GS6151-INTE3 [SEMTECH]

Multi-Rate 6G UHD-SDI;
GS6151-INTE3
型号: GS6151-INTE3
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Multi-Rate 6G UHD-SDI

文件: 总77页 (文件大小:2092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS6151  
GS6151 Multi-Rate 6G UHD-SDI  
Reclocker  
Key Features  
Applications  
SMPTE ST 2081, ST 424, ST 292, and  
ST 259-C compliant  
SMPTE ST 2081, SMPTE ST 424,  
SMPTE ST 292, SMPTE ST 259-C coaxial cable serial  
digital interfaces  
Supports retiming data at rates of 125Mb/s, 270Mb/s,  
1.485 and 1.485/1.001Gb/s, 2.97 and 2.97/1.001Gb/s,  
5.94 and 5.94/1.001Gb/s  
EN50083-9 DVB-ASI interfaces  
MADI standard  
Supports retiming of DVB-ASI signals  
Automatic or Manual Rate Selection  
Description  
Š
Detected rate indication in Auto Mode  
The GS6151 is a low-power, multi-rate serial digital CDR  
designed to automatically recover the embedded clock  
from a digital video signal and re-time the incoming video  
data.  
2:1 input selector  
Option of two reclocked data outputs  
Two configurable GPIO pins with ability to output  
device status, including:  
The GS6151 will recover the embedded clock signal and  
re-time the data from 6G UHD-SDI signals compliant with  
SMPTE ST 2081. In addition, it can also re-time SMPTE ST  
259-C, SMPTE ST 292, SMPTE ST 424 or DVB-ASI compliant  
digital video signals as well as MADI audio streams.  
Š
Lock Detect  
Š
Š
Loss of Signal (LOS)  
Low/High bit-rate indication for slew-rate control of  
SDI cable drivers  
On-chip 100Ω differential input and output  
termination  
The GS6151 features two high-speed differential signal  
inputs feeding a 2:1 input selector. Input termination is  
on-chip for seamless matching to 100Ω differential  
transmission lines. The input selector is a component of a  
video switching system with tightly constrained timing  
requirements.  
Bypass support for rates up to 5940Mb/s  
Š
Manual Bypass function  
Š
Configurable automatic Bypass when not locked  
Option to use external reference or operate  
referenceless  
The GS6151 includes programmable trace equalization to  
compensate for high-frequency losses associated with  
board-level interconnect.  
Cascading reference buffer supports multiple CDRs  
using a single reference source  
Two CML outputs interface seamlessly to devices with a  
CML input reference between 1.2V and 2.5V.  
Input signal equalization and output signal  
de-emphasis to compensate for trace dielectric losses  
Single power supply operation at 1.8V  
Programmable output swing and de-emphasis provide  
flexibility in managing signal integrity of the output signals.  
130mW typical power consumption (150mW with  
second output enabled)  
The GS6151 can operate in either automatic rate detection  
or manual rate selection mode. In auto mode the device  
will automatically detect and lock onto incoming data  
signals at any supported rate.  
Pb-free and RoHS compliant  
Operating temperature range: -40°C to 85°C  
GS6151  
Final Data Sheet  
PDS-060389  
1 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
The device can operate without an external 27MHz  
frequency reference. For applications which require rapid  
signal lock, an external 27MHz reference may be used to set  
the VCO frequency when not locked to the input signal. The  
presence of an external reference crystal is automatically  
detected by the device.  
A four-wire Gennum Serial Peripheral Interface (GSPI)  
facilitates configuration and status monitoring of the  
device. Multiple GS6151 devices can be daisy-chained  
together with a single 4-pin connection to the host system.  
This device is Pb-free, and the encapsulation compound  
does not contain halogenated flame retardant. This  
component and all homogenous sub-components are  
RoHS compliant.  
In systems that require passing of non-supported data  
rates, the GS6151 can be configured to either automatically  
or manually enter a bypass mode in order to pass the signal  
without reclocking.  
XTAL_CLK_OUT  
XTAL_CLK_IN  
XTAL_BUF_OUT  
LF+, LF–  
XTAL  
Oscillator  
Buffer  
DDO0  
Reference Divide  
Data Buffer  
DDO0  
Retimer  
Phase Frequency  
Detector  
Charge Pump  
VCO  
Selectable Divide  
DDI0  
DDI0  
Equalizer/  
Data Mux  
Phase Detector  
DDO1  
DDO1  
DDI1  
DDI1  
Data Buffer  
LOS  
Detect  
SPI  
Control  
Oscillator  
GPIO0  
GPIO1  
DDI_SEL/  
STROBE  
GS6151 Functional Block Diagram  
GS6151  
Final Data Sheet  
PDS-060389  
2 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Revision History  
Version  
ECO  
PCN  
Date  
Changes and/or Modifications  
4
027137  
August 2015  
Updated date and revision number  
Updated Table 2-2, Table 2-3, and  
Table 5-1. Updated to Final Data  
Sheet.  
3
2
027035  
026418  
July 2015  
July 2015  
Updated Table 2-2, Table 2-3,  
Section 4.12 and Table 5-1.  
1
0
024872  
022627  
May 2015  
Updated Table 5-1.  
New Document  
October 2014  
Contents  
1. Pin Out.................................................................................................................................................................5  
1.1 Pin Assignment ...................................................................................................................................5  
1.2 Pin Descriptions ..................................................................................................................................6  
2. Electrical Characteristics................................................................................................................................8  
2.1 Absolute Maximum Ratings ...........................................................................................................8  
2.2 DC Electrical Characteristics ...........................................................................................................9  
2.3 AC Electrical Characteristics ......................................................................................................... 11  
3. Input/Output Circuits.................................................................................................................................. 14  
4. Detailed Description.................................................................................................................................... 16  
4.1 Serial Data Inputs ............................................................................................................................. 16  
4.1.1 Input Trace Equalization................................................................................................... 16  
4.1.2 Input Selection ..................................................................................................................... 17  
4.2 Reference Clock ................................................................................................................................ 18  
4.3 Signal Monitoring ............................................................................................................................ 18  
4.3.1 Loss of Signal Detection.................................................................................................... 18  
4.3.2 Lock Detection ..................................................................................................................... 20  
4.3.3 Rate Detection...................................................................................................................... 21  
4.3.4 Low/High Bit Rate Detection for Slew Rate Control ............................................... 21  
4.4 Low Power Modes ........................................................................................................................... 22  
4.5 Serial Data Output ........................................................................................................................... 22  
4.5.1 Output Impedance ............................................................................................................. 23  
4.5.2 Output Signal Interface Levels ....................................................................................... 23  
4.5.3 Adjustable Output Swing................................................................................................. 23  
4.5.4 Output De-emphasis.......................................................................................................... 24  
4.5.5 Output Common Mode Voltage.................................................................................... 24  
4.6 Output Mute and Disable ............................................................................................................. 25  
4.7 Bypass Mode ..................................................................................................................................... 25  
4.8 DVB-ASI ............................................................................................................................................... 26  
GS6151  
Final Data Sheet  
PDS-060389  
3 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.9 Device Power Up ............................................................................................................................. 26  
4.9.1 Power on Reset (POR) ........................................................................................................ 26  
4.10 GPIO Pins Configuration ............................................................................................................. 26  
4.11 GSPI Host Interface ....................................................................................................................... 28  
4.11.1 CS Pin..................................................................................................................................... 28  
4.11.2 SDIN Pin................................................................................................................................ 28  
4.11.3 SDOUT Pin ........................................................................................................................... 28  
4.11.4 SCLK Pin................................................................................................................................ 30  
4.11.5 Command Word Description........................................................................................ 30  
4.11.6 GSPI Transaction Timing ................................................................................................ 33  
4.11.7 Single Read/Write Access............................................................................................... 35  
4.11.8 Auto-increment Read/Write Access........................................................................... 36  
4.11.9 Setting a Device Unit Address...................................................................................... 37  
4.11.10 Default GSPI Operation ................................................................................................ 38  
4.12 Diagnostic Features ..................................................................................................................... 40  
4.12.1 Horizontal Eye Monitor Modes .................................................................................... 40  
4.12.2 PRBS Checker...................................................................................................................... 43  
4.12.3 PRBS Generator.................................................................................................................. 45  
5. Host Interface Register Map...................................................................................................................... 47  
6. Typical Application Circuit ........................................................................................................................ 73  
7. Package and Ordering Information ....................................................................................................... 74  
7.1 Package Dimensions ...................................................................................................................... 74  
7.2 Recommended PCB Footprint .................................................................................................... 75  
7.3 Packaging Data ................................................................................................................................ 75  
7.4 Marking Diagram ............................................................................................................................. 76  
7.5 Solder Reflow Profile ...................................................................................................................... 76  
7.6 Ordering Information ..................................................................................................................... 76  
GS6151  
Final Data Sheet  
PDS-060389  
4 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
1. Pin Out  
1.1 Pin Assignment  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
DDI0  
DDI0  
DDO0  
DDO0  
GND  
VCC_DDO0  
VEE_DDO  
VCC_DDO1  
DDO1  
DDI1  
GS6151 32-pin QFN  
(4mm x 4mm)  
DDI1  
GPIO0  
GPIO1  
DDO1  
DDI_SEL/STROBE  
VSS_DIG  
9
10  
11  
12  
13  
14  
15  
16  
Figure 1-1: GS6151 Pin Out  
GS6151  
Final Data Sheet  
PDS-060389  
5 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
1.2 Pin Descriptions  
Table 1-1: GS6151 Pin Descriptions  
Pin Number  
Name  
Type  
Description  
1, 2  
3
DDI0, DDI0  
GND  
Input  
Power  
Input  
Serial Digital Differential Input 0.  
Input channel isolation. Connect to ground or leave unconnected.  
Serial Digital Differential Input 1.  
4, 5  
DDI1, DDI1  
Multi-function Control/Status Input/Output 0.  
Signal options are:  
LOS (output; default)  
LOCKED  
LBR_HBR  
RATE_DET0  
RATE_DET1  
RATE_DET2  
Digital  
Input/Output  
6
GPIO0  
LOCKED_270M  
LOCKED_1G485  
LOCKED_2G97  
LOCKED_5G94  
RATE_CHANGE  
DDO0_DISABLE  
DDO1_DISABLE  
This pin is configured using the GPIO0_SELECT and  
GPIO0_IO_SELECT bits in the GPIO_CONTROL_REG_0 register.  
Multi-function Control/Status Input/Output 1.  
Signal options are:  
LOS  
LOCKED (output; default)  
LBR_HBR  
RATE_DET0  
RATE_DET1  
RATE_DET2  
Digital  
Input/Output  
7
GPIO1  
LOCKED_270M  
LOCKED_1G485  
LOCKED_2G97  
LOCKED_5G94  
RATE_CHANGE  
DDO0_DISABLE  
DDO1_DISABLE  
This pin is configured using the GPIO1_SELECT and  
GPIO1_IO_SELECT bits in the GPIO_CONTROL_REG_0 register.  
Input selection control.  
8
9
DDI_SEL/STROBE  
XTAL_CLK_IN  
Digital Input  
Input  
Used to select the high-speed input for processing through the  
device. Refer to Table 4-2 for details on input selection.  
Reference Crystal Pin/27MHz clock input. Connect to an external  
circuit as shown in Figure 6-1: GS6151 Typical Application Circuit or  
to a digital clock source (XTAL_BUF_OUT of another GS6150, GS6151,  
GS6152, or a 27MHz clock output from another device). Connect to  
ground if operating referenceless.  
GS6151  
Final Data Sheet  
PDS-060389  
6 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 1-1: GS6151 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
Reference Crystal Pin. Connect to a external circuit as shown in Figure  
6-1: GS6151 Typical Application Circuit, or leave unconnected if  
XTAL_CLK_IN is driven by an external clock source or is connected to  
ground (referenceless).  
10  
XTAL_CLK_OUT  
Output  
Buffered clock reference output. Leave unconnected if not used to  
drive 27MHz clock input of another device.  
11  
12  
XTAL_BUF_OUT  
SDIN  
Output  
Serial digital data input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
Digital Input  
Refer to 4.11 GSPI Host Interface for more detail  
Serial digital data output for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
Digital  
Output  
13  
14  
SDOUT  
SCLK  
Refer to 4.11 GSPI Host Interface for more detail  
Burst-mode clock input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
Digital Input  
Refer to 4.11 GSPI Host Interface for more detail  
Chip select input for the Gennum Serial Peripheral Interface (GSPI)  
host control/status port.  
15  
16  
CS  
Digital Input  
Power  
Active-low input.  
Refer to 4.11 GSPI Host Interface for more detail  
Most positive power supply for the internal logic  
Connect to 1.8V.  
VDD_DIG  
Most negative power supply for the internal logic  
Connect to ground.  
17  
18, 19  
20  
VSS_DIG  
DDO1, DDO1  
VCC_DDO1  
Power  
Output  
Power  
Differential serial data output 1.  
Most positive power supply connection for the DDO1/DDO1 output  
driver. Connect to any voltage between 1.2V and 2.5V.  
Most negative power supply connections for the output drivers.  
Connect to ground.  
21  
VEE_DDO  
Power  
Most positive power supply connection for the DDO0/DDO0 output  
driver. Connect to any voltage between 1.2V and 2.5V.  
22  
23, 24  
25  
VCC_DDO0  
DDO0, DDO0  
VCO_DFT_FILT  
Power  
Output  
Differential serial data output 0.  
Power  
Decoupling  
Connect through decoupling capacitor to ground.  
26  
27  
VCC_DFT  
VEE_DFT  
Power  
Power  
Connect to 1.8V.  
Connect to ground.  
Connect to LF– through CLF  
Refer to Figure 6-1: GS6151 Typical Application Circuit.  
28  
29  
LF+  
LF–  
Passive  
Passive  
Connect to LF+ through CLF  
Refer to Figure 6-1: GS6151 Typical Application Circuit.  
GS6151  
Final Data Sheet  
PDS-060389  
7 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 1-1: GS6151 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
External decoupling for the VCO.  
Refer to Figure 6-1: GS6151 Typical Application Circuit.  
30  
VCO_FILT  
Power  
Most positive power supply connection for the analog core  
Connect to 1.8V.  
31  
32  
VCC_CORE  
VEE_CORE  
Center Pad  
Power  
Power  
Power  
Most negative power supply connection to the analog core  
Connect to GND.  
Ground pad on bottom of package.  
Connect to ground.  
2. Electrical Characteristics  
2.1 Absolute Maximum Ratings  
Table 2-1: Absolute Maximum Ratings  
Parameter  
Value  
–0.5 to +2.1VDC  
–0.5 to +2.8VDC  
Supply Voltage – Core (VCC_CORE, VDD_DIG)  
Supply Voltage – Output Driver (VCC_DDO0,  
VCC_DDO1)  
Input ESD Voltage  
4kV  
Storage Temperature Range (TS)  
–50ºC to +125ºC  
–40ºC to +85ºC  
–0.3 to (VCC_CORE + 0.3)VDC  
+260ºC  
Operating Temperature Range (TA)  
Input Voltage Range (any input pin)  
Solder Reflow Temperature  
Note: Absolute Maximum Ratings are those values beyond which damage may occur.  
Functional operation outside of the ranges shown in the AC/DC electrical characteristics tables  
is not guaranteed.  
GS6151  
Final Data Sheet  
PDS-060389  
8 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
2.2 DC Electrical Characteristics  
Table 2-2: DC Electrical Characteristics  
VCC_CORE, VDD_DIG = +1.8V 5%, TA= –40ºC to +85ºC unless otherwise specified  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Units Notes  
VCC_CORE  
VDD_DIG  
,
Supply Voltage – Core  
(VCC_CORE, VDD_DIG)  
1.710  
1.8  
1.890  
V
Supply Voltage – Output  
Driver (VCC_DDO0,  
VCC_DDO1)  
VCC_DDO0  
VCC_DDO1  
,
1.140  
2.625  
V
Data Rate 6G,  
DDO1/DDO1 disabled  
140  
130  
185  
170  
mW  
mW  
1, 2  
1, 2  
Data Rate <6G,  
DDO1/DDO1 disabled  
Data Rate 6G,  
Default Settings,  
DDO1/DDO1 enabled  
210  
190  
280  
575  
280  
255  
360  
630  
mW  
mW  
mW  
mW  
3, 4  
3, 4  
5
Data Rate <6G,  
Default Settings,  
DDO1/DDO1 enabled  
PD  
Power  
Maximum Supply and Power  
Settings with Diagnostic  
Features Off  
Maximum Supply and Power  
Settings with Diagnostic  
Features On  
5
PSLEEP  
Power (Sleep operation)  
20  
80  
35  
mW  
mW  
Power (Standby  
operation)  
PSTANDBY  
110  
Output Swing Register  
Setting = 0000b  
4.8  
7.5  
15  
7
mA  
mA  
mA  
6, 7  
6, 7  
6, 7  
ICC_DDO0  
ICC_DDO1  
,
Output Swing Register  
Setting= 0100b  
Supply Current - Output  
Driver  
12  
22  
Output Swing Register  
Setting = 1100b  
GS6151  
Final Data Sheet  
PDS-060389  
9 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 2-2: DC Electrical Characteristics (Continued)  
VCC_CORE, VDD_DIG = +1.8V 5%, TA= –40ºC to +85ºC unless otherwise specified  
Parameter  
Symbol Conditions  
Output De-emphasis  
Min  
Typ  
Max  
Units Notes  
Disabled  
Data Rate 6G  
82  
mA  
mA  
8
8
Output De-emphasis  
Disabled  
74  
ICC_CORE  
Supply Current - Core  
Data Rate 3G  
Output De-emphasis Enabled  
Data Rate 6G  
90  
81  
mA  
mA  
8
8
Output De-emphasis Enabled  
Data Rate 3G  
ICC_DIG  
Supply Current - Digital  
Serial Input Termination  
Serial Output Termination  
External Crystal Referenced  
Differential  
75  
75  
7
12  
mA  
Ω
100  
100  
125  
125  
Differential  
Ω
VCC_CORE  
- 50mV  
Serial Input Common  
Mode Voltage  
VCMIN  
0.9  
V
V
V
9, 10  
0.65*  
VDD_DIG  
VIH  
VDD_DIG  
Input Voltage - Digital  
Pins  
(CS, SDIN, CLK, GPIO[0:1])  
0.35*  
VDD_DIG  
VIL  
0
VDD_DIG  
– 0.45  
VOH  
VOL  
IOH = -2mA  
IOL = 2mA  
Output Voltage - Digital  
Pins  
(SDOUT, GPIO[0:1])  
V
V
0.45  
Notes:  
1. Normal operation in referenceless mode, minimum output swing with de-emphasis disabled  
2. VCC_DDO0/1 = 1.2V  
3. The swing is default and de-emphasis is on  
4. VCC_DDO0/1 = 1.8V  
5. DDO0/DDO0 and DDO1/DDO1 set to maximum swing setting, external crystal reference used  
6. Consumption per enabled DDO output  
7. Refer to Table 4-4 for the exact register settings for each ΔVDDO output swing listed  
8. For two enabled outputs  
9. Maximum input voltage level = 1.8V 5%  
10. Up to a maximum swing of 800mV  
GS6151  
Final Data Sheet  
PDS-060389  
10 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
2.3 AC Electrical Characteristics  
Table 2-3: AC Electrical Characteristics  
VCC_CORE, VDD_DIG = +1.8V 5%, TA= –40ºC to +85ºC unless otherwise specified  
Parameter  
Symbol  
DRBYPASS  
ΔVSDI  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
Input Data Rate (Bypass)  
Input Sensitivity  
Bypass mode enabled  
Differential  
3
5940  
800  
Mb/s  
1
mVppd  
200  
Output Swing Register  
Setting = 0100b  
mVppd  
mVppd  
310  
600  
410  
800  
510  
2
2
ΔVDDO  
Output Voltage Swing  
Output Swing Register  
Setting = 1100b  
1000  
Serial Input Jitter  
Tolerance  
Square wave  
modulation  
IJT  
0.8  
50  
30  
UI  
Referenceless  
ms  
ms  
3
3
With External Reference  
(MADI enabled)  
PLL Lock Time —  
Asynchronous  
tALOCK  
With External Reference  
(MADI disabled)  
20  
ms  
3
Referenceless  
10  
10  
μs  
μs  
3
3
PLL Lock Time —  
Synchronous  
tSLOCK  
With External Reference  
20% ~ 80% rising edge  
into 50Ω load  
triseDDO  
80  
80  
ps  
ps  
4
4
Serial Data (DDO0 and  
DDO1) Output Rise And  
Fall Time  
20% ~ 80% falling edge  
into 50Ω load  
tfallDDO  
Rise And Fall Time  
Mismatch (DDO0 and  
DDO1)  
15  
5
ps  
%
4
Duty Cycle Distortion  
(DDO0 and DDO1)  
tOJ(125Mb/s)  
tOJ(270Mb/s)  
tOJ(1485Mb/s)  
tOJ(2970Mb/s)  
tOJ(5940Mb/s)  
tOJ(BYPASS)  
UIP-P  
UIP-P  
UIP-P  
UIP-P  
UIP-P  
ps  
0.02  
0.02  
0.03  
0.04  
0.07  
0.03  
0.03  
0.06  
0.09  
0.13  
37  
5, 6  
5, 6  
5, 6  
5, 6  
5, 6  
5, 6  
BW = Nominal  
PRN 223 – 1 test pattern  
Serial Data Output Jitter  
Intrinsic  
GS6151  
Final Data Sheet  
PDS-060389  
11 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC_CORE, VDD_DIG = +1.8V 5%, TA= –40ºC to +85ºC unless otherwise specified  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
PLL_LOOP_BANDWIDTH  
= 00001  
37  
kHz  
7
PLL_LOOP_BANDWIDTH  
= 00010  
74  
148  
296  
590  
80  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
MHz  
kHz  
kHz  
MHz  
MHz  
MHz  
kHz  
MHz  
MHz  
MHz  
MHz  
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
PLL_LOOP_BANDWIDTH  
= 00100 (default)  
BWLOOP(125Mb/s)  
PLL_LOOP_BANDWIDTH  
= 01000  
PLL_LOOP_BANDWIDTH  
= 10000  
PLL_LOOP_BANDWIDTH  
= 00001  
PLL_LOOP_BANDWIDTH  
= 00010  
160  
320  
640  
1.28  
438  
875  
1.75  
3.5  
PLL_LOOP_BANDWIDTH  
= 00100 (default)  
BWLOOP(270Mb/s)  
BWLOOP(1485Mb/s)  
BWLOOP(2970Mb/s)  
PLL_LOOP_BANDWIDTH  
= 01000  
PLL_LOOP_BANDWIDTH  
= 10000  
PLL Loop Bandwidth  
PLL_LOOP_BANDWIDTH  
= 00001  
PLL_LOOP_BANDWIDTH  
= 00010  
PLL_LOOP_BANDWIDTH  
= 00100 (default)  
PLL_LOOP_BANDWIDTH  
= 01000  
PLL_LOOP_BANDWIDTH  
= 10000  
7
PLL_LOOP_BANDWIDTH  
= 00001  
875  
1.75  
3.5  
PLL_LOOP_BANDWIDTH  
= 00010  
PLL_LOOP_BANDWIDTH  
= 00100 (default)  
PLL_LOOP_BANDWIDTH  
= 01000  
7.0  
PLL_LOOP_BANDWIDTH  
= 10000  
14.0  
GS6151  
Final Data Sheet  
PDS-060389  
12 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC_CORE, VDD_DIG = +1.8V 5%, TA= –40ºC to +85ºC unless otherwise specified  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
PLL_LOOP_BANDWIDTH  
= 00001  
1.75  
MHz  
7
PLL_LOOP_BANDWIDTH  
= 00010  
3.5  
7.0  
MHz  
MHz  
MHz  
MHz  
7
7
7
7
PLL_LOOP_BANDWIDTH  
= 00100 (default)  
BWLOOP(5940Mb/s)  
PLL Loop Bandwidth  
PLL_LOOP_BANDWIDTH  
= 01000  
14.0  
28.0  
PLL_LOOP_BANDWIDTH  
= 10000  
Note:  
1. Edge detection method for LOS detection should be used for data rates below 20Mb/s  
2. Refer to Table 4-4 for the exact register settings for each ΔVDDO output swing listed  
3. PRBS23 pattern used for supported video rates  
4. At HD, 3G, and 6G rates  
5. Jitter measured using an oscilloscope according to SMPTE RP-184  
6. Accumulated jitter measured peak to peak differential over 2000 hits  
7. Test pattern used is clock pattern with 100% toggle rate  
GS6151  
Final Data Sheet  
PDS-060389  
13 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
3. Input/Output Circuits  
VCC_DDO0/1  
VCC_DDO0/1  
VCC_DDO0/1  
VCC_CORE  
VCC_CORE  
VCC_CORE  
3.7kΩ  
50Ω  
50Ω  
50Ω  
50Ω  
RLC  
RLC  
DDI  
DDI  
DDO  
DDO  
18.5kΩ  
Figure 3-1: DDI0, DDI0, DDI1, DDI1 Serial Digital  
Differential Inputs  
Figure 3-2: DDO0, DDO0, DDO1, DDO1 Serial Digital  
Differential Output  
VDD_DIG VDD_DIG  
VDD_DIG  
VDD_DIG  
SDIN,  
SCLK  
SDOUT  
100kΩ  
Figure 3-3: SDIN and SCLK  
Figure 3-4: SDOUT  
VDD_DIG  
VDD_DIG  
VDD_DIG  
100kΩ  
CS  
Figure 3-5: CS  
GS6151  
Final Data Sheet  
PDS-060389  
14 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
VDD_DIG  
VDD_DIG  
VDD_DIG  
VDD_DIG  
DDI_SEL/  
STROBE  
XTAL_BUF_OUT  
100kΩ  
Figure 3-7: XTAL_BUF_OUT  
Figure 3-6: DDI_SEL/STROBE  
VDD_DIG  
VDD_DIG  
VDD_DIG  
1kΩ  
GPIO  
100kΩ  
VDD_DIG  
Figure 3-8: General Purpose Inputs/Outputs (GPIO)  
VDD_DIG  
VDD_DIG  
EN  
VDD_DIG  
VDD_DIG  
246Ω  
XTAL_CLK_OUT  
246Ω  
XTAL_CLK_IN  
EN  
Figure 3-9: XTAL_CLK_IN and XTAL_CLK_OUT  
GS6151  
Final Data Sheet  
PDS-060389  
15 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4. Detailed Description  
The GS6151 is a multi-standard CDR for signals operating at the following data rates:  
125Mb/s, 270Mb/s, 1.485Gb/s, 1.485/1.001Gb/s, 2.97Gb/s, 2.97/1.001Gb/s, 5.94Gb/s,  
and 5.94/1.001Gb/s.  
4.1 Serial Data Inputs  
The GS6151 features two 100Ω terminated differential input buffers.  
A serial data input signal may be connected to either of the two input pin pairs of the  
device: DDI0/DDI0 and DDI1/DDI1  
By default, the self-biasing circuit at the input is enabled to allow AC coupling to  
upstream devices. To enable DC coupling of the inputs, the user must disable the  
self-biasing network by setting bits 4:4 through 5:5 to 0 in the register 7 :  
h
DDI[0:1]_TRACE_EQ_DC_TERM_ENABLE.  
In order to select DC coupling, please ensure that the output common mode of the  
upstream device is in range of the input common mode voltage range shown in  
Table 2-2.  
The serial digital input buffer is capable of operating with any binary coded signal that  
meets the input signal level requirements defined below, with any data rate between  
3Mb/s and 5.94Gb/s.  
4.1.1 Input Trace Equalization  
The GS6151 features adjustable trace equalization to compensate for PCB trace  
dielectric losses up to half the maximum supported data rate, or 3GHz.  
Table 4-1: Equalization Settings  
Data Rate  
Trace Loss  
Settings  
2.97Gb/s and below  
5.94Gb/s  
0-7dB of trace loss at 1.5GHz  
0-10dB of trace loss at 3GHz  
7-12dB of trace loss at 1.5GHz  
negligible trace loss  
LOW (default)  
2.97Gb/s and below  
HIGH  
0dB or EQ_BYPASS  
These settings are selected using the DDI0_TRACE_EQ_CONTROL and  
DDI1_TRACE_EQ_CONTROL bits in the INPUT_CONTROL_REG_0 register at address 5 .  
h
The default state of the device is input trace equalization on all inputs set to LOW.  
If system jitter profile allows, it is recommended that the loop bandwidth is reduced to  
the minimum setting to maximize performance.  
GS6151  
Final Data Sheet  
PDS-060389  
16 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.1.2 Input Selection  
The GS6151 incorporates a 2:1 input selector which allows the connection of two  
independent streams of video/data.  
The selector is controllable in three separate ways:  
1. The DDI_SEL/STROBE pin can be used to select the input.  
2. A GSPI accessible register can be used to select the input, with the state change  
occurring as soon as the register value changes.  
3. A GSPI accessible register can be used to select the input, with a rising edge on the  
STROBE pin triggering a change to the next state.  
Since these states are mutually exclusive, the DDI_SEL pin is shared with the STROBE  
function.  
In the case of using the DDI_SEL/STROBE pin (#1 above) or the STROBE pre-select  
method (#3 above), the input selector will switch within 1μs of the change of state on  
the corresponding pin(s). This strict timing requirement is not maintained when using  
GSPI register selection (#2 above).  
Each of the device’s two inputs is selected as shown in Table 4-2.  
Table 4-2: Pin and Register Settings for Input Selection  
Register Settings  
Differential  
DDI_SEL/STROBE High-speed Input  
INPUT_SELECTION_  
DDI_SELECT  
Selected  
CONTROL 7 [9:8]  
7 [10]  
h
h
X0 (default)  
X0 (default)  
01  
X
X
0
1
LOW  
HIGH  
X
DDI0, DDI0  
DDI1, DDI1  
DDI0, DDI0  
DDI1, DDI1  
01  
X
on LOW-to-HIGH  
transition  
11  
0
1
DDI0, DDI0  
DDI1, DDI1  
on LOW-to-HIGH  
transition  
11  
Note: ‘X’ indicates ‘Do Not Care’  
The DDI_SEL/STROBE pin includes an internal pull-down, which pulls the input voltage  
LOW if the pin is left unconnected.  
When using the STROBE pre-select method (#3 above), the pre-selected input buffer  
and trace EQ is powered up in advance of the STROBE pulse.  
GS6151  
Final Data Sheet  
PDS-060389  
17 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.2 Reference Clock  
The GS6151 can operate with or without an external frequency reference. For  
applications requiring rapid asynchronous locking, a 27MHz reference or crystal is  
required.  
The PLL lock times for both referenceless and external crystal reference operation are  
given in Table 2-3: AC Electrical Characteristics.  
If a reference is connected to the XTAL_CLK_IN pin or a crystal is connected to the  
XTAL_CLK_IN and XTAL_CLK_OUT pins of the device, it will automatically be used as the  
reference frequency for rapid asynchronous lock. If XTAL_CLK_IN is not connected to a  
crystal, XTAL_CLK_OUT must be left unconnected.  
The XTAL_CLK_IN pin operates correctly when connected directly to the  
XTAL_BUF_OUT from another GS6151, or a 27MHz output of a different device.  
4.3 Signal Monitoring  
The GS6151 measures and reports the following signal status and quality monitoring  
parameters:  
Loss of Signal  
Lock Detection  
Rate Detection  
Low/High Bit Rate Detection  
4.3.1 Loss of Signal Detection  
LOS (Loss of Signal) detection is an active HIGH output available to the application on  
either of the GPIO0 or GPIO1 multi-function status and control pins. It is selected for  
output using the GPIO[0:1]_IO_SELECT and GPIO[0:1]_SELECT bits accessible in the  
GPIO_CONTROL_REG_0 register at address 2 . It is the default output of the GPIO0 pin.  
h
LOS indicates when the serial digital signal selected by the input selector is invalid. This  
function is always active.  
The corresponding GPIO pin will be HIGH (signal lost) when the input signal amplitude  
within a predefined window falls below the threshold set by the bits  
DDI[0:1]_LOS_THRESHOLD_CONTROL in the LOS_CONTROL_REG_1 register at address  
10 . The LOS threshold hysteresis can be set by the LOS_HYSTERESIS bits in the  
h
LOS_CONTROL_REG_0 register at address F .  
h
The corresponding GPIO pin will be LOW (signal present) when the input signal  
amplitude within a predefined window is above the defined threshold.  
The LOS status is also available through the LOS bit in the PLL_STATUS register at  
address 4F , and as a sticky status through the LOS_STICKY bit in the STICKY_STATUS  
h
register at address 50 .  
h
The corresponding GPIO pin will be LOW (signal present) when the input signal  
amplitude within a predefined window is above the defined threshold.  
GS6151  
Final Data Sheet  
PDS-060389  
18 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
The method of strength detection is measurement of the average rectified differential  
voltage on the input pins. The strength detection method is therefore inherently  
dependent on the input signal's eye shape, particularly the rise/fall times of the input  
signal relative to the data rate. Additionally, the circuit has a lower bandwidth limit of  
operation (20Mb/s) below which it is recommended that the edge detection method is  
used. The absolute value of the threshold can be determined for any input swings  
according to Equation 4-1 below:  
1.9mV × (DDI[0..3]_LOS_THRESHOLD_CONTROL ) × 53  
----------------------------------------------------------------------------------------------------------------------------------------  
Threshold =  
Equation 4-1  
(DEVICE_SPECIFIC_LOS_THRESHOLD)  
where DEVICE_SPECIFIC_LOS_THRESHOLD specifies the LOS threshold value for a  
100mV input swing at SD-rate specific to each device. The other rates scale according to  
the fractional relationship given in Figure 4-1 and Figure 4-2 below.  
60  
55  
50  
45  
40  
35  
30  
0
20  
40  
60  
80  
100  
120  
Frequency (Mb/s)  
Figure 4-1: LOS Threshold at 100mV Input Swing vs. Low Frequency Rates for a Nominal  
DEVICE_SPECIFIC_LOS_THRESHOLD of 53  
Note: Edge detection method is recommended for signals in shaded areas.  
GS6151  
Final Data Sheet  
PDS-060389  
19 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
60  
55  
50  
45  
40  
35  
30  
SD-SDI  
HD-SDI  
3G-SDI  
6G-SDI  
0
1.485  
2.97  
Frequency (Gb/s)  
4.455  
5.94  
Figure 4-2: LOS Threshold at 100mV Input Swing vs. SDI Data Rates for a Nominal  
DEVICE_SPECIFIC_LOS_THRESHOLD of 53  
Strength detection is unaffected by the Trace EQ settings in INPUT_CONTROL_REG_0.  
When edge detection is used as the method of LOS detection the corresponding GPIO  
pin will be HIGH (signal lost) when no transitions are detected on the selected input. The  
corresponding GPIO pin will be LOW (signal present) when transitions are detected on  
the input. The LOS status is also available through the LOS bit in the PLL_STATUS  
register, and as a sticky status through the LOS_STICKY bit in the STICKY_STATUS  
register at address 50 .  
h
4.3.2 Lock Detection  
The GS6151 lock detection circuitry outputs a LOCKED status signal which indicates that  
the CDR has achieved phase lock to the incoming data stream. The LOCKED signal is an  
active HIGH output available to the application on either of the GPIO[0:1] multi-function  
status and control pins. It is selected for output using the GPIO[0:1]_IO_SELECT and  
GPIO[0:1]_SELECT bits accessible in the GPIO_CONTROL_REG_0 register. By default,  
LOCKED is output on GPIO1.  
The LOCKED status is also available from the LOCKED bit in the PLL_STATUS register,  
and the LOCK_LOST_STICKY bit in the STICKY_STATUS register indicates whether lock  
has been lost since the bit was last cleared.  
GS6151  
Final Data Sheet  
PDS-060389  
20 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.3.2.1 Synchronous and Asynchronous Lock Time  
Asynchronous lock time is defined as the time it takes the device to lock when a signal  
is first applied to the serial digital inputs, or when the signal rate changes.  
The synchronous lock time is defined as the time it takes the device to lock to a signal  
which has been momentarily interrupted.  
The asynchronous and synchronous lock times are defined in Table 2-3: AC Electrical  
Characteristics.  
To qualify for synchronous lock time, the maximum interruption time of the signal is  
10μs for a 270Mb/s signal. 1.485Gb/s, 2.97Gb/s, and 5.94Gb/s signals, as well as their  
ƒ/1.001 components, have a maximum interruption time of 6μs. The new signal, after  
interruption, must have the same frequency as the original signal but can have arbitrary  
phase.  
4.3.3 Rate Detection  
The GS6151 can be manually forced to lock to a specific supported data rate, or  
automatically search for and lock to supported rates. The selection between manual and  
automatic rate selection is through the FORCE_PLL_RATE and  
FORCE_PLL_RATE_ENABLE bits of the PLL_CONTROL register at address 4C . By default  
h
the device is set to automatically search for supported SDI rates.  
When set to automatically detect supported data rates, the device repeatedly cycles  
through each supported rate that is enabled through the RATE_ENABLE_5G94,  
RATE_ENABLE_2G97, RATE_ENABLE_1G485, RATE_ENABLE_270M and  
RATE_ENABLE_125M bits of the PLL_CONTROL register, until the device phase locks to  
one of the enabled rates. If lock is lost the rate search resumes, continuously testing for  
each rate in sequence until lock is regained.  
The device reports the current data rate setting of the automatic rate search state  
machine through the DETECTED_RATE bits in the PLL_STATUS register at address 4F .  
h
Table 4-3 below shows the supported rate that can be detected.  
Table 4-3: Automatic Rate Detection - Supported Data Rates  
DETECTED_RATE  
Data Rate  
000  
001  
010  
011  
100  
125Mb/s – MADI  
270Mb/s – SD  
1.485Gb/s – HD  
2.97Gb/s – 3G  
5.94Gb/s – 6G  
4.3.4 Low/High Bit Rate Detection for Slew Rate Control  
A status output named LBR_HBR is provided to control the slew rate selection input of  
a downstream SDI cable driver. It can be connected to the SD_EN input of drivers such  
as the GS6080 or GS6081 using the Semtech recommended application circuit.  
GS6151  
Final Data Sheet  
PDS-060389  
21 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
When this signal is HIGH, the data rate is 270Mb/s (SD) or 125Mb/s (MADI). This signal is  
LOW for all other supported data rates, and when the GS6151 is operating in Bypass  
Mode or any time the device is not locked.  
The LBR_HBR output signal is available on either of the GPIO[0:1] multifunction status  
and control pins. It is selected for output using the GPIO[0:1]_IO_SELECT and  
GPIO[0:1]_SELECT bits accessible in the GPIO_CONTROL_REG_0 register at address 2 .  
h
4.4 Low Power Modes  
The device can be programmed via the GSPI to operate in two different low power  
modes. SLEEP mode has minimum power consumption at the expense of recovery time  
upon de-assertion of the FORCE_PWRDN_SLEEP bit. STANDBY mode has higher power  
consumption relative to SLEEP mode but minimizes time to return to operation on  
de-assertion of the FORCE_PWRDN_STANDBY bit. The features affected by each mode  
are outlined below.  
SLEEP mode:  
LOS detection remains functional  
The GSPI remains functional  
The reference oscillator remains functional  
STANDBY mode:  
LOS detection remains functional  
The GSPI remains functional  
The reference oscillator remains functional  
The VCO and PLL remains functional so as to minimize the lock time when a signal is detected  
The rate detector remains set to the last valid data rate. On detection of a signal, the  
last valid rate is tested first by the rate detect state machine  
The device can be programmed to automatically enter into SLEEP or STANDBY mode  
when LOS is asserted by programming the AUTO_PWRDN_DISABLE bit in the  
PWRDN_CONTROL register at address 17 . The AUTO_PWRDN_MODE bit in the same  
h
register selects which mode, SLEEP or STANDBY, is entered into upon assertion of LOS.  
The device also features a power-save feature that reduces power when the CDR is  
locked to HD, 3G or 6G rates. The HS_LOCKED_POWER_SAVE parameter of register  
PWR_CONTROL at address D2 can be set to 1 to enable this feature.  
h
4.5 Serial Data Output  
The GS6151 has two current-mode differential output drivers, each capable of driving  
up to 930mV differential into an external 100Ω differential load.  
pp  
The output drivers operate with any binary coded signal with supported data rates up  
to 5.94Gb/s. This is applicable to both the serial data (DDO, DDO, DDO1, DDO1) outputs  
of the device.  
GS6151  
Final Data Sheet  
PDS-060389  
22 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.5.1 Output Impedance  
Each of the GS6151’s output buffers include two on-chip, 50Ω termination resistors.  
4.5.2 Output Signal Interface Levels  
The serial digital outputs operate within specification with an output CML power supply  
of 1.2V to 2.5V.  
4.5.3 Adjustable Output Swing  
Through the GSPI, the output swing can be set in the range from approximately  
230mV  
to 930mV  
in 45mV  
increments, when the outputs are terminated with  
ppd  
ppd  
ppd  
50Ω loads. For the exact values, please see Table 4-4 below.  
The output swing for each data rate is controlled using the bits in the  
DRIVER_CONTROL_REG_3, DRIVER_CONTROL_REG_4, DRIVER_CONTROL_REG_5, and  
DRIVER_CONTROL_REG_6 registers at addresses 1C through 1F .  
h
h
The device automatically adjusts the swing setting depending on the state of the device  
(i.e. detected rate, bypass mode, or mute). There are separate register controls for mute,  
bypass and each data rate.  
Table 4-4: Serial Digital Output Swing Settings  
Register Setting  
(See Note 1)  
Min  
Typ  
Max  
Units  
0000b  
175  
205  
245  
280  
310  
345  
380  
420  
455  
490  
530  
565  
600  
230  
275  
325  
370  
410  
460  
510  
560  
605  
655  
705  
755  
800  
290  
345  
405  
460  
510  
575  
640  
700  
760  
820  
880  
945  
1000  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
0001b  
0010b  
0011b (default)  
0100b  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b  
1011b  
1100b  
GS6151  
Final Data Sheet  
PDS-060389  
23 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 4-4: Serial Digital Output Swing Settings (Continued)  
Register Setting  
(See Note 1)  
Min  
Typ  
Max  
Units  
1101b  
630  
670  
700  
840  
890  
930  
1050  
1110  
1160  
mV  
mV  
mV  
1110b  
1111b  
Note:  
1. Applicable registers that can be programmed with the values shown above are DDO0_SWING_1G485,  
DDO0_SWING_270M, DDO0_SWING_125M, DDO0_SWING_BYPASS, DDO0_SWING_MUTE,  
DDO0_SWING_5G94, DDO0_SWING_2G97, DDO1_SWING_1G485, DDO1_SWING_270M,  
DDO1_SWING_125M, DDO1_SWING_BYPASS, DDO1_SWING_MUTE, DDO1_SWING_5G94, and  
DDO1_SWING_2G97  
4.5.4 Output De-emphasis  
The GS6151 features adjustable output de-emphasis to compensate for PCB dielectric  
trace loss. Each output can be independently set to a different de-emphasis setting for  
each detected rate through controls found in the DRIVER_CONTROL_REG_1 and  
DRIVER_CONTROL_REG_2 registers.  
The effect of de-emphasis, illustrated in Figure 4-3, is to attenuate the swing of bits that  
do not follow a bit transition (V ). The swing of bits that do follow a bit transition (V  
)
DE  
nom  
is set by the output swing registers found in Section 4.5.3 and do not depend on the  
de-emphasis settings.  
Nominal  
Swing (Vnom  
De-emphasized  
Swing (VDE)  
)
Data Pattern  
0
1
1
1
0
0
De-emphasis = 20 x log10(Vnom / VDE)  
Figure 4-3: De-emphasis Waveform  
The default de-emphasis settings for each rate are given in the register descriptions for  
DRIVER_CONTROL_REG_1 and DRIVER_CONTROL_REG_2 in Table 5-1. De-emphasis is  
disabled on both outputs in Bypass mode, when the output is muted, or when the  
device is not locked.  
GS6151  
Final Data Sheet  
PDS-060389  
24 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.5.5 Output Common Mode Voltage  
The output common mode voltage level (V  
) is a function of the output voltage  
) and how the transmission line is  
CMOUT  
swing, the output driver supply voltage (V  
CC_DDO  
terminated. If the outputs are terminated through 50Ω resistors to a voltage V  
TERM  
equal to V  
, as shown in Figure 4-5 below, the output common mode voltage is  
CC_DDO  
given by the following expression:  
ΔVDDO  
------------------  
4
VCMOUT = VCC_DDO  
Equation 4-2  
Equation 4-3  
If the differential outputs are terminated across a 100Ω resistor, as shown in Figure 4-4  
below, the output common mode voltage is given by the following expression:  
ΔVDDO  
VCMOUT = VCC_DDO  
------------------  
2
GS6151  
GS6151  
VCC_DDO  
VCC_DDO  
VTERM VTERM  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω 50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
DDO  
DDO  
DDO  
DDO  
100Ω  
Figure 4-4: 100Ω Parallel Output Termination  
Figure 4-5: 50Ω Termination to V  
TERM  
4.6 Output Mute and Disable  
The GS6151 outputs can each be individually muted using the DDO0_MUTE and  
DDO1_MUTE bits in the DRIVER_CONTROL_REG_0 register at address 19 .  
h
Each output can also be independently disabled through either register or GPIO control.  
When disabled each pin of the output is pulled to V  
. Register  
CC_DDO  
DRIVER_CONTROL_REG_0 contains both register based disable bits (DDO0_DISABLE,  
DDO1_DISABLE) and bits for selection between register and GPIO control  
(DDO0_DISABLE_SELECT, DDO1_DISABLE_SELECT). For GPIO control refer to  
Section 4.10. By default DDO0, DDO0 is enabled/disabled through register control and  
set to enabled. DDO1, DDO1 is enabled by default.  
GS6151  
Final Data Sheet  
PDS-060389  
25 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.7 Bypass Mode  
In Bypass mode, the GS6151 passes the input data to the outputs, bypassing the  
retiming functionality.  
There are two bits in the control registers that control the bypass function:  
MANUAL_BYPASS and AUTO_BYPASS in the CDR_BYPASS register at address 20 . The  
h
MANUAL_BYPASS bit is inactive (set to 0) by default. The AUTO_BYPASS bit is active (set  
to 1) by default, and places the GS6151 CDR into bypass mode when the PLL is not  
locked to a data rate. The bypass function does not affect the trace equalization function  
of the device.  
Note: If MANUAL_BYPASS is active, it overrides the AUTO_BYPASS bit setting.  
4.8 DVB-ASI  
The GS6151 has the ability to reclock DVB-ASI signals at 270Mb/s. All relevant settings  
and control registers that apply to SD-SDI signals at 270Mb/s are also compatible with  
DVB-ASI signals at 270Mb/s.  
4.9 Device Power Up  
4.9.1 Power on Reset (POR)  
The GS6151 features an on-chip power-on-reset that places all registers and internal  
state machines into their known, default states when the chip is powered up.  
4.10 GPIO Pins Configuration  
The GS6151 has two GPIO pins that can each be configured as outputs for various  
internal status signals, or as inputs to disable either output-driver via pin control. The  
bits GPIO[0:1]_IO_SELECT are used to configure the GPIO pins as outputs (0) or inputs  
(1). The signals that are output or input on the GPIO pins are selected by the  
GPIO[0:1]_SELECT bits, in conjunction with the GPIO[0:1]_IO_SELECT bits of  
GPIO_CONTROL_REG_0 at address 2 . The signals that can be output on the GPIO pins  
h
are listed in Table 4-5 below and the signals that can be input are listed in Table 4-6.  
Table 4-5: GPIO Status Outputs  
GPIO[0:1]_SELECT  
Parameter  
Description  
Loss of signal indication - High when there is no detected  
signal on the selected DDI input  
0000  
LOS  
Phase lock indication - High when the CDR has  
phase-locked to a valid input signal  
0001  
0010  
LOCKED  
Low bit-rate/High bit-rate - High when the part is locked to  
the SD data rate; low for all other data rates and in bypass.  
LBR_HBR  
GS6151  
Final Data Sheet  
PDS-060389  
26 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 4-5: GPIO Status Outputs (Continued)  
GPIO[0:1]_SELECT  
Parameter  
Description  
0101  
0110  
0111  
RATE_DET0  
RATE_DET1  
RATE_DET2  
Rate Detect - Three bits used in conjunction that represent  
the data rate detected by the rate search state machine.  
Refer to Table 4-3 for rate encoding details.  
High when the rate search state machine is locked to a  
MADI data rate (125Mb/s)  
1000  
1001  
1010  
1011  
1100  
LOCKED_125M  
LOCKED_270M  
LOCKED_1G485  
LOCKED_2G97  
LOCKED_5G94  
High when the rate search state machine is locked to an SD  
data rate (270Mb/s)  
High when the rate search state machine is locked to an HD  
data rate (1.485Gb/s)  
High when the rate search state machine is locked to a 3G  
data rate (2.97Gb/s)  
High when the rate search state machine is locked to a 6G  
data rate (5.94Gb/s)  
When a change in the data rate is detected by the rate  
search state machine, the RATE_CHANGE signal is pulsed  
high for a duration of 37ns  
1101  
RATE_CHANGE  
The signals that can be input on the GPIOs are listed in Table 4-6 below.  
Table 4-6: GPIO Signal Inputs  
GPIO[0:1]_SELECT  
Parameter  
Description  
0000  
0001  
DDO0_DISABLE  
DDO1_DISABLE  
Disables serial data output 0 (DDO0, DDO0)  
Disables serial data output 1 (DDO1, DDO1)  
By default, the GPIO pins are configured to the following parameters:  
GPIO0: LOS (output)  
GPIO1: LOCKED (output)  
GS6151  
Final Data Sheet  
PDS-060389  
27 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.11 GSPI Host Interface  
The GS6151 is controlled via the Gennum Serial Peripheral Interface (GSPI).  
The GSPI host interface is comprised of a serial data input signal (SDIN pin), serial data  
output signal (SDOUT pin), an active-low chip select (CS pin) and a burst clock (SCLK  
pin).  
The GS6151 is a slave device, therefore the SCLK, SDIN and CS signals must be sourced  
by the application host processor.  
All read and write access to the device is initiated and terminated by the application  
host processor.  
It is strongly recommended to connect the GSPI pins of the GS6151 to a host/system  
processor/controller or FPGA to facilitate optimization of the device to meet specific  
application requirements. Modification of many device settings is only facilitated  
through the GSPI of the GS6151, and is not available on external pins.  
4.11.1 CS Pin  
The Chip Select pin (CS) is an active-low signal provided by the host processor to the  
GS6151.  
The high-to-low transition of this pin marks the start of serial communication to the  
GS6151.  
The low-to-high transition of this pin marks the end of serial communication to the  
GS6151.  
There is an option for each device to use a separate unique Chip Select signal from the  
host processor or for up to 32 devices to be connected to a single Chip Select when  
making use of the Unit Address feature.  
Only those devices whose Unit Address matches the UNIT ADDRESS in the GSPI  
Command Word will respond to communication from the host processor (unless the  
B’CAST ALL bit in the GSPI Command Word is set to 1).  
4.11.2 SDIN Pin  
The SDIN pin is the GSPI serial data input pin of the GS6151.  
The 16-bit Command and Data Words from the host processor or from the SDOUT pin  
of other devices are shifted into the device on the rising edge of SCLK when the CS pin  
is low.  
4.11.3 SDOUT Pin  
The SDOUT pin is the GSPI serial data output of the GS6151.  
All data transfers out of the GS6151 to the host processor or to the SDIN pin of other  
connected devices occur from this pin.  
By default at power up or after system reset, the SDOUT pin provides a non-clocked path  
directly from the SDIN pin, regardless of the CS pin state, except during the GSPI Data  
GS6151  
Final Data Sheet  
PDS-060389  
28 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Word portion for read operations to the device. This allows multiple devices to be  
connected in Loop-Through configuration.  
For read operations, the SDOUT pin is used to output data read from an internal  
Configuration and Status Register (CSR) when CS is LOW. Data is shifted out of the  
device on the falling edge of SCLK, so that it can be read by the host processor or other  
downstream connected device on the subsequent SCLK rising edge.  
4.11.3.1 GSPI Link Disable Operation  
It is possible to disable the direct SDIN to SDOUT (Loop-Through) connection by writing  
a value of 1 to the GSPI_LINK_DISABLE bit in REGISTER_0. When disabled, any data  
appearing at the SDIN pin will not appear at the SDOUT pin and the SDOUT pin is HIGH.  
Note: Disabling the Loop-Through operation is temporarily required when initializing  
the Unit Address for up to 32 connected devices.  
The time required to enable/disable the Loop-Through operation from assertion of the  
register bit is less than the GSPI configuration command delay as defined by the  
parameter t  
(5 SCLK cycles).  
cmd_GSPI_config  
Table 4-7: GSPI_LINK_DISABLE Bit Operation  
Bit State  
Description  
0
1
SDIN pin is looped through to the SDOUT pin  
Data appearing at SDIN does not appear at SDOUT, and SDOUT pin is HIGH.  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
High-Z  
GSPI_LINK  
_DISABLE  
GSPI_BUS_  
THROUGH_ENABLE  
CS pin  
Figure 4-6: GSPI_LINK_DISABLE Operation  
4.11.3.2 GSPI Bus-Through Operation  
Using GSPI Bus-Through operation, the GS6151 can share a common PCB trace with  
other GSPI devices for SDOUT output.  
When configured for Bus-Through operation, by setting GSPI_BUS_THROUGH_ENABLE  
bit to 1, the SDOUT pin will be high-impedance when the CS pin is HIGH.  
When the CS pin is LOW, the SDOUT pin will be driven and will follow regular read and  
write operation as described in Section 4.11.3.  
GS6151  
Final Data Sheet  
PDS-060389  
29 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Multiple chains of GS6151 devices can share a single SDOUT bus connection to host by  
configuring the devices for Bus-Through operation. In such configuration, each chain  
requires a separate Chip Select (CS).  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
GSPI_LINK  
_DISABLE  
High-Z  
GSPI_BUS_  
THROUGH_ENABLE  
CS pin  
Figure 4-7: GSPI_BUS_THROUGH_ENABLE Operation  
4.11.4 SCLK Pin  
The SCLK pin is the GSPI serial data shift clock input to the device, and must be provided  
by the host processor.  
Serial data is clocked into the GS6151 SDIN pin on the rising edge of SCLK. Serial data is  
clocked out of the device from the SDOUT pin on the falling edge of SCLK (read  
operation). SCLK is ignored when CS is HIGH.  
The maximum interface clock rate is 27MHz.  
4.11.5 Command Word Description  
All GSPI accesses are a minimum of 32 bits in length (a 16-bit Command Word followed  
by a 16-bit Data Word) and the start of each access is indicated by the high-to-low  
transition of the chip select (CS) pin of the GS6151.  
The format of the Command Word and Data Words are shown in Figure 4-8.  
Data received immediately following this high-to-low transition will be interpreted as a  
new Command Word.  
4.11.5.1 R/W bit - B15 Command Word  
This bit indicates a read or write operation.  
When R/W is set to 1, a read operation is indicated, and data is read from the register  
specified by the ADDRESS field of the Command Word.  
When R/W is set to 0, a write operation is indicated, and data is written to the register  
specified by the ADDRESS field of the Command Word.  
GS6151  
Final Data Sheet  
PDS-060389  
30 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.11.5.2 B'CAST ALL - B14 Command Word  
This bit is used in write operations to configure all devices connected in Loop-Through  
and Bus-Through configuration with a single command.  
When B’CAST ALL is set to 1, the following Data Word (AUTOINC = 0) or Data Words  
(AUTOINC = 1) are written to the register specified by the ADDRESS field of the  
Command Word (and subsequent addresses when AUTOINC = 1), regardless of the  
setting of the UNIT ADDRESS(es).  
When B’CAST ALL is set to 0, a normal write operation is indicated. Only those devices  
that have a Unit Address matching the UNIT ADDRESS field of the Command Word write  
the Data Word to the register specified by the ADDRESS field of the Command Word.  
4.11.5.3 EMEM - B13 Command Word  
When the EMEM bit is 1 the Address Word is extended to 23 bits to allow access to  
registers located in the extended memory space.  
When the EMEM bit is 0, the address word is limited to 7 bits.  
4.11.5.4 AUTOINC - B12 Command Word  
When AUTOINC is set to 1, Auto-Increment read or write access is enabled.  
In Auto-Increment Mode, the device automatically increments the register address for  
each contiguous read or write access, starting from the address defined in the ADDRESS  
field of the Command Word.  
The internal address is incremented for each 16-bit read or write access until a  
low-to-high transition on the CS pin is detected.  
When AUTOINC is set to 0, single read or write access is required.  
Auto-Increment write must not be used to update values in HOST_CONFIG.  
4.11.5.5 UNIT ADDRESS - B11:B7 Command Word  
The 5 bits of the UNIT ADDRESS field of the Command Word are used to select one of 32  
devices connected on a single chip select in Loop-Through or Bus-Through  
configurations.  
Read and write accesses are only accepted if the UNIT ADDRESS field matches the  
programmed DEVICE_UNIT_ADDRESS in HOST_CONFIG.  
By default at power-up or after a device reset, the DEVICE_UNIT_ADDRESS is set to 00h  
4.11.5.6 ADDRESS - B6:B0 Command Word  
If the extended memory is not being accessed (EMEM = 0), the 7 bits of the ADDRESS  
field are used to select one of 128 register addresses in the device in single read or write  
access mode, or to set the starting address for read or write accesses in Auto-Increment  
Mode.  
GS6151  
Final Data Sheet  
PDS-060389  
31 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Command Word  
MSB  
R / W  
LSB  
UNIT ADDRESS  
ADDRESS  
A3  
B’CAST  
ALL  
EMEM  
AUTOINC  
A11  
A10  
A9 A8  
A7  
A6  
A5  
A4  
A2  
A1  
A0  
7-bit CSR address field providing up to  
128 configuration registers.  
5-bit UNIT ADDRESS field providing up to  
32 devices to be connected on a single CS.  
Auto increment read/write access when set.  
Single read write access when reset.  
Extended memory mode. When set, the extended memory mode is  
enabled. When reset, normal GSPI addressing is enabled.  
When set, the UNIT ADDRESS field is ignored and  
all data accesses are actioned by the device.  
When reset, the Unit Address is used to  
manage data accesses in the device.  
Read access when this bit is set.  
Write access when this bit is reset.  
Data Word  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 4-8: Command and Data Word Format  
When EMEM is set to 1, the Address Word is extended to 23 bits. The Command and Data  
Word format will be extended by another 16 bits, and is shown in Figure 4-9 below.  
Command Word  
MSB  
LSB  
UNIT ADDRESS  
A9  
ADDRESS[22:16]  
A19  
B’CAST  
ALL  
EMEM  
A13  
AUTOINC  
A12  
A11  
A11  
A10  
A10  
A8  
A7  
A22  
A6  
A21  
A5  
A20  
A4  
A18  
A2  
A17  
A1  
A16  
R / W  
A15  
ADDRESS[15:0]  
A14  
A9  
A8  
A7  
A3  
D3  
A0  
Data Word  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
Figure 4-9: Command and Data Word Format with EMEM set to 1  
GS6151  
Final Data Sheet  
PDS-060389  
32 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.11.6 GSPI Transaction Timing  
tcmd_GSPI_config  
tcmd  
t9  
SCLK  
CS  
X
X
SDIN  
SDOUT  
t2  
t7  
t0  
t1  
t4  
SCLK  
CS  
t3  
t8  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
SDOUT  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI signal is looped out on SDO  
Write Mode  
t5  
t9  
SCLK  
CS  
t6  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
SDIN  
SDOUT  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI signal is looped out on SDO  
Read Data is output on SDO  
Read Mode  
Figure 4-10: GSPI External Interface Timing  
Table 4-8: GSPI Timing Parameters  
Equivalent  
SCLK  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Cycles  
(at 27MHz)  
SCLK frequency  
CS low before SCLK rising edge  
SCLK period  
2.0  
37  
50  
27  
60  
MHz  
ns  
t0  
t1  
t2  
t3  
t4  
t5  
ns  
SCLK duty cycle  
40  
%
Input data setup time  
SCLK idle time -write  
SCLK idle time - read  
2.7  
37  
ns  
1
5
ns  
161.0  
ns  
GS6151  
Final Data Sheet  
PDS-060389  
33 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 4-8: GSPI Timing Parameters (Continued)  
Equivalent  
SCLK  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Cycles  
(at 27MHz)  
tcmd  
Inter-command delay time  
4
5
120.0  
162.0  
ns  
ns  
tcmd_GSPI_  
conf1  
Inter-command delay time  
(after GSPI configuration write)  
t6  
t7  
SDO after SCLK falling edge  
7.5  
ns  
ns  
CS high after final SCLK falling  
edge  
0.0  
t8  
t9  
Input data hold time  
CS high time  
1.0  
ns  
ns  
57.0  
SDIN to SDOUT combinational  
delay  
5.0  
1
ns  
Max. chips daisy chained at  
max SCLK frequency  
GS6151  
chips  
When host clocks in SDOUT  
data on rising edge of SCLK  
Max. frequency for 32  
daisy-chained devices  
2.1  
3
MHz  
Max. chips daisy-chained at  
max. SCLK frequency  
GS6151  
chips  
When host clocks in SDOUT  
data on falling edge of SCLK  
Max. frequency for 32  
daisy-chained devices  
2.2  
MHz  
Note:  
1. tcmd_GSPI_conf inter-command delay must be used whenever modifying HOST_CONFIG register at address 0x00  
GS6151  
Final Data Sheet  
PDS-060389  
34 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.11.7 Single Read/Write Access  
Single read/write access timing for the GSPI interface is shown in Figure 4-11 to  
Figure 4-15.  
When performing a single read or write access, one Data Word is read from/written to  
the device per access. Each access is a minimum of 32-bits long, consisting of a  
Command Word and a single Data Word. The read or write cycle begins with a  
high-to-low transition of the CS pin. The read or write access is terminated by a  
low-to-high transition of the CS pin.  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the figures as t , is a minimum of 4 SCLK clock cycles. After modifying  
cmd  
values in HOST_CONFIG, the inter-command delay time, t  
of 5 SCLK clock cycles.  
, is a minimum  
cmd_GSPI_config  
For read access, the time from the last bit of the Command Word to the start of the data  
output, as defined by t , corresponds to no less than 5 SCLK clock cycles at 27MHz.  
5
t
cmd  
SCLK  
CS  
COMMAND  
COMMAND  
DATA  
DATA  
X
X
COMMAND  
COMMAND  
SDIN  
SDOUT  
Figure 4-11: GSPI Write Timing – Single Write Access with Loop-Through Operation (default)  
t
cmd  
SCLK  
CS  
SDIN  
COMMAND  
DATA  
X
COMMAND  
SDOUT  
Figure 4-12: GSPI Write Timing – Single Write Access with GSPI Link-Disable Operation  
t
cmd  
SCLK  
CS  
COMMAND  
COMMAND  
DATA  
DATA  
X
High-z  
COMMAND  
COMMAND  
SDIN  
High-Z  
SDOUT  
Figure 4-13: GSPI Write Timing – Single Write Access with Bus-Through Operation  
GS6151  
Final Data Sheet  
PDS-060389  
35 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
SCLK  
CS  
t
5
COMMAND  
COMMAND  
SDIN  
DATA  
SDOUT  
Figure 4-14: GSPI Read Timing – Single Read Access with Loop-Through Operation (default)  
t
5
SCLK  
CS  
COMMAND  
COMMAND  
SDIN  
High-z  
High-z  
X
DATA  
SDOUT  
Figure 4-15: GSPI Read Timing – Single Read Access with Bus-Through Operation  
4.11.8 Auto-increment Read/Write Access  
Auto-increment read/write access timing for the GSPI interface is shown in Figure 4-16  
to Figure 4-20.  
Auto-increment mode is enabled by the setting of the AUTOINC bit of the Command  
Word.  
In this mode, multiple Data Words can be read from/written to the device using only one  
starting address. Each access is initiated by a high-to-low transition of the CS pin, and  
consists of a Command Word and one or more Data Words. The internal address is  
automatically incremented after the first read or write Data Word, and continues to  
increment until the read or write access is terminated by a low-to-high transition of the  
CS pin.  
Note: Writing to HOST_CONFIG using Auto-increment access is not allowed.  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the diagram as t , is a minimum of 4 SCLK clock cycles.  
cmd  
For read access, the time from the last bit of the first Command Word to the start of the  
data output of the first Data Word as defined by t , will be no less than 5 SCLK cycles at  
5
27MHz. All subsequent read data accesses will not be subject to this delay during an  
Auto-Increment read.  
SCLK  
CS  
SDIN  
COMMAND  
COMMAND  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
SDOUT  
Figure 4-16: GSPI Write Timing – Auto-Increment with Loop-Through Operation (default)  
GS6151  
Final Data Sheet  
PDS-060389  
36 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
SCLK  
CS  
COMMAND  
DATA 1  
DATA 2  
SDIN  
SDOUT  
Figure 4-17: GSPI Write Timing – Auto-Increment with GSPI Link Disable Operation  
SCLK  
CS  
SDIN  
COMMAND  
COMMAND  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
High-Z  
SDOUT  
Figure 4-18: GSPI Write Timing – Auto-Increment with Bus-Through Operation  
SCLK  
t
5
CS  
SDIN  
COMMAND  
COMMAND  
SDOUT  
DATA 1  
DATA 2  
Figure 4-19: GSPI Read Timing – Auto-Increment Read with Loop-Through Operation (default)  
SCLK  
t
5
CS  
SDIN  
COMMAND  
COMMAND  
High-z  
SDOUT  
X
DATA 1  
DATA 2  
Figure 4-20: GSPI Read Timing – Auto-Increment Read with Bus-through Operation  
4.11.9 Setting a Device Unit Address  
Multiple (up to 32) GS6151 devices can be connected to a common Chip Select (CS) in  
Loop-Through or Bus-Through operation.  
To ensure that each device selected by a common CS can be separately addressed, a  
unique Unit Address must be programmed by the host processor at start-up as part of  
system initialization or following a device reset.  
Note:By default at power up or after a device reset, the DEVICE_UNIT_ADDRESS of each  
device is set to 0h and the SDIN->SDOUT non-clocked loop-through for each device is  
enabled.  
These are the steps required to set the DEVICE_UNIT_ADDRESS of devices in a chain to  
values other than 0:  
1. Write to Unit Address 0 selecting HOST_CONFIG (ADDRESS = 0), with the  
GSPI_LINK_DISABLE bit set to 1 and the DEVICE_UNIT_ADDRESS field set to 0. This  
disables the direct SDIN->SDOUT non-clocked path for all devices on chip select.  
GS6151  
Final Data Sheet  
PDS-060389  
37 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
2. Write to Unit Address 0 selecting HOST_CONFIG (ADDRESS = 0), with the  
GSPI_LINK_DISABLE bit set to 0 and the DEVICE_UNIT_ADDRESS field set to a  
unique Unit Address. This configures DEVICE_UNIT_ADDRESS for the first device in  
the chain. Each subsequent such write to Unit Address 0 will configure the next  
device in the chain. If there are 32 devices in a chain, the last (32nd) device in the  
chain must use DEVICE_UNIT_ADDRESS value 0.  
3. Repeat step 2 using new, unique values for the DEVICE_UNIT_ADDRESS field in  
HOST_CONFIG until all devices in the chain have been configured with their own  
unique Unit Address value.  
Note: t  
delay must be observed after every write that modifies  
cmd_GSPI_conf  
HOST_CONFIG.  
All connected devices receive this command (by default the Unit Address of all devices  
is 0), and the Loop-Through operation will be re-established for all connected devices.  
Once configured, each device will only respond to Command Words with a  
UNIT ADDRESS field matching the DEVICE_UNIT_ADDRESS in HOST_CONFIG  
Note: Although the Loop-Through and Bus-Through configurations are compatible  
with previous generation GSPI enabled devices (backward compatibility), only devices  
supporting Unit Addressing can share a chip select. All devices on any single chip select  
must be connected in a contiguous chain with only the last device's SDOUT connected  
to the application host processor. Multiple chains configured in Bus-Through mode can  
have their final SDOUT outputs connected to a single application host processor input.  
4.11.10 Default GSPI Operation  
By default at power up or after a device reset, the GS6151 is set for Loop-Through  
Operation and the internal DEVICE_UNIT_ADDRESS field of the device is set to 0.  
Figure 4-21 shows a functional block diagram of the Configuration and Status Register  
(CSR) map in the GS6151 for non-extended memory accesses (EMEM = 0).  
At power-up or after a device reset, DEVICE_UNIT_ADDRESS = 00h  
[15]  
[14]  
[13]  
[12]  
[11:7]  
[6:0]  
bits  
BCAST  
ALL  
Auto  
Inc  
Unit Address  
32 devices  
Local Address  
128 registers  
EMEM  
R / W  
CMD  
[15:0]  
Data to be written / Read Data  
bits  
Compare  
DATA  
[4:0]  
[15]  
[14]  
[12:5]  
bits  
[13]  
Read/Write  
GSPI_BUS_  
THROUGH  
_ENABLE  
GSPI_LINK  
_DISABLE  
Reg 0  
RESERVED  
DEVICE_UNIT_ADDRESS  
RESERVED  
Reg 1  
Configuration and Status Registers  
Reg 128  
Figure 4-21: Internal Register Map Functional Block Diagram  
GS6151  
Final Data Sheet  
PDS-060389  
38 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
The steps required for the application host processor to write to the Configuration and  
Status Registers via the GSPI, are as follows:  
1. Set Command Word for write access (R/W = 0) to the local registers 0h-80h; set Auto  
Increment; set the Unit Address field in the Command Word to match the  
configured DEVICE_UNIT_ADDRESS which will be zero. Write the Command Word.  
2. Write the Data Word to be written to the first register.  
3. Write the Data Word to be written to the next register in Auto Increment mode, etc.  
Read access is the same as the above with the exception of step 1, where the Command  
Word is set for read access (R/W = 1).  
Note: The UNIT ADDRESS field of the Command Word must always match  
DEVICE_UNIT_ADDRESS for an access to be accepted by the device. Changing  
DEVICE_UNIT_ADDRESS to a value other than 0 is only required if multiple devices are  
connected to a single chip select (in Loop-Through or Bus-Through configuration.)  
GS6151  
Final Data Sheet  
PDS-060389  
39 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
4.12 Diagnostic Features  
To aid in debug, the GS6151 has an on-chip eye monitoring, error counting and  
PRBS-signal generation features that can be used to check system links for error-free  
7
6
operation. The PRBS signal generator outputs a PRBS7 bit stream (x +x +1 polynomial)  
or clock (at the reference or divided rates) which can be clocked from either an on-chip  
or off-chip source. The eye monitor is a 128-bit horizontal eye monitor (HEM) that can  
automatically detect the error-free eye width, the first error-free phase position and  
provide a bitmap of the error status of each phase without affecting the retiming  
capability of the CDR. Additionally, the HEM can be configured to manually count the  
number of errors at a given phase for a given time interval or to continually count errors  
until programmed to stop. In any of these three modes, described in the next section,  
Section 4.12.1, the criteria for measuring a bit error can also be set to measure bit errors  
of arbitrary data (in which the input to the CDR is assumed to be BER-free at some phase)  
or by checking against a PRBS7 bit stream for measuring error-free performance of  
upstream devices. PRBS checking is described in Section 4.12.2. The PRBS generator is  
described in Section 4.12.3. The HEM and PRBSCHK features operate at 3Gb/s and HD  
data rates, while the PRBS generator operates at 3G, HD, SD and MADI rates.  
4.12.1 Horizontal Eye Monitor Modes  
The three modes of bit error characterization of the HEM are described below. In this  
section it is assumed that arbitrary data is being input and checked. For each of these  
modes (and the PRBS7 input data checking mode in section 4.12.3) the Horizontal Eye  
Monitor must be enabled by setting the HORIZONTAL_EYE_MON_ENABLE bit of the  
EYE_MON_ENABLE register at address 23 .  
h
4.12.1.1 Automatic Eye Scan  
The automatic eye-scan mode measures the error-free eye width and first error-free  
phase (EYE_WIDTH and STARTING_PHASE bits, respectively, of  
EYE_MON_STATUS_REG_2) position as well as the resultant error bitmap of each of the  
128 phases (EYE_BITMAP bits of EYE_MON_STATUS_REG_4 to  
EYE_MON_STATUS_REG_11, least-significant bits correspond to leftmost bits). A bit  
value of 1 in the bitmap indicates error-free operation at the phase that corresponds to  
the bit. A bit value of 0 indicates more than the ERROR_THRESHOLD number of errors  
have been counted and the bit is considered as an error bit. It should be noted that the  
eye is not necessarily centered in the results, i.e. the crossing may be in the center of the  
bitmap and the open eye can wrap around from phase 127 back to 0. The automatic eye  
scan takes this into account and calculates the value for the error-free eye across the  
wrapping while the error-free phase corresponds to the leftmost portion of the  
error-free eye rather than the leftmost error-free phase in the bitmap. Refer to  
Figure 4-22 below.  
GS6151  
Final Data Sheet  
PDS-060389  
40 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Figure 4-22: Example Eye Monitor Bitmap  
With the eye monitor enabled by setting the HORIZONTAL_EYE_MON_ENABLE bit an  
eye scan is started by writing a 1 to the AUTO_SCAN_START bit of the  
EYE_MON_SCAN_START register. The eye-scan state machine then scans the eye and  
writes a 0 to the AUTO_SCAN_START bit when it completes. The values in the above  
registers are then valid if lock was not lost at any point during the eye scan. It is therefore  
recommended that the LOCK_LOST_STICKY bit of the STICKY_STATUS register is  
cleared before running the eye scan and checking its value after the eye scan is  
complete.  
After a successful automatic eye scan, the EYE_WIDTH bits hold a value corresponding  
to the number of phases that had errors that did not exceed a predefined threshold. This  
error threshold is defined as the number of errors that must be observed before the  
phase is deemed to be not error-free and is set in the ERROR_THRESHOLD bits of the  
EYE_MON_CONTROL_REG_4 register. By default the error threshold is set to 3.  
A typical relationship between the EYE_WIDTH result and the input jitter amplitude is  
given in Figure 4-22.  
GS6151  
Final Data Sheet  
PDS-060389  
41 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
HEM Eye Width Measurement vs. Input Jitter  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3G, HD Data  
0.00  
0.20  
0.40  
0.60  
0.80  
Jitter Amplitude (UI)  
Figure 4-23: HEM Eye Width vs. Input Jitter  
The eye scan state machine counts errors at each of the 128 phases to determine the  
above eye parameters, returning a 1 in the appropriate bit of the bitmap for an error-free  
measurement, and a 0 when an error has been detected. The length of each  
measurement, SAMPLE_TIME, is determined by Equation 4-4 .  
SAMPLE_TIME = MEASUREMENT_PREDIVIDER × (MEASUREMENT_TIME + 1) × 1 ⁄ (108MHz)  
Equation 4-4  
In Equation 4-4 , MEASUREMENT_PREDIVIDER and MEASUREMENT_TIME are bits of the  
EYE_MON_CONTROL_REG_1 and EYE_MON_CONTROL_REG_2 registers, respectively.  
By default MEASUREMENT_PREDIVIDER is set to 4x (bit value 0) and  
MEASUREMENT_TIME is set to A8B yielding a default measurement time per phase of  
h
100μs. The length of time to complete a full eye scan is then approximately 128 bits x  
SAMPLE_TIME x 2 passes. Two passes are executed by the state machine when checking  
arbitrary data to map the left and right portions of the eye separately.  
The equivalent bit-error-rate is then defined as at least ERROR_THRESHOLD / (data rate  
* SAMPLE_TIME) for phases with errors.  
4.12.1.2 Single Timed Measurement  
A manual timed measurement can be used to count the number of errors at a single  
phase for a pre-defined length of time. The length of the measurement is defined by the  
number of bit errors recorded is stored in the ERROR_COUNT bits of the  
GS6151  
Final Data Sheet  
PDS-060389  
42 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
EYE_MON_STATUS_REG_3 register. The phase to be measured is set by setting the  
MANUAL_PHASE bit of EYE_MON_CONTROL_REG_5, and for arbitrary data the  
EYE_MON_WINDOW setting of the EYE_MON_CONTROL_REG_6.  
For arbitrary data patterns the EYE_MON_WINDOW setting sets which portion of the  
eye is being measured. The result for any phase is the lesser result stored in  
ERROR_COUNT of the measurements at each EYE_MON_WINDOW setting, 0 and 1.  
For PRBS7 data only the MANUAL_PHASE bit needs to be set and the  
EYE_MON_WINDOW bit can be arbitrarily set. The left and right portions of the eye are  
overlapped (wrap around the bit map).  
Resetting the error indicator to 0 is done by programming the EYE_MON_FORCE_CLEAR  
and EYE_MON_CLEAR bits of the EYE_MON_CONTROL_REG_6 register to 1. Both bits  
should be set to 0 before starting a new measurement.  
4.12.1.3 Continuous Measurement  
A manual continuous measurement can be used to continually count the number of  
errors at a single phase until explicitly stopped by disabling the manual continuous  
mode. A continuous measurement is started by first setting the MANUAL_PHASE bit of  
EYE_MON_CONTROL_REG_5, and for arbitrary data the EYE_MON_WINDOW setting of  
the EYE_MON_CONTROL_REG_6, then enabling the measurement by setting the  
CONTINUOUS_SCAN_ENABLE bit of the EYE_MON_CONTROL_REG_0 register to 1  
(enable measurement).  
When it is desired to stop the measurement the CONTINUOUS_SCAN_ENABLE bit of the  
EYE_MON_CONTROL_REG_0 register should be set to 0 (disable measurement). The  
result, the number of errors counted, is stored in ERROR_COUNT bits of the  
EYE_MON_STATUS_REG_3 register.  
Resetting the error indicator to 0 is done by programming the EYE_MON_FORCE_CLEAR  
and EYE_MON_CLEAR bits of the EYE_MON_CONTROL_REG_6 register to 1. Both bits  
should be set to 0 before starting a new measurement.  
4.12.2 PRBS Checker  
PRBS7 data streams can be checked for bit-errors at both the input of the CDR (non  
re-timed Trace EQ output) and output of the CDR (re-timed output). Although the  
general sequence for checking the input and output of the CDR are similar, different  
registers are used to program and check the results of each.  
4.12.2.1 Input PRBS Checker  
The Input PRBS checker checks the eye and/or counts bit errors at the Trace EQ  
output/input to the CDR. This feature can be used to optimize the Trace EQ setting,  
other upstream jitter optimizations or to simply check for error-free transmission to the  
CDR. The operation of the Input PRBS checker is similar to the Horizontal Eye Monitor for  
Arbitrary Data, in the previous section, providing the same functionality of automatic  
eye monitoring, manual timed error checking at a single phase and continuous error  
checking at a single phase. Because the same sequence and most of the same registers  
GS6151  
Final Data Sheet  
PDS-060389  
43 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
are used to operate the Input PRBS checker (and in fact Input PRBS checking is  
automatically performed by the device when an Arbitrary Data eye scan or error check  
is performed) the user is referred to the previous section for details on programming the  
HEM. PRBS-specific registers which are additionally set or observed and their Arbitrary  
Data equivalents are given in Table 4-9 below.  
Table 4-9: Arbitrary Data Checker Registers and Equivalent Input PRBS7 Checker Registers  
Arbitrary Data Checker  
Register Parameter  
Input PRBS7 Checker  
Register  
Parameter  
Does Not Apply  
EYE_MON_ENABLE  
EYE_MON_PRBS_NODATA_SET  
EYE_MON_PRBS_ERROR_  
THRESHOLD  
EYE_MON_CONTROL_REG_4  
ERROR_THRESHOLD  
EYE_MON_CONTROL_REG_3  
EYE_MON_CONTROL_REG_6  
EYE_MON_CONTROL_REG_6  
EYE_MON_CONTROL_REG_6  
EYE_MON_WINDOW  
EYE_MON_FORCE_CLEAR  
EYE_MON_CLEAR  
Does Not Apply  
EYE_MON_CONTROL_REG_6  
EYE_MON_CONTROL_REG_6  
EYE_MON_PRBS_FORCE_CLEAR  
EYE_MON_PRBS_CLEAR  
EYE_MON_PRBS_STARTING_  
PHASE  
EYE_MON_STATUS_REG_2  
STARTING_PHASE  
EYE_MON_STATUS_REG_0  
EYE_MON_STATUS_REG_2  
EYE_MON_STATUS_REG_2  
EYE_WIDTH  
EYE_MON_STATUS_REG_0  
EYE_MON_STATUS_REG_1  
EYE_MON_STATUS_REG_12  
EYE_MON_PRBS_EYE_WIDTH  
EYE_MON_PRBS_ERROR_COUNT  
EYE_MON_PRBS_NODATA  
ERROR_COUNT  
Does Not Apply  
The eye bitmap registers in EYE_MON_STATUS_REG_4… EYE_MON_STATUS_REG_11  
can be set to provide the bitmap when the PRBS checker is used as the criteria for bit  
errors when the EYE_MON_SELECT bit is set to 0 (PRBS7 bit stream).  
Due to the nature of the PRBS polynomial an input without data transitions may be  
detected as error-free. To circumvent this possibility the EYE_MON_PRBS_NODATA bit  
of the EYE_MON_STATUS_REG_12 register indicates if no data transitions have been  
detected if the bit remains high after the EYE_MON_PRBS_NODATA_SET bit of the  
EYE_MON_ENABLE register has been toggled high, then low.  
4.12.2.2 Re-timed Data PRBS Checker  
The re-timed bit stream is checked using a separate PRBS checker which is controlled  
and checked with separate registers from either the arbitrary eye monitor or Input  
PRBS7 checker and is enabled by setting the PRBS_MON_ENABLE bit of the  
PRBS_CHK_CTRL register and controlled with registers PRBS_CTRL_0 …, PRBS_CTRL_8.  
The results are stored in PRBS_STATUS_REG_0 and PRBS_STATUS_REG_1. The operation  
of the Re-timed Data PRBS checker is very similar to the Arbitrary Data HEM and Input  
PRBS checker and the user is referred to the previous sections for equivalent registers  
are given in Table 4-10 below.  
GS6151  
Final Data Sheet  
PDS-060389  
44 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 4-10: Arbitrary Data Checker/Input PRBS7 Checker Registers and Equivalent Re-timed  
PRBS7 Checker Registers  
Arbitrary Data Checker/Input PRBS7 Checker  
Re-timed PRBS7 Checker  
Register  
Parameter  
Register  
Parameter  
HORIZONTAL_EYE_MON_  
ENABLE  
EYE_MON_ENABLE  
PRBS_CHK_CTRL  
PRBS_CHK_CTRL  
PRBS_MON_ENABLE  
EYE_MON_PRBS_NODATA  
_SET  
EYE_MON_ENABLE  
PRBS_MON_NODATA_SET  
EYE_MON_SCAN_START  
EYE_MON_SCAN_START  
MANUAL_SCAN_START  
AUTO_SCAN_START  
PRBS_CTRL_0  
PRBS_CTRL_0  
PRBS_MON_MANUAL_START  
PRBS_MON_AUTO_SCAN_START  
CONTINUOUS_SCAN_  
ENABLE  
PRBS_MON_CONTINUOUS_  
ENABLE  
EYE_MON_CONTROL_REG_0  
EYE_MON_CONTROL_REG_0  
EYE_MON_CONTROL_REG_1  
EYE_MON_CONTROL_REG_1  
EYE_MON_CONTROL_REG_2  
PRBS_CTRL_1  
PRBS_CTRL_1  
PRBS_CTRL_2  
PRBS_CTRL_2  
PRBS_CTRL_3  
EYE_MON_SOFT_RESET  
PRBS_MON_SOFT_RESET  
MEASUREMENT_  
PREDIVIDER  
PRBS_MON_MEASUREMENT  
_PREDIVIDER  
SAMPLE_INTERVAL  
PRBS_MON_SAMPLE_INTERVAL  
PRBS_MON_MEASUREMENT_  
TIME  
MEASUREMENT_TIME  
PRBS_MON_PRBS_ERROR_  
THRESHOLD  
EYE_MON_CONTROL_REG_4  
ERROR_THRESHOLD  
PRBS_CTRL_4  
PRBS_CTRL_5  
EYE_MON_CONTROL_REG_5  
EYE_MON_CONTROL_REG_6  
EYE_MON_CONTROL_REG_6  
EYE_MON_CONTROL_REG_6  
EYE_MON_STATUS_REG_2  
EYE_MON_STATUS_REG_2  
EYE_MON_STATUS_REG_3  
EYE_MON_STATUS_REG_12  
MANUAL_PHASE  
EYE_MON_WINDOW  
EYE_MON_CLEAR  
PRBS_MON_MANUAL_PHASE  
Does Not Apply  
PRBS_CTRL_6  
PRBS_CTRL_6  
PRBS_MON_CLEAR  
PRBS_MON_FORCE_CLEAR  
PRBS_MON_EYE_WIDTH  
PRBS_MON_STARTING_PHASE  
PRBS_MON_ERROR_COUNT  
PRBS_MON_NODATA  
EYE_MON_FORCE_CLEAR  
EYE_WIDTH  
PRBS_STATUS_REG_0  
PRBS_STATUS_REG_0  
PRBS_STATUS_REG_1  
PRBS_STATUS_REG_11  
STARTING_PHASE  
ERROR_COUNT  
EYE_MON_PRBS_NODATA  
Note: For all PRBS7 measurements two errors are counted for each error observed. The  
EYE_MON_ERROR_THRESHOLD and/or PRBS_MON_ERROR_THRESHOLD values should  
be adjusted appropriately to get the desired BER criteria.  
4.12.3 PRBS Generator  
A signal generator, capable of generating PRBS7 or clock pattern data, is integrated in  
the device. The pattern generator can be clocked by external pins (DFT_CLK_IN,  
DFT_CLK_IN, GS6151 only), re-timed clock from input arbitrary data or by an on-chip  
open-loop VCO (default). When the on-chip VCO is selected the data rate must be  
selected by programming the PRBSGEN_RATESEL bits of the PRBS_GEN_CTRL register.  
GS6151  
Final Data Sheet  
PDS-060389  
45 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
It is important to note that while the on-chip VCO is trimmed to within 0.5% of SMPTE  
data rates, VT variation may extend the deviation from exact SMPTE data rates. If  
frequency precision is required it is recommended to use the external pins or retimed  
clock to provide a clock reference for the PRBS generator. The selection of reference  
clock for the PRBS generator is done through programming the bits as in Table 4-11.  
Table 4-11: Reference Clock for the PRBS Generator  
PRBS_EXT_CLK  
PRBSGEN_CLKSEL  
Clock Reference  
0
0
1
0
1
X
On-chip PRBSGEN VCO  
CDR re-timed clock  
Clock reference pins (GS6151 only)  
To enable the PRBS generator the PRBSGEN_ENABLE bit of the PRBS_GEN_CTRL register  
must be set high. The PRBS bit stream starts on the falling edge of the PRBSGEN_START  
bit. To output the PRBS generator on the trace driver output the OUTPUT_PRBS_DATA0  
and/or OUTPUT_PRBS_DATA1 bits of the DRIVER_CONTROL_REG_0 register need to be  
set to 1.  
The PRBS generator can also output a clock instead of a PRBS7 bit stream. The clock  
output is selected by setting the PRBSGEN_DATASEL bit of the PRBS_GEN_CTRL register  
to 0. Both the PRBS7 generator and clock output can have their frequency of operation  
divided by 1, 2, 4 or 8 by setting the PRBSGEN_DIV bits of the PRBS_GEN_CTRL register,  
down to an output data rate of 125Mb/s.  
Additionally, when either the On-Chip PRBSGEN VCO or the re-timed clock is used as the  
clock reference for the PRBS generator the phase of the output can be coarsely adjusted  
º
to 0, 90, 180 or 270 by programming PRBSGEN_PHASE bit of the PRBS_GEN_CTRL  
register.  
Note: It is recommended that the AUTO_LOS_MUTE_ENABLE and  
AUTO_PWRDN_DISABLE parameters are set to disabled when the PRBS generator uses  
the on-chip PRBSGEN VCO or the external clock pins to avoid muting the (PRBS  
generator) output upon loss of signal on the input pins.  
GS6151  
Final Data Sheet  
PDS-060389  
46 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
5. Host Interface Register Map  
Table 5-1: Register Descriptions - Standard Address Space  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
0h  
RSVD  
15:15  
14:14  
RW  
RW  
Reserved. Do not change.  
GSPI loop-through disable.  
GSPI_LINK_DISABLE  
GSPI_BUS_THROUGH_  
ENABLE  
0h  
0h  
HOST_CONFIG  
DEVICE_INFO  
13:13  
RW  
GSPI bus-through enable.  
0h  
0h  
RSVD  
DEVICE_UNIT_ADDRESS  
RSVD  
12:5  
4:0  
RW  
RW  
RO  
RO  
RW  
Reserved. Do not change.  
Device address programmed by application.  
Reserved. Do not change.  
15:8  
7:0  
1h  
DEVICE_VERSION_ID  
RSVD  
0h  
Device Version Identifier.  
15:14  
Reserved. Do not change.  
GPIO1 Input/Output Select.  
0h  
0h  
GPIO1_IO_SELECT  
RSVD  
13:13  
12:11  
RW  
RW  
00b: Output  
01b: Input  
Reserved. Do not change.  
GPIO1 Signal Selection  
If GPIO1_IO_SELECT is set to 0:  
0000b: LOS  
0001b: LOCKED (default)  
0010b: LBR_HBR  
0011b: Reserved  
0100b: Reserved  
0101b: RATE_DET0  
0110b: RATE_DET1  
0111b: RATE_DET2  
1000b: LOCKED_125M  
1001b: LOCKED_270M  
1010b: LOCKED_1G485  
1011b: LOCKED_2G97  
1100b: LOCKED_5G94  
1101b: RATE_CHANGE  
GPIO_CONTROL_  
REG_0  
2h  
1h  
GPIO1_SELECT  
10:7  
RW  
If GPIO1_IO_SELECT is set to 1:  
0000b: DDO0_DISABLE  
0001b: DDO1_DISABLE  
GPIO0 Input/Output Select.  
00b: Output  
01b: Input  
0h  
0h  
GPIO0_IO_SELECT  
RSVD  
6:6  
5:4  
RW  
RW  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
47 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
GPIO0 Signal Selection  
If GPIO0_IO_SELECT is set to 0:  
0000b: LOS (default)  
0001b: LOCKED  
0010b: LBR_HBR  
0011b: Reserved  
0100b: Reserved  
0101b: RATE_DET0  
0110b: RATE_DET1  
0111b: RATE_DET2  
1000b: LOCKED_125M  
1001b: LOCKED_270M  
1010b: LOCKED_1G485  
1011b: LOCKED_2G97  
1100b: LOCKED_5G94  
1101b: RATE_CHANGE  
GPIO_CONTROL_  
2h  
0h  
GPIO0_SELECT  
3:0  
RW  
REG_0  
If GPIO0_IO_SELECT is set to 1:  
0000b: DDO0_DISABLE  
0001b: DDO1_DISABLE  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
3h  
4h  
2082h  
1Ch  
RESERVED  
RESERVED  
RSVD  
RSVD  
RSVD  
15:14  
15:0  
15:4  
RW  
RW  
RW  
Ah  
DDI1 Trace-EQ Configuration  
00b: OFF  
2h  
01b: 0dB/EQ BYPASS  
10b: LOW  
DDI1_TRACE_EQ_ CONTROL  
3:2  
RW  
INPUT_CONTROL_  
REG_0  
5h  
11b: HIGH  
DDI0 Trace-EQ Configuration  
00b: OFF  
2h  
0h  
01b: 0dB/EQ BYPASS  
10b: LOW  
11b: HIGH  
DDI0_TRACE_EQ_ CONTROL  
RSVD  
1:0  
RW  
RW  
6h  
RESERVED  
15:0  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
48 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:12  
RW  
Reserved. Do not change.  
Input Selection  
00b: DDI0  
0h  
01b: DDI1  
DDI_SELECT  
11:10  
RW  
RW  
Used when INPUT_SELECTION_CONTROL is  
set to 01b or 11b  
Determines the source for the input  
selection block.  
X0b: Use the DDI_SEL/STROBE pin  
01b: Use the DDI_SELECT bit  
0h  
INPUT_SELECTION_CONTROL  
9:8  
11b: Use the DDI_SELECT bit; update occurs  
on low-to-high transition of  
DDI_SEL/STROBE pin.  
INPUT_CONTROL_  
7h  
REG_2  
3h  
1h  
RSVD  
7:6  
5:5  
RW  
RW  
Reserved. Do not change.  
Enable DDI1 on-chip Trace-EQ DC  
termination.  
DDI1_TRACE_EQ_DC_TERM_  
ENABLE  
00b: Disabled  
01b: Enabled  
Enable DDI0 on-chip Trace-EQ DC  
termination.  
DDI0_TRACE_EQ_DC_TERM_  
ENABLE  
1h  
4:4  
RW  
00b: Disabled  
01b: Enabled  
0h  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
3:0  
RW  
ROCW  
RO  
RO  
RO  
RO  
RO  
RO  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
8h  
RESERVED  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
GS6151  
Final Data Sheet  
PDS-060389  
49 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:10  
9:9  
RW  
Reserved. Do not change.  
Enables LOS threshold adjustment based on  
the settings in the  
DDI[0:1]_LOS_THRESHOLD_CONTROL bits  
in the LOS_CONTROL_REG_1 register.  
LOS_THRESHOLD_CONTROL_  
ENABLE  
0h  
RW  
00b: Default internal thresholds are used  
01b: Thresholds used in the  
LOS_CONTROL_REG_1 register  
LOS De-Assert Time Delay:  
00b: 2.30μs  
2h  
LOS_DEASSERT_TIME  
LOS_ASSERT_TIME  
8:7  
6:5  
RW  
RW  
01b: 1.50μs  
10b: 1.20μs  
11b: 0.90μs  
LOS Assert Time Delay:  
00b: 68μs  
01b: 64μs  
2h  
10b: 62μs  
11b: 61μs  
LOS_CONTROL_  
Fh  
LOS Threshold Hysteresis Adjustment:  
REG_0  
0000b: 0 dB  
0001b: 0.32 dB  
0010b: 0.64 dB  
0011b: 0.98 dB  
0100b: 1.34 dB  
0101b: 1.70 dB  
0110b: 2.09 dB  
0111b: 2.49 dB  
1000b: 2.84 dB  
1001b: 3.28 dB  
1010b: 3.74 dB  
1011b: 4.23 dB  
1100b: 4.75 dB  
1101b: 5.30 dB  
1110b: 5.89 dB  
1111b: 6.53 dB  
0h  
LOS_HYSTERESIS  
4:1  
RW  
Override the internal power-down control  
for the LOS circuit.  
0h  
LOS_PWRDN_OVERRIDE  
0:0  
RW  
00b: LOS active  
01b: LOS powered down  
GS6151  
Final Data Sheet  
PDS-060389  
50 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
LOS signal threshold for input DDI1 at  
device pins is:  
DDI1_LOS_THRESHOLD_  
CONTROL  
5Ah  
5Ah  
15:8  
7:0  
RW  
1.9mV  
x DDI1_LOS_THRESHOLD_CONTROL x  
ppd  
(53/DEVICE_SPECIFIC_LOS_THRESHOLD)  
(All above values are in decimal)  
LOS_CONTROL_  
10h  
REG_1  
LOS signal threshold for input DDI0 at  
device pins is:  
DDI0_LOS_THRESHOLD_  
CONTROL  
RW  
1.9mV  
x DDI0_LOS_THRESHOLD_CONTROL x  
ppd  
(53/DEVICE_SPECIFIC_LOS_THRESHOLD)  
(All above values are in decimal)  
11h  
12h  
5A5Ah  
RESERVED  
RSVD  
RSVD  
15:0  
15:8  
RW  
RO  
Reserved. Do not change.  
Reserved. Do not change.  
LOS_STATUS  
Trimmed setting to achieve LOS threshold of  
100mVppd  
DEVICE_SPECIFIC_LOS_  
THRESHOLD  
7:0  
RO  
13h  
14h  
280h  
RESERVED  
RESERVED  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:3  
RW  
RO  
RW  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
0h  
Enables/Disables the reference buffer  
output.  
1h  
XTAL_BUF_OUT_ENABLE  
2:2  
RW  
REF_CLK_  
CONTROL  
00b: XTAL_BUF_OUT disabled  
01b: XTAL_BUF_OUT enabled  
15h  
0h  
0h  
RSVD  
RSVD  
RSVD  
1:1  
0:0  
RW  
RW  
RO  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
15:1  
Indicates whether an external 27MHz  
reference is being used by the device or its  
internal oscillator.  
16h  
REF_CLK_STATUS  
XTAL_CLK_DET  
0:0  
RO  
00b: Internal oscillator being used  
01b: External crystal being used  
GS6151  
Final Data Sheet  
PDS-060389  
51 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Selects the low power mode, SLEEP or  
STANDBY that is entered into when  
AUTO_PWRDN_DISABLE is set to 0 and LOS  
is asserted.  
0h  
AUTO_PWRDN_MODE  
3:3  
2:2  
RW  
00b: SLEEP mode is selected (default)  
01b: STANDBY mode is selected  
Forces the device into STANDBY mode when  
FORCE_PWRDN_SLEEP is set to 0.  
0h  
FORCE_PWRDN_STANDBY  
FORCE_PWRDN_SLEEP  
RW  
RW  
00b: Device not in STANDBY mode  
01b: Device in STANDBY mode  
Forces the device into SLEEP mode when  
AUTO_PWRDN_DISABLE is set to 1.  
PWRDN_  
17h  
CONTROL  
00b: Device not in SLEEP mode  
01b: Device in SLEEP mode  
0h  
1:1  
When FORCE_PWRDN_SLEEP is set to 1, it  
takes precedence over the  
FORCE_PWRDN_STANDBY bit.  
Disables Auto Powerdown mode which  
automatically enters SLEEP or STANDBY  
mode when LOS is asserted.  
00b: Device automatically enters SLEEP or  
STANDBY on a rising edge of the LOS signal  
01b: Device only enters SLEEP or STANDBY  
when FORCE_PWRDN_SLEEP or  
FORCE_PWRDN_STANDBY are set to 1  
1h  
AUTO_PWRDN_DISABLE  
0:0  
RW  
RO  
18h  
RESERVED  
RSVD  
15:0  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
52 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:8  
9:9  
RW  
Reserved. Do not change.  
Selects either CDR or PRBSgen data to output  
on DDO1.  
OUTPUT_PRBS_DATA1  
OUTPUT_PRBS_DATA0  
RW  
RW  
0
00 : CDR data  
b
01 : PRBSgen data  
b
Selects either CDR or PRBSgen data to output  
on DDO0.  
8:8  
0
00 : CDR data  
b
01 : PRBSgen data  
b
1h  
1h  
RSVD  
7:7  
6:6  
RW  
RW  
Reserved. Do not change.  
Auto-Mute Enable on LOS.  
00 : Output is unaffected by LOS  
AUTO_LOS_MUTE_ENABLE  
b
01 : Output is muted when LOS is asserted  
b
Mute control for the DDO1 output.  
00 : DDO1 output not muted  
b
01 : DDO1 output muted  
b
0h  
DDO1_MUTE  
DDO0_MUTE  
5:5  
4:4  
RW  
RW  
Output across DDO1 and DDO1 is  
DDO1_SWING_MUTE/2 when DDO1_DISABLE  
is set to 0.  
Mute control for the DDO0 output.  
00 : DDO0 output not muted  
b
DRIVER_CONTROL_  
01 : DDO0 output muted  
b
19h  
0h  
REG_0  
Output across DDO0 and DDO0 is  
DDO0_SWING_MUTE/2 when DDO1_DISABLE  
is set to 0.  
Disable control for the DDO1 output.  
00 : DDO1 output not disabled  
b
01 : DDO1 output disabled  
0h  
DDO1_DISABLE  
DDO0_DISABLE  
3:3  
2:2  
RW  
RW  
b
Output of both DDO1 and DDO1 is VCC_DDO1.  
This bit takes precedence over DDO1_MUTE.  
Disable control for the DDO0 output.  
00 : DDO0 output not disabled  
b
01 : DDO0 output disabled  
0h  
b
Output of both DDO0 and DDO0 is VCC_DDO0.  
This bit takes precedence over DDO0_MUTE.  
Controls whether DDO1 is disabled using an  
assigned GPIO pin or the DDO1_DISABLE bit.  
0h  
00 : DDO1 is disabled using assigned GPIO  
DDO1_DISABLE_SELECT  
DDO0_DISABLE_SELECT  
1:1  
0:0  
RW  
RW  
b
01 : DDO1 is disabled using the  
b
DDO1_DISABLE bit  
Controls whether DDO0 is disabled using an  
assigned GPIO pin or the DDO0_DISABLE bit.  
1h  
00 : DDO0 is disabled using assigned GPIO  
b
01 : DDO0 is disabled using the  
b
DDO0_DISABLE bit  
GS6151  
Final Data Sheet  
PDS-060389  
53 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:15  
RW  
Reserved. Do not change.  
De-emphasis control for 5.94Gb/s (6Gb/s  
UHD-SDI) signals output on DDO0.  
000 : 0dB  
b
001 : 0.3dB  
b
010 : 0.6dB (default)  
2h  
DDO0_DEEMPHASIS_5G94  
DDO0_DEEMPHASIS_2G97  
DDO0_DEEMPHASIS_1G485  
DDO0_DEEMPHASIS_270M  
DDO0_DEEMPHASIS_125M  
14:12  
RW  
RW  
RW  
RW  
RW  
b
011 : 2.3 B  
b
100 : 4.0dB  
b
101 : 6.6dB  
b
110 : 10.0dB  
b
De-emphasis control for 2.97Gb/s (3Gb/s SDI)  
signals output on DDO0.  
000 : 0dB  
b
001 : 0.4dB (default)  
b
010 : 1.5dB  
1h  
1h  
0h  
0h  
11:9  
b
011 : 3.2dB  
b
100 : 4.9dB  
b
101 : 7.6dB  
b
110 : 11.0dB  
b
De-emphasis control for 1.485Gb/s (HD-SDI)  
signals output on DDO0.  
000 : 0dB  
b
DRIVER_CONTROL_  
001 : 1.1dB (default)  
b
1Ah  
REG_1  
010 : 2.4dB  
8:6  
b
011 : 4.0dB  
b
100 : 5.7dB  
b
101 : 8.2dB  
b
110 : 11.5dB  
b
De-emphasis control for 0.27Gb/s (SD-SDI)  
signals output on DDO0.  
000 : 0dB (default)  
b
001 : 1.2dB  
b
010 : 2.5dB  
5:3  
b
011 : 4.1dB  
b
100 : 6.0dB  
b
101 : 8.5dB  
b
110 : 12.0dB  
b
De-emphasis control for 0.125Gb/s (MADI)  
signals output on DDO0.  
000 : 0dB (default)  
b
001 : 1.2dB  
b
010 : 2.5dB  
2:0  
b
011 : 4.1dB  
b
100 : 6.0dB  
b
101 : 8.5dB  
b
110 : 12.0dB  
b
GS6151  
Final Data Sheet  
PDS-060389  
54 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:15  
RW  
Reserved. Do not change.  
De-emphasis control for 5.94Gb/s (6Gb/s  
UHD-SDI) signals output on DDO1.  
000 : 0dB  
b
001 : 0.3dB  
b
010 : 0.6dB (default)  
2h  
DDO1_DEEMPHASIS_5G94  
DDO1_DEEMPHASIS_2G97  
DDO1_DEEMPHASIS_1G485  
DDO1_DEEMPHASIS_270M  
DDO1_DEEMPHASIS_125M  
14:12  
RW  
RW  
RW  
RW  
RW  
b
011 : 2.3 B  
b
100 : 4.0dB  
b
101 : 6.6dB  
b
110 : 10.0dB  
b
De-emphasis control for 2.97Gb/s (3Gb/s SDI)  
signals output on DDO1.  
000 : 0dB  
b
001 : 0.4dB (default)  
b
010 : 1.5dB  
1h  
1h  
0h  
0h  
11:9  
b
011 : 3.2dB  
b
100 : 4.9dB  
b
101 : 7.6dB  
b
110 : 11.0dB  
b
De-emphasis control for 1.485Gb/s (HD-SDI)  
signals output on DDO1.  
000 : 0dB  
b
DRIVER_CONTROL_  
001 : 1.1dB (default)  
b
1Bh  
REG_2  
010 : 2.4dB  
8:6  
b
011 : 4.0dB  
b
100 : 5.7dB  
b
101 : 8.2dB  
b
110 : 11.5dB  
b
De-emphasis control for 0.27Gb/s (SD-SDI)  
signals output on DDO1.  
000 : 0dB (default)  
b
001 : 1.2dB  
b
010 : 2.5dB  
5:3  
b
011 : 4.1dB  
b
100 : 6.0dB  
b
101 : 8.5dB  
b
110 : 12.0dB  
b
De-emphasis control for 0.125Gb/s (MADI)  
signals output on DDO1.  
000 : 0dB (default)  
b
001 : 1.2dB  
b
010 : 2.5dB  
2:0  
b
011 : 4.1dB  
b
100 : 6.0dB  
b
101 : 8.5dB  
b
110 : 12.0dB  
b
GS6151  
Final Data Sheet  
PDS-060389  
55 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:12  
RW  
Reserved. Do not change.  
Differential swing (amplitude) control for  
1.485Gb/s (HD-SDI) signals output on DDO0.  
For details refer to Section 4.5.3.  
3h  
DDO0_SWING_1G485  
DDO0_SWING_270M  
DDO0_SWING_125M  
11:8  
RW  
RW  
RW  
DRIVER_CONTROL_  
1Ch  
Differential swing (amplitude) control for  
0.27Gb/s (SD-SDI) signals output on DDO0.  
For details refer to Section 4.5.3.  
REG_3  
3h  
3h  
7:4  
3:0  
Differential swing (amplitude) control for  
0.125Gb/s (MADI) signals output on DDO0.  
For details refer to Section 4.5.3.  
Differential swing (amplitude) control for  
unlocked signals output on DDO0 (when  
CDR is operating in BYPASS mode). For  
details refer to Section 4.5.3.  
3h  
DDO0_SWING_BYPASS  
15:12  
RW  
Takes precedence over rate-specific swing  
controls  
DRIVER_CONTROL_  
1Dh  
REG_4  
Differential static amplitude control for  
DDO0 when the output is muted. For details  
refer to Section 4.5.3.  
3h  
DDO0_SWING_MUTE  
DDO0_SWING_5G94  
11:8  
7:4  
RW  
RW  
Takes precedence over rate-specific swing  
controls and bypass swing control  
Differential swing (amplitude) control for  
5.94Gb/s (6G UHD-SDI) signals output on  
DDO0. For details refer to Section 4.5.3.  
3h  
DRIVER_CONTROL_  
1Dh  
REG_4  
Differential swing (amplitude) control for  
2.97Gb/s (3Gb/s SDI) signals output on  
DDO0. For details refer to Section 4.5.3.  
3h  
0h  
3h  
DDO0_SWING_2G97  
RSVD  
3:0  
15:12  
11:8  
RW  
RW  
RW  
Reserved. Do not change.  
Differential swing (amplitude) control for  
1.485Gb/s (HD-SDI) signals output on DDO1.  
For details refer to Section 4.5.3.  
DDO1_SWING_1G485  
DRIVER_CONTROL_  
1Eh  
Differential swing (amplitude) control for  
0.27Gb/s (SD-SDI) signals output on DDO1.  
For details refer to Section 4.5.3.  
REG_5  
3h  
3h  
DDO1_SWING_270M  
DDO1_SWING_125M  
7:4  
3:0  
RW  
RW  
Differential swing (amplitude) control for  
0.125Gb/s (MADI) signals output on DDO1.  
For details refer to Section 4.5.3.  
GS6151  
Final Data Sheet  
PDS-060389  
56 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Differential swing (amplitude) control for  
unlocked signals output on DDO1 (when  
CDR is operating in BYPASS mode). For  
details refer to Section 4.5.3.  
3h  
DDO1_SWING_BYPASS  
15:12  
RW  
Also applies when the device is not locked.  
Takes precedence over rate-specific swing  
controls  
Differential static amplitude control for  
DDO1 when the output is muted. For details  
refer to Section 4.5.3.  
DRIVER_CONTROL_  
1Fh  
3h  
DDO1_SWING_MUTE  
DDO1_SWING_5G94  
11:8  
7:4  
RW  
RW  
REG_6  
Takes precedence over rate-specific swing  
controls and bypass swing control  
Differential swing (amplitude) control for  
5.94Gb/s (6G UHD-SDI) signals output on  
DDO1. For details refer to Section 4.5.3.  
3h  
Differential swing (amplitude) control for  
2.97Gb/s (3Gb/s SDI) signals output on  
DDO1. For details refer to Section 4.5.3.  
3h  
0h  
DDO1_SWING_2G97  
RSVD  
3:0  
RW  
RW  
15:2  
Reserved. Do not change.  
Used to manually bypass the retiming block  
in the CDR.  
00b: Re-timer not bypassed  
01b: Re-timer bypassed  
0h  
MANUAL_BYPASS  
1:1  
0:0  
RW  
The assertion of MANUAL_BYPASS takes  
precedence irrespective of the setting of  
AUTO_BYPASS  
20h  
CDR_BYPASS  
Selects between automatic and manual  
bypass of the retiming block when the CDR  
is not locked.  
00b: Auto-Bypass is disabled  
01b: Auto-Bypass is enabled  
1h  
AUTO_BYPASS  
RW  
Even if AUTO_BYPASS is asserted, the  
assertion of MANUAL_BYPASS will still cause  
the re-timer to be bypassed.  
0h  
0h  
RSVD  
15:11  
10:10  
RW  
RW  
Reserved. Do not change.  
Signal polarity invert at output of  
CDR/bypass.  
00b: Not inverted  
OUTPUT_POLARITY_INVERT  
01b: Inverted  
21h  
PD_CONTROL  
2h  
0h  
RSVD  
RSVD  
9:6  
5:1  
RW  
RW  
Reserved. Do not change.  
Reserved. Do not change.  
Signal polarity invert at input to CDR/bypass.  
00b: Not inverted  
0h  
INPUT_POLARITY_INVERT  
0:0  
RW  
01b: Inverted  
GS6151  
Final Data Sheet  
PDS-060389  
57 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Determines the DFT data output.  
00b: Clock  
01b: PRBS7 data  
1h  
PRBSGEN_DATASEL  
14:14  
13:12  
RW  
Divide ratio for the DFT clock.  
00b: divide by 1  
01b: divide by 2  
10b: divide by 4  
11b: divide by 8  
0h  
PRBSGEN_DIV  
RW  
When toggled HIGH then LOW starts the  
internal PRBS7 data source.  
0h  
0h  
PRBSGEN_START  
11:11  
10:10  
RW  
RW  
Selects the source for the DFT clock:  
PRBSGEN_EXT_CLK  
00b: Internally generated clock  
01b: External clock  
Controls the phase of the internally  
generated DFT clock.  
00b: 0 degree phase  
01b: 90 degree phase  
10b: 180 degree phase  
11b: 270 degree phase  
2h  
PRBSGEN_PHASE  
PRBSGEN_CLKSEL  
9:8  
7:7  
RW  
RW  
22h  
PRBS_GEN_CTRL  
Determines the source clock used by the  
PRBS generator when PRBSGEN_EXT = 0  
(internally generated clock).  
0h  
00b: DFT VCO clock  
01b: CDR clock  
One-hot encoded rate indicator for the  
dividers in PRBS generator circuit.  
00001b: MADI  
00010b: SD  
00100b: HD  
01000b: 3G  
10000b: 6G  
2h  
PRBSGEN_RATESEL  
6:2  
RW  
When HIGH, causes the open-loop PRBSGEN  
VCO to be shut off even if PRBSGEN_ENABLE  
= 1.  
PRBSGEN_VCO_  
POWERDOWN  
0h  
1:1  
0:0  
RW  
RW  
Has no effect when PRBSGEN_ENABLE = 0.  
When HIGH, the PRBS7 generator circuit is  
enabled.  
0h  
PRBSGEN_ENABLE  
Must be enabled when using any feature in  
the PRBS_GEN_CTRL register.  
GS6151  
Final Data Sheet  
PDS-060389  
58 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:2  
RW  
Reserved. Do not change.  
When HIGH, sets a latch in the Input PRBS  
checker (EYE_MON_PRBS_NODATA bit of  
EYE_MON_STATUS_REG_12) HIGH. This bit  
must be set LOW before checking the  
EYE_MON_PRBS_NODATA bit. The  
EYE_MON_PRBS_NODATA bit will then be  
automatically set LOW if transitions are  
detected.  
EYE_MON_PRBS_NODATA_  
SET  
0h  
1:1  
RW  
EYE_MON_  
23h  
ENABLE  
Enables the horizontal eye monitor.  
00b: Horizontal Eye Monitor disabled  
HORIZONTAL_EYE_MON_  
ENABLE  
0h  
0h  
0:0  
RW  
01b: Horizontal Eye Monitor enabled  
RSVD  
15:2  
ROSW  
Reserved. Do not change.  
Writing a 1 to this bit triggers the start of a  
manually timed horizontal eye scan using  
the parameters defined in  
EYE_MON_CONTROL_REG_[0:6] registers.  
0h  
MANUAL_SCAN_START  
1:1  
0:0  
ROSW  
ROSW  
The bit then becomes read-only, and will be  
reset to a value of 0 by the device to indicate  
when the scan is complete.  
EYE_MON_SCAN  
24h  
_START  
Writing a 1 to this bit triggers the start of an  
automatic horizontal eye scan using the  
device’s default parameters.  
0h  
AUTO_SCAN_START  
The bit then becomes read-only, and will be  
reset to a value of 0 by the device to indicate  
when the scan is complete.  
GS6151  
Final Data Sheet  
PDS-060389  
59 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:2  
RW  
Reserved. Do not change.  
Enables a continuous, manually timed  
horizontal eye scan using the parameters  
defined in EYE_MON_CONTROL_REG_[0:6]  
registers.  
Setting CONTINUOUS_SCAN_ENABLE to 1  
clears the ERROR_COUNT bits and starts a  
new measurement.  
CONTINUOUS_SCAN_  
ENABLE  
Error counting continues until  
CONTINUOUS_SCAN_ENABLE is set to 0, at  
which point the ERROR_COUNT bits may be  
read.  
0h  
1:1  
RW  
EYE_MON_  
CONTROL_  
REG_0  
25h  
The ERROR_COUNT bits hold their value  
until any new scan is started using  
AUTO_SCAN_START,  
MANUAL_SCAN_START, or  
CONTINUOUS_SCAN_ENABLE.  
Synchronous soft-reset for the horizontal  
eye monitor block and its associated  
registers (EYE_MON_CONTROL_REG_[0:6]  
and EYE_MON_STATUS_REG_[2:12]).  
0h  
EYE_MON_SOFT_RESET  
0:0  
RW  
RW  
00b: Normal operation of the horizontal eye  
monitor  
01b: Resets the horizontal eye monitor  
0h  
RSVD  
15:8  
Reserved. Do not change.  
Selects the pre-divider value for the  
sampling interval.  
0000b: 4  
0001b: 8  
0010b: 16  
0011b: 32  
0100b: 64  
MEASUREMENT_  
PREDIVIDER  
0101b: 128  
0110b: 256  
0111b: 512  
1000b: 1024  
1001b: 2048  
1010b-1111b: INVALID  
0h  
7:4  
RW  
EYE_MON_  
CONTROL_  
REG_1  
26h  
This parameter, combined with  
MEASUREMENT_TIME, defines the length of  
time per phase for an auto eye scan  
Controls the sampling interval in device  
clock cycles.  
2h  
SAMPLE_INTERVAL  
3:0  
RW  
Sampling interval = SAMPLE_INTERVAL + 1  
device clock cycle.  
GS6151  
Final Data Sheet  
PDS-060389  
60 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Selects measurement interval in multiples of  
SAMPLE_INTERVAL_PREDIVIDER cycles.  
The measurement time for a single phase  
and bypass setting is:  
MEASUREMENT_PREDIVIDER x  
(MEASUREMENT_TIME + 1) x (1/108MHz)  
EYE_MON_  
CONTROL_  
REG_2  
27h  
A8Bh  
MEASUREMENT_TIME  
15:0  
RW  
The default value sets 100μs per sample,  
which is approximately 25.6ms for a full scan  
of 128 phases * 2 bypass settings.  
The maximum MEASUREMENT_TIME value  
results in a full scan taking approximately  
1.25 seconds.  
Error count threshold for pass/fail. The  
phase being tested is considered to pass if  
EYE_MON_PRBS_ERROR_COUNT is less than  
or equal to  
EYE_MON_PRBS_ERROR_THRESHOLD. The  
phase fails if the  
EYE_MON_PRBS_ERROR_COUNT exceeds  
EYE_MON_PRBS_ERROR_THRESHOLD. The  
default value of  
EYE_MON_  
CONTROL_  
REG_3  
EYE_MON_PRBS_ERROR_  
THRESHOLD  
28h  
3h  
15:0  
RW  
EYE_MON_PRBS_ERROR_THRESHOLD  
corresponds to a bit error rate of 3.37x10-6  
at a data rate of 5.94Gb/s using the default  
MEASUREMENT_TIME of 100μs.  
Error count threshold for pass/fail. The  
phase being tested is considered to pass if  
ERROR_COUNT is less than or equal to  
ERROR_THRESHOLD. The phase fails if the  
ERROR_COUNT exceeds  
EYE_MON_  
CONTROL_  
REG_4  
29h  
3h  
ERROR_THRESHOLD  
15:0  
RW  
ERROR_THRESHOLD.  
The default value of ERROR_THRESHOLD  
corresponds to a bit error rate of 6.73x10-6  
at a data rate of 5.94Gb/s using the default  
MEASUREMENT_TIME of 100μs.  
Phase setting for manually timed  
(MANUAL_SCAN_START) and continuous  
(CONTINUOUS_SCAN_ENABLE) scan  
measurements.  
0h  
3h  
EYE_MON_  
CONTROL_  
REG_5  
MANUAL_PHASE  
RSVD  
10:4  
3:0  
RW  
RW  
2Ah  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
61 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:6  
5:5  
RW  
Reserved. Do not change.  
Override value for EYE_MON_PRBS_CLEAR.  
0h  
EYE_MON_CLEAR  
EYE_MON_FORCE_CLEAR  
EYE_MON_PRBS_CLEAR  
RW  
RW  
RW  
Only used when  
EYE_MON_FORCE_PRBS_CLEAR = 1.  
01b: Overrides the EYE_MON_CLEAR output  
with the PRBS_MON__CLEAR value  
0h  
4:4  
3:3  
Allows host interface to directly control the  
PRBS/eye monitor bypassing the  
PRBS_MON_CTRL state machines.  
Override value for EYE_MON_PRBS_CLEAR.  
0h  
Only used when  
EYE_MON_FORCE_PRBS_CLEAR = 1.  
EYE_MON_  
CONTROL_  
REG_6  
01b: Overrides the EYE_MON_PRBS_CLEAR  
output with the EYE_MON_PRBS_CLEAR  
value  
2Bh  
EYE_MON_PRBS_FORCE_  
CLEAR  
0h  
2:2  
1:1  
RW  
RW  
Allows host interface to directly control the  
PRBS/eye monitor bypassing the  
EYE_MON_CTRL state machines.  
Selects which criteria is used to populate the  
eye bitmap.  
1h  
EYE_MON_SELECT  
00b: PRBS7 check  
01b: Arbitrary data check  
Sets which portion of the eye is to be  
sampled for manually timed and continuous  
scan measurements. Result for the phase is  
the lesser count of errors at each  
0h  
0h  
0h  
EYE_MON_WINDOW  
RSVD  
0:0  
15:15  
14:8  
RW  
RO  
RO  
EYE_MON_WINDOW setting.  
Reserved. Do not change.  
Starting (leftmost) phase of  
EYE_MON_PRBS_EYE_WIDTH in the most  
recent scan. This parameter only applies to  
automatic (AUTO_SCAN_START)  
measurements.  
EYE_MON_PRBS_STARTING_  
PHASE  
Widest open portion of the eye in the most  
recent scan, based on the  
EYE_MON_  
STATUS_REG_0  
2Ch  
EYE_MON_PRBS_ERROR_COUNT indication.  
The value of EYE_MON_PRBS_EYE_WIDTH is  
the number of contiguous phases with  
EYE_MON_PRBS_ERROR_COUNT less than  
or equal to  
0h  
EYE_MON_PRBS_EYE_WIDTH  
7:0  
RO  
EYE_MON_PRBS_ERROR_THRESHOLD.  
This parameter only applies to automatic  
(AUTO_SCAN_START) measurements.  
GS6151  
Final Data Sheet  
PDS-060389  
62 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Twice the PRBS Error count from the most  
recent manually timed  
(MANUAL_SCAN_START) or continuous  
(CONTINUOUS_SCAN_ENABLE) scan  
measurements.  
EYE_MON_  
2Dh  
EYE_MON_PRBS_ERROR_  
COUNT  
0h  
15:0  
RO  
STATUS_REG_1  
This value is not defined for automatic  
(AUTO_SCAN_START) scan measurements.  
0h  
0h  
RSVD  
15:15  
14:8  
RO  
RO  
Reserved. Do not change.  
Starting (leftmost) phase of EYE_WIDTH in  
the most recent scan.  
STARTING_PHASE  
This parameter only applies to automatic  
(AUTO_SCAN_START) measurements.  
EYE_MON_  
2Eh  
Widest open portion of the eye in the most  
recent scan, based on the ERROR_COUNT  
indication.  
STATUS_REG_2  
The value of EYE_WIDTH is the number of  
contiguous phases with ERROR_COUNT less  
than or equal to ERROR_THRESHOLD.  
0h  
EYE_WIDTH  
7:0  
RO  
RO  
This parameter only applies to automatic  
(AUTO_SCAN_START) measurements.  
Error count from the most recent manually  
timed (MANUAL_SCAN_START) or  
continuous (CONTINUOUS_SCAN_ENABLE)  
scan measurements.  
EYE_MON_  
2Fh  
0h  
ERROR_COUNT  
15:0  
STATUS_REG_3  
This value is not defined for automatic  
(AUTO_SCAN_START) scan measurements.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 127 to 112.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
30h  
0h  
EYE_BITMAP_127_112  
15:0  
RO  
STATUS_REG_4  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 111 to 96.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
31h  
0h  
EYE_BITMAP_111_96  
15:0  
RO  
STATUS_REG_5  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
GS6151  
Final Data Sheet  
PDS-060389  
63 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 95 to 80.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
32h  
0h  
0h  
0h  
0h  
EYE_BITMAP_95_80  
15:0  
15:0  
15:0  
15:0  
RO  
STATUS_REG_6  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 79 to 64.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
33h  
EYE_BITMAP_79_64  
EYE_BITMAP_63_48  
EYE_BITMAP_47_32  
RO  
RO  
RO  
STATUS_REG_7  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 63 to 48.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
34h  
STATUS_REG_8  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 47 to 32.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
35h  
STATUS_REG_9  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
GS6151  
Final Data Sheet  
PDS-060389  
64 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 31 to 16.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
36h  
0h  
EYE_BITMAP_31_16  
15:0  
RO  
STATUS_REG_10  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
Bitmap of the per-phase pass/fail result from  
the most recent automatic  
(AUTO_SCAN_START) scan measurement for  
phases 15 to 0.  
A value of 1 in each bit indicates a pass for  
the corresponding phase, while a value of 0  
indicates a fail for that phase.  
EYE_MON_  
37h  
0h  
EYE_BITMAP_15_0  
15:0  
RO  
STATUS_REG_11  
The order of the numbers shown in the  
Parameter Name field corresponds to the bit  
orientation for each phase being reported in  
this register.  
0h  
0h  
RSVD  
15:11  
10:10  
RO  
RO  
Reserved. Do not change.  
When HIGH, indicates that no data  
transitions have been detected in the PRBS  
checker since the  
EYE_MON_PRBS_NODATA_SET was last set  
to 1.  
EYE_MON_  
38h  
EYE_MON_PRBS_NODATA  
STATUS_REG_12  
0h  
0h  
RSVD  
RSVD  
9:0  
RO  
Reserved. Do not change.  
Reserved. Do not change.  
15:4  
RW  
When HIGH, sets a latch in the Retime PRBS  
checker (PRBS_MON_NODATA bit of  
PRBS_STATUS_REG_11) HIGH. This bit must  
be set LOW before checking the  
PRBS_MON_NODATA bit. The  
PRBS_MON_NODATA bit will then be  
automatically set LOW if transitions are  
detected.  
0h  
PRBS_MON_NODATA_SET  
3:3  
RW  
39h  
PRBS_CHK_CTRL  
1h  
0h  
RSVD  
2:1  
0:0  
RW  
RW  
Reserved. Do not change.  
When asserted the Re-time PRBS7 checker  
circuit is enabled.  
PRBS_MON_ENABLE  
GS6151  
Final Data Sheet  
PDS-060389  
65 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Enable for manual timed measurement  
using the Re-time PRBS checker.  
PRBS_MON_MANUAL_  
START  
0h  
01b: Triggers a scan  
1:1  
0:0  
ROSW  
Automatically cleared to 0 when the scan  
completes.  
3Ah  
PRBS_CTRL_0  
Enable for automatic eye scan using the  
Re-time PRBS checker.  
PRBS_MON_AUTO_SCAN_  
START  
0h  
01b: Triggers a scan  
ROSW  
Automatically cleared to 0 when the scan  
completes.  
Enable for manual continuous  
measurement using the Re-time PRBS  
checker. Rising edge clears the error counter  
and starts a measurement. Error counting  
continues until  
PRBS_MON_CONTINUOUS_ENABLE is set to  
0, at which point the error counter  
PRBS_MON_ERROR_COUNT can be read.  
PRBS_MON_CONTINUOUS_  
ENABLE  
0h  
1:1  
0:0  
RW  
RW  
3Bh  
PRBS_CTRL_1  
The error counter holds its value until any  
new scan is started (manual or auto).  
When HIGH, the logic in PRBS monitor state  
machine is synchronously reset.  
0h  
PRBS_MON_SOFT_RESET  
Along with  
PRBS_MON_MEASUREMENT_TIME,  
determines the length of time of a  
measurement for a given phase in  
automatic or manual timed modes  
(PRBS_MON_AUTO_SCAN_START = 1 or  
PRBS_MON_MANUAL_START = 1).  
Pre-divider value vs. sampling interval:  
0000b: 4  
0001b: 8  
0010b: 16  
PRBS_MON_MEASUREMENT_  
PREDIVIDER  
0h  
7:4  
RW  
0011b: 32  
3Ch  
PRBS_CTRL_2  
0100b: 64  
0101b: 128  
0110b: 256  
0111b: 512  
1000b: 1024  
1001b: 2048  
1010b-1111b: INVALID  
Controls sampling interval for an error  
signal. The sampling interval is  
PRBS_MON_SAMPLE_INTERVAL + 1 clock  
cycles. The minimum allowable value is 1  
(sampling interval of 2).  
PRBS_MON_SAMPLE_  
INTERVAL  
2h  
3:0  
RW  
GS6151  
Final Data Sheet  
PDS-060389  
66 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Selects measurement interval in multiples of  
pre-divider cycles. The measurement time  
for a single phase is:  
PRBS_MON_MEASURE_PREDIVIDER *  
(PRBS_MON_MEASUREMENT_TIME + 1) *  
(1/108MHz).  
PRBS_MON_MEASUREMENT_  
TIME  
3Dh  
A8Bh  
PRBS_CTRL_3  
15:0  
RW  
The default value results in a 100μs  
measurement time or roughly 12.8ms for a  
full scan of 128 phases. The maximum  
measurement time is ~1.25 seconds.  
PRBS error count threshold for good/bad  
BER for automatic eye scan. A measurement  
is considered to pass if  
PRBS_MON_PRBS_ERROR_  
THRESHOLD  
PRBS_ERROR_COUNT is less than or equal to  
this threshold. It fails if the count is greater.  
The default threshold corresponds to a bit  
error rate of 6.67E-6 at 6G using the default  
measurement interval of 100μs.  
3Eh  
3h  
PRBS_CTRL_4  
15:0  
RW  
0h  
0h  
3h  
RSVD  
15:11  
10:4  
3:0  
RW  
RW  
RW  
Reserved. Do not change.  
Phase setting for manual timed or  
continuous scans  
3Fh  
PRBS_CTRL_5 PRBS_MON_MANUAL_PHASE  
RSVD  
Reserved. Do not change.  
00b: No effect  
01b: Manually clear error indication  
0h  
PRBS_MON_CLEAR  
1:1  
0:0  
RW  
RW  
Only used when  
PRBS_MON_FORCE_CLEAR = 1  
40h  
PRBS_CTRL_6  
00b: Manual error clearing is disabled  
01b: Enables error clearing through  
PRBS_MON_CLEAR  
0h  
PRBS_MON_FORCE_CLEAR  
Allows host interface to directly control the  
PRBS error counting algorithm, bypassing  
the PRBS_MON_CTRL state machine.  
GS6151  
Final Data Sheet  
PDS-060389  
67 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:15  
RO  
Reserved. Do not change.  
Starting (leftmost) phase of  
PRBS_MON_EYE_WIDTH in the most recent  
scan.  
PRBS_MON_  
STARTING_  
PHASE  
0h  
14:8  
RO  
RO  
This parameter only applies to automatic  
(AUTO_SCAN_START) measurements.  
PRBS_STATUS_  
41h  
Widest open portion of the eye in the most  
recent scan, based on the  
PRBS_MON_ERROR_COUNT indication.  
REG_0  
The value of PRBS_MON_EYE_WIDTH is the  
number of contiguous phases with  
0h  
PRBS_MON_EYE_WIDTH  
7:0  
PRBS_MON_ERROR_COUNT less than or  
equal to PRBS_MON_ERROR_THRESHOLD.  
This parameter only applies to automatic  
(AUTO_SCAN_START) measurements.  
Twice the PRBS error count from the most  
recent manually timed  
(MANUAL_SCAN_START) or continuous  
(CONTINUOUS_SCAN_ENABLE) scan  
measurements.  
PRBS_STATUS_  
42h  
0h  
PRBS_MON_ERROR_COUNT  
15:0  
RO  
REG_1  
This value is not defined for automatic  
(AUTO_SCAN_START) scan measurements  
when a PRBS7 bit stream is input.  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
0h  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:9  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
Reserved. Do not change.  
When HIGH, indicates that no data  
transitions have been detected in the PRBS  
checker since the PRBS_MON_NODATA_SET  
was last set to 1.  
PRBS_STATUS_  
REG_11  
4Bh  
0h  
0h  
PRBS_MON_NODATA  
RSVD  
8:8  
7:0  
RO  
RO  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
68 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
0h  
RSVD  
15:12  
11:10  
RW  
Reserved. Do not change.  
Determines the source of CARRIER_DETECT.  
00 : Edge detection  
1h  
LOS_DETECTION_METHOD  
RW  
RW  
b
01 : Strength detection  
b
Force the PLL to retime a specific data rate.  
000 : Reserved  
b
001 : 0.270Gb/s  
b
010 : 1.485Gb/s  
b
011 : 2.97Gb/s  
b
1h  
FORCE_PLL_RATE  
9:7  
100 : 5.94Gb/s  
b
101 : Reserved  
b
110 : Reserved  
b
111 : Reserved  
b
Used when FORCE_PLL_RATE_ENABLE is set to  
1.  
Enables the forced PLL rate override set using  
the FORCE_PLL_RATE bits.  
0h  
0h  
FORCE_PLL_RATE_ENABLE  
RATE_ENABLE_125M  
6:6  
5:5  
RW  
RW  
Enables auto-detection of 0.125Gb/s (MADI)  
signals  
00 : 0.125Gb/s signals will not be detected  
b
01 : 0.125Gb/s signals will be detected  
b
4Ch  
PLL_CONTROL  
Enables auto-detection of 5.94Gb/s  
(6G UHD-SDI) signals.  
1h  
1h  
1h  
1h  
RATE_ENABLE_5G94  
RATE_ENABLE_2G97  
RATE_ENABLE_1G485  
RATE_ENABLE_270M  
4:4  
3:3  
2:2  
1:1  
RW  
RW  
RW  
RW  
00 : 5.94Gb/s signals will not be detected  
b
01 : 5.94Gb/s signals will be detected  
b
Enables auto-detection of 2.97Gb/s  
(3G SDI) signals.  
00 : 2.97Gb/s signals will not be detected  
b
01 : 2.97Gb/s signals will be detected  
b
Enables auto-detection of 1.485Gb/s (HD-SDI)  
signals.  
00 : 1.485Gb/s signals will not be detected  
b
01 : 1.485Gb/s signals will be detected  
b
Enables auto-detection of 0.27Gb/s  
(SD-SDI) signals.  
00 : 0.27Gb/s signals will not be detected  
b
01 : 0.27Gb/s signals will be detected  
b
Synchronous soft-reset for the PLL rate  
detection state machine.  
00 : Normal operation of the PLL rate  
detection state machine  
b
0h  
PLL_SOFT_RESET  
RSVD  
0:0  
RW  
RW  
01 : Resets the PLL rate detection state  
b
machine  
4Dh  
110h  
RESERVED  
15:0  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
69 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
4Eh  
110h  
RESERVED  
RSVD  
15:0  
RW  
Reserved. Do not change.  
Indicates whether the re-timer is active or  
bypassed.  
RETIMER_BYPASS  
LBR_HBR  
15:15  
RO  
RO  
00b: Re-timer is active  
01b: Re-timer is bypassed  
Indicates high-bit-rate versus low-bit-rate.  
00b: Input data rate is 5.94Gb/s,  
2.97Gb/s, 1.485Gb/s, or BYPASS  
14:14  
13:11  
01b: Input data rate is 270Mb/s or 125Mb/s  
Indicates the current rate found by the PLL  
rate detection state machine.  
000b: 0.125Gb/s  
001b: 0.270Gb/s  
010b: 1.485Gb/s  
011b: 2.97Gb/s  
100b: 5.94Gb/s  
101b: Reserved  
110b: Reserved  
111b: Reserved  
DETECTED_RATE  
RO  
4Fh  
PLL_STATUS  
RSVD  
10:10  
9:9  
RO  
RO  
Reserved. Do not change.  
Indicates if the CDR is locked or unlocked.  
00b: CDR is unlocked  
LOCKED  
01b: CDR is locked  
Indicates whether or not the CDR has lost  
the signal.  
LOS  
8:8  
7:0  
RO  
RO  
00b: Signal is present  
01b: Loss of signal  
RSVD  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
70 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-1: Register Descriptions - Standard Address Space (Continued)  
Bit  
Slice  
Reset  
Value  
Address Register Name  
Parameter Name  
R/W  
Description  
Sticky bit indicating that the device entered  
STANDBY mode at least once.  
00 : Device has not entered STANDBY mode  
since this bit was last cleared  
b
ROCW  
STANDBY_STICKY  
11:11  
10:10  
01 : Devices has entered STANDBY mode since  
b
this bit was last cleared  
Sticky bit indicating that the device entered  
SLEEP mode at least once  
00 : Device has not entered SLEEP mode since  
b
ROCW  
SLEEP_STICKY  
this bit was last cleared  
01 : Device has entered SLEEP mode since this  
b
bit was last cleared  
Sticky bit indicating that the re-timer is/has  
been bypassed.  
00 : Re-timer has not been bypassed since this  
b
ROCW  
RETIMER_BYPASS_STICKY  
9:9  
8:8  
7:7  
bit was last cleared  
01 : Re-timer has been bypassed since this bit  
b
was last cleared  
This bit is cleared by writing any value to it.  
Sticky bit indicating that the rate is/has been  
270Mb/s (low bit-rate).  
00 : Rate has not been 270Mb/s since this bit  
b
ROCW  
LBR_HBR_STICKY  
was last cleared  
01 : Rate has been 270Mb/s since this bit was  
b
50h  
STICKY_STATUS  
last cleared  
This bit is cleared by writing any value to it.  
Sticky bit indicating that a rate change has  
occurred.  
00 : Rate has not changed since this bit was  
b
ROCW  
RATE_CHANGE_STICKY  
last cleared  
01 : Rate has changed since this bit was last  
b
cleared  
This bit is cleared by writing any value to it.  
Sticky bit indicating that lock was lost.  
00 : Lock has not been lost since this bit was  
b
last cleared  
ROCW  
ROCW  
ROCW  
ROCW  
LOCK_LOST_STICKY  
RSVD  
6:6  
5:5  
4:4  
3:0  
01 : Lock has been lost since this bit was last  
b
cleared  
This bit is cleared by writing any value to it.  
Reserved. Do not change.  
Sticky bit indicating a loss of signal.  
00 : Signal has not been lost since this bit was  
b
last cleared  
LOS_STICKY  
RSVD  
01 : Signal has been lost since this bit was last  
b
cleared  
This bit is cleared by writing any value to it.  
Reserved. Do not change.  
GS6151  
Final Data Sheet  
PDS-060389  
71 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
Table 5-2: Register Descriptions - Extended Address Space  
Reset  
Value  
(Dec)  
Register  
Name  
Parameter  
Name  
Bit  
Slice  
Address  
R/W  
Description  
0h  
0h  
RSVD  
15:2  
1:1  
RW  
RW  
Reserved. Do not change.  
PWR_  
CONTROL  
When enabled, reduces power when  
locked to a rate of HD, 3G or 6G.  
D2h  
HS_LOCKED_POWER_SAVE  
1h  
4h  
RSVD  
RSVD  
0:0  
RW  
RW  
Reserved. Do not change.  
Reserved. Do not change.  
15:5  
Sets the rate specific PLL loop-bandwidth  
when the device is locked.  
00001b: Nominal / 4  
00010b: Nominal / 2  
00100b: Nominal (default)  
01000b: Nominal x 2  
11100b: Nominal x 4  
PLL_LBW_  
CONTROL_  
REG_0  
E4h  
4h  
PLL_LOOP_BANDWIDTH  
4:0  
RW  
See Table 2-3: AC Electrical Characteristics  
for the PLL loop-bandwidth value set at  
each rate by each of these settings.  
RW = Read/Write  
RO = Read Only  
ROCW = Read Only/ Clear on Write  
ROSW = Read Only/ Set on Write  
GS6151  
Final Data Sheet  
PDS-060389  
72 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
6. Typical Application Circuit  
VCC  
27MHz  
10nF 10nF 10nF 10nF  
VCC  
10nF 10μF  
10nF  
C1*  
C2*  
1M  
Ω
9
XTAL_CLK_IN  
10  
11  
XTAL_CLK_OUT  
XTAL_BUFF_OUT  
OUT  
1
24  
23  
DDI0  
DDI0  
DDO0  
DDO0  
IN  
IN  
OUT  
OUT  
2
19  
18  
4
5
DDO1  
DDO1  
OUT  
OUT  
IN  
IN  
DDI1  
DDI1  
GS6151  
6
GPIO_0  
GPIO_1  
IO  
IO  
8
IN  
DDI_SEL/STROBE  
7
12  
13  
14  
15  
25  
SDI  
DFT_VCO_FILT  
LF+  
SDO  
SCLK  
CS  
28  
29  
10nF 10μF  
IN  
220nF  
OUT  
IN  
LF-  
IN  
Notes:  
VCC IS 1.8V  
VCC_DDO0 AND VCC_DDO1 ARE IN THE RANGE +1.2V TO +2.5V  
If XTAL_CLK_IN is not connected to a crystal, XTAL_CLK_OUT must be left unconnected.  
*VALUES FOR C1 AND C2 ARE CHOSEN BASED ON THE REQUIRED LOADING FOR THE SELECTED CRYSTAL  
IF AC COUPLING IS REQUIRED ON THE HIGH-SPEED SERIAL INPUTS AND OUTPUTS BY THE APPLICATION, A CERAMIC CAPACITOR 4.7μF OR HIGHER WITH A STABLE DIELECTRIC IS RECOMMENDED  
Figure 6-1: GS6151 Typical Application Circuit  
GS6151  
Final Data Sheet  
PDS-060389  
73 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
7. Package and Ordering Information  
7.1 Package Dimensions  
M
0.10 C A B  
2.75 0.10  
4.00  
A
B
DATUM A  
M
0.10 C A B  
PIN 1 AREA  
DATUM B  
2X  
0.10 C  
DETAIL B  
DETAIL A  
2X  
0.10 C  
0.10 C  
C
32X  
0.08 C  
SEATING PLANE  
0.20 0.05  
24X  
M
0.07 C A B  
DATUM A OR B  
M
C
0.20 0.05  
0.05  
8X  
M
0.07 C A B  
M
C
0.05  
0.35 0.10  
0.30 0.10  
DETAIL B (SCALE 3:1)  
DETAIL A (SCALE 3:1)  
NOTES:  
1. DIMENSIONING AND TOLERANCE IS IN CONFORMANCE TO ASME Y14.5–1994.  
ALL DIMENSIONS ARE IN MILLIMETERS, ° IN DEGREES.  
2. DIMENSION OF LEAD WIDTH APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm  
FROM THE TERMINAL TIP (BOTH ROWS). IF THE TERMINAL HAS OPTIONAL RADIUS ON THE END OF THE TERMINAL,  
THE LEAD WIDTH DIMENSION SHOULD NOT BE MEASURED IN THAT RADIUS AREA.  
Figure 7-1: GS6151 Package Dimensions  
GS6151  
Final Data Sheet  
PDS-060389  
74 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
7.2 Recommended PCB Footprint  
0.40  
0.20  
0.55  
3.90 2.75  
CENTER PAD  
Note: All dimensions  
in millimeters  
2.75  
3.90  
Figure 7-2: GS6151 PCB Footprint  
7.3 Packaging Data  
Table 7-1: Packaging Data  
Parameter  
Value  
32-pin QFN / 4mm x 4mm /  
0.4mm pad pitch  
Package Type  
Moisture Sensitivity Level (Note 1)  
3
Junction to Case Thermal Resistance, θj-c  
29.8°C/W  
35.4°C/W  
Junction to Air Thermal Resistance, θj-a  
Junction to Board Thermal Resistance, θj-b  
12.0°C/W  
0.3°C/W  
Yes  
Psi, Ψ  
Pb-free and RoHS Compliant  
Note:  
1. Value per JEDEC J-STD-020C  
GS6151  
Final Data Sheet  
PDS-060389  
75 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
7.4 Marking Diagram  
Pin 1 ID  
XXXX - Last 4 digits of Assembly lot  
E3 - Pb-free & Green indicator  
YYWW - Date Code  
GS6151  
XXXXE3  
YYWW  
Figure 7-3: GS6151 Marking Diagram  
7.5 Solder Reflow Profile  
Temperature  
60-150 sec.  
20-40 sec.  
260°C  
250°C  
3°C/sec max  
217°C  
6°C/sec max  
200°C  
150°C  
25°C  
Time  
60-180 sec. max  
8 min. max  
Figure 7-4: Maximum Pb-free Solder Reflow Profile  
7.6 Ordering Information  
Table 7-2: Ordering Information  
Part Number  
Package  
Temperature Range  
Pb-free 32-pin QFN  
(490 piece tray)  
GS6151-INE3  
-40°C to 85°C  
Pb-free 32-pin QFN  
(250 piece reel)  
GS6151-INTE3  
GS6151-INTE3Z  
-40°C to 85°C  
-40°C to 85°C  
Pb-free 32-pin QFN  
(2500 piece reel)  
GS6151  
Final Data Sheet  
PDS-060389  
76 of 77  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.4  
August 2015  
IMPORTANT NOTICE  
Information relating to this product and the application or design described herein is believed to be reliable, however such information is  
provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein.  
Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant  
information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its  
products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtechs standard terms and conditions  
of sale.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,  
DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL  
INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS  
UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such  
unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs damages and attorney fees which could arise.  
The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be  
marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products  
described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the  
suitability of its products for any particular purpose. All rights reserved.  
© Semtech 2015  
Contact Information  
Semtech Corporation  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111, Fax: (805) 498-3804  
www.semtech.com  
GS6151  
Final Data Sheet  
PDS-060389  
77 of 77  
Semtech  
77Proprietary & Confidential  
Rev.4  
August 2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY