SC2595_09 [SEMTECH]

Integrated Linear DDR Termination Regulator; 集成线性DDR终端稳压器
SC2595_09
型号: SC2595_09
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Integrated Linear DDR Termination Regulator
集成线性DDR终端稳压器

稳压器 双倍数据速率
文件: 总12页 (文件大小:441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2595  
Integrated Linear DDR  
Termination Regulator  
POWER MANAGEMENT  
Description  
Features  
The SC2595 is an integrated linear DDR termination  
device, which provides a complete solution for DDR  
termination designs; while meeting the JEDEC require-  
ments of SSTL-2 specifications for DDR-SDRAM termi-  
nation.  
‹ Regulates while sourcing or sinking 1.5A  
‹ AVCC range is from 2.5V to 5V  
‹ Reference output  
‹ Minimum number of external components  
‹ Accurate internal voltage divider  
‹ SOIC8-EDP package.Pb-free,Halogen free, and RoHS/  
WEEE compliant  
The SC2595 can source and sink 1.5A current at the  
output VTT while maintaining excellent load regulation.  
Applications  
VTT is designed to track the VREF voltage with a tight  
tolerance over the entire current range while preventing  
shoot through on the output stage.  
‹ DDR memory termination  
‹ High speed data line termination  
‹ PC motherboards  
‹ Graphics boards  
‹ Disk drives  
‹ CD-ROM drives  
A VSENSE pin is incorporated to provide excellent load  
regulation, along with a buffered reference voltage.  
The SC2595 incorporates a disable function built into  
the AVCC pin to tri-state the output during Suspend To  
Ram (STR) states.  
(Multiple patents pending.)  
Typical Application Circuit  
VDD  
SC2595  
1
2
3
4
8
VTT  
NC  
VTT  
PVCC  
AVCC  
VDDQ  
7
6
5
GND  
VSENSE  
VREF  
VREF  
September 24, 2009  
1
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not implied.  
Parameter  
Symbol  
VCC  
Maximum  
-0.3 to +6.0  
Units  
V
PVCC, AVCC, VDDQ to GND  
Thermal Resistance Junction to Case  
SOIC8-EDP  
θ
°C/W  
°C/W  
5.5  
JC  
Thermal Resistance Junction to Ambient  
SOIC8-EDP  
θ
JA  
36.5  
-40 to +105  
-40 to +150  
-65 to +150  
240  
Operating Temperature Range  
TA  
°C  
°C  
°C  
°C  
°C  
KV  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
TSTG  
TLEAD  
TLEAD  
ESD  
Peak IR Reflow Temperature 10 - 40s  
Peak IR Reflow Temperature 10 - 40s  
ESD Rating (Human Body Model)  
260  
2
Operating Range  
Parameter  
Symbol  
TJ  
Maximum  
-40 to +150  
2.3 to 5.5  
2.3 to AVCC  
Units  
Junction Temperature Range  
AVCC to GND  
°C  
V
AVCC  
PVCC to GND  
PVCC  
V
Electrical Characteristics  
Specifications with standard typeface are for TJ = 25oC and limits in boldface type apply over the full Operating Temperature Range  
(TJ = -40oC to +150oC). Unless otherwise specified, AVCC = PVCC = 2.5V, VDDQ = 2.5V.  
Parameter  
Symbol  
VREF  
Test Conditions  
IREF_OUT = 0mA  
Min  
Typ  
Max  
Units  
V
Reference Voltage  
VDDQ/2  
- 40mV  
1.25  
VDDQ/2  
+ 40mV  
(1)  
Load Regulation  
REGLOAD  
ILOAD : 0 to +1.5A  
ILOAD : 0 to -1.5A  
-0.5  
+0.5  
%
VTT Output Voltage Offset  
Quiescent Current  
VOSVTT  
IQ  
IOUT=0A, VTT- VREF  
ILOAD = 0A  
-20  
0
+20  
mV  
μA  
V
400  
2.1  
100  
AVCC Enable Threshold  
VDDQ Input Impedance  
ZVDDQ  
kΩ  
Note:  
(1) For Load Regulation, use a 10ms current pulse width when measuring VTT.  
©2009 Semtech Corp.  
2
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
Part Number  
Package  
Temp. Range (TA)  
-40 to +105OC  
TOP VIEW  
SC2595STRT(1)(2) SOIC8-EDP  
SC2595EVB  
Evaluation Board  
VTT  
NC  
GND  
1
2
3
4
8
7
6
5
Notes:  
(1) Only available in tape and reel packaging. Areel contains  
2500 devices for SOIC8-EDP package.  
(2) Pb-free,Halogen free, and RoHS and WEEE compliant.  
PVCC  
AVCC  
VDDQ  
VSENSE  
VREF  
(SOIC8-EDP)  
©2009 Semtech Corp.  
3
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Pin Descriptions  
SOIC-8L EDP Pin Name  
Pin #  
Pin Function  
(1)  
1
2
3
NC  
No internal connection.  
Ground.  
GND  
VSENSE VSENSE is a feedback pin. VTT plane is always a narrow and long strip plane in most  
motherboard applications. This long strip plane will cause a large trace  
inductance and trace resistance. Consider the load transient condition; a fast  
load current going through VTT strip plane can create voltage spikes on the VTT  
plane. The load current can also cause a DC voltage drop on the VTT plane. It is  
recommended that VSENSE should be connected to the center of VTT plane to  
improve the load regulation and the noise immunity. In case that one can't  
connect the VSENSE pin to the center of the VTT plane, one should connect it to the  
SC2595 VTT pin directly. A longer trace of VSENSE may pick up noise and cause the  
error of load regulation; hence the longer trace must be avoided.  
A 10nF to 100nF ceramic capacitor close to the VSENSE pin is required to avoid  
oscillation during transient condition.  
4
5
VREF  
VREF is an output pin, which provides the buffered output of the internal reference  
voltage. System designer can use the VREF output voltage for Northbridge chipset  
and memory. Because these input pins are typically high impedance, there  
should be a small amount of current drawn from the VREF pin [figure 9, 10]. To  
improve the noise immunity, a ceramic capacitor (10nF - 100nF) should be added  
from the VREF pin to ground with short distance.  
VDDQ(2)  
The VDDQ pin is an input for creating internal reference voltage to regulate VTT. The  
VDDQ voltage is connected to internal 100Kohm resistor divider. The central tap  
of resistor divider (VDDQ/2) is connected to the internal voltage buffer, which  
output is connected to VREF pin and the non-inverting input of the error amplifier  
as the reference voltage. With the feedback loop closed, the VTT output voltage  
will always track the VDDQ/2 precisely. It is recommended to use 5.1 ohm + a  
1uF ceramic capacitor for VDDQ pin's filter to increase the noise immunity.  
6
7
AVCC (2)  
PVCC (2)  
The AVCC pin is used to supply all of the internal control circuitry. AVCC voltage  
has to be greater than its UVLO threshold voltage (2.1V typical) to allow the  
SC2595 be in normal operation. If AVCC voltage is lower than the UVLO threshold  
voltage, the VTT output voltage will remain at 0V.  
The PVCC pin provides the rail voltage from where the VTT pin draws load current.  
There is a limitation between AVCC and PVCC. The PVCC voltage must be less or  
equal to AVCC voltage to ensure the correct output voltage regulation. The VTT  
source current capability is dependent on PVCC voltage. Higher the voltage on  
PVCC, higher the source current; however, it will cause more power loss and higher  
temperature rise [figure 5, 11, 12].  
8
VTT  
The VTT pin is the output of SC2595. It can sink and source 1.5A continuous  
current and 3A peak current while keeping excellent load regulation. It is  
recommended that one should use at least 220uF low ESR capacitors (ESR  
should be lower than 250m ohm) and 10uF ceramic capacitors, which are  
uniformly spread on the VTT strip plane to reduce the voltage spike under load  
transient condition.  
Thermal Thermal pad should be connected to GND.  
Pad  
©2009 Semtech Corp.  
4
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Notes:  
(1) Can be used for vias.  
(2) Power up of AVCC, PVCC and VDDQ supplies.  
(a) The preferred mode of operation is when the AVCC, PVCC and VDDQ pins are tied together to a single supply.  
(b) If and when AVCC, PVCC pins are tied to a supply separate to that of the VDDQ supply pin; then the VDDQ supply should  
lead AVCC, PVCC supply or the VDDQ supply and the AVCC, PVCC supply should rise simultaneously.  
(c) If the AVCC, PVCC and VDDQ supply pins are connected in a way such that, AVCC, PVCC supplies precedes VDDQ supply;  
then VTT output precedes VDDQ. This can cause the SDRAM device to latch-up, which may cause permanent  
damage to the SDRAM.  
Block Diagram  
AVCC  
VDDQ  
PVCC  
UVLO  
-
OUT  
+
-
Driver  
Circuit  
+
OUT  
VTT  
VREF  
GND  
VSENSE  
NC  
©2009 Semtech Corp.  
5
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Application Information  
Overview  
Application_2: Lower Power Loss Configuration  
for SSTL-2  
Double Data Rate (DDR) SDRAM was defined by JEDEC  
1997. Its clock speed is the same as previous SDRAM  
but data transfers speed is twice than previous SDRAM.  
By now, the requirement voltage range is changed from  
3.3V to 2.5V; the power dissipation is smaller than  
SDRAM. For above reasons, it is very popular and widely  
used in M/B, N/B, Video-cards, CD ROM drives, Disk  
drives.  
If power loss is a major concern, separated the PVCC form  
the AVCC and the VDDQ will be a good choice. The PVCC can  
operate at lower voltage (1.8V to 2.5V). If 2.5V voltage  
is applied on AVCC and the VDDQ, but the source current is  
lower due to the lower operating voltage applied on the  
PVCC. Please find the relative test result in Figures 5, 11  
and 12.  
Regarding the DDR power management solution, there  
are two topologies can be selected for system design-  
ers. One is switching mode regulator that has bigger sink/  
source current capability, but the cost is higher and the  
board space needed is bigger. Another solution is linear  
mode regulator, which costs less, and needs the less  
board space. For two DIMM motherboards, system de-  
signers usually choose the linear mode for DDR power  
management solution.  
SC2595  
1
2
3
4
8
7
6
5
NC  
VTT  
PVCC  
AVCC  
VDDQ  
VTT  
1.8V to 2.5V  
1.25V  
GND  
2.5V  
VDD  
Vin  
VSENSE  
VREF  
Cin1  
Cout1  
220uF  
R2  
R
Cin2  
1uF  
Cin2  
Csense  
2.2uF  
Cref  
10nF  
68uF  
10uF  
Cddq  
1uF  
Applications  
Typical Application Circuits & Waveforms  
Figure 2: Lower power loss for SSTL-2 application  
Two different application circuits are shown below in Fig-  
ure 1 to Figure 2. Each circuit is designed for specific  
condition. More details are described below. See Note  
1. Below for recommended power up sequencing.  
Notes:  
(1) Power up of AVCC, PVCC and VDDQ supplies.  
(a) The preferred mode of operation is when the  
AVCC, PVCC and VDDQ pins are tied together to a  
single supply.  
Application_1: Standard SSTL-2 Application  
(b) If and when AVCC, PVCC pins are tied to a supply  
separate to that of the VDDQ supply pin; then  
the VDDQ supply should lead AVCC, PVCC supply or  
the VDDQ supply and the AVCC, PVCC supply should  
rise simultaneously.  
(c) If the AVCC, PVCC and VDDQ supply pins are con  
nected in a way such that, AVCC, PVCC supplies  
precedes VDDQ supply; then VTT output precedes  
VDDQ. This can cause the SDRAM device to latch-  
up, which may cause permanent damage to the  
SDRAM.  
The AVCC pins, the PVCC pin, and the VDDQ pin can be tied  
together for SSTL-2 application. It only needs a 2.5V  
power rail for normal operation. System designer can  
save the PCB space and reduce the cost. Please refer  
to figures 3 to 4 for test waveforms.  
SC2595  
1
2
3
4
8
7
6
5
VTT  
NC  
VTT  
PVCC  
AVCC  
VDDQ  
1.25V  
VDD  
GND  
2.5V  
VSENSE  
VREF  
R1  
5.1  
Cout1  
Cin1  
68uF  
Cout2  
Csence Cref  
220uF 10uF  
Cin2  
1uF  
10nF  
2.2uF  
Figure 1: Standard SSTL-2 application  
©2009 Semtech Corp.  
6
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Application Information (Cont.)  
Layout guidelines  
1)The SC2595 has a SOIC8-EDP package. It can improve  
the thermal impedance (θJC) significantly. A suitable ther-  
mal pad should be added when PCB layout. Some ther-  
mal vias are required to connect the thermal pad to the  
PCB ground layer. This will improve the thermal perfor-  
mance .  
2)To increase the noise immunity, a ceramic capacitor of  
10nf to 100nf is required to decouple the VREF pin with  
the shortest connection trace, also A 10nF to 100nF  
ceramic capacitor close to the VSENSE pin is required to  
avoid oscillation during transient condition.  
3)To reduce the noise on the input power rail for stan-  
dard SSTL-2 application, a 68μF low ESR capacitor and  
a 1μF ceramic capacitor have to be used on the input  
power rail with shortest possible connection.  
4)For lower power loss SSTL-2 application, a 220μF AL.  
capacitor (ESR should be lower than 250m ohm) and a  
10μF ceramic has to be added on the PVCC pin and a 1μF  
ceramic capacitor +5.1 ohm filter has to be added on  
the VDDQ pin with shortest possible connection.  
5)VTT output copper plane should be as large as possible.  
6)VSENSE trace should be as short as possible.  
©2009 Semtech Corp.  
7
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Test Waveforms  
Test condition: Avcc=PVcc=VDDQ=2.5V,VTT=1.25V  
Cout1=220uF, Cout2=10uF, Sink 2A.  
Test condition: Avcc=PVcc=VDDQ=2.5V,VTT=1.25V  
Cout1=220uF, Cout2=10uF, Source 2A.  
VDDQ  
AVcc  
PVcc  
VDDQ  
AVcc  
PVcc  
VTT  
VTT  
VREF  
VREF  
Figure 3  
Figure 4  
Typical Characteristics  
AVcc vs IQ  
AVCC=VDDQ=2.5V  
600  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VDDQ  
=2.5V  
VDDQ  
MAX  
SOURCE  
CURRENT  
=1.8V  
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
1.8 1.9  
2
2.1 2.2 2.3 2.4 2.5  
PVCC(V)  
AVcc(V)  
Figure 6  
Figure 5  
©2009 Semtech Corp.  
8
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Temp vs UVLO  
Quiescent Current(AVCC= 2.5V)  
800  
2.00  
1.99  
1.98  
1.97  
1.96  
1.95  
1.94  
1.93  
1.92  
1.91  
1.90  
700  
600  
500  
400  
300  
200  
2.5V  
1.8V  
UVLO  
(Typical)  
0
20 40 60 80 100 120 140  
Temperature (  
20 30 40 50 60 70 80 90 100 110  
Temperature(  
)
)
Figure 8  
Figure 7  
VREF_max vs IREF(VDDQ=2.5V)  
VDDQ=PVCC=AVCC=2.5V  
1.250  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
-40  
0
25  
75  
150  
0
100 200 300 400 500 600 700 800 900  
IREF(uA)  
0
100 200 300 400 500 600 700 800 900  
IREF(uA)  
Figure 10  
Figure 9  
©2009 Semtech Corp.  
9
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
VDDQ=1.8V  
VDDQ=2.5V  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
MA X  
SOURCE  
CURRENT  
MA X  
SOURCE  
CURRENT  
2.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
AVCC=PVCC(V)  
AVCC=PVCC(V)  
Figure 12  
Figure 11  
AVCC=PVCC=VDDQ=2.5V  
140  
120  
100  
80  
60  
40  
20  
0
SOURCE  
SINK  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
DC CURRENT (A)  
Figure 13  
©2009 Semtech Corp.  
10  
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Outline Drawing - SOIC8-EDP  
©2009 Semtech Corp.  
11  
www.semtech.com  
SC2595  
POWER MANAGEMENT  
Land Pattern - SOIC8-EDP  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
©2009 Semtech Corp.  
12  
www.semtech.com  

相关型号:

SC2596

Low Voltage Integrated DDR Termination Regulator
SEMTECH

SC2596EVB

Low Voltage Integrated DDR Termination Regulator
SEMTECH

SC2596SETRT

Low Voltage Integrated DDR Termination Regulator
SEMTECH

SC2596_09

Low Voltage Integrated DDR Termination Regulator
SEMTECH

SC2597

Low Voltage DDR Termination Regulator
SEMTECH

SC2597EVB

Low Voltage DDR Termination Regulator
SEMTECH

SC2597SETRC

Low Voltage DDR Termination Regulator
SEMTECH

SC2598

Low Voltage DDR Termination Regulator
SEMTECH

SC2598EVB

Low Voltage DDR Termination Regulator
SEMTECH

SC2598SETRC

Switching Regulator
SEMTECH

SC2599

Low Voltage DDR Termination Regulator
SEMTECH

SC2599EVB

Low Voltage DDR Termination Regulator
SEMTECH