SC120SKTRT [SEMTECH]

Low Voltage Synchronous Boost Regulator; 低电压同步升压稳压器
SC120SKTRT
型号: SC120SKTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low Voltage Synchronous Boost Regulator
低电压同步升压稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总32页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC120  
Low Voltage Synchronous  
Boost Regulator  
POWER MANAGEMENT  
Features  
Description  
„
„
„
Input voltage — 0.7V to 4.5V  
The SC120 is a high efficiency, low noise, synchronous  
step-up DC-DC converter that provides boosted voltage  
levels in low-voltage handheld applications. The wide  
input voltage range allows use in systems with single  
NiMH or alkaline battery cells as well as in systems with  
higher voltage battery supplies. It features an internal  
1.2A switch and synchronous rectifier to achieve up to  
94% efficiency and to eliminate the need for an external  
Schottky diode. The output voltage can be set to 3.3V  
with internal feedback, or to any voltage within the speci-  
fied range using a standard resistor divider.  
Minimum input startup voltage — 0.865V  
Output voltage — fixed at 3.3V; adjustable from 1.8V  
to 5.0V  
Peak input current limit — 1.2A  
Output current at 3.3 VOUT — 80mA with VIN = 1.0V,  
190mA with VIN = 1.5V  
Efficiency up to 94%  
Internal synchronous rectifier  
Switching frequency — 1.2MHz  
Automatic power save  
Anti-ringing circuit  
Operating supply current (measured at OUT) — 50μA  
Shutdown current — 0.1μA (typ)  
No forward conduction path during shutdown  
Available in ultra-thin 1.5 × 2.0 × 0.6 (mm)  
MLPD-UT-6 and SOT23-6 packages  
Lead-free and halogen-free  
„
„
„
„
„
„
„
„
„
„
„
The SC120 operates in Pulse Width Modulation (PWM)  
mode for moderate to high loads and Power Save Mode  
(PSAVE) for improved efficiency under light load condi-  
tions. It features anti-ringing circuitry for reduced EMI in  
noise sensitive applications. Output disconnect capability  
is included to reduce leakage current, improve efficiency,  
and eliminate external components sometimes needed to  
disconnect the load from the supply during shutdown.  
„
„
WEEE and RoHS compliant  
Applications  
Low quiescent current is obtained despite a high 1.2MHz  
operating frequency. Small external components and the  
space saving MLPD-UT-6, 1.5×2.0×0.6 (mm) package, or  
low cost SOT23-6 package, make this device an excellent  
choice for small handheld applications that require the  
longest possible battery life.  
„
„
„
„
„
„
„
„
„
MP3 players  
Smart Phones and cellular phones  
Palmtop computers and handheld Instruments  
PCMCIA cards  
Memory cards  
Digital cordless phones  
Personal medical products  
Wireless VoIP phones  
Small motors  
Typical Application Circuit  
L1  
IN  
LX  
Single  
Cell  
OUT  
3.3V  
EN  
(1.2V)  
FB  
GND  
CIN  
COUT  
SC120  
April 30, 2010  
1
© 2010 Semtech Corporation  
SC120  
Pin Configuration — SOT23  
Ordering Information  
Device  
Package  
OUT  
4
EN  
6
FB  
5
SC120ULTRT(1)(2)  
SC120SKTRT (1)(2)  
MLPD-UT-6 1.5×2  
SOT23-6  
SC120EVB  
Evaluation Board, MLPD-UT-6 version  
Evaluation Board, SOT23-6 version  
SC120SKEVB  
Top View  
Notes:  
(1) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Lead-free packaging, only. Device is WEEE and RoHS compliant,  
and halogen-free.  
1
2
3
Pin Configuration — MLPD-UT  
IN  
GND  
LX  
SOT23; 6 LEAD  
θJA = 130°C/W  
1
2
3
LX  
GND  
IN  
6
5
4
OUT  
FB  
TOP VIEW  
Marking Information — SOT23  
Top View  
T
EN  
MLPD-UT; 1.5×2, 6 LEAD  
θJA = 84°C/W  
CP00  
Bottom View  
Marking Information — MLPD-UT  
120  
yw  
yyww  
MLPD-UT; 1.5×2, 6 LEAD  
yw = date code  
SOT23, 6 LEAD  
yyww = date code  
2
SC120  
Absolute Maximum Ratings  
Recommended Operating Conditions  
IN, OUT, LX, FB (V) . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0  
EN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VIN + 0.3)  
ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ambient Temperature Range (°C). . . . . . . . . . . . -40 to +85  
VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 to 4.5  
VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 to 5.0  
Thermal Information  
Thermal Res. MLPD, Junction-Ambient(2) (°C/W) . . . . . . . 84  
Thermal Res., SOT23, Junction -Ambient(2) (°C/W) . . . 130  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . . 150  
Storage Temperature Range (°C) . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . +260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) Tested according to JEDEC standard JESD22-A114.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
Electrical Characteristics  
Unless otherwise noted VIN = 2.5V, CIN = COUT = 22μF, L1 = 4.7μH, TA = -40 to +85°C. Typical values are at TA = 25°C.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
Max  
Units  
V
Input Voltage Range  
0.7  
4.5  
Minimum Startup Voltage  
Shutdown Current  
VIN-SU  
ISHDN  
IOUT < 1mA, TA = 0°C to 85°C  
TA = 25°C, VEN = 0V  
0.865  
0.1  
50  
V
1
μA  
μA  
MHz  
%
Operating Supply Current(1)  
Internal Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Output Voltage  
IQ  
In PSAVE mode, non-switching, measured at OUT  
fOSC  
1.2  
90  
DMAX  
DMIN  
15  
%
VOUT  
VFB = 0V  
3.3  
V
Adjustable Output Voltage Range  
VOUT_RNG  
For VIN such that DMIN < D < DMAX  
1.8  
5.0  
1.5  
0.1  
V
Regulation Feedback Reference Volt-  
age Accuracy (Internal or External  
Programming)  
VReg-Ref  
-1.5  
%
FB Pin Input Current  
Startup Time  
IFB  
VFB = 1.2V  
ꢀA  
ms  
tSU  
1
3
SC120  
Electrical Characteristics (continued)  
Parameter  
Symbol  
RDSP  
RDSN  
ILIM(N)  
ILIM(P)-SU  
ILXP  
Conditions  
VOUT = 3.3V  
Min  
Typ  
0.6  
Max  
Units  
Ω
P-Channel ON Resistance  
N-Channel ON Resistance  
N-Channel Current Limit  
P-Channel Startup Current Limit  
LX Leakage Current PMOS  
LX Leakage Current NMOS  
Logic Input High  
VOUT = 3.3V  
0.5  
Ω
VIN = 3.0V  
0.9  
1.2  
A
VIN > VOUT, VEN > VIH  
TA = 25°C, VLX = 0V  
TA = 25°C, VLX = 3.3V  
VIN = 3.0V  
150  
mA  
μA  
μA  
V
1
1
ILXN  
VIH  
0.85  
-0.2  
Logic Input Low  
VIL  
VIN = 3.0V  
0.2  
1
V
Logic Input Current High  
Logic Input Current Low  
IIH  
VEN = VIN = 3.0V  
VEN = 0V  
μA  
μA  
IIL  
NOTES:  
(1) Quiescent operating current is drawn from OUT while in regulation. The quiescent operating current projected to IN is approximately  
IQ × (VOUT/VIN).  
4
SC120  
Typical Characteristics — VOUT = 1.8V  
Efficiency vs. IOUT (VOUT = 1.8V)  
Efficiency vs. IOUT (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, VIN = 1.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.6V  
TA = –40°C  
TA = 85°C  
VIN = 0.8V  
VIN = 1.2V  
TA = 25°C  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 1.8V)  
Load Regulation (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, TA = 25οC  
R1 = 499k , R2 = 1M , L = 4.7 H, VIN = 1.2V  
Ω
Ω
μ
Ω
Ω
μ
1.84  
1.82  
1.8  
1.84  
1.82  
1.8  
TA = 85°C  
VIN = 1.6V  
VIN = 1.2V  
1.78  
1.78  
1.76  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 85°C  
VIN = 0.8V  
1.76  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
IOUT (mA)  
IOUT (mA)  
Line Regulation — PSAVE Mode (VOUT = 1.8V)  
Line Regulation — PWM Mode (VOUT = 1.8V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 35mA  
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 5mA  
1.84  
1.82  
1.8  
1.84  
1.82  
1.8  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = –40°C  
1.78  
1.78  
TA = 85°C  
TA = 25°C  
0.9  
1.76  
1.76  
0.7  
0.8  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
VIN (V)  
VIN (V)  
5
SC120  
Typical Characteristics — VOUT = 1.8V (continued)  
Temperature Regulation — PSAVE Mode (VOUT = 1.8V)  
Temperature Regulation — PWM Mode (VOUT = 1.8V)  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 5mA  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 35mA  
1.84  
1.82  
1.8  
1.84  
1.82  
1.8  
VIN = 1.6V  
VIN = 1.2V  
VIN = 0.8V  
VIN = 1.2V  
VIN = 1.6V  
1.78  
1.76  
1.78  
1.76  
VIN = 0.8V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Startup Maximum Load Current vs. VIN (VOUT = 1.8V)  
Startup Minimum Load Resistance vs. VIN (VOUT = 1.8V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H  
R1 = 499k , R2 = 1M , L = 4.7 H  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = –40°C  
TA = 85°C  
60  
TA = –40°C  
TA = 85°C  
40  
20  
TA = 25°C  
0
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
VIN (V)  
VIN (V)  
Maximum IOUT vs. VIN (VOUT = 1.8V)  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
VIN (V)  
6
SC120  
Typical Characteristics — VOUT = 3.3V  
Efficiency vs. IOUT (VOUT = 3.3V)  
Efficiency vs. IOUT (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
μ
μ
FB grounded, L = 4.7 H, VIN = 2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
TA = –40°C  
VIN = 3.0V  
90  
80  
TA = 85°C  
70  
VIN = 1.0V  
60  
VIN = 2.0V  
50  
TA = 25°C  
40  
30  
20  
10  
0
0.1 0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
0.1 0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 3.3V)  
Load Regulation (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
FB grounded, L = 4.7 H, VIN = 2V  
μ
μ
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
TA = 85°C  
VIN = 3.0V  
TA = –40°C  
TA = –40°C  
VIN = 2.0V  
TA = 85°C  
VIN = 1.0V  
TA = 25°C  
350 400  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
IOUT (mA)  
IOUT (mA)  
Line Regulation — PSAVE Mode (VOUT = 3.3V)  
FB grounded, L = 4.7 H, IOUT = 5mA  
Line Regulation — PWM Mode (VOUT = 3.3V)  
μ
FB grounded, L = 4.7 H, IOUT = 75mA  
μ
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
TA = 85°C  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
VIN (V)  
VIN (V)  
7
SC120  
Typical Characteristics — VOUT = 3.3V (continued)  
Temperature Regulation — PSAVE Mode (VOUT = 3.3V)  
Temperature Regulation — PWM Mode (VOUT = 3.3V)  
μ
μ
FB grounded, L = 4.7 H, IOUT = 5mA  
FB grounded, L = 4.7 H, IOUT = 75mA  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
VIN = 2.0V  
VIN = 3.0V  
VIN = 3.0V  
VIN = 1.0V  
VIN = 2.0V  
VIN = 1.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Startup Minimum Load Resistance vs. VIN (VOUT = 3.3V)  
Startup Maximum Load Current vs. VIN (VOUT = 3.3V)  
μ
μ
FB grounded, L = 4.7 H  
FB grounded, L = 4.7 H  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = 85°C  
TA = –40°C  
TA = –40°C  
60  
40  
TA = 85°C  
20  
TA = 25°C  
0
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
VIN (V)  
VIN (V)  
Maximum IOUT vs. VIN (VOUT = 3.3V)  
μ
FB grounded, L = 4.7 H  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
VIN (V)  
8
SC120  
Typical Characteristics — VOUT = 4.0V  
Efficiency vs. IOUT (VOUT = 4.0V)  
Efficiency vs. IOUT (VOUT = 4.0V)  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, VIN = 2.4V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = –40°C  
VIN = 3.2V  
TA = 85°C  
VIN = 1.2V  
TA = 25°C  
VIN = 2.4V  
0.1 0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
0.1 0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 4.0V)  
Load Regulation (VOUT = 4.0V)  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, TA = 25οC  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, VIN = 2.4V  
Ω
Ω
μ
Ω
Ω
μ
4.1  
4.05  
4
4.1  
4.05  
4
TA = 85°C  
TA = 25°C  
VIN = 3.2V  
TA = –40°C  
TA = 85°C  
3.95  
3.9  
3.95  
3.9  
VIN = 2.4V  
VIN = 1.2V  
TA = 25°C  
TA = –40°C  
3.85  
3.85  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
IOUT (mA)  
IOUT (mA)  
Line Regulation — PSAVE Mode (VOUT = 4.0V)  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, IOUT = 5mA  
Line Regulation — PWM Mode (VOUT = 4.0V)  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, IOUT = 75mA  
Ω
Ω
μ
Ω
Ω
μ
4.1  
4.05  
4
4.1  
4.05  
4
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
3.95  
3.9  
3.95  
3.9  
TA = –40°C  
3.85  
3.85  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
VIN (V)  
VIN (V)  
9
SC120  
Typical Characteristics — VOUT = 4.0V (continued)  
Temperature Regulation — PWM Mode (VOUT = 4.0V)  
Temperature Regulation — PSAVE Mode (VOUT = 4.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, IOUT = 75mA  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF, IOUT = 5mA  
4.1  
4.05  
4
4.1  
4.05  
4
VIN = 3.2V  
VIN = 1.2V  
VIN = 2.4V  
VIN = 3.2V  
VIN = 2.4V  
3.95  
3.9  
3.95  
3.9  
VIN = 1.2V  
3.85  
3.85  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Startup Minimum Load Resistance vs. VIN (VOUT = 4.0V)  
Startup Maximum Load Current vs. VIN (VOUT = 4.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF  
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = –40°C  
60  
40  
TA = 85°C  
20  
0
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
VIN (V)  
VIN (V)  
Maximum IOUT vs. VIN (VOUT = 4.0V)  
Ω
Ω
μ
R1 = 931k , R2 = 402k , L = 4.7 H, CFB = 2.2pF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = 25°C  
TA = –40°C  
TA = 85°C  
0
0.6  
1
1.4  
1.8  
2.2  
2.6  
3
3.4  
3.8  
VIN (V)  
10  
SC120  
Typical Characteristics — VOUT = 5.0V, Low VIN Range  
Efficiency vs. IOUT (VOUT = 5.0V)  
Efficiency vs. IOUT (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, VIN = 1.2V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.6V  
TA = 25°C  
TA = –40°C  
VIN = 1.2V  
VIN = 0.8V  
TA = 85°C  
TA = –40°C  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 5.0V)  
Load Regulation (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, TA = 25οC  
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, VIN = 1.2V  
Ω
Ω
μ
Ω
Ω
μ
5.1  
5.05  
5
5.1  
5.05  
5
TA = 85°C  
VIN = 1.6V  
TA = –40°C  
VIN = 0.8V  
4.95  
4.95  
TA = –40°C  
TA = 85°C  
VIN = 1.2V  
TA = 25°C  
100  
4.9  
4.9  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
IOUT (mA)  
80  
120  
IOUT (mA)  
Line Regulation — PWM Mode (VOUT = 5.0V)  
Line Regulation — PSAVE Mode (VOUT = 5.0V)  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, IOUT = 1mA  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, IOUT = 35mA  
5.1  
5.05  
5
5.1  
5.05  
5
TA = –40°C  
TA = 85°C  
TA = 25°C  
TA = 85°C  
TA = –40°C  
4.95  
4.95  
TA = 25°C  
4.9  
4.9  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
0.6  
0.8  
1
1.2  
1.4  
1.6  
1.8  
VIN (V)  
VIN (V)  
11  
SC120  
Typical Characteristics — VOUT = 5.0V, Low VIN Range (continued)  
Temperature Regulation — PWM Mode (VOUT = 5.0V)  
Temperature Regulation — PSAVE Mode (VOUT = 5.0V)  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, IOUT = 1mA  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 3.3 H, CFB = 10pF, IOUT = 35mA  
5.1  
5.05  
5
5.1  
5.05  
5
VIN = 1.6V  
VIN = 0.8V  
VIN = 1.2V  
VIN = 1.6V  
VIN = 1.2V  
VIN = 0.8V  
4.95  
4.95  
4.9  
4.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
See page 16 for all VOUT = 5.0V operation and startup load data.  
12  
SC120  
Typical Characteristics — VOUT = 5.0V, Mid VIN Range  
Efficiency vs. IOUT (VOUT = 5.0V)  
Efficiency vs. IOUT (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, VIN = 2.4V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.2V  
TA = –40°C  
TA = 85°C  
TA = 25°C  
VIN = 1.6V  
VIN = 2.4V  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100 200  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 5.0V)  
Load Regulation (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, TA = 25οC  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, VIN = 2.4V  
Ω
Ω
μ
Ω
Ω
μ
5.1  
5.05  
5
5.1  
5.05  
5
TA = 85°C  
TA = –40°C  
TA = –40°C  
4.95  
4.95  
TA = 85°C  
TA = 25°C  
VIN = 1.6V  
VIN = 2.4V  
VIN = 3.2V  
4.9  
4.9  
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
IOUT (mA)  
IOUT (mA)  
Line Regulation — PWM Mode (VOUT = 5.0V)  
Line Regulation — PSAVE Mode (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, IOUT = 5mA  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, IOUT = 75mA  
5.1  
5.05  
5
5.1  
5.05  
5
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = –40°C  
TA = 85°C  
4.95  
4.95  
TA = 25°C  
4.9  
4.9  
1.2  
1.6  
2
2.4  
2.8  
3.2  
1.2  
1.6  
2
2.4  
2.8  
3.2  
VIN (V)  
VIN (V)  
13  
SC120  
Typical Characteristics — VOUT = 5.0V, Mid VIN Range (continued)  
Temperature Regulation — PSAVE Mode (VOUT = 5.0V)  
Temperature Regulation — PWM Mode (VOUT = 5.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, IOUT = 5mA  
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF, IOUT = 75mA  
5.1  
5.05  
5
5.1  
5.05  
5
VIN = 1.6V  
VIN = 3.2V  
VIN = 3.2V  
VIN = 2.4V  
VIN = 2.4V  
VIN = 1.6V  
4.95  
4.9  
4.95  
4.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
See page 16 for all VOUT = 5.0V operation and startup load data.  
14  
SC120  
Typical Characteristics — VOUT = 5.0V, High VIN Range  
Efficiency vs. IOUT (VOUT = 5.0V)  
Efficiency vs. IOUT (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, VIN = 3.6V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2V  
TA = –40°C  
TA = 85°C  
VIN = 3.0V  
TA = 25°C  
VIN = 3.6V  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 5.0V)  
Load Regulation (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, TA = 25οC  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, VIN = 3.6V  
Ω
Ω
μ
Ω
Ω
μ
5.1  
5.05  
5
5.1  
5.05  
5
TA = 85°C  
VIN = 4.2V  
TA = –40°C  
4.95  
4.9  
4.95  
4.9  
TA = –40°C  
VIN = 3.0V  
VIN = 3.6V  
TA = 25°C  
TA = 85°C  
4.85  
4.85  
0
50  
100  
150  
200  
250  
IOUT (mA)  
300  
350  
400  
450  
500  
0
50  
100  
150  
200  
250  
IOUT (mA)  
300  
350  
400  
450  
500  
Line Regulation — PSAVE Mode (VOUT = 5.0V)  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, IOUT = 5mA  
Line Regulation — PWM Mode (VOUT = 5.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, IOUT = 75mA  
5.1  
5.05  
5
5.1  
5.05  
5
TA = 85°C  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 85°C  
4.95  
4.9  
4.95  
4.9  
TA = 25°C  
4.85  
4.85  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
VIN (V)  
15  
SC120  
Typical Characteristics — VOUT = 5.0V, High VIN Range (continued)  
Temperature Regulation — PSAVE Mode (VOUT = 5.0V)  
Temperature Regulation — PWM Mode (VOUT = 5.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, IOUT = 75mA  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF, IOUT = 5mA  
5.1  
5.05  
5
5.1  
5.05  
5
VIN = 4.2V  
VIN = 3.0V  
VIN = 4.2V  
VIN = 3.6V  
VIN = 3.0V  
VIN = 3.6V  
4.95  
4.9  
4.95  
4.9  
4.85  
4.85  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Startup Min. Load Res. vs. VIN (VOUT=5.0V, all VIN Ranges)  
Startup Max. Load Current vs. VIN (VOUT=5.0V, all VIN’s)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF  
R1 = 931k , R2 = 294k , L = 6.8 H, CFB = 2.2pF  
140  
120  
100  
80  
160  
140  
120  
100  
80  
TA = –40°C  
TA = –40°C  
TA = 25°C  
TA = 85°C  
TA = 25°C  
60  
60  
TA = 85°C  
40  
40  
TA = 25°C  
TA = 85°C  
20  
20  
TA = –40°C  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
VIN (V)  
Maximum IOUT vs. VIN (VOUT = 5.0V, all VIN Ranges)  
Ω
Ω
μ
R1 = 931k , R2 = 294k , L = 4.7 H, CFB = 2.2pF  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = –40°C  
TA = 25°C  
TA = 85°C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
VIN (V)  
16  
SC120  
Typical Characteristics (continued)  
Load Transient (PSAVE to PWM)  
VOUT = 3.3V, VIN = 1.2V, TA = 25°C  
Load Transient (PWM to PWM)  
VOUT = 3.3V, VIN = 1.5V, TA =25°C  
IOUT = 40mA to  
140mA  
IOUT = 5mA to  
100mA  
(50mA/div)  
(50mA/div)  
VOUT  
(100mV/div)  
AC Coupled  
VOUT  
(100mV/div)  
AC Coupled  
Time = (100μs/div)  
Time = (100μs/div)  
PWM Operation  
PSAVE Operation  
VOUT = 3.3V, VIN = 1.5V, IOUT = 50mA  
V
OUT = 3.3V, VIN = 1.5V, IOUT = 20mA  
VOUT ripple  
(50mV/div)  
VOUT ripple  
(10mV/div)  
IL  
IL  
(100mA/div)  
(100mA/div)  
VLX  
VLX  
(5V/div)  
(5V/div)  
Time = (10μs/div)  
Time = (400ns/div)  
Minimum Startup VIN vs. Temperature (Any VOUT  
)
0.95  
0.925  
0.9  
0.875  
0.85  
0.825  
0.8  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
17  
SC120  
Pin Descriptions  
MLPD Pin # SOT23 Pin #  
Pin Name  
LX  
Pin Function  
1
2
3
2
Switching node — connect an inductor from the input supply to this pin.  
Signal and power ground.  
GND  
Battery or supply input — requires an external 10μF bypass capacitor (capacitance evalu-  
ated while under VIN bias) for normal operation.  
3
1
IN  
4
5
6
5
EN  
FB  
Enable digital control input — active high.  
Feedback input — connect to GND for preset 3.3V output. A voltage divider is connected  
from OUT to GND to adjust output from 1.8V to 5.0V.  
Output voltage pin — requires an external 10μF bypass capacitor (capacitance evaluated  
while under VOUT bias) for normal operation.  
6
T
4
OUT  
Thermal  
Pad  
Thermal Pad (MLPD package only) is for heat sinking purposes — connect to ground  
plane using multiple vias — not connected internally.  
NA  
18  
SC120  
Block Diagram  
VOUT  
Comp.  
IN  
+
-
OUT  
+
1.7 V  
-
+
-
Start-up  
Oscillator  
EN  
P
LIM  
Amp.  
Gate Drive  
and  
Logic  
Bulk  
Bias  
Oscillator and  
Slope  
Generator  
Slope  
Comp.  
Control  
LX  
PWM  
Comp.  
+
PWM  
Control  
-
+
-
NLIM  
Amplifier  
Error  
+
-
Amp.  
Output Voltage  
Selection Logic  
-
FB  
Current  
Amplifier  
+
GND  
VREF  
+
-
1.2 V  
19  
SC120  
Applications Information  
to ground and is increasing. When the n-channel FET is  
turned off and the p-channel FET is turned on (known as  
the off-state), the inductor is then connected between IN  
and OUT. The (now decreasing) inductor current flows  
from the input to the output, boosting the output voltage  
above the input voltage.  
Detailed Description  
The SC120 is a synchronous step-up Pulse Width  
Modulated (PWM) DC-DC converter utilizing a 1.2MHz  
fixed frequency current mode architecture. It is designed  
to provide output voltages in the range 1.8V to 5.0V from  
an input voltage as low as 0.7V, with a (output unloaded)  
start up input voltage of 0.85V.  
Output Voltage Selection  
The device operates in two modes: PWM and automatic  
PSAVE mode. In PWM operation, the devices uses pulse  
width modulation control to regulate the output under  
moderate to heavy load conditions. It switches to PSAVE  
mode when lightly loaded. Quiescent current consump-  
tion is as little as 50μA, into the OUT pin, when in PSAVE  
mode.  
The SC120 output voltage can be programmed to an  
internally preset value or it can be programmed with  
external resistors. The output is internally programmed  
to 3.3V when the FB pin is connected to GND. Any output  
voltage in the range 1.8V to 5.0V can be programmed  
with a resistor voltage divider between OUT and the FB  
pin as shown in Figure 1.  
The regulator control circuitry is shown in the Block  
Diagram. It is comprised of a programmable feedback  
controller, an internal 1.2MHz oscillator, an n-  
channel Field Effect Transistor (FET) between the LX and  
GND pins, and a p-channel FET between the LX and OUT  
pins. The current flowing through both FETs is monitored  
and limited as required for startup, PWM operation, and  
PSAVE operation. An external inductor must be connected  
between the IN pin and the LX pin. When the n-channel  
FET is turned on, the LX pin is internally grounded, con-  
necting the inductor between IN and GND. This is called  
the on-state. During the on-state, inductor current flows  
The values of the resistors in the voltage divider network  
are chosen to satisfy the equation  
§
·
R1  
R2  
¨
¸
¸
VOUT  1.2u 1  
V  
¨
©
¹
.
A large value of R2, ideally 590kΩ or larger, is preferred for  
stability for VIN within approximately 400mV of VOUT. For  
lower VIN, lower resistor values can be used. The values of  
R1 and R2 can be as large as desired to achieve low quies-  
cent current.  
L1  
IN  
LX  
OUT  
EN  
VOUT  
CFB  
R1  
FB  
GND  
CIN  
COUT  
SC120  
R2  
Figure 1 — Output Voltage Feedback Circuit  
20  
SC120  
Applications Information (continued)  
output of the PLIM amplifier falls to 0V during the off-state  
due to low load current.  
PWM Operation  
The PWM cycle runs at a fixed frequency (fosc = 1.2MHz),  
with a variable duty cycle (D). PWM operation continually  
draws current from the input supply (except for discon-  
tinuous mode, described subsequently). During the on-  
state of the PWM cycle, the n-channel FET is turned on,  
grounding the inductor at the LX pin. This causes the  
current flowing from the input supply through the induc-  
tor to ground to ramp up. During the off-state, the n-  
channel FET is turned off and the p-channel FET  
(synchronous rectifier) is turned on. This causes the  
inductor current to flow from the input supply through  
the inductor into the output capacitor and load, boosting  
the output voltage above the input voltage. The cycle  
then repeats to re-energize the inductor.  
PSAVE mode requires fewer circuit resources than PWM  
mode. All unused circuitry is disabled to reduce quies-  
cent power dissipation. In PSAVE mode, the OUT pin  
voltage monitoring circuit remains active and the output  
voltage error amplifier operates as a comparator. PSAVE  
regulation is shown in Figure 2. When VOUT < 1.008xVREG  
,
where VREG is the programmed output voltage, a burst of  
fixed-period switching occurs to boost the output voltage.  
The n-channel FET turns on (on-state) until the inductor  
current rises to approximately 240mA. The n-channel FET  
then turns off and the p-channel FET turns on to transfer  
the inductor energy to the output capacitor and load for  
the duration of the off-state. This cycle repeats until  
V
OUT > 1.018×VREG, at which point both FETs are turned off.  
The output capacitor then discharges into the load until  
OUT < 1.008×VREG, and the burst cycle repeats.  
Ideally, the steady state (constant load) duty cycle is  
determined by D = 1 – (VIN/VOUT), but must be greater in  
practice to overcome dissipative losses. The SC120 PWM  
controller constrains the value of D such that 0.15 < D < 0.90  
(approximately).  
V
When the output current increases above a predeter-  
mined level, either of two PSAVE exit conditions will force  
the resumption of PWM operation. The first PSAVE exit  
criterion is shown in Figure 2. If the PSAVE burst cycle  
cannot provide sufficient current to the output, the  
output voltage will decrease during the burst. If  
The average inductor current during the off-state multi-  
plied by (1-D) is equal to the average load current. The  
inductor current is alternately ramping up (on-state) and  
down (off-state) at a rate and amplitude determined by  
the inductance value, the input voltage, and the on-time  
(TON = D×T, T = 1/fOSC). Therefore, the instantaneous induc-  
tor current will be alternately larger and smaller than the  
average. If the average output current is sufficiently small,  
the minimum inductor current can reach zero during the  
off-state. If the energy stored in the inductor is depleted  
(the inductor current decreases to zero) during the off-  
state, both FETs turn off for the remainder of the off-state.  
If this discontinuous mode (DM) operation persists, the  
SC120 transitions to PSAVE operation.  
VOUT < 0.98 × VREG, PWM operation will resume. The second  
PSAVE exit criterion, illustrated in Figure 3, depends on  
the rate of discharge of the output capacitor between  
PSAVE bursts. If the time between bursts is less than 5μs,  
then PWM operation resumes. The output capacitance  
value will affect the second criterion, but not the first.  
Reducing the output capacitor will reduce the output  
load at which PSAVE mode exits to PWM mode.  
Within each on/off cycle of a PSAVE burst, the rate of  
decrease of the inductor current during the off-state is  
proportional to (VOUT − VIN). If VIN is sufficiently close to  
PSAVE Operation  
VOUT, the decrease in current during the off-state may not  
At light loads, the SC120 will operate in PSAVE mode. At  
low output load, PSAVE mode will operate more efficiently  
than PWM mode. PSAVE mode also ensures regulation  
while the output load is too small to keep the PWM mode  
duty cycle above its minimum value, especially when VIN  
is close to VOUT. PSAVE operation is triggered by 256 con-  
secutive cycles of DM operation in PWM mode, when the  
overcome the increase in current during the minimum  
on-time of the on-state, approximately 100ns. This can  
result in the peak inductor current rising above the PSAVE  
mode n-channel FET current limit. (Normally, when the  
n-channel FET current limit is reached, the on-state ends  
immediately and the off-state begins. This sets the duty  
cycle on a cycle-by-cycle basis.) This inductor current rise  
21  
SC120  
Applications Information (continued)  
PWM Mode at  
High Load  
PSAVE Mode at  
Moderate Load  
Higher Load  
Applied  
PSAVE exit due  
to output decay  
BURST  
OFF  
BURST  
OFF  
BURST  
PWM Mode  
+1.8%  
+0.8%  
Prog’d  
VOUT  
Voltage  
-2%  
Inductor  
Current  
240mA  
0A  
Time  
Figure 2 — PSAVE Operation With Exit to PWM Due To Output Voltage Decay  
PWM Mode at  
High Load  
PSAVE Mode at  
Moderate Load  
Higher Load  
Applied  
PSAVE exit due to  
off-time reduction  
OFF  
(> 5μs)  
OFF  
(< 5μs)  
BURST  
BURST  
PWM Mode  
+1.8%  
+0.8%  
Prog’d  
VOUT  
Voltage  
-2%  
Inductor  
Current  
240mA  
0A  
Time  
Figure 3 — PSAVE Operation With Exit to PWM Due To Off-time < 5μs  
22  
SC120  
Applications Information (continued)  
accumulates with each successive cycle in the burst. The  
result is that the output load current that can be sup-  
ported in PSAVE under this high VIN condition will be  
greater than occurs if the 240mA current limit can be  
enforced. Therefore the PSAVE exit load due to the first  
exit criterion (Figure 2) can increase significantly. This  
phenomenon is advantageous. Reverting to PWM opera-  
tion with high VIN can result in VOUT rising above VREG, due  
to the PWM minimum duty cycle. PSAVE operation avoids  
this voltage rise because of its hysteretic voltage-thresh-  
old on/off control. If the load remains low enough to  
remain in PSAVE, VIN can approach and even slightly  
exceed VOUT. To initally enter PSAVE mode, the initial  
startup load must be small enough to cause discontinu-  
ous mode PWM operation. This PSAVE mode startup load  
upper limit can be increased if needed by reducing the  
inductance. (Refer to the Inductor Selection section.)  
Sufficiently large output capacitance will prevent PSAVE  
exit due to the second exit criterion (Figure 3).  
Regulator Startup, Short Circuit Protection, and  
Current Limits  
The SC120 permits power up at input voltages from 0.85V  
to 4.5V. Startup current limiting of the internal switching  
n-channel and p-channel FET power devices protects  
them from damage in the event of a short between OUT  
and GND. As the output voltage rises, progressively less-  
restrictive current limits are applied. This protection  
unavoidably prevents startup into an excessive load.  
To begin, the p-channel FET between the LX and OUT pins  
turns on with its current limited to approximately 150mA,  
the short-circuit output current. When VOUT approaches VIN  
(but is still below 1.7V), the n-channel current limit is set  
to 350mA (the p-channel limit is disabled), the internal  
oscillator turns on (approximately 200kHz), and a fixed  
75% duty cycle PWM operation begins. (See the section  
PWM Operation.) When the output voltage exceeds 1.7V,  
fixed frequency PWM operation begins, with the duty  
cycle determined by an n-channel FET peak current limit  
of 350mA. When this n-channel FET startup current limit  
is exceeded, the on-state ends immediately and the off-  
state begins. This determines the duty cycle on a cycle-  
by-cycle basis. When VOUT is within 2% of the programmed  
regulation voltage, the n-channel FET current limit is  
raised to 1.2A, and normal voltage regulation PWM control  
begins.  
PSAVE VOUT ripple may increase due to parasitic capaci-  
tance on the external FB pin network. If using external  
feedback programming, it is prudent to add a small capaci-  
tor between OUT and FB to the circuit board layout. When  
operating the SC120 in the final configuration in PSAVE,  
observe the amplitude of PSAVE ripple. If the ripple  
exceeds 50mV for the expected range of input voltage, a  
small-value capacitor should be tried. Capacitance on the  
order of a few picofarads is often sufficient to bring the  
ripple amplitude to approximately 50mV.  
Once normal voltage regulation PWM control is initiated,  
the output becomes independent of VIN and output regu-  
lation can be maintained for VIN as low as 0.7V, subject to  
the maximum duty cycle and peak current limits. The duty  
cycle must remain between 15% and 90% for the device  
to operate within specification.  
In the case of low VIN and high VOUT, larger values of CFB  
may be needed, perhaps 4.7pF or higher. If using the  
SOT23-6 package (SC120SKTRT) with low VIN and high VOUT  
,
at least 10pF to 12pF is recommended.  
Note that startup with a regulated active load is not the  
same as startup with a resistive load. The resistive load  
output current increases proportionately as the output  
voltage rises until it reaches programmed VOUT/RLOAD, while  
a regulated active load presents a constant load as the  
output voltage rises from 0V to programmed VOUT. Note  
also that if the load applied to the output exceeds an  
applicable VOUT dependent startup current limit or duty  
cycle limit, the criterion to advance to the next startup  
stage may not be achieved. In this situation startup may  
The Enable Pin  
The EN pin is a high impedance logical input that can be  
used to enable or disable the SC120 under processor  
control. VEN < 0.2V will disable regulation, set the LX pin in  
a high-impedance state (turn off both FET switches), and  
turn on an active discharge device to discharge the output  
capacitor via the OUT pin. VEN > 0.85V will enable the  
output. The startup sequence from the EN pin is identical  
to the startup sequence from the application of input  
power.  
23  
SC120  
Applications Information (continued)  
pause at a reduced output voltage until the load is reduced  
further.  
viding a moderate resistance path across the inductor to  
dampen the oscillations at the LX pin. This effectively  
reduces EMI that can develop from the resonant circuit  
formed by the inductor and the drain capacitance at LX.  
Output Overload and Recovery  
When in PSAVE operation, an increasing load will eventu-  
ally satisfy one of the PSAVE exit criteria and regulation  
will revert to PWM operation. As previously noted, the  
PWM steady state duty cycle is determined by  
D = 1 – (VIN/VOUT), but must be somewhat greater in prac-  
tice to overcome dissipative losses. As the output load  
increases, the dissipative losses also increase. The PWM  
controller must increase the duty cycle to compensate.  
Eventually, one of two overload conditions will occur,  
determined by VIN, VOUT, and the overall dissipative losses  
due to the output load current. Either the maximum duty  
cycle of 90% will be reached or the n-channel FET 1.2A  
(nominal) peak current limit will be reached, which effec-  
tively limits the duty cycle to a lower value. Above that  
load, the output voltage will decrease rapidly and in  
reverse order the startup current limits will be invoked as  
the output voltage falls through its various voltage thresh-  
olds. How far the output voltage drops depends on the  
load voltage vs. current characteristic.  
The anti-ringing circuitry is disabled between PSAVE  
bursts.  
Component Selection  
The SC120 provides optimum performance when a 4.7μH  
inductor is used with a 10μF output capacitor. Different  
component values can be used to modify PSAVE exit or  
entry loads, modify output voltage ripple in PWM mode,  
improve transient response, or to reduce component size  
or cost.  
Inductor Selection  
The inductance value primarily affects the amplitude of  
inductor current ripple (ΔIL). Reducing inductance  
increases ΔIL. This raises the inductor peak current,  
I
L-max = IL-avg + ΔIL/2, where IL-avg is the inductor current aver-  
aged over a full on/off cycle. IL-max is subject to the  
n-channel FET current limit ILIM(N), therefore reducing the  
inductance may lower the output overload current thresh-  
old. Increasing ΔIL also lowers the inductor minimum  
current, IL-min = IL-avg ΔIL/2, thus raising the PSAVE entry  
load current threshold. This is the output load below  
which IL-min = 0, the boundary between continuous mode  
and discontinuous mode PWM regulation, which signals  
the SC120 controller to switch to PSAVE operation. In the  
extreme case of VIN approaching VOUT, smaller inductance  
can also reduce the PSAVE inductor burst-envelope current  
ripple and voltage ripple.  
A reduction in input voltage, such as a discharging battery,  
will lower the load current at which overload occurs.  
Lower input voltage increases the duty cycle required to  
produce a given output voltage. And lower input voltage  
also increases the input current to maintain the input  
power, which increases dissipative losses and further  
increases the required duty cycle. Therefore an increase in  
load current or a decrease in input voltage can result in  
output overload. Once an overload has occurred, the load  
must be decreased to permit recovery. The conditions  
required for overload recovery are identical to those  
required for successful initial startup.  
Equate input power to output power, note that input  
current equals inductor current, and average over a full  
PWM switching cycle to obtain  
Anti-ringing Circuitry  
1 VOUT uIOUT  
In PWM operation, the n-channel and p-channel FETs are  
simultaneously turned off when the inductor current  
reaches zero. They remain off for the zero-inductor-  
current portion of the off-state. Note that discontinuous  
mode is a marginal-load condition, which if persistent will  
trigger a transition to PSAVE operation.  
ILavg  
 
u
K
V
IN  
where η is efficiency.  
ΔIL is the inductor (and thus the input) peak-to-peak  
current. Neglecting the n-channel FET RDS-ON and the  
inductor DCR, for duty cycle D, and with T = 1/fosc,  
When both FET switches are simultaneously turned off, an  
internal switch between the IN and LX pins is closed, pro-  
24  
SC120  
Applications Information (continued)  
DT  
1
L
V uDuT  
smallest and largest expected values of VIN. If the input  
IN  
'ILon  
 
V dt   
IN  
2
³
0
range includes VIN = /3 VOUT, also determine IPSAVE-entry-max  
.
L
Note that at high VIN (VIN close to VOUT) PSAVE exit may  
require an unusually high output load current. In this  
case, PSAVE re-entry may be of little concern. So if the  
largest VIN exceeds approximately 90% of VOUT, instead  
This is the change in IL during the on-state. During the  
off-state, again neglecting the p-channel FET RDS-ON and  
the inductor DCR,  
evaluate PSAVE entry at VIN = 0.9VOUT  
.
'ILoff  
 
T V  VOUT  
dt   
1D  
To ensure that IPSAVE-entry-max will be less than the PSAVE exit  
current, evaluate the PSAVE-PWM mode transistions while  
applying increasing and decreasing loads with VIN at and  
1
L
V  VOUT  
uT  
IN  
IN  
³
DT  
L
Note that this is a negative quantity, since VOUT > VIN and  
0 < D < 1. For a constant load in steady-state, the inductor  
current must satisfy ΔIL-on + ΔIL-off = 0. Substituting the two  
expressions and solving for D, obtain D = 1 – VIN/VOUT  
Using this expression, and the positive valued expression  
2
above /3 VOUT. This should be done at the application’s  
lowest specified ambient temperature as well as at room  
temperature. If the PSAVE exit current is not sufficiently  
greater than the PSAVE entry current, the separation can  
be enhanced by increasing the output capacitance to raise  
.
ΔIL = ΔIL-on for current ripple amplitude, obtain expanded  
I
PSAVE-exit due to the 5μs off-time criterion (see Figure 3), or  
expression for IL-max and IL-min  
.
by increasing the inductor value to reduce IPSAVE-entry  
.
VOUT uIOUT  
T
V
IN  
The inductor selection should also consider the n-channel  
FET current limit for the expected range of input voltage  
and output load current. The largest IL-avg will occur at the  
expected smallest VIN and largest IOUT. Determine the  
ILmax,min  
 
r
u
u
VOUT  VIN  
V uK  
2uL VOUT  
IN  
If the value of IOUT decreases until IL-min = 0, which is the  
boundary of continuous and discontinuous PWM opera-  
tion, the SC120 will transition from PWM operation to  
PSAVE operation. Define this value of IOUT as IPSAVE-entry  
Setting the expression for IL-min to 0 and solving,  
largest allowable ΔIL, based on the largest expected IL-avg  
,
the minimum n-channel FET current limit, and the  
inductor tolerance. Ensure that in the worst case,  
.
I
L-avg + ΔIL/2 < ILIM(N).  
2
§
·
These calculations include the parameter η, efficiency.  
Efficiency varies with VIN, IOUT, and temperature. Estimate η  
using the plots provided in this datasheet, or from experi-  
mental data, at the operating condition of interest when  
computing the effect of a new inductor value on PSAVE  
entry and I-limit margin.  
KuT  
V
IN  
¨
¨
¸
¸
IPSAVEentry  
 
VOUT  VIN  
2uL VOUT  
©
¹
The programmed value of VOUT is constant. IPSAVE-entry is a  
polynomial function of VIN. Equating dIPSAVE-entry/dVIN = 0  
and solving for VIN reveals that there is one non-zero extre-  
mum of this function, a maximum, at VIN = /3 VOUT.*  
Applying this value of VIN,  
2
Any chosen inductor should have low DCR, compared to  
the RDS-ON of the FET switches, to maintain efficiency,  
though for DCR << RDS-ON, further reduction in DCR will  
provide diminishing benefit. The inductor ISAT value should  
exceed the expected IL-max. The inductor self-resonant fre-  
quency should exceed 5×fosc. Any inductor with these  
properties should provide satisfactory performance.  
KuT  
L
2
27  
IPSAVEentrymax  
 
u
uVOUT  
The value of the inductor determines the PSAVE entry  
output load current for a given VIN. Evaluate IPSAVE-entry at the  
* For simplicity, efficiency (η) is represented as a constant. But efficien-  
cy, itself a function of VIN, decreases with decreasing VIN (and decreases  
with increasing temperature). Therefore at a given temperature, the  
input voltage that produces the maximum PSAVE entry load current  
L = 4.7μH should perform well for most applications. For  
high VOUT, (4.0V to 5.0V), and relatively high VIN (3.3V and  
above), L = 6.8μH, along with a larger output capacitance  
or larger-package output capacitor (for better V-bias per-  
will be slightly greater than 2/3 of VOUT  
.
25  
SC120  
Applications Information (continued)  
formance), will ensure correct mode–switching behavior.  
at the switching frequency of the SC120. Ceramic capaci-  
tors of type Y5V are not recommended as their tempera-  
ture coefficients and large capacitance tolerance make  
them unsuitable for this application. The following table  
lists recommended capacitors. For smaller values and  
smaller packages, it may be necessary to use multiple  
For very low VIN (0.7V to 0.8V) such as is obtained with a  
nearly-depleted single-cell alkaline battery), a smaller  
value of inductance will help to ensure that PWM mode  
will switch to PSAVE mode as the load decreases. This  
consideration may be of little importance in most applica-  
tions, as there is little energy remaining in such a deeply  
discharged battery.  
devices in parallel, especially for COUT  
.
Case  
Height  
(mm)  
Manufacturer/  
Part Number  
Value  
(ꢀF)  
Rated Volt-  
age (VDC)  
Case  
Size  
Type  
Murata  
GRM21BR60J226ME39B  
The following table lists the manufacturers of recom-  
mended inductor options. The specification values shown  
are simplified approximations or averages of many device  
parameters under various test conditions. See manufac-  
turersdocumentation for full performance data.  
22  
22  
4.7  
22  
22  
6.3  
10  
4
X5R  
X7R  
X5R  
X5R  
X5R  
0805  
1206  
0603  
0805  
0805  
1.25  
1.6  
Murata  
GRM31CR71A226KE15L  
Murata  
GRM185R60G475ME15  
0.5  
TDK  
10  
20  
0.85  
1.25  
C2012X5R1A226M  
Rated  
Current  
(mA)  
Dimensions  
LxWxH  
Manufacturer/  
Part #  
Value DCR  
Tolerance  
(%)  
Taiyo Yuden  
JMK212BJ226MG-T  
(ꢀH)  
(Ω)  
(mm)  
Murata  
LQM31PN4R7M00  
4.7  
4.7  
0.3  
0.7  
700  
500  
20  
20  
3.2 x 1.6 x 0.95  
2 x 2 x 0.6  
PCB Layout Considerations  
Coilcraft  
XFL2006-472  
Poor layout can degrade the performance of the DC-DC  
converter and can contribute to EMI problems, ground  
bounce, and resistive voltage losses. Poor regulation and  
instability can result.  
Capacitor Selection  
Input and output capacitors must be chosen carefully to  
ensure that they are of the correct value and rating. The  
output capacitor requires a minimum capacitance value  
of 10μF at the programmed output voltage to ensure sta-  
bility over the full operating range, and to ensure positive  
mode-switching hysteresis. The DC bias must be included  
in capacitor derating to ensure the required effective  
capacitance is provided, especially when considering  
small package-size capacitors. For example, a 10μF 0805  
capacitor may provide sufficient capacitance at low output  
voltages but may be too low at higher output voltages.  
Therefore, a higher capacitance value may be required to  
provide the minimum of 10μF at these higher output volt-  
ages. Additional output capacitance may be required for  
VIN close to VOUT to reduce ripple in PSAVE mode, to increase  
the PSAVE exit threshold for high VIN, and to ensure stabil-  
ity in PWM mode, especially at higher output load  
currents.  
The following simple design rules can be implemented to  
ensure good layout:  
Place the inductor and filter capacitors as close  
to the device as possible and use short wide  
traces between the power components.  
Route the output voltage feedback path away  
from the inductor and LX node to minimize  
noise and magnetic interference.  
Maximize ground metal on the component side  
to improve the return connection and thermal  
dissipation. Separation between the LX node  
and GND should be maintained to avoid cou-  
pling capacitance between the LX node and the  
ground plane.  
Use a ground plane with several vias connecting  
to the component side ground to further reduce  
noise interference on sensitive circuit nodes.  
Low ESR capacitors such as X5R or X7R type ceramic  
capacitors are recommended for input bypassing and  
output filtering. Low-ESR tantalum capacitors are not rec-  
ommended due to possible reduction in capacitance seen  
A layout drawing for the MLP package is shown in Figure 4  
and a layout drawing for the SOT23 package is shown in  
Figure 5.  
26  
SC120  
Applications Information (continued)  
7.0mm  
VOUT  
COUT  
LX  
OUT  
FB  
CFB  
R1  
GND  
IN  
SC120  
5.2mm  
LX  
(2nd layer)  
EN  
R2  
VIN  
CIN  
GND  
Figure 4 — Layout Drawing for MLP package  
8mm  
VIN  
GND  
CIN  
(2nd layer)  
IN  
GND  
LX  
EN  
FB  
R2  
R1  
LX  
SC120  
CFB  
5.5mm  
OUT  
VOUT  
COUT  
Figure 5 — Layout Drawing for SOT23-6 package  
27  
SC120  
Outline Drawing — MLPD-UT-6 1.5x2  
DIMENSIONS  
INCHES  
B
E
A
D
MILLIMETERS  
DIM  
MIN  
.020  
.000  
NOM  
-
MAX  
.024  
.002  
MIN  
0.50  
0.00  
NOM MAX  
-
A
A1  
A2  
b
0.60  
-
-
0.05  
(.006)  
.010  
(.152)  
0.25  
PIN 1  
INDICATOR  
.007  
.055  
.035  
.075  
.026  
.012  
.063  
.055  
.083  
.035  
0.18  
1.40  
0.90  
1.90  
0.65  
0.30  
1.60  
1.40  
2.10  
0.90  
D
.059  
-
1.50  
-
(LASER MARK)  
D1  
E
.079  
.031  
2.00  
0.80  
E1  
e
.020 BSC  
.014  
0.50 BSC  
0.35  
A2  
C
L
N
aaa  
.012  
.016  
0.30  
0.40  
A
6
6
SEATING  
PLANE  
.003  
0.08  
aaa  
C
bbb  
.004  
0.10  
A1  
D1  
2
1
LxN  
E1  
N
bxN  
bbb  
C A B  
e
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS.  
28  
SC120  
Land Pattern — MLPD-UT-6 1.5x2  
H
R
DIMENSIONS  
INCHES  
DIM  
MILLIMETERS  
(.077)  
.047  
.051  
.031  
.020  
.006  
.012  
.030  
.106  
(1.95)  
1.20  
1.30  
0.80  
0.50  
0.15  
0.30  
0.75  
2.70  
C
G
H
K
P
R
X
Y
Z
Z
G
Y
(C)  
K
P
X
NOTES:  
1.  
2.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
3.  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
29  
SC120  
Outline Drawing — SOT23-6  
DIMENSIONS  
MILLIMETERS  
DIM  
A
NOM MAX  
MIN  
-
-
A
0.90  
1.45  
0.15  
e1  
D
E
A1 0.00  
A2 0.90 1.15 1.30  
-
N
b
c
D
0.25  
0.08  
0.50  
0.22  
2X E/2  
-
E1  
2.80 2.90 3.10  
E1 1.50 1.60 1.75  
1
2
E
e
2.80 BSC  
0.95 BSC  
ccc C  
e1  
L
L1  
N
01  
aaa  
bbb  
ccc  
1.90 BSC  
0.30 0.45 0.60  
(0.60)  
2X N/2 TIPS  
e
6
-
0.10  
0.20  
0.20  
B
0°  
10°  
D
aaa C  
A2  
A
SEATING  
PLANE  
H
C
A1  
c
GAUGE  
PLANE  
bxN  
bbb  
C A-B D  
0.25  
01  
L
(L1)  
SEE DETAIL A  
SIDE VIEW  
DETAIL A  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
30  
SC120  
Land Pattern — SOT23-6  
X
DIMENSIONS  
DIM  
MILLIMETERS  
(2.50)  
1.40  
0.95  
0.60  
1.10  
3.60  
C
G
P
X
Y
Z
Z
(C)  
G
Y
P
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2.  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
31  
SC120  
© Semtech 2010  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright  
owner. The information presented in this document does not form part of any quotation or contract, is believed to be  
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any conse-  
quence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellec-  
tual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation  
resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress  
including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the  
specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-  
SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS  
IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer  
purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold  
Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages  
and attorney fees which could arise.  
Notice: All referenced brands, product names, service names and trademarks are the property of their respective  
owners.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
32  

相关型号:

SC120ULTRT

Low Voltage Synchronous Boost Converter
SEMTECH

SC120_10

Low Voltage Synchronous Boost Regulator
SEMTECH

SC121

LI+ BATTERY PROTECTION CIRCUIT
SILAN

SC121

Low Voltage Synchronous Boost Regulator
SEMTECH

SC1210

High Speed, 12 V, Synchronous Power MOSFET Driver
SEMTECH

SC1210-100

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-101

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-150BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY

SC1210-1R0

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-200BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY

SC1210-220

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-221

SMD POWER INDUCTORS Open frame construction
BEL