SC1186CSW.TR [SEMTECH]

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24;
SC1186CSW.TR
型号: SC1186CSW.TR
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24

开关 光电二极管
文件: 总15页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1186  
Programmable Synchronous DC/DC  
Converter, Dual LDO Controller  
POWER MANAGEMENT  
Features  
Description  
The SC1186 combines a synchronous voltage mode  
controller with two low-dropout linear regulators  
providing most of the circuitry necessary to implement three  
DC/DC converters for powering advanced microprocessors  
such as Pentium® II & III.  
‹ Synchronous design, enables no heatsink solution  
‹ 95% efficiency (switching section)  
‹ 5 bit DAC for output programmability  
‹ Designed for Intel Pentium® ll & III requirements  
‹ 1.5V, 2.5V short circuit protected linear controllers  
‹ 1.265V ± 1.5% Reference available  
The SC1186 switching section features an integrated 5  
bit D/A converter, latched drive output for enhanced noise  
immunity, pulse by pulse current limiting and logic  
compatible shutdown. The SC1186 switching section  
operates at a fixed frequency of 140kHz, providing an op-  
timum compromise between size, efficiency and cost in  
the intended application areas. The integrated D/A con-  
verter provides programmability of output voltage from 2.0V  
to 3.5V in 100mV increments and 1.30V to 2.05V in  
50mV increments with no external components.  
Applications  
‹ Pentium® ll & III microprocessor supplies  
‹ Flexible motherboards  
‹ 1.3V to 3.5V microprocessor supplies  
‹ Programmable triple power supplies  
The SC1186 linear sections are low dropout regulators  
with short circuit protection, supplying 1.5V for GTL bus  
and 2.5V for non-GTL I/O. The Reference voltage is made  
available for external linear regulators.  
Typical Application Circuit  
12V  
+
0.1uF  
47uF  
5V  
+
1500uF  
x4  
10  
5
7
9
VCC  
CS+  
CS-  
0.1uF  
8
LDOEN  
VID0  
0.1uF  
0.1uF  
VID0  
VID1  
VID2  
VID3  
VID4  
EN  
22  
21  
20  
19  
18  
16  
1
17  
15  
11  
14  
13  
10  
12  
6
IRLR3103N  
2R2  
1.00k  
2.32k  
VOSENSE  
BSTH  
DH  
VID1  
5mOhm  
VCC_CORE  
VID2  
1.9uH  
IRLR3103N  
2R2  
VID3  
BSTL  
VID4  
DL  
+
0.1uF  
EN  
PGNDH  
PGNDL  
REF  
1500uF  
x6  
AGND  
LDOV  
GATE2  
LDOS2  
23  
24  
4
1k  
1
2
12V  
3.3V  
GATE1  
LDOS1  
3
8
+
SC1186CS  
3
2
3.3V  
+
IRLR024N  
VLIN3  
-
LM358  
4
1.5V  
2.5V  
330uF  
IRLR024N  
+
IRLR024N  
330uF  
+
+
330uF  
330uF  
1
www.semtech.com  
Revision: December 2, 2004  
SC1186  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device  
reliability.  
Parameter  
Symbol  
Maximum  
Units  
VCC to AGND  
VIN  
-0.3 to +7  
±1  
V
V
PGNDH, PGNDL to AGND  
BSTH to PGNDH, BSTL to PGNDL  
DH to PGNDH, DL to PGNDL (Note2)  
Operating Temperature Range  
Junction Temperature Range  
-0.3 to +15  
-1 to +15  
0 to +70  
0 to +125  
-65 to +150  
300  
V
V
TA  
TJ  
°C  
°C  
Storage Temperature Range  
TSTG  
TLEAD  
θJA  
°C  
Lead Temperature (Soldering) 10 Sec.  
Thermal Resistance Junction to Ambient  
Thermal Impedance Junction to Case  
°C  
80  
°C/W  
°C/W  
25  
θJC  
Electrical Characteristics  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = BST = 11.4V to 12.6V; TA = 0 to 70°C  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Switching Section  
Output Voltage  
IO = 2A in Application Circuit  
VCC  
See Output Voltage Table  
7
Supply Voltage  
4.5  
V
Supply Current  
VCC = 5.0V  
8
1
15  
mA  
%
Load Regulation  
IO = 0.8A to 15A  
Line Regulation  
±0.5  
70  
%
Current Limit Voltage  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Peak DH Sink/Source Current  
60  
120  
90  
85  
mV  
kHz  
%
140  
95  
160  
BSTH - DH = 4.5V, DH- PGNDH = 3.3V  
DH- PGNDH = 1.5V  
1
A
100  
mA  
Peak DL Sink/Source Current  
BSTL - DL = 4.5V, DL - PGNDL= 3.3V  
DL- PGNDH = 1.5V  
1
A
100  
mA  
Gain (AOL)  
VOSENSE to VO  
VIDx < 2.4V  
VIDx = 5V  
35  
10  
dB  
uA  
uA  
%
VID Source Current  
VID Leakage  
1
10  
Power good threshold voltage  
Dead Time  
88  
40  
112  
100  
ns  
www.semtech.com  
2004 Semtech Corp.  
2
SC1186  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = BST = 11.4V to 12.6V; TA = 0 to 70°C  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Linear Sections  
Quiescent Current  
Output Voltage LDO1  
LDOV = 12V  
5
mA  
V
2.493  
1.496  
1.246  
2.525  
2.556  
1.534  
1.284  
Output Voltage LDO2  
Reference Voltage  
Gain (AOL)  
1.515  
1.265  
90  
V
V
Iref < 100uA  
LDOS (1,2) to GATE (1,2)  
IO = 0 to 8A  
dB  
%
%
kΩ  
V
Load Regulation  
0.3  
0.3  
1.5  
10  
Line Regulation  
Output Impedance  
LDOV Undervoltage Lockout  
LDOEN Threshold  
LDOEN Sink Current  
VGATE = 6.5V  
1
6.5  
1.3  
8.0  
1.9  
V
LDOEN = 3.3V  
LDOEN = 0V  
0.01  
-200  
1.0  
µA  
µA  
-300  
Overcurrent Trip Voltage  
% of Vo set point  
20  
1
40  
5
60  
60  
%
Power-up Output Short Circuit Immunity  
Output Short Circuit Glitch Immunity  
Gate Pulldown Impedance  
ms  
ms  
kΩ  
0.5  
80  
4
20  
GATE (1,2) -AGND;  
VCC+BST=0V  
300  
750  
VOSENSE Impedance  
10  
kΩ  
Note:  
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
(2) See Gate Resistor Selection recomendations.  
www.semtech.com  
2004 Semtech Corp.  
3
SC1186  
POWER MANAGEMENT  
Ordering Information  
Pin Configuration  
Device (1)  
Package(1)  
Linear  
Temp  
TOP VIEW  
Voltage  
Range (TJ)  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
REF  
LDOEN  
CS-  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
SC1186CSW.TR  
SC1186CSWTRT(2)  
SO-24  
1.5V/2.5V 0° to 125°C  
VID3  
VID4  
Notes:  
(1) Only available in tape and reel packaging. A reel  
contains 1000 devices.  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
CS+  
PGNDH  
DH  
9
(2) Lead free product. This product is fully WEEE and  
RoHS compliant.  
10  
11  
12  
PGNDL  
(24 Pin SOIC)  
Pin Descriptions  
Pin #  
1
2
3
4
Pin Name  
Pin Function  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
Small Signal Analog and Digital Ground  
Gate Drive Output LDO1  
Sense Input for LDO1  
Sense Input for LDO2  
Input Voltage  
5
6
7
8
9
REF  
LDOEN  
CS-  
CS+  
PGNDH  
DH  
PGNDL  
DL  
BSTL  
Buffered Reference Voltage output  
LDO Supply Monitor.  
Current Sense Input (negative)  
Current Sense Input (positive)  
Power Ground for High Side Switch  
High Side Driver Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Power Ground for Low Side Switch  
Low Side Driver Output  
Supply for Low Side Driver  
Supply for High Side Driver  
Logic low shuts down the converter, High or open for normal operation  
Top end of internal feedback chain.  
Programming Input (MSB)  
Programming Input  
Programming Input  
Programming Input  
Programming Input (LSB)  
+12V for LDO section  
Gate Drive Output LDO2  
BSTH  
EN(1)  
VOSENSE  
(1)  
VID4  
VID3 (1)  
VID2 (1)  
VID1 (1)  
VID0 (1)  
LDOV  
GATE2  
Note:  
(1) All logic level inputs and outputs are open collector TTL compatible.  
www.semtech.com  
2004 Semtech Corp.  
4
SC1186  
POWER MANAGEMENT  
Block Diagram  
VCC  
CS- CS+  
70mV  
EN  
CURRENT  
LIMIT  
BSTH  
DH  
REF  
D/A  
+
-
VID4  
VID3  
VID2  
VID1  
VID0  
LEVEL SHIFT AND  
HIGH SIDE DRIVE  
+
-
-
+
ERROR  
AMP  
PGNDH  
VOSENSE  
AGND  
R
S
SHOOT-THRU  
CONTROL  
Q
OSCILLATOR  
BSTL  
DL  
LDOEN  
LDOS1  
GATE1  
2.5V FET  
1.5V FET  
SYNCHRONOUS  
MOSFET DRIVE  
CONTROLLER  
CONTROLLER  
1.275V  
REF  
PGNDL  
LDOV  
REF  
GATE2 LDOS2  
www.semtech.com  
2004 Semtech Corp.  
5
SC1186  
POWER MANAGEMENT  
Applications Information - Output Voltage Table  
Unless specified: 4.75V < VCC < 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; = 0°C < Tj < 85°C  
Parameter  
Conditions  
Vid  
Min  
Typ  
Max  
Units  
43210  
Output Voltage (1) IO = 2A in Application circuit (Figure 1)  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
1.277  
1.326  
1.375  
1.424  
1.478  
1.527  
1.576  
1.625  
1.675  
1.724  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.323  
1.374  
1.425  
1.476  
1.523  
1.573  
1.624  
1.675  
1.726  
1.776  
1.818  
1.869  
1.919  
1.970  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
V
www.semtech.com  
2004 Semtech Corp.  
6
SC1186  
POWER MANAGEMENT  
Layout Guidelines  
Careful attention to layout requirements are necessary for transition switching. Connections should be as wide and  
successful implementation of the SC1186 PWM control- as short as possible to minimize loop inductance. Mini-  
ler. High currents switching at 140kHz are present in the mizing this loop area will a) reduce EMI, b) lower ground  
application and their effect on ground plane voltage differ- injection currents, resulting in electrically “cleaner” grounds  
entials must be understood and minimized.  
for the rest of the system and c) minimize source ringing,  
1). The high power parts of the circuit should be laid out resulting in more reliable gate switching signals.  
first. A ground plane should be used, the number and 3). The connection between the junction of Q1, Q2 and  
position of ground plane interruptions should be such as the output inductor should be a wide trace or copper re-  
to not unnecessarily compromise ground plane integrity. gion. It should be as short as practical. Since this connec-  
Isolated or semi-isolated areas of the ground plane may tion has fast voltage transitions, keeping this connection  
be deliberately introduced to constrain ground currents to short will minimize EMI. The connection between the out-  
particular areas, for example the input capacitor and bot- put inductor and the sense resistor should be a wide trace  
tom FET ground.  
or copper area, there are no fast voltage or current transi-  
2). The loop formed by the Input Capacitor(s) (Cin), the Top tions in this connection and length is not so important,  
FET (Q1) and the Bottom FET (Q2) must be kept as small however adding unnecessary impedance will reduce effi-  
as possible. This loop contains all the high current, fast ciency.  
12V IN  
5V  
10  
1
2
24  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
GATE2  
LDOV  
VID0  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.32k  
3
Cin  
+
4
Q1  
Q2  
1.00k  
VID1  
0.1uF  
0.1uF  
5
5mOhm  
VID2  
Vout  
6
REF  
VID3  
L
+
7
LDOEN  
CS-  
VID4  
Cout  
8
VOSENSE  
EN  
9
CS+  
10  
11  
12  
PGNDH  
DH  
BSTH  
BSTL  
DL  
PGNDL  
SC1186  
Heavy lines indicate  
high current paths.  
3.3V  
Vo Lin1  
Q3  
+
+
Cout Lin1  
Cin Lin  
Layout Diagram  
SC1186  
Vo Lin2  
Q4  
+
Cout Lin2  
www.semtech.com  
2004 Semtech Corp.  
7
SC1186  
POWER MANAGEMENT  
Layout Guidelines (Cont.)  
4) The Output Capacitor(s) (Cout) should be located as 6) Vcc for the SC1186 should be supplied from the 5V  
close to the load as possible, fast transient load currents supply through a 10resistor, the Vcc pin should be  
are supplied by Cout only, and connections between Cout decoupled directly to AGND by a 0.1µF ceramic capacitor,  
and the load must be short, wide copper areas to mini- trace lengths should be as short as possible.  
mize inductance and resistance.  
7) The Current Sense resistor and the divider across it  
5) The SC1186 is best placed over a quiet ground plane should form as small a loop as possible, the traces run-  
area, avoid pulse currents in the Cin, Q1, Q2 loop flowing ning back to CS+ and CS- on the SC1186 should run par-  
in this area. PGNDH and PGNDL should be returned to allel and close to each other. The 0.1µF capacitor should  
the ground plane close to the package. The AGND pin be mounted as close to the CS+ and CS- pins as possible.  
should be connected to the ground side of (one of) the 8) Ideally, the grounds for the two LDO sections should be  
output capacitor(s). If this is not possible, the AGND pin returned to the ground side of (one of) the output  
may be connected to the ground path between the Output capacitor(s).  
Capacitor(s) and the Cin, Q1, Q2 loop. Under no circum-  
stances should AGND be returned to a ground inside the  
Cin, Q1, Q2 loop.  
5V  
Currents in Power Section  
+
Vout  
+
www.semtech.com  
2004 Semtech Corp.  
8
SC1186  
POWER MANAGEMENT  
Component Selection  
SWITCHING SECTION  
The calculated maximum inductor value assumes 100%  
OUTPUT CAPACITORS - Selection begins with the most and 0% duty cycle capability, so some allowance must be  
critical component. Because of fast transient load current made. Choosing an inductor value of 50 to 75% of the  
requirements in modern microprocessor core supplies, the calculated maximum will guarantee that the inductor cur-  
output capacitors must supply all transient load current rent will ramp fast enough to reduce the voltage dropped  
requirements until the current in the output inductor ramps across the ESR at a faster rate than the capacitor sags,  
up to the new level. Output capacitor ESR is therefore one hence ensuring a good recovery from transient with no  
of the most important criteria. The maximum ESR can be additional excursions.  
simply calculated from:  
We must also be concerned with ripple current in the out-  
put inductor and a general rule of thumb has been to  
allow 10% of maximum output current as ripple current.  
Note that most of the output voltage ripple is produced by  
the inductor ripple current flowing in the output capacitor  
ESR. Ripple current can be calculated from:  
Vt  
It  
RESR  
Where  
Vt = Maximum transient voltage excursion  
It = Transient current step  
V
IN  
IL  
=
RIPPLE  
4 L fOSC  
For example, to meet a 100mV transient limit with a 10A  
load step, the output capacitor ESR must be less than  
10m. To meet this kind of ESR level, there are three  
available capacitor technologies.  
Ripple current allowance will define the minimum permit-  
ted inductor value.  
POWER FETS - The FETs are chosen based on several  
criteria, with probably the most important being power  
dissipation and power handling capability.  
TOP FET - The power dissipation in the top FET is a com-  
bination of conduction losses, switching losses and bot-  
tom FET body diode recovery losses.  
Each Cap.  
ESR  
Total  
ESR  
Qty.  
Technology  
C
C
Rqd.  
(µF) (m)  
(µF) (m)  
Low ESR Tantalum  
OS-CON  
330  
330  
60  
25  
44  
6
3
5
2000  
990  
10  
8.3  
8.3  
a) Conduction losses are simply calculated as:  
PCOND = IO2 RDS(on)  
δ
Low ESR Aluminum  
1500  
7500  
where  
VO  
The choice of which to use is simply a cost/performance  
issue, with Low ESR Aluminum being the cheapest, but  
taking up the most space.  
δ = duty cycle ≈  
V
IN  
b) Switching losses can be estimated by assuming a switch-  
ing time, if we assume 100ns then:  
INDUCTOR - Having decided on a suitable type and value  
of output capacitor, the maximum allowable value of in-  
ductor can be calculated. Too large an inductor will pro-  
duce a slow current ramp rate and will cause the output  
capacitor to supply more of the transient load current for  
longer - leading to an output voltage sag below the ESR  
excursion calculated above.  
2  
PSW = IO  
V
10  
IN  
or more generally,  
IO  
=
V
(tr + tf ) fOSC  
4
IN  
PSW  
c) Body diode recovery losses are more difficult to esti-  
mate, but to a first approximation, it is reasonable to as-  
sume that the stored charge on the bottom FET body di-  
ode will be moved through the top FET as it starts to turn  
on. The resulting power dissipation in the top FET will be:  
The maximum inductor value may be calculated from:  
RESR  
It  
C
L ≤  
VA  
where VA is thelesser of VO or V VO  
( )  
IN  
PRR = QRR  
V
fOSC  
IN  
www.semtech.com  
2004 Semtech Corp.  
9
SC1186  
POWER MANAGEMENT  
Component Selection (Cont.)  
To a first order approximation, it is convenient to only  
consider conduction losses to determine FET suitability.  
For a 5V in; 2.8V out at 14.2A requirement, typical FET  
losses would be:  
INPUT CAPACITORS - since the RMS ripple current in the  
input capacitors may be as high as 50% of the output  
current, suitable capacitors must be chosen accordingly.  
Also, during fast load transients, there may be restric-  
tions on input di/dt. These restrictions require useable  
energy storage within the converter circuitry, either as  
extra output capacitance or, more usually, additional in-  
put capacitors. Choosing low ESR input capacitors will  
help maximize ripple rating for a given size.  
Using 1.5X Room temp RDS(ON) to allow for temperature rise.  
FET type  
IRL34025  
IRL2203  
Si4410  
RDS(on) (m) PD (W)  
Package  
D2Pak  
D2Pak  
S0-8  
15  
1.69  
1.19  
2.26  
10.5  
20  
GATE RESISTOR SELECTION - The gate resistors for the  
top and bottom switching FETs limit the peak gate current  
and hence control the transition time. It is important to  
control the off time transition of the top FET, it should be  
fast to limit switching losses, but not so fast as to cause  
excessive phase node oscillation below ground as this can  
lead to current injection in the IC substrate and erratic  
behaviour or latchup. The actual value should be deter-  
mined in the application, with the final layout and FETs.  
BOTTOM FET - Bottom FET losses are almost entirely  
due to conduction. The body diode is forced into conduc-  
tion at the beginning and end of the bottom switch con-  
duction period, so when the FET turns on and off, there  
is very little voltage across it, resulting in low switching  
losses. Conduction losses for the FET can be determined  
by:  
PCOND = IO2 RDS(on) (1− δ)  
SHORT CIRCUIT PROTECTION - LINEARS  
The Short circuit feature on the linear controllers is imple-  
mented by using the Rds(on) of the FETs. As output cur-  
rent increases, the regulation loop maintains the output  
voltage by turning the FET on more and more. Eventually,  
as the Rds(on) limit is reached, the FET will be unably to  
turn on more fully, and output voltage will start to fall.  
When the output voltage falls to approximately 40% of  
nominal, the LDO controller is latched off, setting output  
voltage to 0. Power must be cycled to reset the latch.  
To prevent false latching due to capacitor inrush currents  
or low supply rails, the current limit latch is initially dis-  
abled. It is enabled at a preset time (nominally 2ms) after  
both the LDOV and LDOEN pins rise above their lockout  
points.  
To be most effective, the linear FET Rds(on) should not be  
selected artificially low, the FET should be chosen so that,  
at maximum required current, it is almost fully turned on.  
If, for example, a linear supply of 1.5V at 4A is required  
from a 3.3V ± 5% rail, max allowable Rds(on) would be.  
Rds(on)max = (0.95*3.3-1.5)/4 » 400mΩ  
For the example above:  
FET type  
IRL34025  
IRL2203  
Si4410  
RDS(on) (m) PD (W)  
Package  
D2Pak  
D2Pak  
S0-8  
15  
1.33  
0.93  
1.77  
10.5  
20  
Each of the package types has a characteristic thermal  
impedance. For the surface mount packages on double  
sided FR4, 2 oz printed circuit board material, thermal  
impedances of 40oC/W for the D2PAK and 80oC/W for the  
SO-8 are readily achievable. The corresponding tempera-  
ture rise is detailed below:  
Temperature Rise (OC)  
FET type  
IRL34025  
IRL2203  
Si4410  
Top FET  
67.6  
Bottom FET  
53.2  
To allow for temperature effects 200mwould be a suit-  
able room temperature maximum, allowing a peak short  
circuit current of approximately 15A for a short time be-  
fore shutdown.  
47.6  
37.2  
180.8  
141.6  
It is apparent that single SO-8 Si4410 are not adequate  
for this application, but by using parallel pairs in each  
position, power dissipation will be approximately halved  
and temperature rise reduced by a factor of 4.  
2004 Semtech Corp.  
www.semtech.com  
10  
SC1186  
POWER MANAGEMENT  
Theory of Operation (Linear OCP)  
The Linear controllers in the SC1186 have built in  
Overcurrent Protection (OCP). An overcurrent is assumed  
to have occured when the external FET is turned fully on  
and the output currrent is RDS(ON) limited, this is detected  
by the gate voltage going very high while the output volt-  
age is below approximately 40% of it’s setpoint. To allow  
for capacitor charging and very short overcurrent dura-  
tions, the gate voltage is ramped very slowly upwards when-  
ever the output voltage is below the OCP threshold. To  
guarantee that the LDO output voltage is capable of reach-  
ing it’s setpoint, the gate drive is disabled until both LDOV  
Undervoltage Lockout (UVLO) and LDOEN Threshold val-  
ues are exceeded, ensuring that there is sufficient gate  
drive capability and sufficient LDO input voltage capabil-  
ity. A block diagram of one LDO controller is shown below.  
Gate  
Vout  
1.4V/us  
1V/ms  
Vout/2  
Time  
Startup with no short circuit  
If at some later time, a short circuit is applied to the out-  
put, the GATEx voltage will ramp up quickly as Vout falls to  
try and maintain regulation. Once Vout has fallen to the  
OCP threshold, switch S1 will open and the gate will con-  
tinue ramping at the 1V/ms rate. If the short is not re-  
moved before the GATEx output reaches approximately  
LDOV - 0.7V, the GATEx pin will be latched low, disabling  
the LDO  
12V  
LDOV  
3.3V  
LDOEN  
+
-
10pF  
C
Short  
RAMP  
LDOV  
LDOV-0.7V  
applied  
-
1V/ms  
-
+
gm  
GATEx  
LDOSx  
+
Gate  
VREF  
1.3V  
R2  
Vout  
1.26V  
SWITCH CLOSED  
ON LOW  
R
R
Vout  
Vout/2  
-
+
S1  
+
10nA  
R1  
Time  
14uA  
AGND  
Short circuit after startup  
RESET BY  
LDOV LOW  
S
R
+
-
Q
If the LDO tries to start into a short, the gate ramps at the  
1V/ms rate to LDOV - 0.7V, where the GATEx pin will be  
latched low.  
LDOV-0.7V  
LDOV-0.7V  
Gate  
During a normal start-up, once LDOV and LDOEN have  
reached their thresholds, the GATEx pin is released and  
CRAMP is charged by 10nA causing the GATEx voltage to  
ramp at 10nA/10pF = 1V/ms. Once the GATEx output has  
ramped to the external FET threshold, Vout starts to ramp  
up, following GATEx. When Vout reaches the OCP thresh-  
old, approximately 40% of setpoint, switch S1 is closed  
and GATEx ramps up at a much faster rate, followed by  
Vout, until Vout reaches setpoint and the loop settles into  
steady state regulation.  
1V/ms  
Time  
Startup into short circuit  
www.semtech.com  
2004 Semtech Corp.  
11  
SC1186  
POWER MANAGEMENT  
Typical Characteristics  
Typical Ripple, Vo=2.0V, Io=10A  
Typical Efficiency (Switching section)  
96%  
PIN9D2% e
88%  
84%  
Vo=2.8V  
Vo=2.0V  
Vo=2.5V  
80%  
76%  
0.0  
2.0  
4.0  
6.0  
8.0  
10.0  
12.0  
14.0  
16.0  
Io (Amps)  
Transient Response Vo=2.4V, Io=300mA to 15A  
2.5V Linear Short circuit output response  
www.semtech.com  
2004 Semtech Corp.  
12  
SC1186  
POWER MANAGEMENT  
Evaluation Board Schematic  
www.semtech.com  
2004 Semtech Corp.  
13  
SC1186  
POWER MANAGEMENT  
Evaluation Board Bill of Materials  
Item  
1
Qty.  
6
Reference  
Value  
0.1uF  
Notes  
C1, C4, C5, C10, C13, C28  
C2, C3, C6, C7, C8, C9, C18, C19, C20, C21,  
C22, C23  
Low ESR Sanyo MV-GX or  
equivalent  
2
12  
1500uF  
3
8
1
1
3
3
1
1
1
1
4
1
2
1
1
2
1
1
C11, C12, C14, C15, C16, C17, C24, C25  
330uF  
47uF  
4
C27  
5
L1  
1.9uH  
6
Q1, Q2, Q3, Q4  
IRLR3103N  
IRLR024N  
10  
7
Q5, Q6, Q7  
8
R1  
9
R3  
EMPTY  
1.00k  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
R4  
1%  
1%  
R5  
2.32k  
R6, R7, R9, R10  
2R2  
R8  
5mOhm  
See Table 2  
1k  
IRC OAR1  
R15, R11  
R12  
R16  
0
R17, R18  
U1  
See Table  
SC1186CS  
LM358  
SEMTECH  
U2  
www.semtech.com  
2004 Semtech Corp.  
14  
SC1186  
POWER MANAGEMENT  
Outline Drawing - SO-24  
DIMENSIONS  
INCHES MILLIMETERS  
A
D
E
e
DIM  
A
N
MIN NOM MAX MIN NOM MAX  
-
-
-
-
-
-
-
-
-
-
.093  
.104 2.35  
.012 0.10  
.100 2.05  
.020 0.31  
.013 0.20  
2.65  
0.30  
2.55  
0.51  
0.33  
A1 .004  
A2 .081  
2X E/2  
R
b
c
D
.012  
.008  
.602 .606 .610 15.30 15.40 15.50  
E1 .291 .295 .299 7.40 7.50 7.60  
E1  
E
e
.406 BSC  
10.30 BSC  
1.27 BSC  
.050 BSC  
-
-
h
J
.010  
.020  
.016  
.030 0.25  
.030 0.50  
.041 0.40  
0.75  
0.75  
1.04  
-
-
-
-
L
(.041)  
(1.04)  
L1  
N
24  
24  
1
2
3
ccc  
C
-
-
R
.024  
0°  
.035 0.60  
0.90  
8°  
-
-
2X N/2 TIPS  
01  
8°  
0°  
e/2  
aaa  
.004  
.010  
.013  
0.10  
0.25  
0.33  
B
bbb  
ccc  
D
h
aaa  
SEATING  
C
A2  
A
h
H
PLANE  
bxN  
bbb  
A1  
C
C
A-B D  
c
GAGE  
J
PLANE  
0.25  
L
(L1)  
01  
SEE DETAIL A  
DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE-H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MS-013, VARIATION AD.  
Outline Drawing - SO-24  
X
DIMENSIONS  
DIM  
INCHES  
MILLIMETERS  
(.362)  
.276  
.050  
.024  
.087  
.449  
(9.20)  
7.00  
C
G
P
X
Y
Z
(C)  
G
Y
Z
1.27  
0.60  
2.20  
11.40  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2. REFERENCE IPC-SM-782A, RLP NO. 307A.  
Contact Information for Semtech International AG  
Taiwan Branch  
Korea Branch  
Shanghai Office  
Tel: 886-2-2748-3380  
Fax: 886-2-2748-3390  
Semtech Switzerland GmbH  
Japan Branch  
Tel: 81-3-6408-0950  
Fax: 81-3-6408-0951  
Tel: 82-2-527-4377  
Fax: 82-2-527-4376  
Semtech Limited (U.K.)  
Semtech France SARL  
Semtech Germany GmbH  
Tel: 44-1794-527-600  
Fax: 44-1794-527-601  
Tel: 86-21-6391-0830  
Fax: 86-21-6391-0831  
Tel: 33-(0)169-28-22-00  
Fax: 33-(0)169-28-12-98  
Semtech International AG is a wholly-owned subsidiary of  
Semtech Corporation, which has its headquarters in the U.S.A.  
Tel: 49-(0)8161-140-123  
Fax: 49-(0)8161-140-124  
www.semtech.com  
2004 Semtech Corp.  
15  

相关型号:

SC1186CSW.TRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, ROHS COMPLIANT, MS-013AD, SOIC-24
SEMTECH

SC1186_04

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1187SWTR

Switching Controller, Voltage-mode, 1A, 225kHz Switching Freq-Max, PDSO24, SOIC-24
SEMTECH

SC1188CS

Switching Controller, Voltage-mode, 0.5A, 225kHz Switching Freq-Max, PDSO16, SO-16
SEMTECH

SC1188CSTR

Switching Controller, Voltage-mode, 0.5A, 225kHz Switching Freq-Max, PDSO16, SO-16
SEMTECH

SC1189

Programmable synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189SWTR

Programmable synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189SWTRT

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1189_05

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH