SC1165CSW [SEMTECH]

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER; 可编程同步DC / DC转换器,双低压差线性稳压控制器
SC1165CSW
型号: SC1165CSW
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
可编程同步DC / DC转换器,双低压差线性稳压控制器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总12页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com  
DESCRIPTION  
FEATURES  
The SC1164/5 combines a synchronous voltage mode  
controller with two low-dropout linear regulators  
providing most of the circuitry necessary to implement  
three DC/DC converters for powering advanced  
microprocessors such as Pentium® II.  
Synchronous design, enables no heatsink solution  
95% efficiency (switching section)  
5 bit DAC for output programmability  
On chip power good function  
Designed for Intel Pentium® ll requirements  
1.5V, 2.5V or Adj. @ 1% for linear section  
The SC1164/5 switching section features an integrated  
5 bit D/A converter, pulse by pulse current limiting,  
integrated power good signaling, and logic compatible  
shutdown. The SC1164/5 switching section operates at  
a fixed frequency of 200kHz, providing an optimum  
compromise between size, efficiency and cost in the  
intended application areas. The integrated D/A con-  
verter provides programmability of output voltage from  
2.0V to 3.5V in 100mV increments and 1.30V to 2.05V  
in 50mV increments with no external components.  
APPLICATIONS  
Pentium® ll or Deschutes microprocessor supplies  
Flexible motherboards  
1.3V to 3.5V microprocessor supplies  
Programmable triple power supplies  
ORDERING INFORMATION  
The SC1164/5 linear sections are low dropout regula-  
tors. The SC1164 supplies 1.5V for GTL bus and 2.5V  
for non-GTL I/O.  
Linear  
Voltage  
Temp.  
Range (TJ)  
Part Number(1) Package  
For the SC1165 both LDO’s are adjustable.  
SC1164CSW SO-24 1.5V/2.5V 0° to 125°C  
SC1165CSW SO-24  
Adj.  
0° to 125°C  
Note:  
(1) Add suffix ‘TR’ for tape and reel.  
PIN CONFIGURATION  
BLOCK DIAGRAM  
REF.  
Top View  
AGND  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
GATE1  
LDOS1  
LDOS2  
VCC  
OVP  
PWRGOOD  
CS-  
VID3  
VID4  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
CS+  
PGNDH  
DH  
PGNDL  
10  
11  
12  
FET  
CONTROLLER  
2.5V/ADJ.  
FET  
CONTROLLER  
1.5V/ADJ.  
1.265V  
REF.  
(24 Pin SOIC)  
LDOV  
1
652 MITCHELL ROAD NEWBURY PARK CA 91320  
Pentium is a registered trademark of Intel Corporation  
© 1999 SEMTECH CORP.  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Maximum  
-0.3 to +7  
Units  
VCC to GND  
PGND to GND  
VCC  
V
V
± 1  
BST to GND  
Operating Temperature Range  
-0.3 to +15  
0 to +70  
V
°C  
TA  
TJ  
Junction Temperature Range  
0 to +125  
-65 to +150  
300  
°C  
°C  
Storage Temperature Range  
TSTG  
TL  
Lead Temperature (Soldering) 10 seconds  
Thermal Impedance Junction to Ambient  
Thermal Impedance Junction to Case  
°C  
80  
°C/W  
°C/W  
θJA  
θJC  
25  
ELECTRICAL CHARACTERISTICS  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 25°C  
PARAMETER  
CONDITIONS  
MIN TYP MAX UNITS  
Switching Section  
Output Voltage  
IO = 2A  
See Note 1.  
Supply Voltage  
VCC  
4.5  
7
V
mA  
%
Supply Current  
VCC = 5.0V  
IO = 0.8A to 15A  
8
1
15  
Load Regulation  
Line Regulation  
0.5  
70  
200  
95  
%
Current Limit Voltage  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Peak DH Sink/Source Current  
Peak DL Sink/Source Current  
Output Voltage Tempco  
Gain (AOL)  
55  
175  
90  
1
85  
mV  
kHz  
%
225  
BSTH-DH = 4.5V, DH-PGNDH = 3V  
BSTL-DL = 4.5V, DL-PGNDL = 3V  
A
1
A
65  
35  
ppm/oC  
dB  
%
VOSENSE to VO  
OVP threshold voltage  
OVP source current  
Power good threshold voltage  
Dead time  
120  
V
OVP = 3.0V  
10  
85  
50  
mA  
%
115  
5
100  
ns  
Linear Sections  
Quiescent current  
LDOV = 12V  
mA  
V
Output Voltage (LDO1 SC1164)  
Output Voltage (LDO2 SC1164)  
Reference Voltage (SC1165)  
Feedback Pin Bias Current (SC1165)  
Gain (AOL)  
2.475 2.500 2.525  
1.485 1.500 1.515  
V
1.252 1.265 1.278  
V
10  
uA  
dB  
%
LDOS (1,2) to GATE (1,2)  
IO = 0 to 8A(2)  
90  
0.3  
0.3  
1
Load Regulation  
Line Regulation  
%
Output Impedance  
KΩ  
Notes: (1) See Output Voltage table.  
(2) In application circuit.  
2
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
PIN DESCRIPTION  
Pin Pin Name  
Pin Function  
1
2
3
4
5
6
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
Small Signal Analog and Digital Ground  
Gate Drive Output LDO1  
Sense Input for LDO1  
Sense Input for LDO2  
Input Voltage  
High Signal out if VO>setpoint +20%  
Open collector logic output, high if VO  
Top View  
AGND  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
GATE1  
LDOS1  
LDOS2  
OVP  
VCC  
OVP  
PWRGOOD  
CS-  
VID3  
VID4  
7
8
9
PWRGOOD(1) within 10% of setpoint  
CS-  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
Current Sense Input (negative)  
CS+  
PGNDH  
DH  
PGNDL  
CS+  
Current Sense Input (positive)  
Power Ground for High Side Switch  
High Side Driver Output  
10  
11  
12  
10 PGNDH  
11 DH  
12 PGNDL  
13 DL  
Power Ground for Low Side Switch  
Low Side Driver Output  
(24 Pin SOIC)  
14 BSTL  
15 BSTH  
16 EN(1)  
Supply for Low Side Driver  
Supply for High Side Driver  
Logic low shuts down the converter;  
High or open for normal operation.  
Top end of internal feedback chain  
17 VOSENSE  
VID4(1)  
Programming Input (MSB)  
Programming Input  
Programming Input  
18  
VID3(1)  
19  
VID2(1)  
20  
VID1(1)  
21  
Programming Input  
VID0(1)  
Programming Input (LSB)  
+12V for LDO section  
Gate Drive Output LDO2  
22  
Note:  
23 LDOV  
24 GATE2  
(1) All logic level inputs and outputs are open  
collector TTL compatible.  
3
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
OUTPUT VOLTAGE  
Unless specified: VCC = 5.00V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; TA = 25oC  
PARAMETER  
CONDITIONS  
VID  
MIN  
TYP  
1.300  
MAX  
1.326  
UNITS  
43210  
01111  
01110  
Output Voltage  
IO = 2A in Application Circuit  
1.274  
1.323  
1.372  
1.421  
1.470  
1.527  
1.576  
1.625  
1.675  
1.724  
1.773  
1.822  
1.871  
1.921  
1.970  
2.019  
1.940  
2.058  
2.156  
2.254  
2.352  
2.450  
2.548  
2.646  
2.744  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.377  
1.428  
1.479  
1.530  
1.573  
1.624  
1.675  
1.726  
1.776  
1.827  
1.878  
1.929  
1.979  
2.030  
2.081  
2.060  
2.142  
2.244  
2.346  
2.448  
2.550  
2.652  
2.754  
2.856  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
4
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
APPLICATION CIRCUIT  
5
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
MATERIALS LIST  
Qty. Reference  
Part/Description  
Vendor  
Notes  
4
6
6
C1,C5,C13,C 0.1µF Ceramic  
18  
Various  
C2,C3,C14- 1500µF/6.3V  
C17  
SANYO  
Various  
MV-GX or equiv. Low ESR  
C9-C12,  
330µF/6.3V  
C21, C22  
1
4
L1  
4µH  
8 Turns 16AWG on MICROMETALS T50-52D core  
Q1,Q2,Q3,  
Q4  
See notes  
See notes  
FET selection requires trade-off between efficiency and  
cost. Absolute maximum RDS(ON) = 22 mfor Q1,Q2  
1
1
1
1
1
1
1
1
2
R4  
IRC  
OAR-1 Series  
5mΩ  
R5  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
Various  
2.32k, 1%, 1/8W  
1k, 1%, 1/8W  
10, 5%, 1/8W  
1%, 1/8W  
R6  
R1  
R12  
R13  
R14  
R15  
R17,R18  
See Table Below (Not required for SC1164)  
See Table Below (Not required for SC1164)  
See Table Below (Not required for SC1164)  
See Table Below (Not required for SC1164)  
1%, 1/8W  
1%, 1/8W  
1%, 1/8W  
Required if Voltage is applied to the linear FET(s) without  
12V applied to SC1164/5  
100k, 5%,1/8W  
1
U1  
SC1164/5CSW  
SEMTECH  
SETTING LDO OUTPUT VOLTAGE  
1.265 (RA + RB )  
RB  
RA  
VOUT  
=
+ (IFB RA )  
RB  
VOUT LDO1 (LDO2)  
3.45V  
R12 (R14)  
105Ω  
105Ω  
102Ω  
100Ω  
100Ω  
100Ω  
100Ω  
R13 (R15)  
182Ω  
169Ω  
147Ω  
130Ω  
121Ω  
97.6Ω  
18.7Ω  
Where :  
IFB = Feedback pin bias current  
RA = Top feedback resistor  
RB = Bottom feedback resistor  
See layout diagram for clarification  
RA andRB must be low enough so  
that the (IFB RA ) term does not cause  
significant error  
3.30V  
3.10V  
2.90V  
2.80V  
2.50V  
1.50V  
6
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
95%  
90%  
85%  
80%  
95%  
90%  
85%  
80%  
2.8V Std  
3.5V Std  
2.8V Sync  
3.5V Sync  
2.8V Sync Lo Rds  
75%  
3.5V Sync Lo Rds  
75%  
70%  
70%  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Efficiency at Vo=3.5V  
Typical Efficiency at Vo=2.8V  
95%  
95%  
90%  
85%  
90%  
85%  
80%  
80%  
2.0V Std  
2.0V Sync  
2.5V Std  
2.5V Sync  
2.0V Sync Lo Rds  
75%  
2.5V Sync Lo Rds  
75%  
70%  
70%  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Efficiency at Vo=2.5V  
Typical Efficiency at Vo=2.0V  
Typical Ripple, Vo=2.8V, Io=10A  
© 1999 SEMTECH CORP.  
Transient Response Vo=2.8V, Io=300mA to 10A  
7
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
as small as possible. This loop contains all the high cur-  
rent, fast transition switching. Connections should be as  
wide and as short as possible to minimize loop induc-  
tance. Minimizing this loop area will a) reduce EMI, b)  
lower ground injection currents, resulting in electrically  
“cleaner” grounds for the rest of the system and c) mini-  
mize source ringing, resulting in more reliable gate  
switching signals.  
LAYOUT GUIDELINES  
Careful attention to layout requirements are necessary  
for successful implementation of the SC1164/5 PWM  
controller. High currents switching at 200kHz are pre-  
sent in the application and their effect on ground plane  
voltage differentials must be understood and mini-  
mized.  
1). The high power parts of the circuit should be laid out  
first. A ground plane should be used, the number and  
position of ground plane interruptions should be such  
as to not unnecessarily compromise ground plane in-  
tegrity. Isolated or semi-isolated areas of the ground  
plane may be deliberately introduced to constrain  
ground currents to particular areas, for example the in-  
put capacitor and bottom FET ground.  
3). The connection between the junction of Q1, Q2 and  
the output inductor should be a wide trace or copper  
region. It should be as short as practical. Since this  
connection has fast voltage transitions, keeping this  
connection short will minimize EMI. The connection be-  
tween the output inductor and the sense resistor should  
be a wide trace or copper area, there are no fast volt-  
age or current transitions in this connection and length  
is not so important, however adding unnecessary  
impedance will reduce efficiency.  
2). The loop formed by the Input Capacitor(s) (Cin), the  
Top FET (Q1) and the Bottom FET (Q2) must be kept  
12V IN  
5V  
10  
1
2
24  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
GATE2  
LDVO  
VID0  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.32k  
3
Cin  
+
4
Q1  
Q2  
1.00k  
VID1  
0.1uF  
0.1uF  
5
5mOhm  
VID2  
Vout  
6
OVP  
VID3  
4uH  
+
7
PWRGOOD  
CS-  
VID4  
Cout  
8
VOSENSE  
EN  
9
CS+  
10  
11  
12  
PGNDH  
DH  
BSTH  
BSTL  
DL  
PGNDL  
SC1164/5  
RA1  
Heavy lines indicate  
high current paths.  
5V  
Vo Lin1  
Q3  
+
+
RB1  
Cout Lin1  
Cin Lin  
For SC1164, RA1, RA2, RB1 and RB2  
are not required. LDOS1 connects to  
Vo Lin1, LDOS2 connects to Vo Lin2  
RA2  
Vo Lin2  
Q4  
+
RB2  
Cout Lin2  
Layout diagram for the SC1164/5  
8
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
4) The Output Capacitor(s) (Cout) should be located  
as close to the load as possible, fast transient load  
currents are supplied by Cout only, and connections  
between Cout and the load must be short, wide cop-  
per areas to minimize inductance and resistance.  
5V supply through a 10resistor, the Vcc pin should  
be decoupled directly to AGND by a 0.1µF ceramic  
capacitor, trace lengths should be as short as possi-  
ble.  
7) The Current Sense resistor and the divider across  
it should form as small a loop as possible, the traces  
running back to CS+ and CS- on the SC1164/5 should  
run parallel and close to each other. The 0.1µF ca-  
pacitor should be mounted as close to the CS+ and  
CS- pins as possible.  
5) The SC1164/5 is best placed over a quiet ground  
plane area, avoid pulse currents in the Cin, Q1, Q2  
loop flowing in this area. PGNDH and PGNDL should  
be returned to the ground plane close to the package.  
The AGND pin should be connected to the ground  
side of (one of) the output capacitor(s). If this is not  
possible, the AGND pin may be connected to the  
ground path between the Output Capacitor(s) and the  
Cin, Q1, Q2 loop. Under no circumstances should  
AGND be returned to a ground inside the Cin, Q1, Q2  
loop.  
8) Ideally, the grounds for the two LDO sections  
should be returned to the ground side of (one of) the  
output capacitor(s).  
6) Vcc for the SC1164/5 should be supplied from the  
5V  
+
Vout  
+
Currents in various parts of the power section  
9
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
fast enough to reduce the voltage dropped across the  
ESR at a faster rate than the capacitor sags, hence en-  
suring a good recovery from transient with no additional  
excursions.  
We must also be concerned with ripple current in the  
output inductor and a general rule of thumb has been to  
allow 10% of maximum output current as ripple current.  
Note that most of the output voltage ripple is produced  
by the inductor ripple current flowing in the output capac-  
itor ESR. Ripple current can be calculated from:  
COMPONENT SELECTION  
SWITCHING SECTION  
OUTPUT CAPACITORS - Selection begins with the  
most critical component. Because of fast transient load  
current requirements in modern microprocessor core  
supplies, the output capacitors must supply all transient  
load current requirements until the current in the output  
inductor ramps up to the new level. Output capacitor  
ESR is therefore one of the most important criteria. The  
maximum ESR can be simply calculated from:  
V
IN  
IL  
=
Vt  
RIPPLE  
4 L fOSC  
RESR  
It  
Ripple current allowance will define the minimum permit-  
ted inductor value.  
Where  
Vt = Maximum transient voltage excursion  
It = Transient current step  
POWER FETS - The FETs are chosen based on several  
criteria with probably the most important being power  
dissipation and power handling capability.  
TOP FET - The power dissipation in the top FET is a  
combination of conduction losses, switching losses and  
bottom FET body diode recovery losses.  
For example, to meet a 100mV transient limit with a  
10A load step, the output capacitor ESR must be less  
than 10m. To meet this kind of ESR level, there are  
three available capacitor technologies.  
a) Conduction losses are simply calculated as:  
PCOND = IO2 RDS(on)  
δ
Each Capacitor  
Total  
where  
Technology  
C
ESR Qty.  
C
ESR  
(m)  
(µF)  
Rqd. (µF)  
(m)  
60  
VO  
δ = duty cycle ≈  
Low ESR Tantalum  
OS-CON  
330  
6
3
5
2000  
990  
10  
8.3  
8.8  
V
IN  
330  
25  
44  
b) Switching losses can be estimated by assuming a  
switching time, if we assume 100ns then:  
Low ESR Aluminum  
1500  
7500  
2
The choice of which to use is simply a cost/perfor-  
mance issue, with Low ESR Aluminum being the  
cheapest, but taking up the most space.  
PSW = IO VIN 10 −  
or more generally,  
INDUCTOR - Having decided on a suitable type and  
value of output capacitor, the maximum allowable  
value of inductor can be calculated. Too large an in-  
ductor will produce a slow current ramp rate and will  
cause the output capacitor to supply more of the tran-  
sient load current for longer - leading to an output volt-  
age sag below the ESR excursion calculated above.  
The maximum inductor value may be calculated from:  
IO VIN (tr + tf ) fOSC  
PSW  
=
4
c) Body diode recovery losses are more difficult to esti-  
mate, but to a first approximation, it is reasonable to as-  
sume that the stored charge on the bottom FET body  
diode will be moved through the top FET as it starts to  
turn on. The resulting power dissipation in the top FET  
will be:  
RESR  
It  
C
(
)
L
VIN VO  
PRR = QRR VIN fOSC  
The calculated maximum inductor value assumes 100% To a first order approximation, it is convenient to only  
duty cycle, so some allowance must be made. Choosing consider conduction losses to determine FET suitability.  
an inductor value of 50 to 75% of the calculated maxi-  
mum will guarantee that the inductor current will ramp  
For a 5V in; 2.8V out at 14.2A requirement, typical FET  
losses would be:  
10  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
© 1999 SEMTECH CORP.  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
INPUT CAPACITORS - since the RMS ripple current in  
the input capacitors may be as high as 50% of the out-  
put current, suitable capacitors must be chosen ac-  
cordingly. Also, during fast load transients, there may  
be restrictions on input di/dt. These restrictions require  
useable energy storage within the converter circuitry,  
either as extra output capacitance or, more usually,  
additional input capacitors. Choosing low ESR input  
capacitors will help maximize ripple rating for a given  
size.  
FET type  
PD (W) Package  
DS(on) (m)  
R
BUK556H 22  
2.48  
0.79  
1.53  
TO220  
D2PAK  
SO-8  
IRL2203  
Si4410  
7.0  
13.5  
BOTTOM FET - Bottom FET losses are almost entirely  
due to conduction. The body diode is forced into conduc-  
tion at the beginning and end of the bottom switch con-  
duction period, so when the FET turns on and off, there  
is very little voltage across it, resulting in low switching  
losses. Conduction losses for the FET can be deter-  
mined by:  
PCOND = IO2 RDS (on ) (1 δ)  
For the example above:  
FET type  
PD (W) Package  
DS(on) (m)  
R
BUK556H 22  
1.95  
0.62  
1.20  
TO220  
D2PAK  
SO-8  
IRL2203  
Si4410  
7.0  
13.5  
Each of the package types has a characteristic thermal  
impedance, for the TO-220 package, thermal impedance  
is mostly determined by the heatsink used. For the sur-  
face mount packages on double sided FR4, 2 oz printed  
circuit board material, thermal impedances of 40oC/W  
for the D2PAK and 80oC/W for the SO-8 are readily  
achievable. The corresponding temperature rise is de-  
tailed below:  
Temperature rise (oC)  
FET type Top FET  
BUK556H 49.6(1)  
Bottom FET  
39.0(1)  
24.8  
96  
IRL2203  
31.6  
Si4410  
122.4  
(1) With 20oC/W Heatsink  
It is apparent that single SO-8 Si4410 are not adequate for  
this application, but by using parallel pairs in each posi-  
tion, power dissipation will be approximately halved and  
temperature rise reduced by a factor of 4.  
11  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1164/5  
October 25, 1999  
OUTLINE DRAWING - SO-24  
JEDEC MS-013AD  
B17104B  
ECN 99-667  
12  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
© 1999 SEMTECH CORP.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY