SGM620 [SGMICRO]

Low Power, Low Noise, Rail-to-Rail Output, Instrumentation Amplifier;
SGM620
型号: SGM620
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

Low Power, Low Noise, Rail-to-Rail Output, Instrumentation Amplifier

文件: 总19页 (文件大小:1077K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM620  
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
GENERAL DESCRIPTION  
FEATURES  
The SGM620 is a high accuracy, high voltage  
instrumentation amplifier, which is designed to set any  
gain from 1 to 10000 with one external resistor. The  
device works well in battery-powered applications due to  
the low power consumption of 1.3mA typical quiescent  
current. The SGM620 provides a SOIC-8 package which  
is much smaller than discrete classical-three-OPAs  
circuits.  
Single External Resistor Gain Set  
(Set Gain from 1 to 10000)  
Input Offset Voltage: 150μV (MAX)  
Input Bias Current: 15nA (TYP)  
Common Mode Rejection Ratio: 105dB (TYP) (G = 10)  
Input Voltage Noise: 6nV/ Hz at 1kHz  
0.1Hz to 10Hz Voltage Noise: 0.4μVP-P  
Bandwidth: 140kHz (G = 100)  
Settling Time to 0.01%: 10μs (G = 100)  
Rail-to-Rail Output  
The SGM620 provides 120ppm (MAX) non-linearity  
and 150μV (MAX) low input offset voltage. The device  
also features low noise, low bias current and low power.  
The combination of these characteristics makes it a  
good choice for applications requiring excellent DC  
performance.  
Support Single or Dual Power Supplies:  
4.6V to 36V or ±2.3V to ±18V  
Low Power Supply Current: 1.3mA (TYP)  
-40to +125Operating Temperature Range  
Available in a Green SOIC-8 Package  
The SGM620 offers 6nV/ Hz low input voltage noise,  
300fA/ Hz input current noise at 1kHz, and 0.4μVP-P in  
APPLICATIONS  
the 0.1Hz to 10Hz band. It is suitable for pre-amplifier  
applications. The 10μs settling time to 0.01% makes  
SGM620 appropriate for multiplexed applications.  
Precision Current Measurement  
Pressure Measurement  
The SGM620 is available in a Green SOIC-8 package.  
It is specified over the extended -40to +125℃  
temperature range.  
SG Micro Corp  
JUNE 2022 – REV. A. 2  
www.sg-micro.com  
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
SGM  
SGM620  
SOIC-8  
SGM620XS8G/TR  
620XS8  
XXXXX  
Tape and Reel, 4000  
-40to +125℃  
MARKING INFORMATION  
XXXXX = Date Code, Trace Code and Vendor Code.  
X X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
ABSOLUTE MAXIMUM RATINGS  
ESD SENSITIVITY CAUTION  
Supply Voltage, +VS to -VS...............................................40V  
Input Common Mode Voltage .......................................... ±VS  
Junction Temperature .................................................+150℃  
Storage Temperature Range........................-65to +150℃  
Lead Temperature (Soldering, 10s) ............................+260℃  
ESD Susceptibility  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
Failureto observe proper handlingand installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
HBM.............................................................................7000V  
CDM ............................................................................1000V  
RECOMMENDED OPERATING CONDITIONS  
Operating Temperature Range .....................-40to +125℃  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
OVERSTRESS CAUTION  
circuit design, or specifications without prior notice.  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
2
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
PIN CONFIGURATION  
(TOP VIEW)  
RG  
IN-  
1
2
3
4
8
7
6
5
RG  
_
+VS  
OUT  
REF  
IN+  
-VS  
+
SOIC-8  
PIN DESCRIPTION  
PIN  
1, 8  
2
NAME  
RG  
FUNCTION  
Gain Setting Pin. The gain can be set by placing the resistor across RG.  
G = 1 + (49.4kΩ/RG).  
IN-  
Inverting Input Pin.  
3
IN+  
Non-Inverting Input Pin.  
Negative Power Supply Pin.  
4
-VS  
Voltage Reference Pin. A voltage source with low impedance can be placed to supply this  
terminal in order to shift the output level.  
5
REF  
OUT  
+VS  
6
Output Pin.  
7
Positive Power Supply Pin.  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
3
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
ELECTRICAL CHARACTERISTICS  
(VS = ±15V, RL = 2kΩ, Full = -40to +125, typical values are at TA = +25, unless otherwise noted.)  
PARAMETER  
Gain (G = 1 + (49.4kΩ/RG))  
Gain Range  
SYMBOL  
CONDITIONS  
TEMP  
MIN  
TYP  
MAX  
UNITS  
1
10000  
0.1  
0.01  
0.15  
0.15  
0.15  
+25  
Full  
G = 1  
0.15  
0.3  
+25℃  
Full  
G = 10  
G = 100  
G = 1000  
0.6  
Gain Error (1)  
GE  
VOUT = -10V to +10V  
%
0.3  
+25℃  
Full  
0.6  
0.6  
+25℃  
Full  
0.8  
G = 1  
G > 1  
Full  
1
Gain Temperature Coefficient  
ppm/℃  
ppm  
Full  
20  
10  
70  
100  
70  
+25℃  
Full  
G = 1  
10  
10  
20  
+25℃  
Full  
G = 10  
G = 100  
G = 1000  
100  
70  
Non-Linearity  
VOUT = -10V to +10V  
+25℃  
Full  
100  
120  
170  
+25℃  
Full  
Voltage Offset (Total RTI Error = VOSI + VOSO/G)  
50  
150  
200  
+25℃  
Full  
Input Offset Voltage  
VOSI  
VS = ±5V to ±15V  
µV  
µV/℃  
µV  
Input Offset Voltage Drift  
Output Offset Voltage  
Output Offset Voltage Drift  
∆VOSI/∆T  
VOSO  
Full  
0.2  
400  
1200  
1600  
+25℃  
Full  
VS = ±5V to ±15V  
∆VOSO/∆T  
Full  
1.5  
µV/℃  
105  
102  
125  
122  
128  
125  
128  
125  
110  
+25℃  
Full  
G = 1  
130  
140  
140  
+25℃  
Full  
G = 10  
G = 100  
G = 1000  
Offset Referred to the Input  
vs. Supply  
PSRR  
VS = ±2.3V to ±18V  
dB  
+25℃  
Full  
+25℃  
Full  
Input Current  
15  
25  
35  
+25℃  
Input Bias Current  
IB  
nA  
nA/℃  
nA  
Full  
Average Temperature Coefficient  
of Input Bias Current  
IB/∆T  
IOS  
Full  
0.15  
5
20  
25  
+25℃  
Full  
Input Offset Current  
Average Temperature Coefficient  
of Input Offset Current  
IOS/∆T  
Full  
0.05  
nA/℃  
NOTE: 1. Effects of external resistor RG is not included.  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
4
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
ELECTRICAL CHARACTERISTICS (continued)  
(VS = ±15V, RL = 2kΩ, Full = -40to +125, typical values are at TA = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
MIN  
TYP  
MAX  
UNITS  
Input  
Differential  
ZDIFF  
ZCM  
10 || 4  
10 || 4  
+25℃  
+25℃  
Input  
Impedance  
GΩ || pF  
Common Mode  
(-VS) + 1.9  
(-VS) + 2.1  
(-VS) + 1.9  
(-VS) + 2.1  
70  
(+VS) - 1.2  
(+VS) - 1.3  
(+VS) - 1.4  
(+VS) - 1.4  
+25℃  
Full  
VS = ±2.3V to ±5V  
Input Voltage Range  
V
+25℃  
Full  
VS = ±5V to ±18V  
85  
+25℃  
Full  
G = 1  
67  
90  
105  
120  
120  
+25℃  
Full  
G = 10  
G = 100  
G = 1000  
87  
Common Mode Rejection Ratio  
with 1kΩ Source Imbalance  
CMRR  
V
CM = -10V to +10V  
dB  
103  
+25℃  
Full  
100  
103  
+25℃  
Full  
100  
Reference Input  
Reference Input Resistance  
RREF  
18  
30  
kΩ  
+25℃  
40  
50  
+25℃  
Full  
Reference Input Current  
IREF  
VIN+ = VIN- = 0V, VREF = 0V  
µA  
Output Characteristics  
310  
150  
24  
400  
600  
220  
300  
+25℃  
Full  
VOH  
VOL  
ISC  
RL = 2kΩ, VS = ±18V  
RL = 2kΩ, VS = ±18V  
Output Voltage Swing  
mV  
+25℃  
Full  
19  
14  
+25℃  
Full  
Short-Circuit Current  
Power Supply  
VS = ±2.3V to ±18V, RL = 50Ω to VS/2  
mA  
mA  
1.3  
1.7  
2.2  
+25℃  
Full  
Quiescent Current  
Dynamic Response  
IQ  
VS = ±2.3V to ±18V, IOUT = 0A  
G = 1  
3900  
1000  
140  
17  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
G = 10  
G = 100  
G = 1000  
Small-Signal -3dB Bandwidth  
BW  
kHz  
Slew Rate  
SR  
VOUT = 1VP-P Step  
VOUT = 10VP-P Step  
G = 1  
1.2  
V/µs  
G = 1 to 100  
G = 1000  
10  
Settling Time to 0.01%  
tS  
µs  
51  
Noise  
Input Voltage Noise Density  
eni  
f = 1kHz  
f = 1kHz  
6
80  
6
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
nV/Hz  
Output Voltage Noise Density  
eno  
nV/ Hz  
G = 1  
G = 10  
G = 100  
G = 1000  
1
0.1Hz to 10Hz Voltage Noise, RTI  
f = 0.1Hz to 10Hz  
µVP-P  
0.4  
0.4  
300  
15  
Input Current Noise Density, RTI  
0.1Hz to 10Hz Current Noise, RTI  
in  
f = 1kHz  
fA/Hz  
f = 0.1Hz to 10Hz  
pAP-P  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
5
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TA = +25, VS = ±15V, unless otherwise noted.  
PSRR vs. Frequency  
PSRR vs. Frequency  
150  
120  
90  
180  
150  
120  
90  
— G = 1  
— G = 1  
— G = 10  
— G = 100  
— G = 1000  
— G = 10  
— G = 100  
— G = 1000  
60  
30  
60  
0
30  
-30  
0
0.1  
0.01  
10  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Frequency (kHz)  
CMRR vs. Frequency  
Gain vs. Frequency  
200  
160  
120  
80  
80  
60  
40  
20  
0
RL = 2kΩ  
— G = 1  
— G = 10  
— G = 100  
— G = 1000  
— G = 1  
— G = 10  
— G = 100  
— G = 1000  
40  
0
-20  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
10000  
Frequency (kHz)  
Frequency (kHz)  
Input Voltage Noise Density vs. Frequency  
Input Common Mode Voltage vs. Output Voltage  
1000  
100  
10  
20  
15  
10  
5
— G = 1  
— G = 10  
— G = 100  
— G = 1000  
VS = ±15V  
0
-5  
VS = ±5V  
-10  
-15  
-20  
1
100  
1000  
10000  
100000  
-20 -15 -10  
-5  
0
5
10  
15  
20  
Frequency (Hz)  
Output Voltage (V)  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
6
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V, unless otherwise noted.  
0.1Hz to 10Hz Input Voltage Noise  
0.1Hz to 10Hz Input Voltage Noise  
G = 10  
G = 1  
Time (3s/div)  
Time (3s/div)  
0.1Hz to 10Hz Input Voltage Noise  
0.1Hz to 10Hz Input Voltage Noise  
G = 1000  
G = 100  
Time (3s/div)  
Time (3s/div)  
Settling Time  
Settling Time  
15  
10  
5
15  
10  
5
15  
10  
5
1.5  
G = 1, RL = 2kΩ  
G = 10, RL = 2kΩ  
1.0  
0.5  
Input  
Input  
Output  
Output  
0
0
0
0.0  
-5  
-5  
-5  
-0.5  
-1.0  
-1.5  
-10  
-15  
-10  
-15  
-10  
-15  
Time (10μs/div)  
Time (10μs/div)  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
7
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V, unless otherwise noted.  
Settling Time  
G = 100, RL = 2kΩ  
Settling Time  
G = 1000, RL = 2kΩ  
15  
10  
5
0.15  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
15  
10  
5
15  
10  
5
Input  
Input  
Output  
0
0
0
Output  
-5  
-5  
-5  
-10  
-15  
-10  
-15  
-10  
-15  
Time (10μs/div)  
Time (10μs/div)  
Large-Signal Step Response  
G = 1, RL = 2kΩ, f = 10kHz  
Large-Signal Step Response  
G = 10, RL = 2kΩ, f = 10kHz  
Time (10μs/div)  
Time (10μs/div)  
Large-Signal Step Response  
Large-Signal Step Response  
G = 1000, RL = 2kΩ, f = 1kHz  
G = 100, RL = 2kΩ, f = 5kHz  
Time (20μs/div)  
Time (100μs/div)  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
8
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V, unless otherwise noted.  
Small-Signal Step Response  
G = 1, RL = 2kΩ, f = 50kHz  
Small-Signal Step Response  
G = 10, RL = 2kΩ, f = 50kHz  
Time (2μs/div)  
Time (2μs/div)  
Small-Signal Step Response  
Input Offset Voltage Production Distribution  
25  
20  
15  
10  
5
G = 100, RL = 2kΩ, f = 10kHz  
3120 Samples  
1 Production Lot  
0
Time (10μs/div)  
Input Offset Voltage (μV)  
Output Offset Voltage Production Distribution  
Input Offset Current Production Distribution  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
3120 Samples  
1 Production Lot  
3120 Samples  
1 Production Lot  
0
0
Output Offset Voltage (μV)  
Input Offset Current (nA)  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
9
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TA = +25, VS = ±15V, unless otherwise noted.  
Input Bias Current Production Distribution  
25  
3120 Samples  
1 Production Lot  
20  
15  
10  
5
0
Input Bias Current (nA)  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
10  
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
OPERATION THEORY  
The SGM620 is modified with the classic three-op-amp and it is a holistic instrumentation amplifier.  
IN+  
+VS  
R4  
400Ω  
Q2  
20μA  
18kΩ  
18kΩ  
C2  
A2  
REF  
_
R2  
+
+
A3  
OUT  
+VS  
VB  
RG  
-VS  
_
+
R1  
A1  
_
18kΩ  
18kΩ  
C1  
20μA  
Q1  
R3  
400Ω  
+VS  
IN-  
Figure 1. Simplified Schematic  
The gain-bandwidth product which is determined by  
the two capacitors C1, C2 and the transconductance of  
the pre-amplifier can increase with programmed gain,  
so that the frequency response is enhanced.  
The high precision input is provided by the two input  
transistor Q1 and Q2 (Figure 1) and this results in 10 ×  
lower bias current of the input pins. The constant  
collector current of Q1 and Q2 is maintained by the two  
loops Q1-A1-R1 and Q2-A2-R2, so the input voltage is  
impressed across the gain setting resistor RG of the  
amplifier. The differential gain from A1/A2 outputs can  
be expressed by G = 1+ (R1+R2)/RG. The unity-gain  
subtractor (A3) can reject the common mode signal so  
that SGM620 produces a single-ended output with REF  
pin biased.  
Reducing the input voltage noise to 6nV/ Hz, and it is  
determined by the base resistance and the collector  
current of the input.  
The integrated resistors (R1 and R2) inside the SGM620  
are set to 24.7kΩ, so that the gain can be programmed  
with the external resistor RG.  
The equation of gain is shown as below:  
The transconductance of the pre-amplifier is determined  
by the resistance of RG. The transconductance will  
increase gradually to that of the input transistors if the  
resistance of RG is reduced for larger gains. The  
important benefits are shown below:  
49.4kΩ  
G =  
+ 1  
RG  
49.4kΩ  
RG =  
G - 1  
Boosting the open-loop gain can also increase the  
programmed gain, so that the related error of gain is  
reduced.  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
11  
 
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
APPLICATION INFORMATION  
Pressure Measurement  
SGM620 is widely used in the application of bridge, such as measuring the pressure in weigh scales. It is also  
suitable for detecting the pressure sensor with higher resistance due to high input impedance.  
Figure 2 shows the pressure transducer bridge of 5kΩ which is powered by a 5V single supply. In such a circuit, the  
bridge consumes only 1mA. The buffered voltage divider and SGM620 can condition the output signal with typical  
3.3mA supply current.  
The advantage of small size for SGM620 is attractive for the transducers of pressure. Because of the low noise and  
drift, it can also be used in the application of diagnostic non-invasive blood pressure measurement.  
5V  
Isolation Barrier  
+3.3V  
3
8
+
7
40kΩ  
20kΩ  
CS  
5kΩ  
5kΩ  
5kΩ  
5kΩ  
REF AVDD DVDD  
DVDD  
100Ω  
6
G = 50  
1kΩ  
IN  
MISO  
MOSI  
SCK  
SGM620  
STMS2  
F407  
ADC  
445μA  
TYP  
100nF  
1
2
5
_
AGND  
+
SGM8581  
40kΩ  
50μA  
_
1mA  
Figure 2. The Operation of the Pressure Monitor Circuit with 5V Single Supply  
Medical ECG Amplifier  
Because of the advantage of low current noise, SGM620 can be used in ECG monitors (Figure 3) where the source  
resistances can reach 1MΩ or higher. It is the best choice to use SGM620 in the battery-powered data recorders as  
it can operate on the condition of low supply voltage, low power and space-saving package.  
Moreover, for better performance, combining with the advantages of low voltage noise, low current and low bias  
currents can enhance the dynamic range of SGM620.  
The stability of the right leg drive loop can be maintained by the capacitor C1. Moreover, for protecting the patient  
from the possible harm, the isolation safeguards should be added between the patient and the circuit part.  
Isolation/Protection Barrier  
+5V  
3
R1  
100kΩ  
+
7
8
R4  
5kΩ  
C1  
15pF  
R2  
49.9kΩ  
Output  
1V/mV  
6
RG  
6.2kΩ  
G = 111  
R5  
+
SGM620  
0.03Hz  
High-Pass  
Filter  
R3  
49.9kΩ  
1kΩ  
_
G = 9  
SGM8210-1  
1
2
_
SGM8210-1  
+
4
_
-5V  
Reject the common voltage at the input of SGM620  
Figure 3. The Circuit of Medical ECG Monitor  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
12  
 
 
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
APPLICATION INFORMATION (continued)  
Precision V-I Converter  
Selection of Gain  
It’s easy to realize a precision current source (Figure 4)  
utilizing one SGM620, another operational amplifier  
and two resistors. To obtain a better CMRR of SGM620,  
a buffer should be placed between the REF pin and the  
OUT pin of the amplifier. The equation which is shown  
in Figure 4 illustrates the output current of the circuit.  
The gain of the instrumentation amplifier is determined  
by the external resistor RG. The accuracy of the  
external resistor RG is important as it may influence the  
error of gain. It is recommended that selecting the  
resistor with 0.1% or 1% precision is a good choice.  
The following table shows the gain effect with the  
selection of 1% or 0.1% precision resistor. Also, leaving  
the pin 1 and pin 8 (the place of RG) open can make the  
gain of SGM620 equals to 1.  
+VS  
3
VIN+  
+
7
8
49.4kΩ  
RG =  
G - 1  
6
RG  
SGM620  
+
As mentioned before, the gain error can be minimized  
by equivalent parasitic resistor in series with RG.  
Moreover, low TC of 1ppm/is required for the  
selection of RG to avoid the gain drift of SGM620.  
VSET RSET  
1
2
IL  
5
_
_
4
VIN-  
+
SGM8581  
RLOAD  
-VS  
_
[(VIN+) - (VIN-)]G  
VSET  
RSET  
Table 1. Different Values for Gain Resistor  
IL  
=
=
R1  
1% STD  
Table Value of  
RG (Ω)  
0.1% STD  
Table Value of  
RG (Ω)  
Calculated  
Gain  
Calculated  
Gain  
Figure 4. Precision Voltage-to-Current Converter  
49.9k  
12.4k  
5.49k  
2.61k  
1.00k  
499  
1.990  
4.984  
9.998  
19.93  
50.40  
100.0  
199.4  
495.0  
991.0  
49.3k  
12.4k  
5.49k  
2.61k  
1.01k  
499  
2.002  
4.984  
9.998  
19.93  
49.91  
100.0  
199.4  
501.0  
1003.0  
Input and Output Offset Voltage  
Two main sources which are error of input and output  
result in the low errors of SGM620. When referred to  
the input, the output error should be divided by the gain  
of the instrumentation amplifier. From the equations  
which are shown as below, the input error takes a  
leading position at large gains while the output error  
takes a leading position at small gains.  
249  
249  
100  
98.8  
49.9  
49.3  
Total Error Referred to Input (RTI) = Input Error +  
(Output Error/G)  
+VS  
Total Error Referred to Output (RTO) = (Input Error × G)  
+ Output Error  
IN+  
3
8
+
7
Terminal of Reference  
Potential of the reference terminal defines the zero  
output voltage. It becomes extremely useful while the  
load is not tied to the precise ground of the rest of the  
system. The reference terminal provides one way to  
bias a precise voltage to the output, and the reference  
voltage should be in the range of 2V within the supply  
voltages. On top of these, to keep better CMRR, the  
parasitic resistor at this pin should be low.  
6
RG  
OUT  
SGM620  
1
2
5
REF  
_
4
IN-  
-VS  
Figure 5. Diode for Protecting VIN from Larger than VS  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
13  
 
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
APPLICATION INFORMATION (continued)  
RF Interference  
Common Mode Rejection  
One of the characteristics of instrumentation amplifier is  
rectifying the small signal which is out of the band. This  
kind of disturbance can be described as the small  
biased voltage. All of the high frequency components  
can be filtered by the R-C network which is placed in  
the input position of the instrumentation amplifier, as  
shown in Figure 6. The following equation shows the  
equation of filtering frequency for the differential and  
common mode part of the input signal.  
The common mode rejection ratio of the instrumentation  
amplifier is high as it can measure the differential signal  
between the two inputs when both IN+ and IN- increase  
or decrease equally. Also, this specification can be  
defined in the whole range of input voltage.  
To obtain a best CMRR, it is recommended that the  
REF pin should be connected to a low impedance input  
and the difference of impedance between two inputs  
should be as small as possible. Also, using shielded  
cable can effectively reduce the noise of the circuit, and  
it should be driven properly for better value of CMRR.  
The following two figures (Figure 7 and Figure 8)  
illustrate the method to increase the CMRR for  
alternating circuit by bootstrapping the capacitance of  
the shielded cable, and this kind of method can also  
reduce the mismatching of capacitance at the inputs.  
1
FilterFreqDIFF  
=
2πR 2C + C  
(
)
D
C
1
FilterFreqCM  
=
2πRCC  
CD 10CC is required in the above equation.  
The capacitor CD influences the quality of the differential  
signal, while CC influences the quality of the common  
mode signal. The common mode rejection ratio would  
be reduced if the R × CC is mismatched. To reduce this  
negative influence and obtain a good CMRR, it is  
recommended that the capacitance of CD should be 10  
times larger than CC. To conclude, the larger the ratio of  
CD:CC is, the less negative influence to the circuit.  
+VS  
RISO  
49.9Ω  
+
IN+  
3
8
+
7
SGM8210-2  
_
OUT  
6
RG  
SGM620  
_
RISO  
49.9Ω  
5
1
2
+5V  
REF  
SGM8210-2  
+
4
_
IN-  
-VS  
100nF  
10μF  
Figure 7. Differential Input Shield Driving  
CC  
CD  
CC  
RFIRT  
IN+  
3
8
7
+
+VS  
IN+  
3
+
7
8
6
OUT  
RG  
SGM620  
R1  
49.9kΩ  
OUT  
6
RG  
499Ω  
1
2
+
SGM620  
RISO  
50Ω  
5
R2  
RFIRT  
REF  
_
49.9kΩ  
SGM8210-1  
5
1
2
4
REF  
IN-  
_
4
_
IN-  
100nF  
10μF  
-5V  
-VS  
Figure 8. Common Mode Input Shield Driving  
Figure 6. One Method to Reduce the Interference of RF  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
14  
 
 
 
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
APPLICATION INFORMATION (continued)  
and DGND. Also, the isolation can be made by using a  
Isolation of Grounding  
single line or 0Ω resistor. However, each returns of  
ground should be separated so that the current flow  
from the sensitive point could be minimized. Also, the  
ground returns between analog and digital should be  
tied together with one point, which is shown in ADC part  
of Figure 9.  
For solving the problems of grounding, REF pin should  
be connected to the "local ground" as the output of the  
instrumentation amplifier is biased with VREF  
.
Because of the noisy environment of the digital circuit,  
the component of data-acquisition such as Analog  
Digital Converter (ADC) has two pins which are AGND  
Analog  
Digital  
Power Supply  
Power Supply  
+10V GND -10V  
GND +3.3V  
100nF  
100nF  
100nF 100nF  
100nF  
+
7
3
2
+
+VCC  
-VCC  
AVDD GND AVSS GND DVDD  
4
6
S/H  
ADC  
To MCU  
IN  
GND  
OUT  
SGM620  
_
5
Figure 9. Isolation of Grounding  
+VS  
Return of Grounding for IB  
IN+  
The bias current (IB) at the inputs is needed for  
operating and biasing the transistor at the input stage of  
the instrumentation amplifier, so it is also necessary to  
design a ground return path for the bias current. For  
example, for operating the floating inputs of the  
amplifier (see Figure 10 ~ 12), such as AC-coupled  
transformer, there should be an electrical line between  
the input and the ground for ground return of bias  
current.  
3
8
+
7
6
RG  
OUT  
SGM620  
5
1
2
REF  
4
_
IN-  
-VS  
To the Ground of  
Power Supply  
Figure 11. Return of Grounding for IB with Thermocouple  
Inputs  
+VS  
IN+  
3
+
7
8
RFILT  
10kΩ  
IN+  
3
+
6
RG  
499Ω  
CFILT  
OUT  
8
SGM620  
1
2
5
AC  
Coupled  
6
REF  
RG  
OUT  
SGM620  
4
_
IN-  
5
1
2
-VS  
CFILT  
REF  
_
To the Ground of  
Power Supply  
IN-  
RFILT  
10kΩ  
To the Ground of  
Power Supply  
Figure 10. Return of Grounding for IB with  
Transformer-Coupled Inputs  
Figure 12. Return of Grounding for IB with AC-Coupled  
Input  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
15  
 
 
 
Low Power, Low Noise, Rail-to-Rail  
Output, Instrumentation Amplifier  
SGM620  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
JUNE 2022 ‒ REV.A.1 to REV.A.2  
Page  
Updated Terminal of Reference section.............................................................................................................................................................13  
MARCH 2022 ‒ REV.A to REV.A.1  
Page  
Updated Electrical Characteristics section...........................................................................................................................................................5  
Changes from Original (MARCH 2022) to REV.A  
Page  
Changed from product preview to production data.............................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
JUNE 2022  
16  
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
SOIC-8  
0.6  
D
e
2.2  
E1  
E
5.2  
b
1.27  
RECOMMENDED LAND PATTERN (Unit: mm)  
L
A
A1  
c
θ
A2  
Dimensions  
In Millimeters  
Dimensions  
In Inches  
Symbol  
MIN  
MAX  
1.750  
0.250  
1.550  
0.510  
0.250  
5.100  
4.000  
6.200  
MIN  
MAX  
0.069  
0.010  
0.061  
0.020  
0.010  
0.200  
0.157  
0.244  
A
A1  
A2  
b
1.350  
0.100  
1.350  
0.330  
0.170  
4.700  
3.800  
5.800  
0.053  
0.004  
0.053  
0.013  
0.006  
0.185  
0.150  
0.228  
c
D
E
E1  
e
1.27 BSC  
0.050 BSC  
L
0.400  
0°  
1.270  
8°  
0.016  
0°  
0.050  
8°  
θ
NOTES:  
1. Body dimensions do not include mode flash or protrusion.  
2. This drawing is subject to change without notice.  
SG Micro Corp  
TX00010.000  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
SOIC-8  
13″  
12.4  
6.40  
5.40  
2.10  
4.0  
8.0  
2.0  
12.0  
Q1  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
13″  
386  
280  
370  
5
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY