SX9500EVK [SEMTECH]

Ultra Low Power, Capacitive Four (4) - Channel Proximity/Button; 超低功耗,电容四(4 ) - 通道接近/按钮
SX9500EVK
型号: SX9500EVK
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Ultra Low Power, Capacitive Four (4) - Channel Proximity/Button
超低功耗,电容四(4 ) - 通道接近/按钮

文件: 总31页 (文件大小:859K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
G
ENERAL  
D
ESCRIPTION  
KEY PRODUCT FEATURES  
´
´
2.7 – 5.5V Input Supply Voltage  
Capacitive Sensor Inputs  
The SX9500 is a low-cost, very low power 4-channel  
capacitive controller that can operate either as a proximity  
or button sensor. The SX9500 includes sophisticated on-  
chip auto-calibration circuitry to regularly perform sensitivity  
adjustments, maintaining peak performance over a wide  
variation of temperature, humidity and noise environments,  
providing simplified product development and enhanced  
performance.  
4 fF Capacitance Resolution  
Stable Proximity & Touch Sensing With Temperature  
Capacitance Offset Compensation to 30pF  
´
´
´
Active Sensor Guarding  
Automatic Calibration  
Ultra Low Power Consumption:  
A dedicated transmit enable (TXEN) pin is available to  
synchronize capacitive measurements for applications that  
require synchronous detection, enabling very low supply  
current and high noise immunity by only measuring  
proximity when requested.  
Active Mode:  
Doze Mode:  
Sleep Mode:  
170 uA  
18 uA  
2.5 uA  
´
400KHz I2C Serial Interface  
Four programmable I2C Sub-Addresses  
The SX9500 operates directly from an input supply voltage  
of 2.7 to 5.5V, and includes a separate I2C serial bus  
supply input to enable communication with 1.8 – 5.5V  
hosts. The I2C serial communication bus reports proximity  
or touch detection and is used to facilitate parameter  
settings adjustment. Upon a proximity detection, the NIRQ  
output asserts, enabling the user to either determine the  
relative proximity distance, or simply obtain an indication of  
detection. The serial bus can also serve to overwrite  
detection thresholds and operational settings in the event  
the user wants to change them from their factory presets.  
Input Levels Compatible with 1.8V Host Processors  
´
´
Open Drain NIRQ Interrupt pin  
Three (3) Reset Sources: POR, NRST pin, Soft  
Reset  
´
´
´
-40°C to +85°C Operation  
Compact Size: 3 x 3mm Thin QFN package  
Pb & Halogen Free, RoHS/WEEE compliant  
A
PPLICATIONS  
Notebooks  
Tablets  
Mobile Appliances  
O
RDERING INFORMATION  
Marki  
ng  
ZND8  
Semtech P/N  
Package  
SX9500IULTRT Note1  
QFN-20  
Eval. Kit  
SX9500EVK  
Note 1: Quantities are ordered in 3K units per Reel  
TYPICAL APPLICATION CIRCUIT  
Figure 1: Typical Application Circuit  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
1
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
Table of Contents  
G
ENERAL  
EY RODUCT  
PPLICATIONS.......................................................................................................................................1  
RDERING NFORMATION......................................................................................................................1  
YPICAL PPLICATION CIRCUIT............................................................................................................1  
ENERAL ESCRIPTION...............................................................................................................5  
D
ESCRIPTION........................................................................................................................1  
K
A
P
FEATURES.....................................................................................................................1  
O
I
T
1
A
G
D
1.1  
1.2  
1.3  
1.4  
Pin Diagram  
5
5
6
6
Marking information  
Pin Identification  
Acronyms  
2
3
ELECTRICAL CHARACTERISTICS .................................................................................................7  
2.1  
2.2  
2.3  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Thermal Characteristics  
7
7
7
8
Electrical Specifications  
FUNCTIONAL DESCRIPTION........................................................................................................ 11  
3.1  
Introduction  
General  
Parameters and Configuration  
Sensor Touch/Proximity Adjustment  
Scan Period  
11  
11  
11  
11  
3.1.1  
3.1.2  
3.1.3  
3.2  
3.3  
3.4  
3.5  
11  
12  
13  
Operational Modes  
Configuration  
Reset  
13  
13  
14  
14  
3.5.1  
3.5.2  
3.5.3  
Power-up  
NRST  
Software Reset  
3.6  
Interrupt  
15  
15  
15  
3.6.1  
3.6.2  
Power-up  
NIRQ Clearing  
4
PIN DESCRIPTIONS ..................................................................................................................... 16  
4.1  
4.2  
4.3  
4.4  
4.5  
Introduction  
16  
16  
16  
16  
VDD and SVDD  
TXEN  
Capacitor Sensing Interface (CS0, CS1, CS2, CS3, CSG)  
Host Interface  
NIRQ  
16  
16  
17  
17  
4.5.1  
4.5.2  
4.5.3  
SCL, NRST and TXEN  
SDA  
5
DETAILED  
CONFIGURATION DESCRIPTIONS .............................................................................. 18  
5.1  
5.2  
Introduction  
18  
Capacitive Sensor (CS0, CS1, CS2, CS3) Parameters  
Set CPS_Digital_GAIN [6:5] (Cap Sensor Gain)  
Set CPS_CINR [1:0] (Input Capacitance Range and Resolution)  
Set CPS_TRS [4:0] (Detection threshold)  
18  
18  
18  
19  
20  
20  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
Set CPS_HYST [5:4] (Detection Hysteresis)  
Set CPS_AVGDEB[7:6] (Average Pos/Neg Debouncing)  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
2
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
Set CPS_AVGNEGFILT[5:3] & CPS_AVGPOSFILT[2:0] (Average Neg/Pos Filters)  
Set CPS_FS[4:3] (Sampling Frequency)  
20  
21  
21  
21  
Set CPS_RES[2:0] (Resolution Factor)  
Set CPS_AVGTRS[7:0] (Averaging Threshold)  
5.3  
Additional Parameter Settings  
22  
22  
22  
22  
5.3.1  
5.3.2  
5.3.3  
Set CPS_PERIOD[6:4] (Scan Period)  
Set CPS_EN [3:0] (Enable Capacitive Sensor Inputs)  
Set IRQ_Enable [6:3] (Enable Interrupt Sources)  
6
7
I2C INTERFACE........................................................................................................................... 23  
6.1  
6.2  
6.3  
6.4  
I2C Write  
23  
24  
25  
28  
I2C Read  
Register Overview  
Sensor Design  
P
ACKAGING INFORMATION ........................................................................................................ 29  
7.1  
7.2  
Package Outline Drawing  
Land Pattern  
29  
30  
LIST OF FIGURES  
Figure 1: Typical Application Circuit.....................................................................................................................1  
Figure 2: Pin Diagram .............................................................................................................................................5  
Figure 3: QFN Marking Information.......................................................................................................................5  
Figure 4: I2C Start and Stop timing.....................................................................................................................10  
Figure 5: I2C Data timing......................................................................................................................................10  
Figure 6 Scan Period.............................................................................................................................................11  
Figure 7: Power-up vs. NIRQ................................................................................................................................13  
Figure 8: Hardware Reset.....................................................................................................................................14  
Figure 9: Software Reset ......................................................................................................................................14  
Figure 10: NIRQ Output Simplified Diagram ......................................................................................................16  
Figure 11: SCL/TXEN/NRST .................................................................................................................................17  
Figure 12: SDA Simplified Diagram.....................................................................................................................17  
Figure 13: I2C Write...............................................................................................................................................23  
Figure 14: I2C Read...............................................................................................................................................24  
Figure 15: Typical Touch/Proximity Capacitive Sensor....................................................................................28  
Figure 16: Package Outline Drawing...................................................................................................................29  
Figure 17: Package Land Pattern ........................................................................................................................30  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
3
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
LIST OF TABLES  
Table 1: Pin Description .........................................................................................................................................6  
Table 2: Absolute Maximum Ratings ....................................................................................................................7  
Table 3: Recommended Operating Conditions....................................................................................................7  
Table 4: Thermal Characteristics...........................................................................................................................7  
Table 5: Electrical Characteristics.........................................................................................................................9  
Table 6: I2C Timing Specification........................................................................................................................10  
Table 7: I2C Sub-Address Selection....................................................................................................................12  
Table 8: CPS_Digital_GAIN ..................................................................................................................................18  
Table 9: CINPUT Range and Resolution Register .................................................................................................18  
Table 10: Cap Sensor Threshold .........................................................................................................................19  
Table 11: CPS_HYST.............................................................................................................................................20  
Table 12: CPS_AVGDEB.......................................................................................................................................20  
Table 13: Sampling Frequency Control ..............................................................................................................21  
Table 14: CPS Resolution Factor.........................................................................................................................21  
Table 15: Scan Period, Register 0x06 .................................................................................................................22  
Table 16: Register Overview ................................................................................................................................28  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
4
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
1 GENERAL ESCRIPTION  
D
1.1 Pin Diagram  
Figure 2: Pin Diagram  
1.2 Marking information  
ZND8  
yyww  
xxxx  
yyww= Date Code  
xxxx = Lot Number  
Figure 3: QFN Marking Information  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
5
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
1.3 Pin Identification  
Pin  
Name  
Type  
Description  
Number  
1
CSG  
CS3  
CS2  
CS1  
CS0  
GND  
NC  
Analog  
Analog  
Capacitive Sensor Guard  
Capacitive Sensor, 3  
Capacitive Sensor, 2  
Capacitive Sensor, 1  
Capacitive Sensor, 0  
Ground  
2
3
Analog  
4
Analog  
5
Analog  
6
Ground  
Not Used  
Not Used  
Not Used  
Not Used  
Power  
7
Do Not Connect  
Do Not Connect  
8
NC  
Do Not Connect  
9
NC  
Do Not Connect  
10  
11  
NC  
VDD  
SX9500 Core Power  
Host serial port supply voltage. Must be less than or equal to VDD. NOTE:  
During power-up or power-down, SVDD must be less than or equal to VDD  
12  
SVDD  
Power  
13  
14  
NIRQ  
SCL  
SDA  
TXEN  
NRST  
A1  
Digital Output  
Digital Input  
Digital I/O  
Input  
Interrupt request, active LOW, requires pull-up resistor to SVDD  
I2C Clock, requires pull up resistor to SVDD  
I2C Data, requires pull up resistor to SVDD  
Transmit Enable, active HIGH (Tie to SVDD if not used).  
External reset, active LOW, requires pull up resistor to SVDD  
I2C Sub-Address, connect to GND or VDD  
I2C Sub-Address, connect to GND or VDD  
Ground  
15  
16  
17  
Input  
18  
Digital Input  
Digital Input  
Ground  
19  
A0  
20  
GND  
GND  
DAP  
Ground  
Exposed Pad. Connect to Ground  
Table 1: Pin Description  
1.4 Acronyms  
DAP  
Die Attach Paddle  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
6
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
2 ELECTRICAL  
CHARACTERISTICS  
2.1 Absolute Maximum Ratings  
Stresses above the values listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these, or any other conditions beyond the “Recommended Operating Conditions”, is not implied.  
Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability and proper functionality.  
Parameter  
Symbol  
MIN  
-0.5  
-0.5  
-0.5  
-10  
MAX  
6.0  
UNIT  
V
V
DD  
Supply Voltage  
SVDD  
VIN  
6.0  
Input voltage (non-supply pins)  
Input current (non-supply pins)  
Operating Junction Temperature  
Reflow temperature  
V
DD+0.3  
10  
IIN  
mA  
°C  
TJCT  
-40  
125  
260  
150  
TRE  
Storage temperature  
TSTOR  
ESDHBM  
-50  
8
ESD HBM (Human Body model, to JESD22-A114)  
kV  
Table 2: Absolute Maximum Ratings  
2.2 Recommended Operating Conditions  
Parameter  
Symbol  
VDD  
MIN  
2.7  
MAX  
5.5  
UNIT  
V
Supply Voltage  
SVDD  
TA  
1.65  
-40  
VDD  
85  
Ambient Temperature Range  
°C  
Table 3: Recommended Operating Conditions  
NOTE: During power-up or power-down, SVDD must be less than or equal to VDD  
2.3 Thermal Characteristics  
Parameter  
Symbol  
MIN  
Typical  
34  
MAX  
UNIT  
°C/W  
Thermal Resistance – Junction to Air (Static Airflow)  
θJA  
Table 4: Thermal Characteristics  
NOTE: Theta JA is calculated from a package in still air, mounted to 3" x 4.5", 4 layer FR4 PCB with thermal vias  
under exposed pad per JESD51 standards.  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
7
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
Electrical Specifications  
All values are valid within the operating conditions unless otherwise specified.  
Parameter  
Symbol  
Conditions  
MIN  
TYP  
MAX  
UNIT  
Current consumption  
Power down, all analog circuits shut  
down.  
(I2C listening)  
Sleep Mode  
Doze  
ISLEEP  
2.5  
18  
CPS_PERIOD = 200mS  
DozePeriod = 2xCps_Period  
CPS_FS = 167KHz  
IDOZE  
uA  
CPS_RES = Medium  
CPS_PERIOD = 30mS  
CPS_FS = 167KHz  
CPS_RES = Medium  
Active  
IACTIVE  
170  
Outputs: SDA, NIRQ  
Output Current at Output Low  
Voltage  
VOL = 0.4V  
IOL  
6
mA  
V
SVDD > 2V  
0.4  
Maximum Output LOW Voltage VOL(Max)  
SVDD 2V  
0.2 x SVDD  
Inputs: SCL, SDA, TXEN  
Input logic high  
VIH  
VIL  
0.8 x SVDD  
SVDD + 0.3  
0.25 x SVDD  
1
V
Input logic low  
-0.3  
-1  
CMOS input  
SVDD> 2V  
Input leakage current  
I
L
uA  
VHYS  
0.05x  
SVDD  
Hysteresis  
V
0.1x  
SVDD  
SVDD2V  
Delay to when the SX9500 actually  
begins measure-ments from when  
TXEN becomes active  
TXENACTDLY  
100  
µs  
TXEN measurements  
Inputs: A0, A1  
Input logic high  
VIH  
VIL  
0.7 x VDD  
-0.3  
V
DD + 0.3  
V
Input logic low  
0.3 x VDD  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
8
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
Input: NRST  
0.7 x  
SVDD  
SVDD> 2V  
Input logic high  
Input logic low  
VIH  
SVDD + 0.3  
0.75 x  
SVDD  
SVDD 2V  
V
SVDD> 2V  
0.6  
VIL  
SVDD 2V  
0.3 x SVDD  
Start-up  
Power-up time  
NRST  
TPOR  
1
ms  
ns  
NRST minimum pulse width  
TRESETPW  
20  
Table 5: Electrical Characteristics  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
9
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
Parameter  
Symbol  
Conditions  
MIN  
TYP  
MAX  
UNIT  
I2C Timing Specifications  
SCL clock frequency  
400  
kHz  
fSCL  
SCL low period  
1.3  
0.6  
100  
0
tLOW  
SCL high period  
tHIGH  
Data setup time  
tSU;DAT  
tHD;DAT  
tSU;STA  
tHD;STA  
tSU;STO  
tBUF  
Data hold time  
us  
Repeated start setup time  
Start condition hold time  
Stop condition setup time  
Bus free time between stop and start  
Input glitch suppression  
0.6  
0.6  
0.6  
1.3  
Note (1)  
50  
ns  
tSP  
Note (1) -- Minimum glitch amplitude is 0.7VDD at High level and Maximum 0.3VDD at Low level.  
Table 6: I2C Timing Specification  
Note: All timing specifications, refer to Figure 4, Figure 5, and Table 6  
Figure 4: I2C Start and Stop timing  
Figure 5: I2C Data timing  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
10  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
3 FUNCTIONAL DESCRIPTION  
3.1 Introduction  
3.1.1 General  
The SX9500 is a low-cost, very low-power 4-channel capacitive controller that can operate either as a proximity  
or button sensor. The SX9500 includes sophisticated on-chip auto-calibration circuitry to regularly perform  
sensitivity adjustments, maintaining peak performance over a wide variation of temperature, humidity and noise  
environments, providing simplified product development and enhanced performance.  
3.1.2 Parameters and Configuration  
The SX9500 allows the user full parameter customization for Sensor sensitivity, hysteresis, and detection  
thresholds. If custom parameters are used by the customer, these parameters must be uploaded by the host  
immediately following boot-up or after a reset.  
3.1.3 Sensor Touch/Proximity Adjustment  
Capacitive touch/proximity detection is directly proportional to the SX9500 internal gain and threshold settings,  
and external sensor area to optimize proximity detection distance. A longer touch/proximity detection range can  
be accomplished without changing the capacitive sensor size, by using a high sensitivity setting and/or lower  
signal threshold setting for touch/proximity detection.  
3.2 Scan Period  
The Scan period determines the minimum touch/proximity detection reaction time of the SX9500 and can be  
varied by the host from 30ms to approximately 400ms. Touch/proximity detection reaction time is proportional to  
the Scan period and inversely proportional to power consumption, so longer Scan periods corresponds to lower  
power, but also to longer detection reaction times.  
The Scan period of the SX9500 is defined by two periods: Sensing and Idle. During the Sensing period, all  
enabled CS inputs, from CS0 to CS3 are sampled and any detection reported via the I2C bus (via I2C register  
polling or NIRQ). The Sensing period is variable and is proportional to the Scan Frequency and Resolution  
settings in the Cap Sensing Control Registers. During the Idle period, the SX9500 the analog circuits are placed  
in standby and the idle timer is initiated. Upon expiry of the idle timer, a new Scan period cycle begins.  
Figure 6 Scan Period  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
11  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
3.3 Operational Modes  
The SX9500 has four (4) operational modes: Active, Doze, Sleep, and Commanded. These modes enable  
tradeoffs between touch/proximity detection reaction time and power consumption.  
Active: Active mode has the shortest scan periods, with a typical detection reaction time of 30ms. In this mode,  
all enabled sensors are scanned and information data is processed within this interval. The Active scan period is  
user configurable and can be extended to a maximum period of 400ms. See CPS_PERIOD register in Section  
6.3, (I2C Register Overview) below.  
Doze: Doze mode is by default, enabled in the SX9500. The Doze mode period is user configurable (see  
Section 6.3, I2C Register Overview) and can be used to extend the scan period out to 6.4 seconds for very low  
power consumption applications at the expense of very long detection reaction times (6.4 seconds).  
In some applications, the detection reaction time needs to be fast, but can be slow when detection has not been  
active for a while. When the SX9500 has not detected an object for a specific time, it will automatically change  
modes from Active to Doze reducing power. This time-out period is determined by the CPS_DOZEPERIOD  
which can be configured by the user or turned OFF (CPS_DOZEEN) if not required.  
Proximity detection on any sensor will cause the SX9500 to leave Doze mode and re-enter Active mode.  
Sleep: Sleep mode places the SX9500 in its lowest power mode, disabling all sensor scanning and setting the  
idle period to continuous. In this mode, only the I2C serial bus is active.  
Commanded: The commanded mode uses the TXEN input. The TXEN input enables the measurement of the  
capacitive channels when HIGH, likewise when the TXEN input is LOW, the SX9500 is in the Sleep mode.  
Specifically, on the rising edge of TXEN the SX9500 will begin measuring the capacitive channels beginning with  
the lowest enabled channel repeating the measurement cycle at programmed rates so long as TXEN remains  
HIGH. When TXEN goes LOW the current measurement sequence will complete and then measurement will  
cease until the next rising edge of TXEN.I2C interface  
The I2C serial interface is configured as a slave device, operates at speeds up to 400 kHz and serves as the sole  
Host interface to the SX9500.  
The SX9500 has two I/O pins (A0 and A1) that provides for four possible, user selectable I2C addresses:  
A1  
0
A0  
0
Address  
0x28  
0
1
0x29  
1
0
0x2A  
1
1
0x2B  
Table 7: I2C Sub-Address Selection  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
12  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
3.4 Configuration  
If the application requires customization, the SX9500 configuration registers can be changed over the I2C bus.  
Some I2C addressable registers are used to read sensor status and information, while other (configuration)  
registers allow the host to take control of the SX9500. Via the configuration registers, the host can command an  
operational mode change or modify the active sensors. These user programmable configuration registers are  
volatile, therefore during a power-down or reset event, they lose all user programmed content, requiring the host  
to re-write the I2C registers after the event.  
3.5 Reset  
A Reset to the SX9500 is performed by any one of the following methods:  
- Power-up  
- NRST pin  
- Software reset  
3.5.1 Power-up  
During a power-up condition, the NIRQ output is HIGH until VDD has met the minimum input voltage requirements  
and a TPOR time has expired upon which, NIRQ asserts to a LOW condition indicating the SX9500 is initialized.  
The Host is required to perform an I2C read to clear this NIRQ status. The SX9500 is then ready for normal I2C  
communication and is operational.  
Figure 7: Power-up vs. NIRQ  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
13  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
3.5.2 NRST  
When NRST is asserted LOW and then HIGH, the SX9500 will reset its internal registers and will become active  
after period, TPOR. If a hardware reset control output is not available to drive NRST, then this pin must be pulled  
high to SVDD.  
Figure 8: Hardware Reset  
3.5.3 Software Reset  
The host can perform software resets by writing to the I2CSoftReset register (see Section 6.3 for additional  
information). The NIRQ output will be asserted LOW and the Host is required to perform an I2C read to clear this  
NIRQ status.  
Figure 9: Software Reset  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
14  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
3.6 Interrupt  
Interrupt sources are disabled by default upon power-up and resets, and thus must be enabled by the host (apart  
from RESET IRQ). Any or all of the following interrupts can be enabled by writing a “1” into the appropriate  
locations within the IRQEnable register (see Section 6.3 for details):  
Touch or Proximity detected  
Completed Compensation  
Completed Conversion  
The interrupt status can be read from register IRQStat for each of these interrupt sources (see Section 6.3 for  
details).  
3.6.1 Power-up  
During initial power-up, the NIRQ output is HIGH. Once the SX9500 internal power-up sequence has completed,  
NIRQ is asserted LOW, signaling that the SX9500 is ready. The host must perform a read to IRQSTAT to  
acknowledge that the status is read and the SX9500 will clear the interrupt and release the NIRQ line.  
3.6.2 NIRQ Clearing  
The NIRQ can be asserted in either the Active or Doze mode during a scan period. The NIRQ will be cleared  
when the Host performs a read of the RegIrqStat I2C register.  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
15  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
4 PIN DESCRIPTIONS  
4.1 Introduction  
This section describes the SX9500 pin functionality, pin protection, whether or not the pins are analog or digital,  
and if they require pull-up resistors. There is ESD protection on all SX9500 I/O.  
4.2 VDD and SVDD  
These are the device supply voltages. VDD is the supply voltage for the internal core and I/O. SVDD is the  
supply voltage for the I2C serial interface. NOTE: SVDD MUST be equal or lower than VDD.  
4.3 TXEN  
This signal can be used in many applications if a conversion trigger/enable is needed. This input pin  
synchronizes the capacitance sensing inputs. When this signal is active, SX9500 immediately performs  
capacitive measurements. If this input becomes inactive during the middle of a measurement, the SX9500 will  
complete all remaining measurements and will enter sleep mode until TXEN goes active again.  
4.4 Capacitor Sensing Interface (CS0, CS1, CS2, CS3, CSG)  
The Capacitance Sensor input pins CS0, CS1, CS2 and CS3 are connected directly to the Capacitor Sensing  
Interface circuitry which converts the sensed capacitance into digital values. The Capacitive Sensor Guard  
(CSG) output provides a guard reference to minimize the parasitic sensor pin capacitances to ground.  
Capacitance sensor pins which are not used must be left open-circuited. Additionally, CS pins must be  
connected directly to the capacitive sensors using a minimum length circuit trace to minimize external “noise”  
pick-up.  
The capacitance sensor and capacitive sensor guard pins are protected from ESD events to VDD and GROUND.  
4.5 Host Interface  
The Host Interface consists of: NIRQ, NRST, SCL, SDA, and TXEN. These signals are discussed below.  
4.5.1 NIRQ  
The NIRQ pin is an open drain output that requires an external pull-up resistor (1..10 kOhm). The NIRQ pin is  
protected from ESD events to SVDD and GROUND.  
SVDD  
SVDD  
R_INT  
NIRQ  
NIRQ to Host  
INT  
SX9500  
Figure 10: NIRQ Output Simplified Diagram  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
16  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
4.5.2 SCL, NRST and TXEN  
The SCL, NRST and TXEN pins are high impedance input pins that require an external pull-up resistor (1..10  
kOhm). It is possible to connect NRST and TXEN Host output drivers directly without the requirement for a pull-  
up resistor if driven from a push-pull host output. These pins are protected from ESD events to SVDD and  
GROUND.  
SVDD  
SVDD  
R
SCL_IN/TXEN_IN/NRST_IN  
SCL/TXEN/NRST  
FromHost  
Figure 11: SCL/TXEN/NRST  
4.5.3 SDA  
SDA is an I/O pin that requires an external pull-up resistor (1..10 kOhm). The SDA I/O pin is protected to SVDD  
and GROUND.  
SVDD  
SVDD  
R_SDA  
SDA  
SDA_IN  
To/From Host  
SDA_OUT  
Figure 12: SDA Simplified Diagram  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
17  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5 DETAILED  
CONFIGURATION DESCRIPTIONS  
5.1 Introduction  
The SX9500 is a low-cost, very low power 4-channel capacitive controller that can operate either as a proximity  
or button sensor. It includes sophisticated on-chip auto-calibration circuitry to regularly perform sensitivity  
adjustments, maintaining peak performance over a wide variation of temperature, humidity and noise  
environments, providing simplified product development and enhanced performance. The SX9500 comes with  
factory default settings that are appropriate for most general applications, however a full complement of registers  
are accessible to the user to enable application customization and optimization. A dedicated transmit enable  
(TXEN) pin is available to synchronize capacitive measurements and reduce power dissipation for applications  
that require synchronous detection, enabling very low supply current and high noise immunity by only measuring  
proximity when requested.  
5.2 Capacitive Sensor (CS0, CS1, CS2, CS3) Parameters  
The SX9500 sensor has default parameters for the Capacitive Sensors that provides a quick and initial starting  
point to achieve touch/proximity detection. However, because of unique sensor sizes and sensor locations, it is  
possible to achieve higher and more robust performance with minor changes to these default parameters. In  
general only a few registers require changes to their default parameters to achieve improved performance.  
These registers are:  
5.2.1 Set CPS_Digital_GAIN [6:5] (Cap Sensor Gain)  
The address for the (capacitive) sensor gain is: Bits [6:5] provide for four (4) gain settings as shown below:  
Bits  
6
0
0
1
1
5
0
1
0
1
Gain  
x 1  
x 2  
x 4  
x 8  
Table 8: CPS_Digital_GAIN  
5.2.2 Set CPS_CINR [1:0] (Input Capacitance Range and Resolution)  
The register for the input capacitance full scale range and resolution is: Bits [1:0] provide set ability over the  
expected maximum sensed capacitance. A setting of 00 on these bits provides for the largest capacitance  
measurement range, but is not as sensitive for the longest proximity distance, while the setting of 11 provides for  
the smallest capacitive measurement range, and provides the longest proximity distance. The table for this  
register is shown below:  
Bits  
1
0
0
1
1
0
0
1
0
1
CINPUT Range/Resolution  
Large  
Medium-Large  
Medium-Small  
Small  
Table 9: CINPUT Range and Resolution Register  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
18  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5.2.3 Set CPS_TRS [4:0] (Detection threshold)  
This register defines the detection threshold for all sensors and the details are shown below. Lower thresholds  
provide longer proximity detection distances but are more susceptible to noise, while higher threshold values  
provide immunity to noise, but results in shorter proximity detection range. The default value for this register is  
[00000].  
BITS  
4
3
2
1
0
THRESHOLD VALUE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
300  
350  
400  
450  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
Table 10: Cap Sensor Threshold  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
19  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5.2.4 Set CPS_HYST [5:4] (Detection Hysteresis)  
This register defines the detection hysteresis for all sensors. Hysteresis for the capacitive sensors provides an  
important function in that it keeps the SX9500 from providing “oscillating” results when detection levels are close  
to threshold. The register details are shown below.  
Bits  
5
0
0
1
1
4
0
1
0
1
DETECTION HYSTERESIS  
32  
64  
128  
256  
Table 11: CPS_HYST  
5.2.5 Set CPS_AVGDEB[7:6] (Average Pos/Neg Debouncing)  
Use of debounce in the SX9500 is recommended as it will reduce the effects of extraneous noise for reported  
detection. The SX9500 includes several conditions for debounce: Close, Far, and Data Detection.  
Bits  
7
0
0
1
1
6
0
1
0
1
AVERAGE POS/NEG DEBOUNCING  
OFF  
2 Samples  
4 Samples  
8 Samples  
Table 12: CPS_AVGDEB  
5.2.6 Set CPS_AVGNEGFILT[5:3] & CPS_AVGPOSFILT[2:0] (Average Neg/Pos Filters)  
The SX9500 includes circuitry to average out the detected signals. These detected signals can be both positive  
and negative, and so there are registers to control both the positive and negative averaging filter coefficients.  
There are eight (8) settings possible in each of these filters ranging from OFF up to Highest filtering. Use of  
these filters is recommended for noisy environment and represents a tradeoff detection response versus false  
triggering. See CPS_AVGNEGFILT and CPS_AVGPOSFILT for register and bit locations.  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
20  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5.2.7 Set CPS_FS[4:3] (Sampling Frequency)  
The capacitance sampling frequency can be changed in CPS_CTRL2 if the environment is particularly noisy.  
Changing this frequency affects the Capacitance Sensing period. It is recommended to use the 167 kHz  
sampling frequency.  
Bits  
4
0
0
1
1
3
0
1
0
1
SAMPLING FREQUENCY  
83 kHz  
125 kHz  
167 kHz  
Reserved, do not use  
Table 13: Sampling Frequency Control  
5.2.8 Set CPS_RES[2:0] (Resolution Factor)  
The CPS Resolution factor has eight (8) possible settings that range from coarsest to very fine that controls the  
total number of measurements per sensor in a Scan Period. Along with the CPS Sampling Frequency, changing  
this register affects the SX9500 Sensing Period. This register is located in CPS_CTRL2.  
Bits  
2
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
RESOLUTION  
Coarsest  
Very Coarse  
Coarse  
Medium Coarse  
Medium  
Fine  
Very Fine  
Finest  
Table 14: CPS Resolution Factor  
5.2.9 Set CPS_AVGTRS[7:0] (Averaging Threshold)  
The SX9500 performs averaging on all capacitive measurements to determine when to perform a calibration  
cycle. The CPS_AVGTRS register is used to set an 8-bit positive and negative threshold that determines when a  
calibration is internally requested. Typically the user would set this register to be between 10000000 [7:0] to  
11000000 [7:0] which corresponds to ½ to ¾ of the system dynamic range.  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
21  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
5.3 Additional Parameter Settings  
Further application customization is possible to control scan period, enabled sensors and individual sensor  
interrupts are also possible. Scan period affects both power dissipation and detection reaction time.  
5.3.1 Set CPS_PERIOD[6:4] (Scan Period)  
This register controls the scan period of the SX9500 over a range of 30ms to 400ms.  
Bits  
6
0
0
0
0
1
1
1
1
5
0
0
1
1
0
0
1
1
4
0
1
0
1
0
1
0
1
Scan PERIOD (ms)  
30  
60  
90  
120  
150  
200  
300  
400  
Table 15: Scan Period, Register 0x06  
5.3.2 Set CPS_EN [3:0] (Enable Capacitive Sensor Inputs)  
If any capacitive sensors are not required, they can be disabled in this register. Each bit in this register  
corresponds to a specific sensor input. A logic “1” enables the capacitive sensor input, while a logic “0” disables  
a capacitive input.  
CS0 = Bit 0  
CS1 = Bit 1  
CS2 = Bit 2  
CS3 = Bit 3  
5.3.3 Set IRQ_Enable [6:3] (Enable Interrupt Sources)  
There are a number of interrupt sources that the SX9500 can report. A logic “1” in the specific location will  
enable the specific interrupt as shown below.  
TCHIRQEN [6]: Enables the Touch/Proximity Detection IRQ  
RLSIRQEN [5]: Enables the Touch/Proxmity No Detect IRQ  
COMPDONEIRQEN [4]: Enables the Compensation Done Notification IRQ  
CONVIRQEN [3]: Enables the Conversion Completion Done Notification IRQ  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
22  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
6 I2C INTERFACE  
The I2C implemented on the SX9500 is compliant with:  
- Standard (100kb/s) and fast mode (400kb/s)  
- I2C standard slave mode  
- 7 bit address (default is 0x28 assuming A1=A0=0).  
The host can use the I2C to read and write data at any time, and these changes are effective immediately.  
Therefore the user should ideally disable the sensor before changing settings, or discard the results while  
changing (Section 3.2).  
There are four types of I2C registers:  
- Control and Status (read). These registers give information about the status of the capacitive sensors  
- Operation Control (read/write). These registers control Operating Modes.  
- Cap Sensor Control and Parameters (read/write)  
- Cap Sensor Data Read Back (read)  
The I2C can be used to read and write from a start address and then perform read or writes sequentially, and the  
address increments automatically.  
Supported I2C access formats are described in the next sections.  
6.1 I2C Write  
The format of the I2C write is given in Figure 12. After the start condition [S], the slave address (SA) is sent,  
followed by an eighth bit (‘0’) indicating a Write. The SX9500 then Acknowledges [A] that it is being addressed,  
and the Master sends an 8 bit Data Byte consisting of the SX9500 Register Address (RA). The Slave  
Acknowledges [A] and the master sends the appropriate 8 bit Data Byte (WD0). Again the Slave Acknowledges  
[A]. In case the master needs to write more data, a succeeding 8 bit Data Byte will follow (WD1), acknowledged  
by the slave [A]. This sequence will be repeated until the master terminates the transfer with the Stop condition  
[P].  
Figure 13: I2C Write  
The register address is incremented automatically when successive register data (WD1...WDn) is supplied by the  
master.  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
23  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
6.2 I2C Read  
The format of the I2C read is given in Figure 13. After the start condition [S], the slave address (SA) is sent,  
followed by an eighth bit (‘0’) indicating a Write. The SX9500 then Acknowledges [A] that it is being addressed,  
and the Master responds with an 8-bit Data consisting of the Register Address (RA). The Slave Acknowledges  
[A] and the master sends the Repeated Start Condition [Sr]. Once again, the slave address (SA) is sent,  
followed by an eighth bit (‘1’) indicating a Read. The SX9500 responds with an Acknowledge [A] and the read  
Data byte (RD0). If the master needs to read more data it will acknowledge [A] and the SX9500 will send the  
next read byte (RD1). This sequence can be repeated until the master terminates with a NACK [N] followed by a  
stop [P].  
Figure 14: I2C Read  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
24  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
6.3 Register Overview  
Add Reg  
Acc Bits Field  
Reset  
Function  
General Control & Status  
0x00 IRQStat  
R
7
6
RESETIRQ  
TCHIRQ  
1
0
Reset event occurred  
Sensor detected a  
touch/proximity  
5
4
RLSIRQ  
0
0
Sensor detected a release  
condition  
Compensation complete.  
Writing a one in this bit trigs  
a compensation on all  
channels  
R/W  
COMPDONE  
R
R
3
CONVIRQ  
0
00  
0
Conversion cycle complete  
Not Used  
Reports TXEN pad status  
2:1 Not Used  
0
7
TXENSTAT  
TCHSTAT3  
0x01 TchCmpStat  
0
Determines if  
touch/proximity has been  
detected on CS3  
6
5
4
TCHSTAT2  
TCHSTAT1  
TCHSTAT0  
0
0
Determines if  
touch/proximity has been  
detected on CS2  
Determines if a  
touch/proximity has been  
detected on CS1  
0
Determines if a  
touch/proximity has been  
detected on CS0  
3:0 COMPSTAT  
1111  
Specifies which capacitive  
sensor(s) has a  
compensation pending  
General Operations Control  
0x03 IRQ_Enable  
R
R/W  
7
6
5
4
Not Used  
TCHIRQEN  
RLSIRQEN  
COMPDONEIRQEN  
0
0
0
0
Not Used  
Enables the detection irq  
Enables the release irq  
Enables the compensation  
irq  
3
CONVIRQEN  
0
000  
Enables the conversion irq  
Not Used  
R
2:0 Not Used  
Cap Sensing Control  
0x06 CPS_CTRL0  
R/W  
7
Not Used  
0
Not Used  
6:4 CPS_PERIOD  
000  
Scan period :  
000: 30 ms  
001: 60 ms  
010: 90 ms  
011: 120 ms  
100: 150 ms  
101: 200 ms  
110: 300 ms  
111 : 400 ms  
Enables CS0 through CS3  
CG bias/shield usage.  
00 : Off, CG high-Z (off)  
01: On(def.)  
3:0 CPS_EN  
R/W 7:6 CPS_SH  
1111  
01  
0x07 CPS_CTRL1  
10: Reserved  
11: Reserved  
Not used  
Capacitance  
Resolution:  
5:2  
0000  
00  
R/W 1:0 CPS_CINR  
Range  
&
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
25  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
WIRELESS & SENSING  
DATASHEET  
00: Large  
01: Medium Large  
10: Medium Small  
11: Small  
0x08 CPS_CTRL2  
R/W  
7
Not Used  
0
Not Used  
6:5 CPS_Digital_GAIN  
00  
Set Digital gain factor  
00: Gain = 1  
01: Gain = 2  
10: Gain = 4  
11: Gain = 8  
4:3 CPS_FS  
01  
Sampling frequency  
00: 83 kHz  
01: 125 kHz  
10: 167 kHz (Typical)  
11: Reserved  
Resolution Control  
000: Coarsest  
….  
2:0 CPS_RES  
000  
….  
111: Finest  
0x09 CPS_CTRL3  
R/W  
7
6
Not Used  
CPS_DOZEEN  
0
1
00  
Not Used  
Enables doze mode  
When doze is enabled, the  
cap sensing period moves  
5:4 CPS_DOZEPERIOD  
from  
CPS_PERIOD  
to  
CPS_PERIOD * :  
00: 2*CPS_PERIOD  
10: 8* CPS_PERIOD  
01: 4*CPS_PERIOD  
11: 16*CPS_PERIOD  
Must be 00  
3:2 Reserved  
1:0 CPS_RAWFILT  
00  
00  
Raw filter coefficient  
00: off  
01: Low  
10: Medium  
11: High (Max Filtering)  
0x0A CPS_CTRL4  
0x0B CPS_CTRL5  
R/W 7:0 CPS_AVGTRS  
R/W 7:6 CPS_AVGDEB  
00000000 Average pos/neg threshold  
= 8 x reg  
00  
Average  
bouncer:  
00: off  
pos/neg  
de-  
01: 2 samples  
10: 4 samples  
11: 8 samples  
5:3 CPS_AVGNEGFILT  
2:0 CPS_AVGPOSFILT  
000  
Average  
coefficient :  
000: off  
001: Lowest  
….  
negative  
filter  
….  
111: Highest (Max. Filter)  
000  
Average  
coefficient :  
000: off  
001: Lowest  
.…  
positive  
filter  
…..  
111: Highest (Max. Filter)  
0x0C CPS_CTRL6  
R/W 7:5 Not Used  
4:0 CPS_TRS  
000  
00000  
Not Used  
Defines  
the  
touch/prox  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
26  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
WIRELESS & SENSING  
DATASHEET  
detection threshold for all  
sensors. See Table 10  
0x0D CPS_CTRL7  
R/W  
7
6
CPS_CMPAUTOOFF  
CPS_CMPTRG  
0
0
Disables  
compensation trigged by  
average  
0: compensate channels  
independently  
1: compensate all channels  
when triggered  
Detection hysteresis  
00: 32  
01: 64  
10: 128  
11: 256  
Close debouncer  
00: off  
the  
automatic  
5:4 CPS_HYST  
00  
00  
3:2 CPS_CLSDEB  
1:0 CPS_FARDEB  
01: 2 samples  
10: 4 samples  
11: 8 samples  
Far debouncer  
00: off  
00  
01: 2 samples  
10: 4 samples  
11: 8 samples  
Stuck at timeout timer :  
0000 : off  
0x0E CPS_CTRL8  
R/W 7:4 CPS_STUCK  
0000  
00XX:  
increment  
every  
CPS_STUCK x 64 active  
frames  
01XX:  
increment  
every  
CPS_STUCK x 128 active  
frames  
1XXX: increment every  
CPS_STUCK x 256 active  
frames  
3:0 CPS_CMPPRD  
0000  
Periodic compensation  
0: off  
else  
:
increment every  
CPS_COMPPRD  
active frames  
x
128  
Sensor Readback  
0x20 CPSRD  
7:2 Not Used  
000000 Not Used  
00 Determines which sensor  
data will be available in the  
next Reg read.  
R
R
R
R
R
R
R
1:0 CPSRD  
0x21 UseMSB  
0x22 UseLSB  
7:0 SENSUSEMSB  
7:0 SENSUSELSB  
7:0 SENSAVGMSB  
7:0 SENSAVGLSB  
7:0 SENSDIFFMSB  
7:0 SENSDIFFLSB  
00000000 Provides  
information for monitoring  
purposes. Signed, 2's  
complement format  
00000000 Provides the  
information for monitoring  
purposes. Signed, 2's  
complement format  
00000000 Provides the differential  
information for monitoring  
purposes. Signed, 2's  
complement format  
00000000 Offset compensation DAC  
the  
useful  
00000000  
0x23 AvgMSB  
0x24 AvgLSB  
average  
00000000  
0x25 DiffMSB  
0x26 DiffLSB  
00000000  
0x27 OffMSB  
0x28 OffLSB  
R/W 7:0 SENSOFFMSB  
R/W 7:0 SENSOFFLSB  
code. This is writable to  
allow forcing some DAC  
00000000  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
27  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
WIRELESS & SENSING  
DATASHEET  
codes. When written, the  
internal DAC code is  
updated after the write of  
the LSB reg. MSB and LSB  
regs should be written in  
sequence.  
0x7F I2CSoftReset  
W
7:0  
SOFTRESET  
00000000 Write 0xDE and RESET the  
chip  
Table 16: Register Overview  
6.4 Sensor Design  
This section describes how to properly design capacitive sensors for touch or proximity. Sensors can be  
designed in a variety of shapes depending on the physical requirements of the system, but to achieve optimum  
performance, a careful recognition of the CSG between sensors and below must be given in the design.  
An optimum capacitive sensor should have minimum parasitics to both system ground and to the CSG. System  
ground parasitics can be minimized with distance between the capacitive sensor and system ground, however  
CSG will be directly adjacent to each sensor as well as directly under it (on an adjacent PC board layer). It is  
easy to generate a significant capacitance this way and therefore it is recommended to cross-hatch the guard to  
a large extent. The recommended “fill” for the cross-hatched area is about 20% metal.  
CSx Typ, 4 Plcs.  
CSG  
CSG  
Figure 15: Typical Touch/Proximity Capacitive Sensor  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
28  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
7 PACKAGING NFORMATION  
I
7.1 Package Outline Drawing  
Figure 16: Package Outline Drawing  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
29  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
7.2 Land Pattern  
Figure 17: Package Land Pattern  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
30  
www.semtech.com  
SX9500  
Ultra Low Power, Capacitive  
Four (4) - Channel Proximity/Button  
DATASHEET  
WIRELESS & SENSING  
© Semtech 2012  
All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the  
copyright owner. The information presented in this document does not form part of any quotation or contract, is  
believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the  
publisher for any consequence of its use. Publication thereof does not convey nor imply any license under  
patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability  
whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair  
or improper handling or unusual physical or electrical stress including, but not limited to, exposure to  
parameters beyond the specified maximum ratings or operation outside the specified range.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE  
SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL  
APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use  
Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and  
attorney fees which could arise.  
Notice: All referenced brands, product names, service names and trademarks are the property of their  
respective owners.  
Contact Information  
Semtech Corporation  
Wireless and Sensing Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
Revision 1.6 June 27, 2012  
© 2012 Semtech Corporation  
31  
www.semtech.com  

相关型号:

SX9500EVKA

Ultra Low Power, Four Channels Capacitive Proximity/Button Solution with Dedicated Outputs
SEMTECH

SX9500IULTRT

Ultra Low Power, Capacitive Four (4) - Channel Proximity/Button
SEMTECH

SX9501

Ultra Low Power, Four Channels Capacitive Proximity/Button Solution with Dedicated Outputs
SEMTECH

SX9501IULTRT

Ultra Low Power, Four Channels Capacitive Proximity/Button Solution with Dedicated Outputs
SEMTECH

SX9510

8 Capacitive Buttons, LEDs, IR Decoder and Proximity Controller with Analog Outputs
SEMTECH

SX9510ETSTRT

8 Capacitive Buttons, LEDs, IR Decoder and Proximity Controller with Analog Outputs
SEMTECH

SX9510EVK

8 Capacitive Buttons, LEDs, IR Decoder and Proximity Controller with Analog Outputs
SEMTECH

SX9510EWLTRT

8 Capacitive Buttons, LEDs, IR Decoder and Proximity Controller with Analog Outputs
SEMTECH

SX9511

8 Capacitive Buttons, LEDs, IR Decoder and Proximity Controller with Analog Outputs
SEMTECH

SX9511ETSTRT

Analog Circuit,
SEMTECH

SX9511EWLTRT

Analog Circuit,
SEMTECH

SX9512

8 Capacitive Buttons, LEDs and Proximity Controller with Analog Outputs
SEMTECH