SC1155_01 [SEMTECH]

Programmable Synchronous DC/DC Hysteretic Controller with VRM 9.0VID Range; 可编程同步DC / DC控制器的滞后与VRM 9.0VID范围
SC1155_01
型号: SC1155_01
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Programmable Synchronous DC/DC Hysteretic Controller with VRM 9.0VID Range
可编程同步DC / DC控制器的滞后与VRM 9.0VID范围

控制器
文件: 总20页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1155  
Programmable Synchronous DC/DC  
Hysteretic Controller with VRM 9.0 VID Range  
PRELIMINARY  
POWER MANAGEMENT  
ꢀeatures  
Description  
The SC1155 is a synchronous-buck switch-mode con-  
troller designed for use in single ended power supply ap-  
plications where efficiency is the primary concern. The  
controller is a hysteretic type, with a user selectable hys-  
teresis. The SC1155 is ideal for implementing DC/DC  
converters needed to power advanced microprocessors  
such as Pentium® llI and Athlon®, in both single and mul-  
tiple processor configurations. Inhibit, under-voltage lock-  
out and soft-start functions are included for controlled  
power-up.  
u Programmable hysteresis  
u 5 bit DAC programmable output (1.1V-1.85V)  
u On-chip power good and OVP functions  
u Designed to meet latest Intel specifications  
u Up to 95% efficiency  
u +1% tolerance over temperature  
Applications  
SC1155 features include an integrated 5 bit D/A con-  
verter, temperature compensated voltage reference,  
current limit comparator, over-current protection, and an  
adaptive deadtime circuit to prevent shoot-through of  
the power MOSꢀET during switching transitions. Power  
good signaling, logic compatible shutdown, and over-volt-  
age protection are also provided. The integrated D/A  
converter provides programmability of output voltage  
from 1.1V to 1.85V in 25mV increments.  
u Server Systems and Workstations  
u Pentium® III Core Supplies  
u AMD Athlon® Core Supplies  
u Multiple Microprocessor Supplies  
u Voltage Regulator Modules  
The SC1155 high side driver can be configured as either  
a ground-referenced or as a floating bootstrap driver.  
The high and low side MOSꢀET drivers have a peak cur-  
rent rating of 2 amps.  
Typical Application Circuit  
+5V  
R1  
*
R10  
1k  
R9  
10k  
U1  
SC1155  
R3  
*
PWRGD  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IOUT  
PWRGD  
VID0  
"POWER GOOD"  
R2  
1k  
C6  
0.1  
DROOP  
OCP  
R4  
1k  
INHIB  
3
VID1  
"INHIBIT"  
C7  
0.1  
R11  
1k  
4
VHYST  
VREFB  
VSENSE  
AGND  
SOFTST  
N/C  
VID2  
R5  
*
5
VID3  
L1  
0.5uH  
C1  
0.1  
R6  
20k  
6
+
VID4  
C2  
0.001  
Cin  
Hꢀ  
Cin  
Bulk  
7
Vin +5V/12V  
INHIBIT  
IOUTLO  
LOSENSE  
HISENSE  
BOOTLO  
HIGHDR  
BOOT  
8
_
C8  
0.033  
C3  
0.1  
9
+5V  
10  
11  
12  
13  
14  
LODRV  
LOHIB  
DRVGND  
LOWDR  
DRV  
C4  
0.01  
Q1  
ꢀDB6035AL  
R12  
1.0  
L2  
1.0uH  
C9  
1.0  
+12V  
+
Q2  
VIN12V  
ꢀDB7030BL  
R14  
1.6  
Cout  
Bulk  
Cout  
Hꢀ  
1.10 to 1.825V  
C5  
C10  
_
R7  
*
R8  
10k  
*) for the values see specific application circuit somewhere else in the datasheet  
Revision 2, June 2001  
1
www.semtech.com  
SC1155  
PRELIMINARY  
Units  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Parameter  
Symbol  
Maximum  
VIN12V  
VINMAX  
-0.3 to 14  
-0.3 to 25  
-0.3 to 15  
-0.5 to 18  
-0.5 to 7.3  
±0.5  
V
V
V
V
V
V
V
V
V
BOOT to DRVGND  
BOOT to BOOTLO  
BOOTLO tp DRVGND  
VIDS, INHIB, LODRV, PWRGD, OCP, DROOP  
AGND to DRVGND  
LOHIB to AGND  
-0.3 to 14  
-0.3 to 14  
-0.3 to 14  
LOSENSE to AGND  
IOTLO to AGND  
HISENSE to AGND  
-0.3 to 14  
-0.3 to 5  
1.2  
V
V
VSENSE to AGND  
Continuous Power Dissipation, TA = 25 0C  
Continuous Power Dissipation, TC = 25 0C  
Operating Junction Temperature Range  
Lead Temperature (Soldering) 10 Sec.  
Storage Temperature  
PD  
PD  
TJ  
W
W
°C  
°C  
°C  
6.25  
0 to +125  
300  
TL  
TSTG  
-65 to 150  
DC Electrical Characteristics  
Unless specified: 0 < TJ < 125°C, VIN = 12V  
Parameter  
Symbol  
Conditions  
Min  
11.4  
Typ  
12  
Max  
Units  
V
Supply Voltage Range  
Supply Current (Quiescent)  
VIN12V  
13  
I q  
INH = 5V, VID not 11111, Vin above UVLO  
threshold during start-up,  
15  
mA  
IN  
fsw = 200 kHz, BOOTLO = 0V,  
C
DH = CDL = 50pF  
High Side Driver Supply  
Current (Quiescent)  
IBOOTq  
INH = OV or VID = 11111 or Vin below  
UVLO threshold during start-up,  
BOOT = 13V, BOOTLO = OV  
10  
µA  
INH = 5V, VID not 11111, VIN above UVLO  
threshold during start-up,  
5
mA  
fsw = 200kHz, BOOT = 13V, BOOTLO = 0V,  
CDH = 50pF  
www.semtech.com  
2001 Semtech Corp.  
2
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
DC Electrical Characteristics (Cont.)  
Unless specified: 0 < TJ < 125°C, VIN = 12V  
Parameter  
Symbols Conditions  
Min  
Typ  
Max  
Units  
Reference/Voltage Identification  
Reference Voltage Accuracy  
VREF  
11.4V < VIN12V< 12.6V, over full  
VID range (see Output Voltage  
Table)  
-1  
1
%
VIDO - VID4 High Threshold  
Voltage  
VTH(H)  
2.25  
90  
V
V
VIDO - VID4 Low Threshold Voltage  
VTH(L)  
1
Power Good  
Undervoltage Threshold  
VTH(PWRGD)  
95  
%VREF  
Output Saturation Voltage  
Hysteresis  
VSAT  
IO = 5mA  
0.5  
10  
V
VHYS(PWRGD)  
mV  
Over Voltage Protection  
OVP Trip Point  
VOVP  
2.08  
10.4  
2.15  
13  
2.22  
15.6  
V
Soft Start  
Charge Current  
ICHG  
VSS = 0.5V, resistance from VREFB  
pin to AGND = 20kΩ, VREFB = 1.3V  
Note: ICHG = (IVREFB / 5)  
µA  
Discharge Current  
Idischg V(SS) = 1V  
1
mA  
V
Inhibit Comparator  
Start Threshold  
Vstart(NH)  
1
2.0  
2.4  
VIN 12V UVLO  
Start Threshold  
VstartUVLO  
VhysUVLO  
9.25 10.25 11.25  
V
V
Hysteresis  
1.8  
2
2.2  
Hysteretic Comparator  
Input Offset Voltage  
Input Bias Current  
VosHYSCMP VDROOP pin grounded  
5
1
mV  
uA  
IbiasHYSCM-  
P
Hysteresis Accuracy  
Hysteresis Setting  
VHYS ACC  
VHYS SET  
7
mV  
mV  
60  
www.semtech.com  
2001 Semtech Corp.  
3
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
DC Electrical Characteristics (Cont.)  
Parameter  
Symbols  
Conditions  
Min  
Typ  
Max  
Units  
Droop Compensation  
Initial Accuracy  
VDROOP ACC VDROOP = 50 mV  
5
mV  
Overcurrent Protection  
OCP Trip Point  
VOCP  
0.09  
0.1  
2
0.11  
100  
V
Input Bias Current  
High-Side VDS Sensing  
Gain  
IbiasOCP  
nA  
V/V  
mV  
Initial Accuracy  
IOUT Source  
VIOUT  
VHISENSE = 12V, VIOUTLO = 11.9V  
6
ACC  
VIOUT = 0.5V, VHISENSE = 12V,  
VIOUTLO = 11.5V  
IsourceIOUT  
500  
µA  
IsinkIOUT VIOUT =0.05V, VHISENSE = 12V,  
IOUTLO = 12V  
IOUT Sink Current  
40  
0
50  
µA  
V
V
VIOUT(11)  
VIOUT(4.5)  
VIOUT(3)  
VHISENSE = 11V, RIOUT = 10K0hm  
3.75  
2.0  
VIOUT Voltage Swing  
VHISENSE = 4.5V,  
RIOUT = 10k0hm  
0
V
VHISENSE = 3V, RIOUT = 10k0hm  
0
1.0  
V
V
V
LOSENSE High Level Input Voltage VihLOSENSE VHISENSE = 4.5V (Note 1)  
2.85  
LOSENSE Low Level Input Voltage  
Sample/Hold Resistance  
Buffered Reference  
VilLOSENSE VHISENSE = 4.5V (Note 1)  
RS/H (Note 1)  
1.8  
80  
50  
65  
2
VREFB Load Regulation  
Deadtime Circuit  
VldregREFB 10µA < IREFB < 500µA  
VihLOHIB (Note 1)  
mV  
LOHIB High Level Voltage  
LOHIB Low Level Input Voltage  
LOWDR High Level Input Voltage  
LOWDR Low Level Input Voltage  
Drive Regulator  
2
2
V
V
V
V
VilLOHIB  
(Note 1)  
1.0  
1.0  
9
VihLOWDR (Note 1)  
VilLOWDR (Note 1)  
DRV Voltage  
VDRV  
11.4 < VIN12V < 12.6V, IDRV = 50mA  
7
V
Load Regulation  
VldregDRV 1mA < IDRV < 50mA  
IshortDRV  
100  
mV  
mA  
Short Circuit Current  
100  
www.semtech.com  
2001 Semtech Corp.  
4
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
DC Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
High-Side Output Driver(1)  
Peak Output Current  
IsrcHIGHDR duty cycle < 2%, tpw < 100µs,  
2
A
IsinkHIGHDR TJ = 125°C  
VBOOT - VBOOTLO = 6.5V, VHIGHDR = 1.5V (src)  
or VHIGHDR = 5V (sink)  
Equivalent Output Resistance  
RsrcHIGHDR TJ = 125°C  
BOOT - VBOOTLO = 6.5V, VHIGHDR = 6V  
45  
5
V
RsinkHIGHDR TJ = 125°C  
VBOOT - VBOOTLO = 6.5V, VHIGHDR = 0.5V  
Low-Side Output Driver(1)  
Peak Output Current  
IsrcLOWDR  
IsinkLOWDR TJ = 125°C  
VDRV - VBOOTLO = 6.5V, VLOWDR = 1.5V (src)  
or VLOWDR = 5V (sink)  
duty cycle < 2%, tpw < 100us,  
2
Equivalent Output Resistance  
RsrcLOWDR TJ = 125°C  
VDRV = 6.5V, VLOWDR = 6V  
45  
5
RsinkLOWDR TJ = 125°C  
VDRV = 6.5V, VLOWDR = 0.5V  
(Note 1)  
AC Electrical Characteristics  
Hysteretic Comparators  
Propagation Delay Time from  
VSENSE to HIGHDR or  
LOWDR (excluding  
deadtime)  
tHCPROP  
10mV overdrive,  
1.3V Vref 1.8V  
150  
250  
ns  
Output Drivers  
HIGHDR rise/fall time  
trHIGHDR  
trHIGHDR  
CI = 9nF, VBOOT = 6.5V,  
VBOOTLO = grounded,  
TJ =125°C  
60  
60  
ns  
ns  
LOWDR rise/falltime  
trLOWDR  
tfLOWDR  
CI = 9nF, VDRV = 6.5V,  
TJ =125°C  
Overcurrent Protection  
Comparator Propagation  
Delay Time  
tOVPROP  
1
µs  
µs  
Deglitch Time (Includes  
comparator propagation  
delay time)  
tOVDGL  
2
5
www.semtech.com  
2001 Semtech Corp.  
5
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
(Note 1)  
AC Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Overvoltage Protection  
Comparator Propagation Delay Time  
tOVPROP  
tOVPDGL  
1
µs  
µs  
Deglitch Time (Includes comparator  
protection delay time)  
1
3
High-Side Vds Sensing  
Response Time  
tVDSRESP  
VHISENSE = 12V, VIOUTLO pulsed  
from 12V to 11.9V, 100ns rise  
and fall times  
2
3
3
µs  
µs  
µs  
V
HISENSE = 4.5V, VIOUTLO pulsed  
from 4.5V to 4.4V, 100ns rise  
and fall times  
V
HISENSE = 3V, VIOUTLO pulsed  
from 3.0v to 2.9V, 100ns rise  
and fall times  
Short Circuit Protection Rising Edge  
Delay  
tVDSRED  
LOSENSE grounded  
3V < VHISENSE < 11V  
300  
30  
500  
100  
ns  
ns  
Sample/Hold Switch turn-on/turn-off  
Delay  
tSWXDLY  
V
LOSENSE = VHISENSE  
Power Good  
Comparator Propagation Delay  
Softstart  
tPWRGD  
1
µs  
ns  
Comparator Propagation Delay  
Deadtime  
tSLST  
overdrive = 10mV  
560  
900  
100  
400  
CLOWDR = 9nF, 10% threshold on  
LOWDR  
Driver Nonoverlap Time  
tNOL  
30  
ns  
ns  
LODRV  
Propagation Delay  
TLODRVDLY  
Notes:  
(1) Guaranteed, but not tested.  
(2) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
www.semtech.com  
2001 Semtech Corp.  
6
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Test Circuit  
Timing Diagram  
Simplified Block Diagram  
www.semtech.com  
2001 Semtech Corp.  
7
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Ordering Information  
Pin Configuration  
Device (1)  
SC1155CSW.TR  
SC1155EVB  
Package  
Temp Range (TJ)  
Top View  
SO-28  
0° to 125°C  
Evaluation Board  
Note:  
(1) Only available in tape and reel packaging. A reel  
contains 1000 devices.  
(28-Pin SOIC)  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
1
IOUT  
Current Out. The output voltage on this pin is proportional to the load current as measured  
across the high side MOSFET, and is approximately equal to 2 x RDS(ON) x ILOAD.  
DROOP  
OCP  
Droop Voltage. This pin is used to set the amount of output voltage set-point droop as a  
function of load current. The voltage is set by a resistor divider between IOUT and AGND.  
2
3
Over Current Protection. This pin is used to set the trip point for over current protection by a  
resistor divider between IOUT and AGND.  
4
VHYST  
Hysteresis Set Pin. This pin is used to set the amount of hysteresis required by a resistor  
divider between VREFB and AGND.  
5
6
VREFB  
VSENSE  
AGND  
Buffered Reference Voltage (from VID circuitry).  
Output Voltage Sense.  
7
Small Signal Analog and Digital Ground.  
Soft Start. Connecting a capacitor from this pin to AGND sets the time delay.  
Not connected.  
8
SOFTST  
NC  
9
10  
LODRV  
Low Drive Control. Connecting this pin to +5V enables normal operation. When LOHIB is  
grounded, this pin can be used to control LOWDR.  
11  
12  
13  
LOHIB  
DRVGND  
LOWDR  
Low Side Inhibit. This pin is used to eliminate shoot-thru current.  
Power Ground. Insure output capacitor ground is connected to this pin.  
Low Side Driver Output. Connect to gate of low side MOSFET.  
www.semtech.com  
2001 Semtech Corp.  
8
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Pin Descriptions (Cont.)  
Pin #  
14  
Pin Name  
DRV  
Pin Function  
Drive Regulator for the MOSFET Drivers.  
12V Supply. Connect to 12V power rail.  
15  
VIN12V  
BOOT  
16  
Bootstrap. This pin is used to generate a floating drive for the high side FET driver.  
High Side Driver Output. Connect to gate of high side MOSFET.  
17  
HIGHDR  
BOOTLO  
HISENSE  
18  
Bootstrap Low. In desktop applications, this pin connect to DRVGND.  
19  
High Current Sense. Connected to the drain of the high side FET,or the input side of a  
current sense resistor between the input and the high side FET.  
20  
21  
22  
LOSENSE  
IOUTLO  
INHIBIT  
Low Current Sense. Connected to the source of the high side FET, or the FET side of a  
current sense resistor between the input and the high side FET.  
This is the sampling capacitors bottom leg. Voltage on this pin is voltage on the  
LOSENSE pin when the high side FET is on.  
Inhibit. If this pin is grounded, the MOSFET drivers are disabled. Usually connected to  
+5V through a pull-up resistor.  
23  
24  
25  
26  
27  
28  
VID4  
VID3  
Programming Input (MSB)  
Programming Input  
VID2  
Programming Input  
VID1  
Programming Input  
VID0  
Programming Input (LSB)  
PWRGD  
Power Good. This open collector logic output is high if the output voltage is within  
5-10% of the set point.  
www.semtech.com  
2001 Semtech Corp.  
9
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Block Diagram  
www.semtech.com  
2001 Semtech Corp.  
10  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Output Voltage Table  
0 = VSS; 1 = OPEN  
VID4  
VID3  
VID2  
VID1  
VIDO  
VDC  
(V)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
0
1
0
1
0
1
0
Output Off  
1.1  
1.125  
1.15  
1.175  
1.2  
1.225  
1.250  
1.275  
1.3  
1.325  
1.35  
1.375  
1.4  
1.425  
1.45  
1.475  
1.5  
1.525  
1.55  
1.575  
1.6  
1.625  
1.65  
1.675  
1.7  
1.725  
1.75  
1.775  
1.8  
1.825  
1.85  
NOTE:  
(1) If the VID bits are set to 11111, then the high-side and the low-side driver outputs will be set low, and the  
controller will be set to a low-Iq state.  
www.semtech.com  
2001 Semtech Corp.  
11  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Applications Information - ꢀunctional Description  
diode, connected between the DRV and BOOT pins, is a  
Schottky for improved drive efficiency. The maximum  
voltage that can be applied between the BOOT pin and  
ground is 25V. The driver can be referenced to ground  
by connecting BOOTLO to PGND, and connecting +12V  
to the BOOT pin.  
Reference/Voltage Identification  
The reference/voltage identification (VID) section con-  
sists of a temperature compensated bandgap reference  
and a 5-bit voltage selection network. The 5 VID pins  
are TTL compatable inputs to the VID selection network.  
They are internally pulled up to +5V generated from the  
+12V supply by a resistor divider, and provide program-  
mability of output voltage from 1.1V to 1.8V in 25mV  
increments.  
Deadtime Control  
Deadtime control prevents shoot-through current from  
flowing through the main power ꢀETs during switching  
transitions by actively controlling the turn-on times of the  
ꢀET drivers. The high side driver is not allowed to turn on  
until the gate drive voltage to the low-side ꢀET is below 2  
volts, and the low side driver is not allowed to turn on  
until the voltage at the junction of the 2 ꢀETs (VPHASE) is  
below 2 volts. An internal low-pass filter with an 11MHz  
pole is located between the output of the low-side driver  
(DL) and the input of the deadtime circuit that controls  
the high-side driver, to filter out noise that could appear  
on DL when the high-side driver turns on.  
Refer to the Output Voltage Table for the VID code set-  
tings. The output voltage of the VID network, VREꢀ is  
within 1% of the nominal setting over the full input and  
output voltage range and junction temperature range.  
The output of the reference/VID network is indirectly  
brought out through a buffer to the REꢀB pin. The volt-  
age on this pin will be within 3mV of VREꢀ. It is not rec-  
ommended to drive loads with REꢀB other than setting  
the hysteresis of the hysteretic comparator, because the  
current drawn from REꢀB sets the charging current for  
the soft start capacitor. Refer to the soft start section  
for additional information.  
Current Sensing  
Hysteretic Comparator  
Current sensing is achieved by sampling and holding the  
voltage across the high side ꢀET while it is turned on.  
The sampling network consists of an internal 50switch  
and an external 0.1µꢀ hold capacitor. Internal logic con-  
trols the turn-on and turn-off of the sample/hold switch  
such that the switch does not turn on until VPHASE tran-  
sitions high and turns off when the input to the high side  
driver goes low. Thus sampling will occur only when the  
high side ꢀET is conducting current. The voltage at the  
IO pin equals 2 times the sensed voltage. In applica-  
tions where a higher accuracy in current sensing is re-  
quired, a sense resistor can be placed in series with the  
high side ꢀET and the voltage across the sense resistor  
can be sampled by the current sensing circuit.  
The hysteretic comparator regulates the output voltage  
of the synchronous-buck converter. The hysteresis is  
set by connecting the center point of a resistor divider  
from REꢀB to AGND to the HYST pin. The hysteresis of  
the comparator will be equal to twice the voltage differ-  
ence between REꢀB and HYST, and has a maximum value  
of 60mV. The maximum propagation delay from the com-  
parator inputs to the driver outputs is 250ns.  
Low Side Driver  
The low side driver is designed to drive a low RDS(ON) N-  
channel MOSꢀET, and is rated for 2 amps source and  
sink. The bias for the low side driver is provided inter-  
nally from VDRV.  
Droop Compensation  
The droop compensation network reduces the load tran-  
sient overshoot/undershoot at VOUT, relative to VREꢀ.  
VOUT is programmed to a voltage greater than VREꢀ equal  
to VREꢀ • (1+R7/R8) (see Typ. App. Circuit, Pg 1) by an  
external resistor divider from VOUT to the VSENSE pin to  
reduce the undershoot on VOUT during a low to high load  
current transient. The overshoot during a high to low  
load current transient is reduced by subtracting the volt-  
High Side Driver  
The high side driver is designed to drive a low RDS(ON) N-  
channel MOSꢀET, and is rated for 2 amps source and  
sink. It can be configured either as a ground referenced  
driver or as a floating bootstrap driver. When configured  
as a floating driver, the bias voltage to the driver is de-  
veloped from the DRV regulator. The internal bootstrap  
www.semtech.com  
2001 Semtech Corp.  
12  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Applications Information - ꢀunctional Description (Cont.)  
age that is on the DROOP pin from VREꢀ. The voltage on value for all VID settings. The soft start charging current  
the IO pin is divided down with an external resistor di- is determined by the following equation: ISS = IREꢀB/5.  
vider, and connected to the DROOP pin. Thus, under Where IREꢀB is the current flowing out of the REꢀB pin. It  
loaded conditions, VOUT is regulated to:  
is recommended that no additional loads be connected  
to REꢀB, other than the resistor divider for setting the  
hysteresis voltage. Thus these resistor values will deter-  
mine the soft start charging current. The maximum cur-  
rent that can be sourced by REꢀB is 500µA.  
VOUT = VREꢀ • (1+R7/R8) - IOUT • R2/(R1+R2).  
Inhibit  
The inhibit pin is a TTL compatible digital pin that is used  
to enable the controller. When INH is low, the output Power Good  
drivers are low, the soft start capacitor is discharged,  
the soft start current source is disabled, and the control- The power good circuit monitors for an undervoltage con-  
ler is in a low IQ state. When INH goes high, the short dition on VOUT. If VSENSE is 7% (nominal) below VREꢀ,  
across the soft start capacitor is removed, the soft start then the power good pin is pulled low. The PWRGD pin is  
current source is enabled, and normal converter opera- an open drain output.  
tion begins. When the system logic supply is connected  
to INH, it controls power sequencing by locking out con- Overvoltage Protection  
troller operation until the system logic supply exceeds  
the input threshold voltage of the INH circuit; thus the The overvoltage protection circuit monitors VOUT for an  
+12V supply and the system logic supply (either +5V or overvoltage condition. If VSENSE is greater then 2.15V  
3.3V) must be above UVLO thresholds before the con- (nominal), a fault latch is set and both output drivers are  
troller is allowed to start up.  
turned off. The latch will remain set until VIN goes below  
the undervoltage lockout value. A 1ms deglitch timer is  
included for noise immunity.  
VIN  
The VIN undervoltage lockout circuit disables the con- Overcurrent Protection  
troller while the +12V supply is below the 10V start  
threshold during power-up. While the controller is dis- The overcurrent protection circuit monitors the current  
abled, the output drivers will be low, the soft start ca- through the high side ꢀET. The overcurrent threshold is  
pacitor will be shorted and the soft start current is dis- adjustable with an external resistor divider between IO  
abled and the controller will be in a low IQ state. When and AGND, with the divider voltage connected to the OCP  
VIN exceeds the start threshold, the short across the pin. If the voltage on the OCP pin exceeds 100mV, then  
soft start capacitor is removed, the soft start current a fault latch is set and the output drivers are turned off.  
source is enabled and normal converter operation be- The latch will remain set until VIN goes below the  
gins. There is a 2V hysteresis in the undervoltage lock- undervoltage lockout value. A 1ms deglitch timer is in-  
out circuit for noise immunity.  
cluded for noise immunity. The OCP circuit is also de-  
signed to protect the high side ꢀET against a short-to-  
ground fault on the terminal common to both power ꢀETs  
(VPHASE).  
Soft Start  
The soft start circuit controls the rate at which VOUT pow-  
ers up. A capacitor is connected between SS and AGND Drive Regulator  
and is charged by an internal current source. The value  
of the current source is proportional to the reference The drive regulator provides drive voltage to the low side  
voltage so the charging rate of CSS is also proportional to driver, and to the high side driver when the high side  
the reference voltage. By making the charging current driver is configured as a floating driver. The minimum  
proportional to VREꢀ, the power-up time for VOUT will be drive voltage is 7V. The minimum short circuit current is  
independent of VREꢀ. Thus, CSS can remain the same 100mA.  
www.semtech.com  
2001 Semtech Corp.  
13  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Application Circuit  
www.semtech.com  
2001 Semtech Corp.  
14  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Typical Characteristics  
V
= 5V; I  
= 0A to 40A  
OUT  
IN  
“Droop” & “Offset” Disabled  
V
V
V
= 1.8 V  
OUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
3%  
2%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
= 1.5V  
OUT  
3%  
2%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
= 1.1V  
OUT  
3%  
2%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
www.semtech.com  
2001 Semtech Corp.  
15  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Typical Characteristics  
V
= 12V; I  
= 0A to 40A  
OUT  
IN  
“Droop” & “Offset” Disabled  
V
= 1.8 V  
OUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
3%  
2%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
V
= 1.5V  
OUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
3%  
2%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
V
= 1.1V  
OUT  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
3%  
2%  
1%  
0%  
-1%  
-2%  
-3%  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Current, A  
Current, A  
www.semtech.com  
2001 Semtech Corp.  
16  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Evaluation Board Artwork  
Top Layer  
Bottom Layer  
Mid Layer  
www.semtech.com  
2001 Semtech Corp.  
17  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Evaluation Board Artwork (Cont.)  
Top Overlay  
Bottom Overlay  
www.semtech.com  
2001 Semtech Corp.  
18  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Materials List  
Quantity Reference  
Part/Description  
0.001µF  
0.1µF  
Vendor  
3
6
C1,C2,C5  
TDK, Murata, Taiyo-Yuden  
C3,C4,C6,C7,C9,C10  
any  
any  
any  
any  
any  
1
C11  
0.033µF  
22µF  
1
C12  
11  
2
C13, C15-C23, C59  
1µF  
C8,C14  
C24 - C32  
C37 - C46  
C47 - C58  
C33 - C36  
D1  
2.2µF  
9
820µF, 16V  
SANYO P/N: 16MV820AX  
10  
12  
4
1500µF, 6.3V, thru hole SANYO P/N: 6R3MV1500AX  
10µF  
any  
.0022µF  
any  
1
MBRA130L. Schottky  
ON Semi  
1
D2 (optional)  
L1  
MBRB2515L  
ON Semi  
1
0.5uH, Toroid  
Micrometals P/N: T51-26C, 18 AWG  
1
L2  
1.0uH, Toroid  
Magnetics, #77310, 3ts, 4 X 20 AWG  
2
Q1,Q2  
Q3,Q4  
R1  
D2Pak, MOSFET  
Fairchild P/N: FDB6035AL  
2
D2Pak, MOSFET  
Fairchild P/N: FDB7030BL  
1
2k  
any  
4
R2,R4,R11,R12  
R3  
1k  
any  
1
4.3k  
any  
1
R5  
68.1  
any  
1
R6  
20k  
any  
1
R7  
100  
any  
2
R8,R10  
R9  
10k  
any  
1
150  
any  
2
R20,R21  
R22,R23  
R24,R25,R26,R27  
U1  
1
any  
2
1.6  
3.3  
any  
4
any  
1
SC1155CSW.TR  
Semtech Corp. 805-498-2111  
www.semtech.com  
2001 Semtech Corp.  
19  
SC1155  
PRELIMINARY  
POWER MANAGEMENT  
Layout Guidelines (See pg. 1)  
10. If Schottky diode used in parallel with a synchronous  
(bottom) FET, to achieve a greater efficiency at lower Vout  
settings, it needs to be placed next to the aforementioned  
FET in very close proximity.  
11. Since the feedback path relies on the accurate sampling  
of the output ripple voltage, the best results can be achieved  
by connecting the AGND to the ground side of the bulk  
output capacitors.  
12. DRVGND pin should be tight to the main ground plane  
utilizing very low impedance connection, e.g., multiple vias.  
13. In order to prevent substrate glitching, a small (0.5A)  
Schottky diode should be placed in close proximity to the  
chip with the cathode connected to BOOTLO and anode  
connected to DRVGND.  
1. Locate R8 and C2 close to pins 6 and 7.  
2. Locate C1 close to pins 5 and 7.  
3. Components connected to IOUT, DROOP, OCP, VHYST,  
VREFB, VSENSE, and SOFTST should be referenced to  
AGND.  
4. The bypass capacitors C5 and C10 should be placed  
close to the IC and referenced to DRVGND.  
5. Locate bootstrap capacitor C8 close to the IC.  
6. Place bypass capacitor close to Drain of the top FET and  
Source of the bottom FET to be effective.  
7. Route HISENSE and LOSENSE close to each other to  
minimize induced differential mode noise.  
8. Bypass a high frequency disturbance with ceramic  
capacitor at the point where HISENSE is connected to Vin.  
9. Input bulk capacitors should placed as close as possible  
to the power FETs because of the very high ripple current  
flow in this pass.  
Outline Drawing - SO-28  
Contact Information  
Semtech Corporation  
Power Management Products Division  
652 Mitchell Rd., Newbury Park, CA 91320  
Phone: (805)498-2111 ꢀAX (805)498-3804  
www.semtech.com  
2001 Semtech Corp.  
20  

相关型号:

SC1156

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED MICROPROCESSORS
SEMTECH

SC1156CSW

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED MICROPROCESSORS
SEMTECH

SC1156SW.TR

Switching Controller, Voltage-mode, 220kHz Switching Freq-Max, PDSO20, SOIC-20
SEMTECH

SC1156SW.TRT

Switching Controller, Voltage-mode, 220kHz Switching Freq-Max, PDSO20, SOIC-20
SEMTECH

SC1157

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED PROCESSORS
SEMTECH

SC1157CS

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED PROCESSORS
SEMTECH

SC1157CS.TR

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED PROCESSORS
SEMTECH

SC1157CST

Switching Controller, Voltage-mode, 155kHz Switching Freq-Max, PDSO16, MS-012AC, SOIC-16
SEMTECH

SC1157CSTR

Switching Controller, Voltage-mode, 155kHz Switching Freq-Max, BIPolar, PDSO16, MS-012AC, SOIC-16
SEMTECH

SC1157CSTRT

Switching Controller, Voltage-mode, 155kHz Switching Freq-Max, PDSO16, MS-012AC, SOIC-16
SEMTECH

SC1158

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED PROCESSORS
SEMTECH

SC1158CS

PROGRAMMABLE SYNCHRONOUS DC/DC CONTROLLER FOR ADVANCED PROCESSORS
SEMTECH