SC804AMLTRT [SEMTECH]

Fully Integrated 4.4V Lithium-Ion Battery Charger System with Timer; 完全集成的4.4V锂离子电池充电器系统具有定时器
SC804AMLTRT
型号: SC804AMLTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Fully Integrated 4.4V Lithium-Ion Battery Charger System with Timer
完全集成的4.4V锂离子电池充电器系统具有定时器

电源电路 电池 电源管理电路 输入元件
文件: 总21页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC804A  
Fully Integrated 4.4V Lithium-Ion  
Battery Charger System with Timer  
POWER MANAGEMENT  
Description  
Features  
Fully integrated charger with FET pass transistor,  
reverse-blocking diode, sense resistor, timer, and  
thermal protection  
The SC804A is a fully integrated full-feature, single cell  
constant-current/constant-voltage (CC/CV) 4.4V Lithium-  
Ion battery charger. With an integrated timer and  
complete charge control algorithm, the SC804A is ideal for  
stand-alone charger applications. The SC804A contains  
programmable pre-charge, fast-charge and termination  
current settings. The SC804A can be programmed to  
terminate charging based on the output current or the  
time-out of the programmable timer. The fast charge  
current is typically set with an external resistor, but it can  
also be adjusted by applying an analog voltage to the AFC  
pin. This feature allows use of a microcontroller to set  
charging current via a DAC output.  
Battery voltage controlled to 1% accuracy  
Programmable precharge, fastcharge & termination  
current over wide range, with analog current control  
reference input for design exibility  
Up to 1.5A continuous charge current  
Input voltage range from 3V to 14V  
Soft-start reduces start-of-charge adapter  
load transients  
NTC thermistor sense input and adjustable cold  
temperature threshold  
The SC804A’s 14V input voltage range eliminates the  
need for additional protection circuitry required by other  
Adjustable 2 - 6 hour programmable charge timer  
5V chargers to protect against faulty adapters. The 0.1μA battery drain current in shutdown and monitor  
SC804A also incorporates an under-voltage lockout falling  
threshold of 3V so that charging will continue if the input  
supply goes into a current-limited mode.  
modes  
Small 4mm x 4mm 16 lead MLPQ package  
Over-current protection in all modes  
Over-voltage protection  
Reference ground and battery sense inputs are provided  
to eliminate voltage drops during charging due to high  
charging currents.  
Remote Kelvin sensing at the battery terminals  
Status indicators for charger-present, charger-active,  
over-voltage fault, and error notication  
The output voltage to the battery is controlled to within  
1% of the programmed voltage. The SC804A can also  
Applications  
Cellular phones  
PDAs  
Handheld meters  
Charging stations  
function as a general purpose current source or as a  
Handheld computers  
Digital cameras  
Programmable current  
source  
Typical Application Circuit  
current source for charging nickel-cadmium (NiCd) and  
nickel-metal-hydride (NiMH) batteries.  
Typical Application Circuit  
Charger VIN  
14  
11  
VCC  
13  
CPB  
10  
12  
2
OV_FLT  
OVPB  
IPRGM  
NTC  
CHRGB  
RTIM  
CTO  
Red  
Green  
3
7
4
8
6
5
R3  
C1  
2.2 μF  
1
ITERM  
FLTB  
BSEN  
VOUT  
VOUT  
AFC  
RT  
NTC  
16  
15  
9
R5  
R6  
R1  
R2  
GND  
C2  
RGND  
2.2μF  
Battery  
SC804A  
R4  
ERROR  
DAC ISET  
July 18, 2007  
1
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specications below may result in permanent damage to the device or device malfunction. Operation outside of the parameters specied in the  
DRAFT  
Electrical Characteristics section is not implied.  
Parameter  
Symbol  
Maximum  
Units  
VCC, CTO, NTC to GND  
-0.3 to 14.0  
V
VOUT, BSEN, RTIM, AFC, IPRGM, CPB, CHRGB, OVPB,  
ITERM, FLTB, to GND  
-0.3 to +6.0  
V
RGND to GND  
-0.3 to 0.3  
V
A
VOUT Output Current  
IVOUT  
Pd  
1.5  
Power Dissipation MLP (Derate 20mW/°C above 85°C)  
Thermal Impedance, Junction to Ambient(1)  
Junction Temperature  
2
48  
W
θJA  
°C/W  
°C  
TJ  
150  
Operating Ambient Temperature Range  
IR Reow Temperature  
TA  
-40 to +85  
260  
°C  
TLEAD  
TSTG  
°C  
Storage Temperature Range  
VOUT short to GND  
-65 to 150  
Continuous  
2
°C  
ESD Protection Level(2)  
VESD  
kV  
Notes:  
1) Calculated from package in still air, mounted to 3” x 4.5”, 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
2) Tested according to JEDEC standard JESD22-A11 4-B.  
Electrical Characteristics  
Unless otherwise noted: VCC = 4.75V - 5.25V. Typical values are at TA = 25°C Min and Max are for -40°C < TA < +85°C unless noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Operating Voltage  
VCCOP  
4.28  
5.0  
6.22(1)  
V
Charging begins when  
threshold is exceeded  
VCC UVLO Rising Threshold  
VCC UVLO Falling Threshold  
VTUVLOR  
VTUVLOF  
VTOVPR  
3.88  
2.86  
6.63  
4.08  
3.06  
6.94  
4.28  
3.26  
7.40  
V
V
V
Charging continues until  
threshold is reached  
VCC OVP  
Rising Threshold  
VCC OVP  
Falling Threshold  
VTOVPF  
VTOVPH  
ICCDIS  
6.22  
200  
6.63  
350  
1.9  
7.00  
600  
V
VCC OVP Hysteresis  
Operating Current  
mV  
Shutdown Mode - CHRGB, CPB,  
OVPB, FLTB off NTC = 0V  
mA  
Charging Mode - CHRGB, CPB,  
OVPB, FLTB off NTC = 2.5V  
ICCCHG  
2.0  
© 2005 Semtech Corp.  
2
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Battery Leakage Current  
(VOUT and BSEN)  
VCC = 0V,  
VOUT = BSEN = 4.5V  
ILEAKBAT  
0.1  
2
μA  
Regulated Constant  
Voltage  
VCV  
0°C TJ 125°C  
4.314  
22  
4.357  
30  
4.40  
38  
V
RGND Output Accuracy  
VOUT = VOUTNOM + RGND  
VRGND  
RGND - GND = 30mV  
mV  
RGND Current  
IRGND  
IPREQ  
ITERM  
RGND = 0V  
35  
μA  
Battery Pre-Charge Current  
RITERM = 499Ω, 0°C TJ 125°C  
270  
270  
300  
330  
330  
mA  
Battery Termination  
Current  
RITERM = 499Ω, 0°C TJ 125°C  
300  
815  
405  
1
mA  
mA  
mA  
V
Battery Fast-Charge  
Current  
RPRGM = 1.87kΩ, VOUT = 3.8V  
0°C TJ 125°C  
IFAST  
753  
364  
878  
447  
AFC DAC  
Fast-Charge Current  
RPRGM = 1.87kΩ, V(AFC) = 0.75V  
0°C TJ 125°C  
IDACADJ  
VTAFC  
VITERM  
VIPRGM  
VTPreQ  
VTReQ  
TOT  
AFC Enable/Disable  
Threshold  
VCC - VAFC > VTAFC disables  
Analog Fast Charge  
ITERM Regulated  
Voltage  
1.45  
1.45  
2.9  
1.557  
1.557  
3.01  
100  
150  
1.66  
1.66  
3.11  
140  
V
IPROG Regulated  
Voltage  
V
VBAT Precharge  
Threshold  
0°C TJ 125°C  
VCV - VBSEN, 0°C TA 85°C  
Hysteresis = 10°C  
V
VBAT Recharge  
Threshold  
60  
mV  
°C  
Over-Temperature  
Shutdown  
© 2005 Semtech Corp.  
3
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
VTNTCDIS  
SC804A Disabled  
0.3  
0.6  
0.8  
V
NTC Hot VTH  
Applies to falling threshold  
4.3V VCC 6.5V  
29  
30  
31  
% of  
VCC  
VTNTCH  
1.45  
73.4  
1.50  
74.4  
1.55  
75.4  
V
at VCC = 5V  
NTC Cold VTH, VCTO = 0V  
Applies to rising threshold  
4.3V VCC 6.5V  
% of  
VCC  
VTNTCC  
3.67  
3.72  
50  
3.77  
V
at VCC = 5V  
NTC Hot & Cold VTNTCx  
hysteresis  
(VTNTCx Rising - VTNTCx Falling)  
NTC Thresholds  
VTNTCHYS  
mV  
Applies to internal NTC thresholds  
CTO Voltage (Adjustable NTC  
Cold Rising Threshold) Setting  
Range(2), -40°C TA 25°C(NTC  
Cold Rising Threshold is VTNTCC  
when CTO tied to GND)  
% of  
VCC  
50  
90  
70  
VCTO  
Threshold Error(3),  
-40°C TA 25°C  
-70  
mV  
mV  
Internal hysteresis on CTO  
(VCTO Rising - VCTO Falling)  
Applies to externally set  
NTC cold threshold  
VTCTOHYS  
50  
3.5V VOUT VCC - 150mV  
0°C TJ 125°C  
Adjust Mode BSEN Voltage  
VBSEN-ADJ  
3.189  
3.217  
3.253  
400  
V
Adjust Mode Enable Voltage,  
VOUT-BSEN  
VADJEN  
VADJDIS  
VRTIM  
3.5V VOUT VCC - 150mV  
3.5V VOUT VCC - 150mV  
RRTIM = 37.4kΩ  
mV  
mV  
V
Adjust Mode Disable  
Voltage, VOUT-BSEN  
150  
1.450  
0.65  
External RTIM  
Regulation Voltage  
1.557  
0.85  
1.1  
1.660  
VRTIM VTTIMER  
Timer Disable  
Threshold  
VTTIMER  
VTINTTS  
V
disables internal timer  
VCC-VRTIM > VTINTTS  
selects internal timer  
Internal Timer Select  
V
© 2005 Semtech Corp.  
4
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Pre-Charge Fault  
Time-out  
RRTIM = 37.4kΩ  
RTIM pulled to VCC  
-20%  
-35%  
51  
44  
+20%  
+35%  
TPreQF  
min  
Complete Charge  
Time-out  
RRTIM = 37.4kΩ  
RTIM pulled to VCC  
-20%  
-35%  
3.37  
2.89  
+20%  
+35%  
TQCOMP  
hr  
CHRGB On  
CHRGB Off  
CPB On  
VCHRGB  
ICHRGB  
VCPB  
Load = 5mA  
Leakage Current, V = 5V  
Load = 5mA  
0.5  
0.5  
0.5  
0.5  
1
1
1
1
1
1
1
1
V
μA  
V
CPB Off  
ICPB  
Leakage Current, V = 5V  
Load = 5mA  
μA  
V
OVPB On  
OVPB Off  
FLTB On  
VOVPB  
IOVPB  
VFLTB  
IFLTB  
Leakage Current, V = 5V  
Load = 5mA  
μA  
V
FLTB Off  
Leakage Current, V = 5V  
μA  
Notes:  
1) VCC_OP Max is the “Maximum Vsupply” as dened in EIA/JEDEC Standard No. 78, paragraph 2.11.  
2) The absolute voltage on CTO must not exceed 6.0V to ensure normal operation.  
3) The threshold error is tested at VCTO min and max only.  
© 2005 Semtech Corp.  
5
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Ordering Information  
Pin Conguration  
DRAFT  
DEVICE  
PACKAGE  
16  
15  
14  
13  
SC804AMLTRT(1)  
MLPQ -16(2)  
RTIM  
BSEN  
CTO  
1
2
3
4
12  
11  
10  
9
TOP VIEW  
CPB  
SC804EVB  
Evaluation Board2(  
)
CHRGB  
IPRGM  
ITERM  
Notes:  
T
AFC  
1) Available in tape and reel packaging only. A reel contains 3000  
devices.  
5
6
7
8
2) Available in lead-free packaging only. This product is fully WEEE  
and RoHS compliant.  
MLPQ16: 4X4 16 LEAD  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
Battery voltage sense. Connect to battery positive terminal for Kelvin voltage sensing, VOUT otherwise.  
Do not leave open.  
1
BSEN  
Cold Temperature Offset. Adjustable NTC input high voltage (cold temperature) threshold. When the pin  
2
CTO  
is connected to GND the NTC high voltage threshold defaults to VTNTCC×VVCC  
.
3
4
5
6
IPRGM  
ITERM  
RGND  
GND  
Charger current program pin for fast-charge mode. Requires a resistor to GND to program fast-charge current.  
Charger termination current program pin. Requires a resistor to GND to program pre-charge and termination current.  
Reference ground. Connect to battery’s negative terminal for Kelvin voltage sensing, GND otherwise. Do not leave open.  
Ground.  
Input for battery NTC thermistor network. Voltage between VTNTCH×VVCC, normally the hot threshold, and the CTO voltage  
(VTNTCC×VVCC if CTO is tied to GND), normally the cold threshold, enables charging. Voltages outside this range suspend  
charging and drive FLTB pin active (low). Voltage below VTNTCDIS (nominally 0.6V) disables the SC804A and resets the  
charge timer (with FLTB pin inactive).  
7
NTC  
8
9
FLTB  
AFC  
Open drain fault indicator. Active low when a fault condition occurs.  
Analog Fast Charge input. Connect to a DAC for analog control of fast charge current level, connect to VCC  
to disable this feature. Do not leave open.  
Open drain charge status indicator. Active low when the charger is on and the output current exceeds the  
termination current setting, high impedance when IVOUT < ITERM.  
10  
11  
CHRGB  
CPB  
Open drain charger-present indicator. Active low when VCC exceeds UVLO.  
Programmable timer input pin. Connect to VCC to select the default time-out of 3 hrs., connect to GND  
to disable timer, or connect an external resistor to GND to program the time-out period.  
12  
RTIM  
13  
14  
15  
16  
OVPB  
VCC  
Open drain over-voltage indicator. Active low when an input over-voltage fault occurs.  
Input supply pin. Connect to adapter power.  
VOUT  
VOUT  
Charger output. Connect to battery.  
Charger output. Connect to battery.  
THERMAL  
PAD  
Thermal-conduction pad on bottom of the package. Solder directly to the ground plane with multiple  
thermal vias to all other ground planes.  
T
© 2005 Semtech Corp.  
6
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Block Diagram  
14  
VCC  
1
9
BSEN  
AFC  
V
CV (VBSEN-ADJ in Adj. Mode)  
Reference  
Voltages  
Fast-Charge Ref  
Pre- Charge Ref  
VTNTCC VTNTCH  
5
RGND  
Pre-Charge On  
Fast-Charge On  
Over-Temp  
Under-Voltage  
Over-Voltage  
Cold  
Threshold  
VOUT  
VOUT  
15  
16  
2
6
7
CTO  
GND  
NTC  
Offset  
Control  
Timer  
V
ITERM  
NTC  
Interface  
ITERM  
IPRGM  
4
3
RTIM 12  
V
IPRGM  
10  
11  
8
CHRGB  
CPB  
FLTB  
OVPB  
13  
Figure 1 - SC804A Functional Block Diagram  
© 2005 Semtech Corp.  
7
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Applications Information  
General Operation  
Fast-Charge Mode (CC)  
The SC804A can be congured independently with respect The fast-charge CC (Constant Current) mode is active when  
to fast-charge and termination current, output voltage, the battery voltage is above VTPreQ and less than VCV. The  
and timing, depending on the application. A typical fast-charge current can be set to a maximum of 1.5A and  
charging cycle is described below. Details on alternative is selected by the program resistor on the IPRGM pin. The  
applications and output programmability are covered in voltage on this pin will represent the current through the  
the individual sections.  
battery, enabling a microprocessor via an analog-to-digital  
converter (ADC) to monitor battery current by sensing the  
voltage on the IPRGM pin. The equation to set the fast-  
charge current is given by:  
The charging cycle begins when the power adapter is  
connected to the device. The SC804A performs glitch  
ltering on the VCC input and initiates a charge cycle  
when VVCC is greater than the under-voltage lockout (UVLO)  
rising threshold voltage. If the battery voltage is less than  
the pre-charge threshold level, the SC804A will output the  
pre-charge current. Once the pre-charge threshold voltage  
is exceeded, the SC804A enters fast-charge constant  
current (CC) mode. When the battery voltage reaches its  
nal value, the charger enters the constant voltage (CV)  
mode. In this mode the output current decreases as the  
battery continues to charge until the termination current  
level is reached. The CHRGB output turns off when IOUT  
drops below the termination current. If the charge timer  
is active, the SC804A continues to hold the battery in  
CV charge mode until the timer expires. When the timer  
expires the charger enters the monitor mode where the  
output remains off until the voltage at VOUT drops by  
VTReQ. At this point a new charge cycle is initiated.  
VIPRGM_Typ  
× 1000  
FCI =  
RIPRGM  
The superior fast-charge current accuracy of the SC804A  
is obtained by use of a patented* polarity-switched  
(i.e., chopped) current sense amplier to nullify current  
measurement offset errors.  
Compliance with the absolute maximum output current  
I
VOUTMAX, allowing for current regulation tolerance, requires  
that RIPRGM be no smaller than 1.05kΩ nominal. RIPRGM can  
be as large as 12.1kΩ, for a nominal FCI as small as 130  
mA, but must exceed PCI by at least 80mA. Note that for  
a given program resistor the current into the battery in CV  
mode can be determined by replacing VIPRGM_Typ with the  
actual voltage on the IPRGM pin in the above equation.  
The CC current can also be modied by applying an analog  
voltage to the AFC pin as described below.  
Pre-Charge Mode  
Pre-charge mode is automatically enabled whenever  
the battery voltage is below the pre-charge threshold  
voltage, VTPreQ. It is used to limit the power dissipation and  
precondition the battery for fast charging. The pre-charge  
current value is determined by the resistor on the ITERM  
pin. The pre-charge current is programmable from 50mA  
to 350mA. The equation to select the pre-charge current  
is given by:  
Analog Fast Charge (AFC Pin)  
Many applications require more than one current setting  
for fast-charge. This behavior is obtained in the SC804A  
using the AFC function. When the AFC pin is connected  
to VCC the device behaves as described in the previous  
section. When the AFC pin is driven by an analog voltage  
between 0V and (VVCC-1.0)V, the SC804A automatically  
uses this pin voltage to set the maximum fast-charge  
current according to the following equation:  
VITERM_Typ  
PCI =  
× 100  
RITERM  
whereVITERM_Typ designatesthetypicalvalueofVITERM. When  
the timer is enabled there is also a maximum allowed pre-  
charge duration. If the pre-charge time exceeds 25% of  
the total charge cycle the charger will turn off due to a  
pre-charge fault. This fault is cleared when VCC is toggled  
VAFC  
FCI =  
× 1000  
RIPRGM  
This adjustment to the fast charge current is obtained  
or the output voltage rises above VTPreQ  
.
by replacing the xed VIPRGM reference voltage with the  
*US Patent 6,836,095.  
© 2005 Semtech Corp.  
8
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Applications Information (Cont.)  
AFC voltage. (Note that AFC voltages above V  
produce IVOUT exceeding that programmed as per the Fast- capacity. The RTIM pin is connected to VCC to select the  
Charge Mode (CC) section.) For any applied AFC voltage, internal timer, and to GND to disable the timer.  
in the event of a faulty battery and to maximize DchRarAgFinTg  
will  
IPRGM  
FCI must not drop below 130mA, and FCI must always  
remain at least 80mA greater than PCI.  
Connecting a resistor between RTIM and GND will program  
the total charge time according to the following equation:  
RRTIM  
————  
3.08  
1
× ———  
3600  
Termination Current  
Charge time =  
(
)
Once the battery voltage reaches VCV the SC804A will  
transition from constant current mode to constant voltage  
mode. The current through the battery will decrease while  
the voltage remains constant as the battery becomes fully  
charged. When the current falls below the programmed  
termination current set by the termination resistor  
connected to the ITERM pin, the SC804A will disable  
CHRGB. If the timer is enabled the output will continue  
to oat-charge in CV mode until the timer expires. If the  
timer is disabled, the output will turn off as soon as the  
termination current level is reached. The equation to set  
the termination current is given by:  
With charge time expressed in hours. The timer is  
programmable over the range of 2 to 6 hours. The internal  
timer selection results in a charge time of 3 hours. The  
SC804A will automatically turn off the output when the  
charge timer times out.  
NTC Interface  
The NTC pin provides an interface to a battery pack  
Negative Temperature Coefcient (NTC) thermistor. The  
typical NTC network has a xed resistor from VCC to the  
NTC pin, and the battery pack NTC thermistor connected  
from the NTC pin to ground. In this conguration, an  
increasing battery temperature produces a decreasing  
NTC pin voltage, and a decreasing battery temperature  
produces an increasing NTC pin voltage.  
VITERM_Typ  
ITERM =  
× 100  
RITERM  
ITERM can be programmed to be as high as 300mA or as  
low as 50mA, though accuracy is not guaranteed below  
100mA. ITERM must be programmed to be less than FCI  
for correct operation of the charge cycle.  
This conguration is shown in the typical application  
schematic on page 1 of this datasheet. When the NTC  
voltage from the divider is greater than the high (cold)  
threshold or less than the low (hot) threshold, the SC804A  
suspendsthechargecyclebyturningofftheoutput, halting  
(but not resetting) the charge timer, and indicating a fault  
on the FLTB pin. Hysteresis is included for both high and  
low NTC thresholds to avoid chatter at the NTC trip points.  
When the NTC pin voltage returns to the valid range, the  
SC804A automatically resumes the charge cycle. The  
charge timer will time-out when the SC804A output on-  
time exceeds the timer setting regardless of how long it  
has been disabled due to the NTC temperature.  
Monitor Mode  
When a charge cycle is complete, the SC804A output  
turns off and the device enters monitor mode. If the  
voltage of the battery falls below the recharge threshold  
(VCV - VReQ), the charger will clear the charge timer and  
re-initiate a charge cycle. The maximum current drain of  
the battery during monitor mode will be no more than 1μA  
over temperature. The status of the charger output as a  
function of the timer and IOUT is tabulated below.  
An input voltage between VTNTCH×VVCC and the CTO input  
voltage VCTO (VTNTCC×V if CTO is tied to GND) enables  
charging. An input voVltCaC ge outside this range suspends  
charging and drives FLTB pin active (low). The internal  
NTC thresholds of VTNTCH and VTNTCC were designed to  
work with standard thermistors available from numerous  
vendors.  
Timer  
Iout  
N/A  
Output State  
T < Timeout  
T > Timeout  
Disabled  
On  
Off  
Off  
N/A  
< Itermination  
Charge Timer  
NTC pin voltage below VTNTCDIS (nominally 0.6V) disables  
The timer on the SC804A has two functions: to protect  
© 2005 Semtech Corp.  
9
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Applications Information (Cont.)  
DRAFT  
the SC804A and resets the charge timer (with the FLTB or R3 = 2.333×RHOT = 13.624kΩ exactly. The closest 1%  
pin inactive). The NTC pin can be pulled down to ground standard nominal value is R3 = 13.7kΩ.  
by an external n-channel FET transistor or processor GPIO  
Step 2: Verify acceptable thermistor self heating. In  
general, lower values of RT provide more noise immunity  
for the NTC voltage, but at the expense of bias current  
from the input adapter and power dissipation in the NTC  
network. The dissipation constant is the power rating of  
the thermistor resulting in a 1oC self heating error. The  
greatest self-heating occurs at low thermistor resistance  
(at high temperature). Since temperature sensing  
accuracy matters only at the charging temperature range  
thresholds, self heating is assessed only at the worst case  
high temperature threshold of +40oC.  
to disable or reset the SC804A.  
Note that the response of the SC804A to NTC pin voltage  
above the high threshold and below the low threshold  
is the same. Thus it is possible to congure the NTC  
network with the battery pack thermistor between NTC  
and VCC, and a xed resistor between NTC and ground.  
This conguration may be useful if it is desired to reset the  
charge timer (and the CHRGB output) when the battery  
pack is removed (so the xed resistor pulls the NTC pin to  
ground) while VCC is present.  
For VVCC = 5V, the 40oC NTC network current INTC_HOT  
=
VVCC (R3 + RHOT) = 0.246mA. Power dissipation in the  
Cold Temperature Offset (CTO)  
/
thermistor at this temperature, PHOT = RHOT × (INTC_HOT)2 =  
0.38mW, for self heating of approximately 0.13oC. The  
actual high temperature threshold will thus be lower by  
0.13oC. This self-heating error is usually acceptable. If  
it is not, then a thermistor with a greater RHOT must be  
chosen.  
The voltage applied to the CTO pin sets the NTC high  
voltage (normally the cold temperature threshold) for the  
NTC input. The default NTC high threshold (VTNTCC×VVCC  
can be selected by connecting the CTO pin to ground. If  
it is desired to change this threshold, the voltage on the  
CTO pin can be set between 0.5×VVCC and 0.9×VVCC  
)
.
Step 3: Determine the desired high (cold) threshold.  
Compute the NTC network resistor divider voltage, as a  
function of VVCC, at the cold temperature threshold.  
This feature is especially useful if a single PCB design  
is needed to satisfy similar applications with different  
requirements. The temperature range for normal charging  
can be adjusted by adjusting resistor values on a divider  
network without changing the NTC thermistor, which  
is often enclosed in the battery pack. An example of a  
typical application is shown in Figure 2.  
VCC × RCOLD  
NTCCOLD  
=
= 0.6591 × VCC  
R3 + RCOLD  
Step 4: Congure CTO. If NTCCOLD is sufciently close  
to the default cold threshold (VTNTCC×VVCC), then simply  
connect CTO to ground, disabling the CTO function, to  
complete the design. But in this example it is not, so the  
voltage on CTO must be set to 0.6591×VVCC. The simple  
resistive voltage divider network of Figure 2 can be used  
to obtain the desired CTO voltage.  
NTC/CTO Design Example  
The following example assumes the NTC network  
congurationofFigure2, withaxedresistorR3connected  
between NTC and VCC, and a battery NTC thermistor  
RT connected between NTC and ground. The battery  
temperature range over which charging is permitted is  
0oC through 40oC. The datasheet for the selected NTC  
thermistor indicates that RT = 5.839kΩ at 40oC, at RT =  
26.49kΩ at 0oC, with a dissipation constant DC = 3mW.  
Designate RHOT = 5.839kΩ and RCOLD = 26.49kΩ.  
VCTO = NTCCOLD  
VCC × RCT2  
= 0.6591 × VCC =  
RCT1 + RCT2  
or  
Step 1: Select R3. For the normal (NTC thermistor to  
ground) conguration, solve the NTC network voltage  
divider for R3 to place the NTC voltage at 0.3×VCC when  
RCT1  
1 0.6591  
=
= 0.5172  
RT = RHOT  
.
RCT2  
0.6591  
VCC × RHOT  
R3 + RHOT  
0.3 × VCC =  
© 2005 Semtech Corp.  
10  
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Applications Information (Cont.)  
The choice of RCT1 and RCT2 is somewhat arbitrary. The  
internal voltage references as VOUT pulls VCC DdoRwAnFtTo  
simplest approach is to pick one and compute the other. near, or below, VCV, creating a reduced output regulation  
A good choice here is RCT1 = 115kΩ, and RCT2 = 221kΩ, as voltage approximately 200mV below VCC. Thus VCC  
these standard 1% tolerance values produce the closest cannot be pulled down below VOUT + 200mV. The dropout  
match to the desired voltage divider ratio. With these voltage will be larger than 200mV whenever the minimum  
resistor nominal values,  
path resistance multiplied by the output current exceeds  
200mV, but it cannot be smaller than 200mV.  
VCC × RCT2  
VCTO  
=
= 0.6577 × VCC  
This greatest-of-two-limit dropout voltage behavior is  
evident in the dropout voltage typical performance plot.  
R
CT1 + RCT2  
When operating in Adjust Mode (next section), the  
regulated minimum dropout voltage depends on the  
programmed VOUT regulation voltage, and dropout also  
varies with the actual output voltage during CC charging.  
See Figure 4 for an illustration of dropout voltage data.  
which is, nominally, only 0.2% below the target value of  
0.6591×VVCC. The CTO network will present a load of only  
15μA to a 5V charging adapter. The nominal impedance  
presented to the CTO pin is RCT1 || RCT2 = 75.6kΩ. Any  
impedance on the order of 100kΩ (or less) is acceptable.  
Adjust Mode  
Remote Kelvin Sensing at the Battery  
The SC804A can be congured for an output voltage  
other than VCV using Adjust (ADJ) Mode. In Adjust Mode  
the output voltage is determined by an external resistor  
divider from VOUT to BSEN. When BSEN is connected in  
this fashion, VVOUT (during Constant Voltage (CV) charging)  
will be controlled such that the voltage at the BSEN pin  
The BSEN pin provides the positive Kelvin sensing voltage  
feedback to the CV amplier and should be connected as  
close to the battery + terminal as possible. Likewise, the  
RGND pin should be connected directly to the negative  
terminal of the battery. This allows the designer great  
exibility in PCB layout and achieves greater accuracy  
by sensing the battery voltage directly at the battery  
terminals. When laying out the PCB, the designer should  
route the BSEN and RGND trace directly to the battery  
connection terminals, rather than just to the VOUT and  
GND pins on the device.  
(VBSEN) is the reference voltage VBSEN-ADJ  
.
The output voltage can be set to any voltage desired by  
an appropriate choice of divider network resistors, within  
the following limits. When the SC804A is programmed for  
adjust mode, VVOUT is required to be 150mV less than VVCC  
,
and VVOUT is required to be 400mV greater than VBSEN  
.
VVOUT within 150mV of VBSEN guarantees normal mode  
operation. This implies that, for BSEN used as a Kelvin  
sense of battery voltage, the product of the fast charge  
current and the charge path resistance from VOUT to the  
Kelvin sense point should not exceed 150mV to ensure  
normal mode operation.  
Dropout Voltage  
Dropout voltage is the smallest achievable difference  
voltage between VCC and VOUT under a particular  
operating condition. Dropout voltage is encountered  
during CC charging whenever the current limit of the  
charging adapter is less than the SC804A FCI programmed  
current. In this case, the adapter voltage (the SC804A  
input voltage) will be pulled down to the battery voltage  
(the SC804A output voltage) plus the dropout voltage.  
The SC804A Adjust Mode schematic is shown in Figures  
3a and 3b. Referring to these schematics, the equation  
for setting the output voltage is:  
R11  
R12  
Dropout voltage is the larger of two values: (1) the I-R  
component, which is the output current multiplied by the  
minimum VCC-to-VOUT path resistance (which is highly  
temperature dependent), and (2) a regulated minimum  
difference voltage, which is output voltage dependent  
but is independent of the output current. The regulated  
minimum dropout voltage results from the collapse of  
VOUT = VBSEN-ADJ_TYP x ( 1 +  
)
The capacitor C3 across R8 in the feedback network  
introduces zero-pole frequency compensation for stability.  
Place the zero according to the following equation to  
ensure stability:  
1
R11 × C3 =  
2× 100kHz  
© 2005 Semtech Corp.  
11  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Applications Information (Cont.)  
Charger VIN  
14  
13  
3
11  
10  
12  
2
VCC  
CPB  
CHRGB  
RTIM  
CTO  
OV_FLT  
OVP  
Red  
Green  
R3  
IPRGM  
NTC  
C1  
2.2 μF  
7
RCT1  
RCT2  
4
1
ITERM  
FLTB  
GND  
BSEN  
VOUT  
VOUT  
AFC  
RT  
NTC  
8
16  
15  
9
R5  
R6  
6
R1  
R2  
5
RGND  
SC804A  
C2  
R4  
2.2μF  
ERROR  
Figure 2 - Application Circuit with AFC Disabled, and with NTC and CTO Resistor Networks  
Charger VIN  
14  
13  
3
11  
10  
12  
2
VCC  
CPB  
CHRGB  
RTIM  
CTO  
OV_FLT  
OVP  
Red  
Green  
R3  
IPRGM  
NTC  
C1  
2.2 μF  
7
4
1
ITERM  
FLTB  
GND  
BSEN  
VOUT  
VOUT  
AFC  
RT  
NTC  
R11  
8
16  
15  
9
R5  
R6  
6
R1  
R2  
5
RGND  
C3  
C2  
2.2μF  
SC804A  
R4  
R12  
ERROR  
Figure 3a - Application Circuit for Adjust Mode  
Charger VIN  
14  
13  
3
11  
10  
12  
2
VCC  
CPB  
CHRGB  
RTIM  
CTO  
OV_FLT  
OVP  
Red  
Green  
R3  
IPRGM  
NTC  
C1  
2.2 μF  
7
4
1
ITERM  
FLTB  
GND  
BSEN  
VOUT  
VOUT  
AFC  
RT  
NTC  
R11  
8
16  
15  
9
R5  
R6  
6
R1  
R2  
R4  
R12  
5
RGND  
C3  
C2  
2.2μF  
SC804A  
ERROR  
Figure 3b - Application Circuit for Adjust Mode, with Adapter-only Voltage Sensing  
© 2005 Semtech Corp.  
12  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Applications Information (Cont.)  
Overcurrent and Max Temperature Protection  
Overcurrentprotectionisinherentinallmodesofoperation.  
When the device is in charge mode the output is current-  
limited to either the pre-charge current limit value or the  
fast charge current limit value depending on the voltage  
at the output. Max die temperature protection is also  
included. This feature allows the SC804A to operate  
with maximum power dissipation by disabling the output  
current when the die temperature reaches the maximum  
operating temperature. The result is that the SC804A will  
operate as a pulse charger in extreme power dissipation  
applications, delivering the maximum allowable output  
current while regulating the internal die temperature to a  
safe level.  
0.8  
0.6  
0.4  
0.2  
3.2  
3.4  
3.6  
3.8  
4
4.2  
4.4  
4.6  
Output voltage, V  
Figure 4 - Adjust Mode Minimum Dropout Voltage  
The actual dropout voltage is the greater of the Minimum Dropout  
Voltage at various programmed VCV and instantaneous VOUT  
voltages (shown here, with several programmed VCV voltages  
indicated in the gure by ‘o’), and the IR drop due to the product  
of IOUT and RDS-ON (not shown here). Adjust mode operation is  
ensured for any IOUT current at programmed VCV voltages up to  
approximately 4.41V.  
Indicator Flags  
There are four indicator outputs/LED drivers ont he  
SC804A; CPB (Charger Present), CHRGB (Charge Active),  
OVPB (Over Voltage Fault), and FLTB (Fault). These outputs  
are all active-low; open drain NMOS drivers capable of  
sinking up to 10mA. The following table denes each  
indicator’s output state.  
NOTE: WhenusingAdjustModetoprogramaCVregulation  
voltage greater than VCV, care must be taken when CC  
charging with a charging adapter operating in current  
limit. Adapter current-limited operation occurs when  
the adapter current limit is less than the programmed  
SC804A fast charge current, such that the adapter voltage  
is pulled down to VVOUT plus the SC804A dropout voltage.  
A low adapter current limit multiplied by the low minimum  
path resistance of the main pass transistor and current  
sense resistor (as low as 290mΩ total at extremely low  
temperature) can result in a voltage drop from VCC to  
VOUT of less than 150mV if the Adjust Mode CV regulation  
voltage is programmed above VCV + 50mV. If VVCC - VVOUT  
< 150mV, Adjust Mode may not operate correctly. Adjust  
Mode will operate correctly whenever the programmed  
VOUT CV voltage is less than VCV + 50mV, regardless of the  
adapter current limit, because the regulated minimum  
dropout voltage is always greater than 150mV in this  
case. It will also operate correctly with an adapter current  
limit greater than 550 mA, regardless of the programmed  
output voltage, because the I-R dropout voltage will  
exceed 150mV at even the lowest specied operating  
temperature. Normal mode (that is, not Adjust Mode) has  
a regulated minimum dropout voltage of approximately  
200mV, which is constant for any VVOUT, and so operates  
correctly for any adapter current limit.  
FLAG  
CPB  
ON  
OFF  
UVLO < VCC < OVP  
IOUT > ITERM  
VCC > OVP  
Input out of range  
IOUT < ITERM  
VCC < OVP  
CHRGB  
OVPB  
VCC > OVP  
VCC UVLO  
NTC Temp Fault  
Pre-Charge Time-out  
(OT (Tj > 150°C)  
Normal Operation or  
NTC Disable  
FLTB  
The CPB output can be used as a VCC-present indicator.  
Regardless of teh state of NTC, the CPB output reects  
the VCC voltage. When VCC is between the UVLO and OVP  
thresholds the CPB output is low. If VCC is outside these  
limits, this output is high impedance.  
The CHRGB output indicates the charging status. When  
the output current is greater than ITERM, CHRGB is low.  
CHRGB is high impedance when IOUT is less than ITERM.  
The CHRGB output is latched during the charge cycle  
when the output current is less than ITERM. This latch is  
reset when the battery enters a recharge cycle, or if NTC  
or VCC are toggled.  
© 2005 Semtech Corp.  
13  
www.semtech.com  
SC804A  
POWER MANAGEMENT  
Charge Mode Timing Diagram  
DRAFT  
The OVPB signal is an active-low output that signals when  
the input voltage exceeds the OVP threshold. When the  
voltage on VCC is less than the OVP threshold voltage  
this output is high impedance.  
and pre-charge timeout. When any of these conditions  
occurs the FLTB output goes low; otherwise it remains  
high impedance.  
The FLTB output is activated when the device experiences  
a fault condition. This output can be used to notify the  
system controller of a fault condition when connected to  
an interrupt input, or it can be used like CPB and CHRGB  
to drive an indicator LED. There are ve fault modes  
signaled by FLTB: input over-voltage, input under-voltage,  
NTC temperature out of range, max die temperature (OT),  
Capacitor Selection  
Low cost, low ESR ceramic capacitors such as the X5R and  
X7R dielectric material types are recommended for use with  
the SC804A. The output capacitance range is 1F to 4.7F.  
The input capacitor is typically between 0.1F to 2.2F, but  
larger values will not degrade performance  
UVLO  
VCC  
VTPreQ  
Re-Charge  
Threshold  
VOUT  
Fast Charge  
Termination  
Current  
Soft Start  
Pre-Charge  
IOUT  
CV Mode  
CC Mode  
CPB  
CHRGB  
On  
Off  
On  
On  
Off  
On  
On  
On  
Hold  
TIMER  
FLTB  
Off  
Off  
On  
Off  
NTC  
Fault  
Figure 5 - Charge Mode Timing  
© 2005 Semtech Corp.  
14  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
State Diagram  
Over-Voltage, Under-Voltage or  
Over-Temperature will force the  
SC804A into Shutdown Mode  
from any state.  
Shutdown Mod:e  
VOUT &IOUT off,  
OVP > VCC> UVLO  
En =Hi  
CHRGB High Z,  
CPB Low.  
Yes  
CC = Constant Current  
CV = Constant Voltage  
Soft Start Vout  
CHRGB Low  
Timer  
Enabled?  
Yes  
Start Timer  
Start Pre- Charge  
Yes  
Soft Start CC Mode  
V
OUT > VTPreQ  
OUT =IPREQ  
IOUT =IFAST  
I
Time>TMAX/4  
Yes  
V
OUT =VCV  
Pre- Charge  
Timeout Fault  
FLTB goes low.  
Cleared by  
Yes  
Start CV Mode  
VBAT> VTPreQ  
or Re- cycle VCC  
IOUT <ITERM  
low temp> NTC Temp> high temp  
Yes  
CHRGB High Z  
NTC out of Range Fault  
FLTB goes active low  
Timer is frozen  
Charge resumes when NTC  
Temperature is valid  
Timer  
Enabled?  
Yes  
Yes  
Monitor Mode  
Time>TMAX  
VOUT off  
Yes  
Float Charge Mode  
OUT  
V
CV  
ReQ  
<V - V  
VOUT =VCV  
© 2005 Semtech Corp.  
15  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Typical Charge Cycle  
Typical Charge Cycle  
Evaluation Board congured for internal timer, 1.5V on IPRGM = 843mA, 1.5V on ITERM = 300mA, VCC = 5.0V, Li-Ion  
battery capacity = 850mAh. A 237Ω load resistor (18mA at a battery voltage of 4.36V) was applied to the battery fol-  
lowing completion of precharge, to slowly discharge the battery following charge timer timeout to illustrate a recharge  
cycle. The alphabetic markers indicate the following: (a) precharge; (b) fast charge, or Constant Current (CC) charg-  
ing; (c) Constant Voltage (CV) charging; (d) termination; (e) CV (“oat”) charging until charge timer timeout; (f) charge  
timer timeout; (g) discharge of the battery due to 18mA load; (h) recharge cycle initiated when battery voltage drops  
below the recharge threshold.  
5
g
c
e
f
4.36  
4
b
3.5  
3
a
2.5  
2
h
d
1.5  
1
0.5  
0
0
30  
60  
90  
120  
150  
180  
210  
240  
270  
300  
330  
360  
Time (minutes)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
b
c
a
h
f
0
30  
60  
90  
120  
150  
180  
210  
240  
270  
300  
330  
360  
Time (minutes)  
© 2005 Semtech Corp.  
16  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Typical Characteristics  
VOUT VCV Line Regulation vs. Load, T = +25°C  
VOUT VCV Load Regulation vs. Line, T = +25°C  
4.356  
4.356  
4.354  
4.352  
4.350  
4.348  
4.346  
4.344  
4.342  
4.340  
4.338  
VCC = 5.0V  
Iout = 500mA  
4.354  
VCC = 5.5V  
4.352  
4.350  
Iout = 750mA  
4.348  
VCC = 6.0V  
Iout = 1000mA  
4.346  
4.344  
VCC = 6.5V  
4.342  
Iout = 1500mA  
4.340  
4.338  
5.00  
5.20  
5.40  
5.60  
5.80  
6.00  
6.20  
6.40  
500  
750  
1000  
1250  
1500  
VIN (V)  
IOUT (mA)  
VOUT VCV Regulation vs. Temperature,  
VCC = 5.0V, IOUT = 800mA  
IOUT Line Regulation vs. Temperature,  
RPRGM = 1.87kΩ  
4.360  
4.358  
4.356  
4.354  
4.352  
4.350  
4.348  
840  
836  
832  
828  
824  
820  
816  
T = +85°C  
T = +25°C  
T = -40°C  
5.00  
5.25  
5.50  
5.75  
6.00  
6.25  
6.50  
-50  
-25  
0
25  
50  
75  
100  
Ambient Temperature, °C  
VCC, V  
Precharge and Termination Current vs.  
ITERM Resistance  
IOUT vs. IPRGM Resistance, T = +25°C  
1800  
1600  
1400  
1200  
1000  
800  
400.0  
350.0  
300.0  
250.0  
200.0  
150.0  
100.0  
50.0  
600  
400  
0.0  
0.3  
0.5  
0.7  
0.9  
1.1  
0
0.5  
1
1.5  
2
2.5  
1/Riprgm, 1/k  
Ω
1/RIPRGM, 1/k  
Ω
© 2005 Semtech Corp.  
17  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Dropout Voltage vs. IOUT  
Rds-on vs. IOUT  
0.900  
0.620  
0.570  
0.520  
0.470  
0.420  
0.370  
0.320  
0.270  
TJ = +125°C  
0.800  
TJ = +125°C  
0.700  
TJ = +85°C  
0.600  
TJ = +85°C  
0.500  
0.400  
0.300  
TJ = +25°C  
TJ = -40°C  
TJ = +25°C  
0.200  
TJ = - 40°C  
0.100  
400  
600  
800  
1000  
1200  
1400  
1600  
400  
600  
800  
1000  
1200  
1400  
1600  
IOUT (mA)  
IOUT (mA)  
AFC Operation, RPRGM = 1.87kΩ  
1200  
1000  
800  
600  
400  
200  
0
AFC Pin Tied to VCC  
Actual AFC Response  
Ideal AFC Response  
0
0.5  
1
1.5  
2
VAFC, V  
© 2005 Semtech Corp.  
18  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Evaluation Board Schematic  
CHARGER+  
CHARGER-  
RTIM  
C1  
1
2
2.2u  
R9  
R10  
1
2
2
1
<NM>  
<NM>  
JP6  
JP1  
D1  
1
1
2
R1  
VOUT  
2
1
2
2
1
D2  
D3  
D4  
390  
R15  
1
2
1
R11  
0
C2  
2.2u  
C3  
<NM>  
1
2
GND  
CTO  
1
1
37.4k  
1
2
3
4
12  
BSEN  
CTO  
RTIM  
CPB  
3
2
1
R2  
JP2  
JP3  
JP5  
11  
10  
9
1
1
2
2
1
1
2
U1  
SC804A  
390  
R3  
1
2
IPRGM  
ITERM  
CHRGB  
AFC  
390  
R13  
JP7  
IPRGM  
ITERM  
2
1
2
1
1
100k  
R12  
<NM>  
R6  
1.87k  
R5  
499  
R4  
JP4  
1
2
1
2
R14  
390  
2
1
1
2
1
1
RGND  
0
R8  
R7  
1
2
GND  
GND  
1
1
<NM>  
R16  
10k  
3
1
NTC  
POT_3296W-105  
Evaluation Board Gerber Plot,Top/Bottom Views  
© 2005 Semtech Corp.  
19  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Outline Drawing - MLPQ-16  
DIMENSIONS  
INCHES MILLIMETERS  
DIM  
A
MIN NOM MAX MIN NOM MAX  
A
D
-
-
-
-
.031  
A1 .000  
.040 0.80  
.002 0.00  
1.00  
0.05  
-
B
E
-
(.008)  
-
-
(0.20)  
A2  
b
D
.010 .012 .014 0.25 0.30 0.35  
.153 .157 .161 3.90 4.00 4.10  
PIN 1  
INDICATOR  
(LASER MARK)  
D1 .079 .085 .089 2.00 2.15 2.25  
.153 .157 .161 3.90 4.00 4.10  
E1 .079 .085 .089 2.00 2.15 2.25  
E
e
.026 BSC  
0.65 BSC  
L
N
.012 .016 .020 0.30 0.40 0.50  
16  
16  
aaa  
bbb  
.003  
.004  
0.08  
0.10  
A2  
A
SEATING  
PLANE  
aaa  
C
A1  
C
D1  
e/2  
LxN  
E/2  
E1  
2
1
N
e
bxN  
bbb  
C
A B  
D/2  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
Marking Information  
804A  
yyww  
xxxxx  
xxxx  
yyww = Date Code (Example: 0552)  
xxxxx xxxx = Semtech Lot Number  
(Example: E9010 01-1)  
© 2005 Semtech Corp.  
20  
www.semtech.com  
SC804A  
DRAFT  
POWER MANAGEMENT  
Land Pattern - MLPQ-16  
K
DIMENSIONS  
DIM  
INCHES  
MILLIMETERS  
(.156)  
.122  
.091  
.091  
.026  
.016  
.033  
.189  
(3.95)  
3.10  
2.30  
2.30  
0.65  
0.40  
0.85  
4.80  
C
G
H
K
P
X
Y
Z
2x Z  
H
2x G  
Y
2x (C)  
X
P
NOTES:  
1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 FAX (805)498-3804  
© 2005 Semtech Corp.  
21  
www.semtech.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY