–27  
SED1220  
Character Generator RAM (CG ROM)  
CGRAM contained in SED1220 enables user programming of character patterns for display signals with higher degrees  
of freedom.  
When using CGRAM, select it using the system command.  
Capacity of CGRAM is 160 bits and accepts registration of any 4 5 ×8 dots patterns.  
Following shows relationship between the CGRAM characters, CGRAM addresses and character code.  
CGRAM data (character pattern)  
Character display  
Signal display  
SEGS  
1 2  
Character code  
RAM address  
00H~07H  
D7  
D0 SEG  
4 5  
00H  
02H  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
1
0
0
0
1
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
1
0
0
1
0
0
1
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
1
0
0
1
0
0
1
1
1
0
0
0
0
0
0
0
1
0
0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
10H~17H  
01H  
03H  
08H~0FH  
18H~1FH  
Unused  
Character data  
1: Display  
0: Non-display  
It is possible to set a 5 × 8 character size in this system. In this case, use the *7H/*FH RAM. Note that the *7H/*FH data  
is inverted when a under-bar cursor is used.  
4–28  
EPSON  
SED1220  
Symbol Register  
SED1220 contains the symbol register which enable individual symbol setting for displaying on the screen.  
Capacity of the symbol register is 120 bits and is capable of displaying up to 120 symbols.  
Following shows relationship between the symbol register display patterns, RAM addresses and written data.  
13  
1
12  
13  
1 2 3 4 5  
56 ·  
·
·
· 60  
COMS1  
COMS2  
61 ·  
·
· 65  
116 ·  
·120  
60  
SEG1 2  
SEG1 2 3 4 5  
RAM address  
SEG56  
SEGS4 5  
Symbol Bits  
D7  
D0  
5
0
1
1
6
2
7
3
8
4
9
*
*
*
*
*
*
10  
60H~6BH  
70H~7BH  
B
0
1
56 57 58 59 60  
61 62 63 64 65  
66 67 68 69 70  
*
*
*
*
*
*
*
*
*
B
116 117 118 119 120  
*
*
*
Note: When the symbol is 1.5 times or more than the character, it is recommended to drive it using both COMS1  
and COMS2.  
EPSON  
4–29  
SED1220  
up to 5 icons (SED1220/1221/1222) or 10 icons  
(SED122A).  
Following shows relationship between the static icons  
functions, static icon RAM addresses and written data.  
Static Icon Ram  
SED1220 contains the static icon RAM for displaying  
the static icons in addition to the dynamic icons.  
Capacity of static icon RAM is 10 bits (SED1220/1221/  
1222) or 20 bit (SED122A) and is capable of displaying  
< SEGSA, B, C, D, E >  
Static icon data  
Display  
Function  
RAM address  
20H  
D7  
*
D0 S E G S A B C D E  
1
0
1
0
0
1
0
1
0
Display  
On/Off  
*
*
*
*
Blink  
On/Off  
21H  
1
*
f BLINK  
< SEGSF, G, H, I, J >  
Static icon data  
Display  
Function  
RAM address  
D7  
*
D0 S E G S F G H I J  
1
0
1
0
0
1
0
1
0
Display  
On/Off  
22H  
23H  
*
*
*
*
Blink  
On/Off  
1
*
f BLINK  
*: Blank  
1: Display or blink on  
0: Display or blink off  
fBLINK: 1–2 Hz  
Electronic Volume RAM (register)  
SED1220 contains the electronic volume function for  
controlling the liquid crystal drive voltage V5 and density  
of liquid crystal display. The electronic volume function  
enables to select one of 32 voltage status of the liquid  
crystal drive voltage V5 by writting 5-bit data to the  
electronic volume RAM.  
Following shows relationship between RAM addresses  
set by the electronic volume and written data.  
Electronic volume data  
Condi-  
tion  
Function  
RAM address  
28H  
V
EV  
D7  
*
D0  
0
Electronic  
volume data  
0
0
0
0
0
V
REG–0  
*
*
V
REGα  
0
0
0
0
0
0
0
0
1
0
1
2
*
*
*
*
*
*
V
REG–2α  
V
V
V
REG–29α  
REG–30α  
REG–31α  
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
29  
30  
31  
*
*
*
*
*
*
*
*
*
*
*
*
29H  
For testing  
*
*
*
: Blank  
Note : Do not use the address “29H”. It is for testing  
α = VREG/150  
4–30  
EPSON  
SED1220  
ABSOLUTE MAXIMUM RATINGS  
Item  
Power supply voltage (1)  
Power supply voltage (2)  
Power supply voltage (3)  
Input voltage  
Symbol  
VSS  
Standard value  
–6.0~+0.3  
Unit  
V
V5, Vout  
V1, V2, V3, V4  
VIN  
–7.0~+0.3  
V
V5~+0.3  
V
VSS–0.3~+0.3  
VSS–0.3~+0.3  
–30~+85  
V
Output voltage  
VO  
V
Operating temperature  
Topr  
°C  
TCP  
–55~+100  
Storage temperature  
Tstr  
°C  
Bare chip  
–65~+125  
(VCC) VDD  
(GND) VSS  
V
V
DD  
5
Notes: 1. All the voltage values are based on VDD = 0 V.  
2. For voltages of V1, V2, V3 and V4, keep the condition of VDD V1 V2 V3 V4 V5 and VDD VSS  
V5 VOUT at all times.  
3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction.  
In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the  
LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the  
reliability of the LSI.  
EPSON  
4–31  
SED1220  
DC CHARACTERISTICS  
VDD = 0 V, VSS = –3.6 V to –2.4 V, Ta = –30 to 85°C unless otherwise specified.  
Item  
Operatable  
Data retain  
Symbol  
VSS  
Condition  
min  
–3.6  
–3.6  
typ  
–3.0  
max  
–2.4  
–2.0  
Unit Applicable pin  
Power  
supply  
voltage (1) voltage  
V
VSS  
*1  
Power  
supply  
Operatable  
Operatable  
V5  
V1, V2  
V3, V4  
VIHC  
VILC  
ILI  
–7.0  
0.6×V5  
V5  
0.2×VSS  
VSS  
–4.0  
VDD  
0.4×V5  
VDD  
0.8×VSS  
1.0  
40  
V
V
V
V
V
V5 *2  
V1, V2  
V3, V4  
*3  
voltage (2) Operatable  
High-level input voltage  
Low-level input voltage  
Input leakage current  
LC driver ON resistance  
*3  
VIN = VDD or VSS  
–1.0  
µA *3  
KCOM,SEG  
*4  
RON Ta=25°C  
V=0.1V  
V5=–7.0V  
20  
Static current consumption  
IDDQ  
0.1  
5.0  
80  
20  
µA VDD  
µA VDD *5  
µA VDD  
Dynamic current  
consumption  
IDD Display state V5 = –6 V without load  
Standby state Oscillation ON, Power  
OFF, VSS = –3V  
without load  
Sleep state  
Oscillation OFF, Power  
OFF, VSS = –3.0V  
5
µA VDD  
µA VDD *6  
pF *3  
Access state fcyc=200KHz,  
VSS = –3.0V  
CIN  
500  
8.0  
130  
Input pin capacity  
Ta=25°C f=1MHz  
5.0  
Frame frequency  
External clock frequency  
fFR  
fck  
fck  
Ta=25°C VSS=–3.0V  
Display of 2 lines  
Display of 3 lines  
70  
100  
23.4  
33.8  
Hz *10  
KHz *10 *11  
KHz *10 *11  
Reset time  
Reset pulse width  
Reset start time  
tR  
1.0  
10  
50  
µs *7  
µs *8  
ns *8  
tRW  
tRES  
Dynamic system  
Input voltage  
Amplified voltage  
output voltage  
VS1  
–2.3  
–6.9  
–2.1  
–6.3  
–1.9  
–5.7  
V
V
*9  
VOUT  
VOUT  
When voltage is tripled  
Voltage follower  
operating voltage  
Reference voltage  
V5  
–7.0  
–4.0  
V
V
VREG  
Ta = 25°C  
–2.06  
–2.0  
–1.94  
*1: A wide operating voltage range is guaranteed but an  
abrupt voltage variation in the access status of the  
MPU is not guaranteed.  
*4: This is a resistance value when a voltage of 0.1 V is  
applied between output pin SEGn, SEGSn, COMn or  
COMSn, and each power pin (V1, V2, V3 or V4). It  
is specified in the range of operating voltage (2).  
RON = 0.1 V / I  
*2: When the voltage is Tripled, care must be paid to  
supply the voltage VSS so that operating voltage of  
VOUT and V5 may not be exceeded.  
(I: Current flowing when 0.1 V is  
applied between the power and output)  
*3: D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, CS WR (E),  
P/S, IF  
4–32  
EPSON  
SED1220  
*10:The fOSC frequency of the oscillator circuit for  
internal circuit drive may differ from the fBST boost-  
ing clock on some models. The following provides  
the relationship between the fOSC frequency, fBST  
boosting clock, and fFR frame frequency.  
*5: Character “  
” display. This is applicable to the  
case where no access is made from the MPU and the  
built-in power circuit and oscillating circuit are in  
operation.  
fOSC = (No. of digits) × (1/Duty) × fFR  
fBST = (1/2) × (1/No. of digits) × fOSC  
*6: Current consumption when data is always written by  
fcyc.  
The current consumption in the access state is almost  
proportional to the access frequency (fcyc).  
When no access is made, only IDD (I) occurs.  
*11:When performing the operations using an external  
clock, not taking advantage of the built-in oscillation  
circuit, input the waveforms indicated below.  
Meanwhile, while using an external clock but when  
clock inputs are not being made, fix it to “H”.  
(Normal High)  
*7: tR (reset time) indicates the internal circuit reset  
completion time from the edge of the RES signal.  
Accordingly, the SED1220 usually enters the oper-  
ating state after tR.  
<Incase the external clock = fosc>  
• Duty = (th/tosc) × 100 = 20 ~ 30%  
• fosc = 1/tosc  
*8: Specifies the minimum pulse width of the RES  
signal. It is reset when a signal having the pulse  
width greater than tRW is entered.  
V
DD  
t
osc  
th  
Power Supply  
–2.4 V  
V
SS  
<Incase the external clock = 4 × fosc>  
• Duty = (th/tosc) × 100 = 50%  
• fosc = 1/tosc  
t
RES  
V
V
DD  
SS  
RES  
t
RW  
tR  
All signal timings are based on 20% and 80% of VSS signals.  
t
h
t
osc  
*9: When operating the boosting circuit, the power  
supply VSS must be used within the input voltage  
range.  
EPSON  
4–33  
SED1220  
TIMING CHARACTERISTICS  
(1) MPU Bus Write Timing (80 series)  
A0  
t
AC8  
t
AH8  
CS  
t
cyc8  
t
AW8  
t
CCL  
WR  
t
CCH  
t
DS8  
t
DH8  
D0 to D7  
[Ta = –30 to 85°C, VSS = –3.6 V to –2.4 V]  
Measuring  
condition  
Item  
Address hold time  
Signal Symbol  
Min.  
Max.  
Unit  
A0, CS  
tAH8  
tAW8  
tAC8  
tCYC8  
tCCL  
tCCH  
tDS8  
tDH8  
Every timing is specified  
on the basis of 20% and  
80% of VSS.  
30  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address setup time  
CS setup time  
0
System cycle time  
WR  
650  
150  
450  
100  
50  
Write “L” pulse width (WR)  
Write “H” pulse width (WR)  
Data setup time  
D0 ~ D7  
Data hold time  
[Ta = –30 to 85°C, VSS = –3.3 V to –2.7 V]  
Measuring  
condition  
Item  
Signal Symbol  
Min.  
Max.  
Unit  
Address hold time  
Address setup time  
CS setup time  
A0, CS  
tAH8  
tAW8  
tAC8  
tCYC8  
tCCL  
tCCH  
tDS8  
tDH8  
Every timing is specified  
on the basis of 20% and  
80% of VSS.  
10  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
System cycle time  
Write “L” pulse width (WR)  
Write “H” pulse width (WR)  
Data setup time  
WR  
500  
100  
350  
100  
20  
D0 ~ D7  
Data hold time  
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).  
t
r
tf  
V
V
SS × 0.8 [V]  
SS × 0.2 [V]  
*2: tCCL is specified based on an overlap period of CS and WR “L” levels.  
4–34  
EPSON  
SED1220  
(2) MPU Bus Write Timing (68 series)  
A0  
t
AH6  
t
AC6  
CS  
t
EWH  
t
CYC6  
t
EWL  
E
t
DS6  
t
DH6  
t
AW6  
D0 to D7  
[Ta = –30 to 85°C, VSS = –3.6 V to –2.4 V]  
Measuring  
condition  
Item  
Signal Symbol  
Min.  
Max.  
Unit  
Address setup time  
Address hold time  
CS setup time  
A0, CS  
tAW6  
tAH6  
Every timing is specified  
on the basis of 20% and  
80% of VSS.  
60  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAC6  
0
System cycle time  
Enable “L” pulse width (WR)  
Enable “H” pulse width (WR)  
Data setup time  
WR  
tCYC6  
tEWL  
tEWH  
tDS6  
650  
150  
450  
100  
50  
D0 ~ D7  
Data hold time  
tDH6  
[Ta = –30 to 85°C, VSS = –3.3 V to –2.7 V]  
Measuring  
condition  
Item  
Signal Symbol  
Min.  
Max.  
Unit  
Address setup time  
Address hold time  
CS setup time  
A0, CS  
tAW6  
tAH6  
Every timing is specified  
on the basis of 20% and  
80% of VSS.  
60  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAC6  
0
System cycle time  
Enable “L” pulse width (WR)  
Enable “H” pulse width (WR)  
Data setup time  
WR  
tCYC6  
tEWL  
tEWH  
tDS6  
500  
100  
350  
100  
20  
D0 ~ D7  
Data hold time  
tDH6  
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).  
t
r
tf  
V
V
SS × 0.8 [V]  
SS × 0.2 [V]  
*2: tEWH is specified based on an overlap period of CS “L” and E “H” levels.  
EPSON  
4–35  
SED1220  
(3) Serial Interface  
t
CSS  
tCSH  
CS  
t
SAS  
tSAH  
A0  
t
SCYC  
t
SLW  
SCL  
t
SHW  
t
SDS  
tSDH  
SI  
[Ta = –30 to 85°C, VSS = –3.6 V to –2.4 V]  
Measuring  
condition  
Item  
Signal Symbol  
Min.  
Max.  
Unit  
System clock cycle  
SCL “H” pulse width  
SCL “L” pulse width  
Address setup time  
Address hold time  
Data setup time  
SCL  
tSCYC  
tSHW  
tSLW  
tSAS  
tSAH  
tSDS  
tSDH  
tCSS  
tCSH  
Every timing is specified  
on the basis of 20% and  
80% of VSS.  
1000  
300  
300  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A0  
SI  
300  
50  
Data hold time  
50  
CS-SCL time  
CS  
150  
700  
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).  
t
r
tf  
V
V
SS × 0.8 [V]  
SS × 0.2 [V]  
4–36  
EPSON  
SED1220  
MPU INTERFACE (REFERENCE EXAMPLES)  
The SED1220 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the  
SED1220 Series can be operated by less signal lines.  
80 Series MPU  
V
CC  
V
DD  
A0  
A0  
P/S  
A1 to A7  
IORQ  
CS  
Decoder  
MPU  
SED1220  
D0 to D7  
WR  
D0 to D7  
WR  
IF  
RES  
RES  
V
SS  
GND  
RESET  
RESET  
RESET  
68 Series MPU  
V
CC  
V
DD  
A0  
A0  
P/S  
A1 to A7  
VMA  
CS  
Decoder  
MPU  
SED1220  
D0 to D7  
E
D0 to D7  
E
IF  
RES  
RES  
V
SS  
GND  
Serial Interface  
VCC  
V
DD  
Port4  
Port3  
A0  
P/S  
CS  
MPU  
SED1220  
Port1  
Port2  
SI  
SCL  
IF  
RES  
RES  
V
SS  
GND  
VSS  
or GND  
EPSON  
4–37  
SED1220  
INTERFACE TO LCD CELLS (REFERENCE)  
12 columns by 3 lines, 5 × 8-dot matrix segments and symbols  
. . . . . . . . . . . . . . . . . 12  
LCD panel  
1
SED 1220  
static icon  
COMSA  
SEGSA  
SEGSE  
symbol  
COMS1  
COMS2  
signal  
signal  
COM1  
2
3
4
5
6
7
8
COM9  
10  
11  
12  
13  
14  
15  
16  
COM17  
18  
19  
20  
21  
22  
23  
24  
character  
SEGS1  
SEGS2  
SEG1  
2
3
4
5
SEG60  
SEGS4  
SEGS5  
4–38  
EPSON  
SED1220  
12 columns by 2 lines, 5 × 8-dot matrix segments and symbols  
. . . . . . . . . . . . . . .  
LCD panel  
1
12  
SED 1221  
static icon  
COMSA  
SEGSA  
SEGSE  
symbol  
COMS1  
COMS2  
signal  
signal  
COM1  
2
3
4
5
6
7
8
COM9  
10  
11  
12  
13  
14  
15  
16  
character  
SEGS1  
SEGS2  
SEG1  
2
3
4
5
SEG60  
SEGS4  
SEGS5  
EPSON  
4–39  
SED1220  
12 columns by 2 lines, 5 × 8-dot matrix segments and symbols  
• • • • • • • • • • • • • •  
LCD panel  
1
12  
SED 1222  
static icon  
COMSA  
SEGSA  
SEGSE  
symbol  
COMS1  
COMS2  
COM1  
2
3
4
5
6
7
8
COM9  
10  
11  
12  
13  
14  
15  
16  
character  
SEG1  
2
3
4
5
SEG60  
4–40  
EPSON  
SED1220  
12 columns by 2 lines, 5 × 8-dot matrix segments and symbols  
• • • • • • • • • • • • • •  
LCD Panel  
Static icon  
1
12  
SED 122A  
COMSA  
SEGSA  
SEGSJ  
Symbol  
COMS1  
COMS2  
Signal  
Signal  
COM1  
2
3
4
5
6
7
8
COM9  
10  
11  
12  
13  
14  
15  
16  
Character  
SEGS1  
SEGS2  
SEG1  
2
3
4
5
SEG60  
SEGS4  
SEGS5  
EPSON  
4–41  
SED1220  
LIQUID CRYSTAL DRIVE WAVEFORMS (B WAVEFORMS)  
V
V
V
V
V
V
DD  
COM 1  
1
COM 1  
COM 2  
COM 3  
COM 4  
COM 5  
COM 6  
COM 7  
COM 8  
2
3
4
5
V
V
V
V
V
V
DD  
1
2
COM 2  
3
COM 9  
4
COM 10  
COM 11  
COM 12  
COM 13  
COM 14  
COM 15  
COM 16  
5
V
V
V
V
V
V
DD  
1
COM 3  
2
3
4
5
V
V
V
V
V
V
DD  
SEG 1  
SEG 2  
SEG 3  
SEG 4  
SEG 5  
1
2
SEG 1  
3
4
5
V
V
V
V
V
V
DD  
1
2
SEG 2  
3
4
5
V
V
V
V
V
V
5
4
3
COMO -SEG 1  
2
1
DD  
-V1  
-V2  
-V3  
-V4  
-V5  
V
V
V
V
V
V
5
4
COMO -SEG 2  
3
2
1
DD  
-V1  
-V2  
-V3  
-V4  
-V5  
4–42  
EPSON  
SED1220  
Instruction Setup Example  
(Reference Only)  
(1) Initial setup  
(2) Display mode  
V
DD-VSS power ON  
End of initialization  
Power regulation  
Input of RAM address setup command  
Input of RAM (data) write command  
Display of written data  
Input of reset signal  
Command status  
• Static display control: Off  
• Display on/off control: Off  
• Power save: Off  
• Power control: Off  
• System setup: Off  
• Electronic volume (0, 0, 0, 0, 0)  
• Static icon (0, 0, 0, 0, 0)  
• Others are undefined.  
Waiting for 10 sec or more  
Command input:  
(Asterisk indicates any command sequence.)  
(1) NOP command  
(2) System setup command  
(
) Electronic volume register setup  
• Address: 28H  
• Data: (  
,
,
,
,
)
(
) Power save command  
• PS: Off (Power save)  
• O: On (Oscillation)  
(5) Power control commands  
• P, VF, VC: On  
1)  
(6) RAM address setup  
(7) Data writing  
1)  
2)  
Waiting for 20msec or more  
Command input  
(8) Display on/off control command  
• D: On (Display)  
3)  
Data input  
(9) Static icon control  
3)  
• Address: 20H  
• Data: (  
• Address: 21H  
• Data: (  
,
,
,
,
,
,
)
)
,
,
End of initialization  
Notes 1) Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area  
must satisfy the following conditions (for RAM clear).  
• DDRAM: Write the 20H data (character code).  
• CGRAM: Write the 00H data (null data).  
• Symbol register: Write the 00H data (null data).  
As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not,  
unexpected display may result.  
2) Since it is specified based on rise characteristics of the booster, power control and voltage follower  
circuits, time to be set differs depending on external capacity. Be sure to set it after the external capacity  
is confirmed.  
3) A display of the dynamic drive series is turned on when the on command is input and the static icon is  
turned on using the static icon control command.  
To turn both on at the same time when the display is turned on, execute display on/off command and  
static icon control within 1 frame period.  
EPSON  
4–43  
SED1220  
(3-1) Selecting the Standby mode  
(3-2) Releasing the Standby mode  
End of initialization  
Standby mode  
Normal operation  
(Power Save is released and  
oscillator circuit is turned ON.)  
(1) Input of power save command  
• PS: Off (Power save)  
• O: On (Oscillation)  
(2) Input of power control command  
• P, VF, VC: On  
(1) Input of display on/off control command  
• D: Off (Display)  
(2) Input of power save command  
• PS: On (Power save)  
2)  
Waiting for 20msec or more  
• O: On (Oscillation)  
(3) Input of power control command  
• P, VF, VC: Off  
(3) Input of display on/off control command  
• D: Off (Display)  
Standby status  
Return to normal operation (initial status).  
Only static icon displayed  
(4-1) Selecting the Sleep mode  
(4-2) Releasing the Sleep mode  
End of initialization  
Sleep mode  
Normal operation  
(Power Save is released and  
oscillator circuit is turned ON.)  
(1) Input of power save command  
• PS: Off (Power save)  
• O: On (Oscillation)  
(2) Input of power control command  
• P, VF, VC: On  
(1) Input of display on/off control command  
• D: Off (Display)  
(2) Static icon control  
• Address: 20H  
2)  
Waiting for 20msec or more  
• Data: (0, 0, 0, 0, 0)  
• Address: 21H  
• Data: (0, 0, 0, 0, 0)  
3)  
(3) Input of display on/off control command  
• D: Off (Display)  
(3) Input of power save command  
• PS: On (Power save)  
• O: Off (Oscillation)  
(4) Input of power control command  
• P, VF, VC: Off  
3)  
(4) Static icon control  
• Address: 20H  
• Data: (  
• Address: 21H  
• Data: (  
,
,
,
,
,
,
)
)
,
,
Enter the Sleep mode.  
Return to normal operation (initial status).  
4–44  
EPSON  
SED1220  
Instruction Setup Example of SED1220 series  
(1) Initial setup  
(2) display ON “EPSON”  
(3) Display ON the Icon  
(4) Standby Mode sequence  
(5) Releasing the Standby Mode sequence  
<Diagram of SED1220Txx and LCD Panel>  
Static Icon  
..  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
..  
..  
SED1220DAB  
CHIP:REVERSE  
80series MPU  
EPSON  
4–45  
SED1220  
(1) Initial setup  
(1.1) VDD–VSS Power ON  
(1.2) Power regulation  
(1.3) Input of RESET signal  
(1.4) Command Status  
• Display ON/OFF  
• Power save  
:OFF  
:OFF  
• Power control  
• System reset  
:OFF  
:OFF  
• Electronic Volume  
:(0, 0, 0, 0, 0)  
• Static display control :OFF  
• Others are undefined.  
(1.5) Waiting for 10µ sec or more  
(1.6) Command Input: ((*) indicates any command sequence.)  
(a) System Setup command: CGRAMNot use, 3lines, COM Left shift  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
0
(*) Electronic volume resister setup: Data(0, 0, 0, 0, 0, 0)  
A0  
0
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
0
D1  
0
D0  
0
1
0
0
0
0
0
0
0
0
0
(*) Power save command: PS0, 01  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0/1  
D2  
0/1  
D1  
1
D0  
0
(d) Power Control command: P, VF, VC1  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
1
D3  
0
D2  
1
D1  
1
D0  
1
(e) (f) RAM address setup, Data writing  
• RAM address setup: Set address is 30H  
A0  
0
WR  
0
D7  
1
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
4–46  
EPSON  
SED1220  
• Data writing: All data20H (for 1 Line)  
A0  
1
WR  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
• RAM address setup: Set address is 40H  
A0  
0
WR  
0
D7  
1
D6  
1
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
• Data writing: All data20H (for 2 line)  
A0  
1
WR  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
• RAM address setup: Set address is 50H  
A0  
0
WR  
0
D7  
1
D6  
1
D5  
0
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
EPSON  
4–47  
SED1220  
• Data writing: All data 20H (for 3 Line)  
A0  
1
WR  
0
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
• End of Initialization  
(2) Display ON “EPSON”  
(2.1) RAM address setup command: 30H  
A0  
0
WR  
0
D7  
1
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
(2.2) Data writing command: Writing “EPSON”  
A0  
1
WR  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
E: 45H  
P: 50H  
S: 53H  
O: 4FH  
N: 4EH  
1
0
0
1
0
1
0
0
0
0
1
0
0
1
0
1
0
0
1
1
1
0
0
1
0
0
1
1
1
1
1
0
0
1
0
0
1
1
1
0
(2.3) Waiting for 20ms or more  
(2.4) Display ON/OFF control command: B, C0, D1  
A0  
0
WR  
0
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
1
Display ON 5×7 Dots “EPSON”  
EPSON  
4–48  
EPSON  
SED1220  
(3) Display ON The Icon: Valid in Standby mode only  
(3.1) Display ON/OFF command: DOFF  
A0  
0
WR  
0
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
(3.2) Static display control command: 1 ~ 2Hz Blink  
A0  
0
WR  
0
D7  
1
D6  
0
D5  
1
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
(3.3) Power save command: PSON, 0ON  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0/1  
D2  
0/1  
D1  
1
D0  
1
(3.4) Power control commands: P, VF, VCOFF  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
1
D3  
0
D2  
0
D1  
0
D0  
0
Display ON the Icon  
e
(4) Releasing the Standby Mode  
(4.1) Power save command: PS0, 01  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0/1  
D2  
0/1  
D1  
1
D0  
0
(4.2) Power control commands: P, VF, VC1  
A0  
0
WR  
0
D7  
0
D6  
1
D5  
0
D4  
1
D3  
0
D2  
1
D1  
1
D0  
1
(4.3) Waiting for 20ms or more  
(4.4) Display ON/OFF command: D1  
A0  
0
WR  
0
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
D2  
0
D1  
0
D0  
1
END of Releasing the Standby mode  
EPSON  
4–49  
SED1220  
4. Power Supply to Booster Circuit  
SED1220 integrates a booster circuit.  
The customer can select a specification of using  
either the regulator output VS1 or VSS as the supply  
voltage to the booster circuit.  
Our standard specification is preset to the regulator  
output VS1.  
5. External Clock Specifications  
Option List  
SED1220 provides the optional functions as described in  
the following. Being adaptable to the customer’s optional  
demand, contact the Business Department of our company  
when installed.  
o
Our product name corresponding to a customer’s  
option is defined as shown below:  
SED1220 integrates an external clock terminal and  
there are two clock specifications, f and 4×f  
oscillation.  
(Example) SED1220D XB  
Shipping form: A (AL  
pad product) or B (metal  
bump product)  
Either of them can be selected on your request.  
Internal  
External  
External  
oscillation clock f osc. clock 4×f osc.  
Option corresponding  
digit  
Standard  
Optional  
×
×
Machine type: 0 (12 digits × 3  
lines) or 1 (12 digits × 2 lines)  
The standard external clock specification is set to  
fOSC.  
1. Specification of Character Generator ROM  
(CGROM)  
6. Reset Signal Input Polarity Specifications  
SED1220 inputs reset signal from the reset terminal  
using edge detection and I/F specification 80/68  
series can be selected according to this signal level.  
RES input polarity can also be selected on your  
request.  
SED1220 integrates a character generator ROM  
which can generate a maximum of 256 type characters.  
The size of these characters is composed of 5 × 7 (8)  
dots.  
Being a mask ROM, the SED1220 CGROM is  
adaptable to the character generator ROM exclusive  
for the customer, too.  
RES input  
polarity  
Type  
For our standard CGROMs, refer to the Character  
Fonts Table.  
Standard  
68 series  
80 series  
Optional  
80 series  
68 series  
2. Specification of Liquid Crystal Driver Voltage Bias  
Value.  
SED1220 integrates a liquid crystal diver voltage  
generator circuit. Its 5-volt potential is divided into  
resistance inside of IC to generate 1-V, 2-V, 3-V or  
4-V potential as required for the liquid crystal driver.  
Further, the 1-V, 2-V, 3-V or 4-Vpotential is converted  
into impedance by a voltage follower to be supplied  
to the liquid crystal driver circuit.  
is set to the 68 series and  
to the 80 series as  
the standard RES input polarities.  
7. Pad Layout Specifications of COMS1 Symbol  
Terminal  
On SED1220, pad layout of COMS1 symbol terminal  
can be changed. COMS1 pad layout can be selected  
on your request.  
Either 1/5 or 1/4 bias value can be selected as  
demanded by the customer.  
Our standard bias value is preset to 1/5.  
3. Specification of Reference Voltage of Liquid Crystal  
Driver Voltage Regulation Circuit.  
Standard  
Optional  
Pad No  
Pad Name  
Pad Name  
SED1220 integrates a voltage regulation circuit using  
a booster voltage as its power supply to generate 5V  
for the liquid crystal driver via the voltage regulation  
circuit.  
The voltage regulation circuit integrates a reference  
voltage regulator VREG.  
The customer can select a specification of using  
either the internal reference voltage or external VSS  
reference voltage.  
Our standard specification is preset to the internal  
reference voltage.  
65  
66  
67  
68  
69  
70  
71  
72  
73  
COMS1  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COMS1  
4–50  
EPSON  

相关型号:

SED1221T

Dot Matrix LCD Driver, 16 X 60 Dots, CMOS, TCP
SEIKO

SED1221TBA

Interface Circuit
SEIKO

SED1221TBB

Interface Circuit
SEIKO

SED1221TGA

Interface Circuit
SEIKO

SED1221TGB

Interface Circuit
SEIKO

SED1222D0A

Dot Matrix LCD Driver, 20 X 60 Dots, CMOS, ALUMINUM PAD, DIE
SEIKO

SED1222D0B

Dot Matrix LCD Driver, 20 X 60 Dots, CMOS, ALUMINUM PAD, DIE
SEIKO

SED1222DAA

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC125, 7.70 X 2.77 MM, 0.625 MM HEIGHT, ALUMINUM PAD, DIE-125
SEIKO

SED1222DAB

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC125, 7.70 X 2.77 MM, 0.625 MM HEIGHT, GOLD BUMP, DIE-125
SEIKO

SED1222DBA

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC125, 7.70 X 2.77 MM, 0.625 MM HEIGHT, ALUMINUM PAD, DIE-125
SEIKO

SED1222DGA

Dot Matrix LCD Driver, 16 X 60 Dots, CMOS, 7.70 X 2.77 MM, 0.625 MM HEIGHT, ALUMINUM PAD, DIE-125
SEIKO

SED1222DGB

16X60 DOTS DOT MAT LCD DRVR AND DSPL CTLR, UUC125, 7.70 X 2.77 MM, 0.625 MM HEIGHT, GOLD BUMP, DIE-125
SEIKO