SC1548CSK-X.XTR [SEMTECH]

Linear FET Controller; 线性FET控制器
SC1548CSK-X.XTR
型号: SC1548CSK-X.XTR
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Linear FET Controller
线性FET控制器

控制器
文件: 总14页 (文件大小:262K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC1548  
Linear FET Controller  
POWER MANAGEMENT  
Description  
Features  
The SC1548 is a power supply controller designed to  
provide a simple single regulated power supply with over  
current protection. It is part of Semtech’s SmartLDO™  
family of products. The SC1548 can provide a 1.818V  
power supply for the I/O plane or 1.515V for GTL+ / AGP  
from either 3.3V or 2.5V. An adjustable option allows  
generation and control of any voltage from 1.263V up to  
5V.  
‹ ± 2.5% output accuracy over line, load and  
temperature  
‹ 1.515V, 1.818V and adjustable output voltage  
options available  
‹ Enable control  
‹ Over current protection  
‹ 5-pin SOT-23 package  
Applications  
SC1548 features include tight output voltage regulation,  
an enable control and over current protection. Over  
current protection is provided by feedback to the sense  
pin. If the output drops below 50% of the nominal  
output voltage (typical) for greater than 4ms (typical), the  
output will be shut down.  
‹ Motherboards  
‹ Graphics cards  
‹ Microcontrollers  
‹ Simple power supplies  
The SC1548 is available in a tiny 5-pin SOT-23 surface  
mount package.  
Typical Application Circuit  
Fixed Output Voltage Versions  
3.3V IN  
12V IN  
Q1  
IRL530N  
1.818V OUT  
C1  
C2  
C3  
+
+
+
100uF  
100uF  
22uF  
U1  
1
2
3
5
4
SNS EN  
GND  
ENABLE  
DRV IN  
SC1548CSK-1.8  
C4  
0.1uF  
Adjustable Output Voltage Version  
3.3V IN  
12V IN  
Q1  
IRL530N  
2.5V OUT  
R1  
C1  
C2  
C3  
22uF  
+
+
+
100uF  
100uF  
97.6  
U1  
1
2
3
5
ADJ EN  
ENABLE  
GND  
R2  
4
DRV IN  
100  
SC1548CSK  
C4  
0.1uF  
Revision: November 10, 2004  
1
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device  
reliability.  
Parameter  
Symbol  
Maximum  
-0.5 to +15  
-0.5 to +7  
81  
Units  
V
Input Supply Voltage  
VIN  
Input Pins  
VADJ, VEN, VSNS  
V
Thermal Impedance Junction to Case  
Thermal Impedance Junction to Ambient  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering) 10 Sec  
°C/W  
°C/W  
°C  
θJC  
θJA  
256  
TA  
0 to +70  
0 to +125  
-65 to +150  
300  
TJ  
°C  
TSTG  
TLEAD  
°C  
°C  
Electrical Characteristics(1)  
Unless specified: TA = 25°C, VIN = 12V, VPWR = 3.3V, IOUT = 0A. Values in bold apply over full operating temperature range.  
Parameter  
IN  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Supply Voltage  
Quiescent Current  
VIN  
IQ  
11.28  
12.00  
1.0  
12.72  
1.5  
V
mA  
2.0  
Undervoltage Lockout  
Start Threshold  
EN  
UVLO  
7
8
9
V
Enable Pin Current  
Threshold Voltage  
Hysteresis  
IEN  
VEN = 0V  
VEN rising  
100  
150  
2.3  
µA  
V
VTH(EN)  
VHYST  
tD(ON)  
1.8  
200  
500  
mV  
ns  
Enable Delay Time(2)(3)  
VEN = Low to High, measured from  
VEN = VTH(EN) to 10% VDRV  
Disable Delay Time(2)(3)  
tD(OFF)  
VEN = High to Low, measured from  
150  
ns  
V
EN = VTH(EN) to 90% VDRV  
SNS (Fixed Output Voltage Parts)  
Sense Pin Current ISNS  
ADJ (Adjustable Output Voltage Parts)  
Sinking  
75  
100  
125  
µA  
Adjust Pin Current  
Reference Voltage(2)  
IADJ  
Sourcing  
0.25  
µA  
V
VADJ  
3.0V VPWR(4) 3.6V, 1mA IOUT 1A  
-1.5%  
1.263 +1.5%  
-2.5%  
+2.5%  
2004 Semtech Corp.  
2
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)(1)  
Unless specified: TA = 25°C, VIN = 12V, VPWR = 3.3V, IOUT = 0A. Values in bold apply over full operating temperature range.  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Output Voltage Regulation (Fixed Output Voltage Parts)  
Output Voltage(2)  
VOUT  
3.0V VPWR(4) 3.6V, 1mA IOUT 1A  
-1.5%  
VOUT  
+1.5%  
V
-2.5%  
+2.5%  
DRV  
Output Current  
Output Voltage  
Rise Time(2)(3)  
IDRV  
VDRV  
tr  
VDRV = 4V, VSNS = 1.2V  
Full On, IDRV = 0mA  
5
10  
10.5  
1.0  
mA  
V
9.0  
VEN = Low to High, measured from  
VEN = VTH(EN) to 90% VDRV  
ms  
Fall Time(2)(3)  
tf  
VEN = High to Low, measured from  
550  
µs  
V
EN = VTH(EN) to 10% VDRV  
Overcurrent Protection  
Trip Threshold  
VTH(OC)  
30  
50  
5
70  
%VOUT  
ms  
Power-up Output Short  
Circuit Immunity  
1
60  
Output Short Circuit Glitch  
Immunity  
0.5  
4
30  
ms  
Control Section  
Bandwidth  
VDRV = 9V, THD = 5%, CL = 600pF  
5
MHz  
Notes:  
(1) This device is ESD sensitive. Use of standard ESD handling precautions is required.  
(2) See Application Circuit on page 1.  
(3) See Timing Diagram on page 4.  
(4) Connected to FET drain.  
2004 Semtech Corp.  
3
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Timing Diagram  
2004 Semtech Corp.  
4
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
Part Number(1)(2)  
Package  
SOT-23-5  
Top View  
SC1548CSK-X.XTR  
SC1548CSKTRT(3)  
Notes:  
(1) Where -X.X denotes voltage options. Available  
voltages are: 1.515V (-1.5) and 1.818V (-1.8). Leave blank  
for adjustable version.  
(2) Only available in tape and reel packaging. A reel  
contains 3000 units.  
SOT-23-5L  
(3) Lead free product. This product is fully WEEE and  
RoHS compliant.  
Block Diagram  
Pin Descriptions  
Pin Pin Name Pin Function  
1
SNS  
Regulator sense input for fixed output voltage options. Use as a remote sense to the source of the  
N-channel MOSFET.  
ADJ  
Regulator sense input for adjustable output voltage version. Set output voltage as follows (refer to  
application circuit on page 1):  
R1  
VO = 1.263 1+  
R2  
2
3
GND  
DRV  
Ground.  
Output of regulator. Drives the gate of an N-channel MOSFET to maintain the output  
voltage desired.  
4
5
IN  
+12V supply.  
EN  
Active high enable control with internal pullup. Output of regulator turns off when EN is  
taken low.  
2004 Semtech Corp.  
5
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics(1)  
Quiescent Current vs.  
Junction Temperature  
Start Threshold vs.  
Junction Temperature  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
VIN = 12V, VEN = 3.3V  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TJ (°C)  
TJ (°C)  
Enable Threshold Voltage  
vs. Junction Temperature  
Enable Hysteresis vs.  
Junction Temperature  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VIN = 12V  
VEN rising  
VIN = 12V  
VEN falling  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TJ (°C)  
TJ (°C)  
Enable Pin Current vs.  
Junction Temperature  
Enable Delay Time vs.  
Junction Temperature  
150  
125  
100  
75  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 12V  
VEN = 0V  
VIN = 12V  
50  
25  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
TJ (°C)  
TJ (°C)  
2004 Semtech Corp.  
6
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics (Cont.)(1)  
Disable Delay Time vs.  
Junction Temperature  
Sense Pin Current vs.  
Junction Temperature  
200  
125  
120  
115  
110  
105  
100  
95  
VIN = 12V  
VIN = 12V  
VEN = 3.3V  
VSNS = VO(NOM)  
175  
150  
125  
100  
75  
90  
50  
85  
25  
80  
0
75  
0
25  
50  
75  
100  
125  
125  
125  
0
25  
50  
75  
100  
125  
125  
125  
TJ (°C)  
TJ (°C)  
Drive Output Voltage vs.  
Junction Temperature  
Output Voltage (SC1548CSK-1.8)  
vs. Junction Temperature  
12.00  
1.845  
1.840  
1.835  
1.830  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
VIN = 12V  
VSNS = 0V  
VIN = 12V  
VEN = 3.3V  
3.0V VPWR 3.6V  
1mA IO 1A  
11.50  
11.00  
10.50  
10.00  
9.50  
IDRV = 0mA  
9.00  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TJ (°C)  
TJ (°C)  
OCP Trip Threshold (SC1548CSK-1.8)  
vs. Junction Temperature  
Power-Up Output Short Circuit Immunity  
vs. Junction Temperature  
1.2  
1
10  
9
8
7
6
5
4
3
2
1
0
VIN = 12V  
VEN = 3.3V  
VIN = 12V  
VEN switched from 0V to 3.3V  
ROUT = 0Ω  
Two representative parts  
shown  
0.8  
0.6  
0.4  
0.2  
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
TJ (°C)  
TJ (°C)  
2004 Semtech Corp.  
7
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics (Cont.)(1)  
Output Short Circuit Glitch Immunity  
vs. Junction Temperature  
Drive Pin Rise Time vs.  
Junction Temperature  
8
1200  
1000  
800  
600  
400  
200  
0
VIN = 12V  
VEN = 3.3V  
7
6
5
4
3
2
1
0
ROUT of 0applied to output  
Two representative parts shown  
VIN = 12V  
VEN switched from 0V to 3.3V  
Two representative parts shown  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
T
J (°C)  
TJ (°C)  
Drive Pin Fall Time vs.  
Junction Temperature  
SC1548CSK-1.8 Small Signal Gain  
and Phase Shift vs. Frequency  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
80  
60  
0
IOUT = 1.8A  
VIN = 12V  
VEN switched from 3.3V to 0V  
Two representative parts shown  
-45  
40  
-90  
Gain  
20  
-135  
-180  
-225  
-270  
-315  
-360  
0
-20  
-40  
-60  
-80  
Phase  
0
25  
50  
75  
100  
125  
1.00E+02  
1.00E+03  
1.00E+04  
1.00E+05  
1.00E+06  
TJ (°C)  
Gain (dB)  
SC1548CSK-1.5 Small Signal Gain  
and Phase Shift vs. Frequency  
SC1548CSK Small Signal Gain  
and Phase Shift vs. Frequency  
80  
60  
40  
20  
0
0
80  
0
VOUT = 2V  
IOUT = 1.8A  
Gain  
IOUT = 1.8A  
Gain  
-45  
60  
40  
-45  
-90  
-90  
-135  
-180  
-225  
-270  
-315  
-360  
20  
-135  
-180  
-225  
-270  
-315  
-360  
0
-20  
-40  
-60  
-20  
-40  
-60  
-80  
Phase  
Phase  
-80  
1.00E+02  
1.00E+03  
1.00E+04  
f (Hz)  
1.00E+05  
1.00E+06  
1.00E+02  
1.00E+03  
1.00E+04  
f (Hz)  
1.00E+05  
1.00E+06  
2004 Semtech Corp.  
8
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics (Cont.)(1)  
Load Transient Response  
Load Transient Response, Expanded  
Trace 1: VOUT, AC coupled, 50mV/div.  
Trace 2: VDRV, 2V/div.  
Trace 1: VOUT, AC coupled, 50mV/div.  
Trace 2: VDRV, 2V/div.  
Trace M3: load stepping from 0A to 1A to 0A  
Timebase: 10µs/div  
Trace M3: load stepping from 0A to 1A  
Timebase: 1µs/div  
Load Transient Response, Expanded  
Disable Delay Time, tD(OFF)  
Trace 1: VOUT, AC coupled, 50mV/div.  
Trace 2: VDRV, 2V/div.  
Trace M3: load stepping from 1A to 0A  
Timebase: 1µs/div  
Trace 1: VDRV, 1V/div.  
Trace 2: VEN, 2V/div.  
Timebase: 100ns/div  
tD(OFF) 36ns  
2004 Semtech Corp.  
9
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics (Cont.)(1)  
Drive Output Fall Time, tf  
Enable Delay Time, tD(ON)  
Trace 1: VDRV, 1V/div.  
Trace 2: VEN, 2V/div.  
Timebase: 100ns/div  
tf 350ns  
Trace 1: VDRV, 1V/div.  
Trace 2: VEN, 2V/div.  
Timebase: 250ns/div  
tD(ON) 550ns  
Drive Output Rise Time, tr  
Power-up Output Short Circuit Immunity  
Trace 1: VDRV, 1V/div.  
Trace 2: VEN, 2V/div.  
Timebase: 500µs/div  
tr 1ms  
Trace 1: VDRV, 5V/div.  
Trace 2: VEN, 2V/div.  
Timebase: 2ms/div  
SC1548 enabled into a short, therefore VOUT < VTH(OC)  
immediately the device is enabled. This device shuts  
down after 8ms.  
2004 Semtech Corp.  
10  
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Typical Characteristics (Cont.)(1)  
Output Short Circuit Glitch Immunity  
Note:  
(1) See Applications Circuit on page 1.  
Trace 1: VDRV, 5V/div.  
Trace 2: VOUT, 1V/div.  
Timebase: 1ms/div  
SC1548 enabled, then shorted, therefore  
VOUT < VTH(OC) immediately the short is applied. This  
device shuts down after 5ms.  
Applications Infomation  
Theory Of Operation  
The SC1548 linear FET controller provides a simple way  
to drive an N-channel MOSFET to produce a tightly  
regulated output voltage from an available, higher,  
supply voltage. It takes its power from a 12V supply,  
drawing typically 2mA while operating.  
Also included is an overcurrent protection circuit that  
monitors the output voltage. If the output voltage drops  
below 50% of nominal, as would occur during an  
overcurrent or short condition, the device will pull the  
drive pin low and latch off.  
It contains an internal bandgap reference which is  
compared to the output voltage via a resistor divider.  
This resistor divider is internal on the fixed output  
voltage options, and user selectable on the adjustable  
option. Since the drive pin can pull up to a 9V  
guaranteed minimum, the device can be used to  
regulate a large range of output voltages by careful  
selection of the external MOSFET (see component  
selection, below).  
Fixed Output Voltage Options  
Please refer to the Application Circuit on Page 1. The  
fixed output voltage parts have an internal resistor  
divider that draws a nominal 100µA from the output.  
The voltage at the common node of the resistor divider  
is then compared to the bandgap reference voltage of  
1.263V. The drive pin voltage is then adjusted to  
maintain the output voltage set by the resistor divider.  
Referring to the block diagram on page 5, the nominal  
resistor values are:  
The SC1548 includes an active high enable control with  
an internal pullup resistor. If this pin is pulled low, the  
drive pin is pulled low, turning off the N-channel MOSFET.  
If the pin is left open or pulled up to 2.5V, 3.3V or 5V,  
then the drive pin will be enabled.  
Output Voltage  
1.515V  
R1 (k)  
2.52  
R2 (k)  
12.63  
12.63  
1.818V  
5.55  
2004 Semtech Corp.  
11  
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Applications Infomation (Cont.)  
It is possible to adjust the output voltage of the fixed  
voltage options, by applying an external resistor divider  
to the sense pin (please refer to Figure 1 below). Since  
the sense pin sinks a nominal 100µA, the resistor  
values should be selected to allow 10mA to flow through  
the divider. This will ensure that variations in this current  
do not adversely affect output voltage regulation. Thus a  
target value for R2 (maximum) can be calculated:  
VOUT (FIXED )  
10mA  
R2 ≤  
The output voltage can only be adjusted upwards from the fixed  
output voltage, and can be calculated using the  
following equation:  
R1  
R2  
VOUT (ADJUSTED = VOUT (FIXED ) 1+  
+ R1100 µA Volts  
)
VPWR  
12V IN  
Q1  
VOUT  
R1  
R2  
C1  
C2  
C3  
+
+
+
100uF  
100uF  
22uF  
U1  
1
2
3
5
4
ENABLE  
SNS EN  
GND  
DRV IN  
SC1548CSK-X.X  
C4  
0.1uF  
Figure 1: Adjusting The Output Voltage of Fixed Output Voltage Options  
12V IN  
VPWR  
Q1  
VOUT  
R1  
R2  
C1  
C2  
C3  
+
+
+
100uF  
100uF  
22uF  
U1  
1
2
3
5
4
ENABLE  
ADJ EN  
GND  
DRV IN  
SC1548CSK  
C4  
0.1uF  
Figure 2: Setting The Output Voltage of the Adjustable Output Voltage Option  
Adjustable Output Voltage Option  
Again, a target value for R2 (maximum) can be  
calculated:  
The adjustable output voltage option does not have an  
internal resistor divider. The adjust pin connects directly  
to the inverting input of the error amplifier, and the  
output voltage is set using external resistors (please  
refer to Figure 2 above). In this case, the adjust pin  
sources a nominal 0.5µA, so the resistor values should  
be selected to allow 50µA to flow through the divider.  
1.263 V  
50µA  
R2 ≤  
The output voltage can be calculated as follows:  
R1  
R2  
VOUT = 1.263 1+  
0.5µA R1  
2004 Semtech Corp.  
12  
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Applications Infomation (Cont.)  
Please see Table 1 below for recommended resistor To be most effective, the MOSFET RDS(ON) should not be  
values for some standard output voltages. All resistors selected artificially low. The MOSFET should be  
are 1%, 1/10W.  
chosen so that at maximum required current, it is almost  
fully turned on. If, for example, a supply of 1.5V at 4A is  
required from a 3.3V ± 5% rail, the maximum allowable  
RDS(ON) would be:  
VOUT (V)  
R1 ()  
R2 ()  
1.5  
1.8  
2.5  
2.8  
3.0  
3.3  
18.7  
42.2  
97.6  
124  
140  
169  
100  
100  
100  
102  
102  
105  
(
0.95 3.3 1.5 1.025 )  
RDS (ON )(MAX )  
=
400 mΩ  
4
To allow for temperature effects 200mwould be a  
suitable room temperature maximum, allowing a peak  
short circuit current of approximately 15A for a short time  
before shutdown.  
Capacitor Selection  
Table 1: Recommended Resistor Values For SC1548  
Output Capacitors: low ESR aluminum electrolytic or tan-  
talum capacitors are recommended for bulk  
capacitance, with ceramic bypass capacitors for  
decoupling high frequency transients.  
The maximum output voltage that can be obtained from  
the adjustable option is determined by the input supply  
voltage and the RDS(ON) and gate threshold voltage of the  
external MOSFET. Assuming that the MOSFET gate  
threshold voltage is sufficiently low for the output  
voltage chosen and a worst-case drive voltage of 9V,  
VOUT(MAX) is given by:  
Input Capacitors: placement of low ESR aluminum  
electrolytic or tantalum capacitors at the input to the  
MOSFET (VPWR) will help to hold up the power supply  
during fast load changes, thus improving overall transient  
response. The 12V supply should be bypassed with a  
0.1µF ceramic capacitor.  
VOUT (MAX = VPWR  
IOUT (MAX ) RDS (ON )(MAX  
)
)
(MIN )  
Short Circuit Protection  
Layout Guidelines  
The short circuit protection feature of the SC1548 is  
implemented by using the RDS(ON) of the MOSFET. As the  
output current increases, the regulation loop maintains  
the output voltage by turning the FET on more and more.  
Eventually, as the RDS(ON) limit is reached, the MOSFET  
will be unable to turn on any further, and the output  
voltage will start to fall. When the output voltage falls to  
approximately 50% of nominal, the LDO controller is  
latched off, setting output voltage to 0V. Toggling the  
enable pin or cycling the power will reset the latch.  
One of the advantages of using the SC1548 to drive an  
external MOSFET is that the bandgap reference and  
control circuitry do not need to be located right next to  
the power device, thus a very accurate output voltage  
can be obtained since heating effects will be minimal.  
The 0.1µF bypass capacitor should be located close to  
the supply pin, and connected directly to the ground plane.  
The ground pin of the device should also be connected  
directly to the ground plane. The sense or adjust pin does  
not need to be close to the output voltage plane, but  
should be routed to avoid noisy traces if at all possible.  
To prevent false latching due to capacitor inrush currents  
or low supply rails, the current limit latch is initially  
disabled. It is enabled at a preset time (nominally 5ms)  
after both IN and EN rise above their lockout points. If  
EN is left floating (using the internal resistor pullup), then  
VPWR should come up before VIN, or the device will latch  
off. If the enable function is not being used, EN should  
Power dissipation within the device is practically  
negligible, requiring no special consideration during  
layout.  
be tied to VPWR  
.
2004 Semtech Corp.  
13  
www.semtech.com  
SC1548  
POWER MANAGEMENT  
Outline Drawing - SOT-23-5  
DIMENSIONS  
INCHES MILLIMETERS  
A
DIM  
A
MIN NOM MAX MIN NOM MAX  
e1  
D
E
-
-
-
-
.035  
.057 0.90  
.006 0.00  
1.45  
0.15  
A1 .000  
A2 .035 .045 .051  
.90  
.020 0.25  
.009 0.08  
1.15 1.30  
N
1
-
-
-
-
b
.010  
.003  
0.50  
0.22  
2X  
E/2  
c
EI  
D
.110 .114 .118 2.80 2.90 3.00  
E1 .060 .063 .069 1.50 1.60 1.75  
2
E
.110 BSC  
.037 BSC  
.075 BSC  
2.80 BSC  
0.95 BSC  
1.90 BSC  
ccc C  
2X N/2 TIPS  
e
e1  
L
e
.012 .018 .024 0.30 0.45 0.60  
(.024)  
(0.60)  
L1  
N
B
5
5
-
-
01  
0°  
10°  
0°  
10°  
aaa  
.004  
.008  
.008  
0.10  
0.20  
0.20  
D
bbb  
ccc  
aaa C  
A2  
A
SEATING PLANE  
A1  
bxN  
bbb  
H
C
c
GAGE  
C
A-B D  
PLANE  
0.25  
L
01  
(L1)  
DETAIL A  
SEE DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
Land Pattern - SOT-23-5  
X
DIMENSIONS  
DIM  
INCHES  
(.098)  
.055  
MILLIMETERS  
(2.50)  
1.40  
0.95  
0.60  
1.10  
3.60  
C
G
P
X
Y
Z
(C)  
G
Z
.037  
.024  
Y
.043  
.141  
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 FAX (805)498-3804  
2004 Semtech Corp.  
14  
www.semtech.com  

相关型号:

SC1548CSK.TR

Analog Circuit, 1 Func, PDSO5, SOT-23, 5 PIN
SEMTECH

SC1548CSK.TRT

Analog Circuit, 1 Func, PDSO5, SOT-23, 5 PIN
SEMTECH

SC1548CSKTRT

Linear FET Controller
SEMTECH

SC1548_04

Linear FET Controller
SEMTECH

SC1549TSTR

Power Supply Support Circuit, Fixed, 3 Channel, PDSO20, TSSOP-20
SEMTECH

SC1549TSTRT

Power Supply Support Circuit, Fixed, 3 Channel, PDSO20, TSSOP-20
SEMTECH

SC1552CM-2.5TRT

Fixed Positive LDO Regulator, 2.5V, 1.4V Dropout, PSSO5, TO-263, 5 PIN
SEMTECH

SC1563

VERY LOW DROPOUT, LOW QUIESCENT 500mA REGULATOR
SEMTECH

SC1563IMS-1.8

VERY LOW DROPOUT, LOW QUIESCENT 500mA REGULATOR
SEMTECH

SC1563IMS-1.8TR

Fixed/Adjustable Positive LDO Regulator, 1.2V Min, 4.8V Max, 0.7V Dropout, CMOS, PDSO8, MSOP-8
SEMTECH

SC1563IMS-1.8TRT

Fixed/Adjustable Positive LDO Regulator, 1.2V Min, 4.8V Max, 0.7V Dropout, CMOS, PDSO8, LEAD FREE, MSOP-8
SEMTECH

SC1563IMS-2.5

VERY LOW DROPOUT, LOW QUIESCENT 500mA REGULATOR
SEMTECH