LR38603 [SHARP]

Digital Signal Processor for Color CCD Cameras; 数字信号处理器的彩色CCD摄像机
LR38603
型号: LR38603
厂家: SHARP ELECTRIONIC COMPONENTS    SHARP ELECTRIONIC COMPONENTS
描述:

Digital Signal Processor for Color CCD Cameras
数字信号处理器的彩色CCD摄像机

数字信号处理器 CD 摄像机
文件: 总26页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BACK  
LR38603  
Digital Signal Processor for  
Color CCD Cameras  
LR38603  
DESCRIPTION  
The LR38603 is a CMOS digital signal processor for  
color CCD video camera systems of 270 k/320 k/  
410 k/470 k-pixel CCDs with complementary color  
filters. The video camera system consists of  
CDS/PGA/ADC IC (IR3Y48A1), DSP IC (LR38603)  
and V driver IC (LR36685) with CCD.  
FEATURES  
• Designed for 1/4-type 270 k/320 k/410 k/470 k-  
pixel color CCDs with Mg, G, CY, and Ye  
complementary color filters  
• Switchable between NTSC and PAL modes  
• Built-in signal generation circuit for driving CCD  
and various pulses for TV signals  
• Parameters for camera signal processing can be  
set  
• Built-in auto exposure control  
• Built-in auto white balance control  
• Built-in auto carrier balance control  
• Built-in drive circuit for 2 K-bit EEPROM  
• Built-in 9-bit D/A converter  
• Built-in mirror image output  
• Built-in circuit to reduce line crawl noise  
• Built-in auto white detect correction  
• YUV digital output (8 bits x 2)  
• UYVY digital output (8 bits x 1)  
• Analog video output  
• External clock input (8 fsc)  
• Built-in vertical reset  
• Built-in horizontal reset  
• Single +3.3 V power supply  
• Package :  
80-pin LQFP (P-LQFP080-1212) 0.5 mm pin-pitch  
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in  
catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.  
1
LR38603  
PIN CONNECTIONS  
80-PIN LQFP  
TOP VIEW  
ACL  
CKI  
CKO  
VDD  
GND  
ADCK  
SCK  
SDATA  
ADI9  
1
2
3
4
5
6
7
8
9
60 HD  
59 Y7  
58 Y6  
57 Y5  
56 Y4  
55 VDD  
54 GND  
53 Y3  
52 Y2  
ADI8 10  
ADI7 11  
ADI6 12  
ADI5 13  
ADI4 14  
VDD 15  
GND 16  
ADI3 17  
ADI2 18  
ADI1 19  
ADI0 20  
51 Y1  
50 Y0  
49 EXCKI  
48 DCK2  
47 DCK1  
46 VDD  
45 GND  
44 EEMD3  
43 EEMD2  
42 EEMD1  
41 EEMDS  
(P-LQFP080-1212)  
2
LR38603  
BLOCK DIAGRAM  
LUMINANCE  
SIGNAL  
PROCESS  
OB  
CLAMPING  
4 LINES  
DELAY  
ADI9-ADI0  
VIDEO  
Y7-Y0  
9-BIT DA  
BLKX, CSYNC  
HD, VD, ADCLP  
OBCP  
DCK1, DCK2  
EXCKI  
SSG  
TG  
COLOR  
SIGNAL  
PROCESS  
CKI  
CKO  
EEPSL, EEPFL  
EEPCK, EEPDA  
FR, FH1, FH2  
V1X-V4X  
VH1X, VH3X  
AUTOMATIC  
CONTROL  
EEPROM  
CONTROL  
EEMD2, EEMD3  
EEMDS, EEMD1  
WB1, WB2, MIR, BLC  
FCDS, FS, RS  
ADCK  
3
LR38603  
PIN DESCRIPTION  
PIN NO. SYMBOL IO SYMBOL POLARITY  
DESCRIPTION  
1
2
ACL  
CKI  
ICSU  
OSCI  
All reset  
Input for reference clock oscillator  
Connect to CKO (pin 3) with R.  
NTSC : 28.63636 MHz PAL : 28.375 MHz  
3
4
5
CKO  
VDD  
OSCO  
Output for reference clock oscillator. The output is the inverse of CKI (pin 2).  
Power supply input (+3.3 V)  
GND  
Ground  
Clock output for A/D converter  
Connect to ADCK of IR3Y48A1.  
Clock output for setting parameter of IR3Y48A1  
Serial data output for setting parameter of IR3Y48A1  
Digital signal input (MSB)  
6
ADCK  
OBF4M  
7
8
9
SCK  
OBF4M  
SDATA  
ADI9  
OBF4M  
IC  
10 ADI8  
11 ADI7  
12 ADI6  
13 ADI5  
14 ADI4  
15 VDD  
IC  
Digital signal input  
IC  
Digital signal input  
IC  
Digital signal input  
IC  
Digital signal input  
IC  
Digital signal input  
Power supply input (+3.3 V)  
16 GND  
17 ADI3  
18 ADI2  
19 ADI1  
20 ADI0  
21 OBCP  
22 ADCLP  
23 BLKX  
Ground  
IC  
Digital signal input  
IC  
Digital signal input  
IC  
Digital signal input  
IC  
Digital signal input (LSB)  
OBF4M  
OBF4M  
OBF4M  
Clamp pulse output for optical black  
Clamp pulse output  
Blanking pulse output  
Data input from EEPROM  
Connect to a data output pin of EEPROM.  
When setting internal register from an external device, use EEPCK, EEPFL and  
EEPSL together with EEPDA. This pin is for serial data input.  
Ground  
24 EEPDA  
IO4MU  
25 GND  
26 VDD  
Power supply input (+3.3 V)  
Clock output for EEPROM  
Connect to clock input of EEPROM.  
When setting internal register from external device, this pin is used as serial  
clock.  
27 EEPCK IO4MSU  
Control for setting internal register from an external device  
Usually used at H level.  
28 EEPFL  
29 EEPSL  
ICU  
ICD  
Control for setting internal register from external device  
Usually used at L level.  
When setting register, set EEPSL at H level.  
4
LR38603  
PIN NO. SYMBOL IO SYMBOL POLARITY  
DESCRIPTION  
WB setting. Use together with WB1 and WB2  
30 WB1  
31 WB2  
IO4MD  
IO4MD  
00 (WB2, WB1) : Auto white balance 01 : WB1 mode 10 : WB2 mode  
11 : WB3 mode  
These pins are 0 bit (WB1) and 1st-bit (WB2) of UV output in output digital YUV  
mode.  
Setting for mirroring video output mode  
32 MIR  
IO4MD  
L : Normal H : Mirroring  
This pin is 2nd-bit of UV output in output digital YUV mode.  
Switching internal register for exposure-standard  
This pin is 3rd-bit of UV output in digital output mode.  
Ground for internal D/A converter  
33 BLC  
IO4MD  
34 GNDDA  
35 VDDDA  
Power supply for internal D/A converter  
Connect to DC 3.3 V power supply (+3.3 V).  
DC output of internal D/A converter. Connect to ground pin via capacitor.  
DC output of internal D/A converter. Connect to ground pin via register.  
DC reference input for internal D/A converter  
Connect to DC power supply (+1.0 V).  
36 VB  
DAO  
DAO  
37 IREF  
38 VREF  
DAI  
39 GNDDA  
40 VIDEO  
Ground for internal D/A converter.  
DAO  
Analog video output  
Switching electronic shutter control  
41 EEMDS  
42 EEMD1  
43 EEMD2  
44 EEMD3  
IO4MU  
IO4MU  
IO4MU  
IO4MU  
Use together with EEMDS, EEMD1, EEMD2 and EEMD3. Refer to "Electronic  
Shutter Speed Setting" in AUTOMATIC CAMERA FUNCTION CONTROL.  
These pins are 4th to 7th-bit of UV output in digital output mode.  
When in line lock mode,  
EEMD2 : H reset  
EEMD3 : V reset  
45 GND  
46 VDD  
Ground  
Power supply input (+3.3 V).  
Clock output synchronized with digital output  
Switchable among CSYNC, CBLK or L level.  
ID pulse output of UV signal for digital output  
When in analog output, output is KEI or L level.  
KEI pulse : At power-on, begin with L level. When shutter speed is 1/60 s (PAL  
1/50 s) and PGA gain is more than the value in address 92h, it goes to H level  
and becomes stable.  
47 DCK1  
OBF4M  
48 DCK2  
OBF4M  
49 EXCKI  
50 Y0  
ICSU  
OBF4M  
OBF4M  
OBF4M  
OBF4M  
Input for external clock  
Digital video signal output  
Use together with Y7 (MSB) to Y0 (LSB).  
UYVY signal or illumination signal output (according to the register).  
51 Y1  
52 Y2  
53 Y3  
54 GND  
Ground  
5
LR38603  
PIN NO. SYMBOL IO SYMBOL POLARITY  
DESCRIPTION  
55 VDD  
56 Y4  
57 Y5  
58 Y6  
59 Y7  
Power supply input (+3.3 V)  
Digital video signal output  
OBF4M  
OBF4M  
OBF4M  
OBF4M  
Use together with Y7 (MSB) to Y0 (LSB).  
UYVY signal or illumination signal output (according to the register)  
Horizontal drive pulse output  
It is able to select horizontal drive pulse for drive timing and video output timing  
from BELL pulse, HREF pulse and L level.  
60 HD  
OBF4M  
BELL pulse : The signal that goes to H level 1 time per 1 field.  
Vertical drive pulse output  
61 VD  
OBF4M  
It is able to select from VD, CSYNC and VS outputs for drive timing and video  
output timing.  
62 V1X  
63 V2X  
64 V3X  
65 V4X  
66 VDD  
67 GND  
68 VH1X  
69 VH3X  
70 OFDX  
71 VDD  
72 GND  
73 FR  
OBF4M  
OBF4M  
OBF4M  
OBF4M  
CCD vertical drive pulse output  
Connect each pin to CCD via V driver IC.  
Power supply input (+3.3 V)  
Ground  
OBF4M  
OBF4M  
OBF4M  
Pulse output for reading charges  
Connect each pin to CCD via V driver IC.  
OFD pulse output. Connect each pin to CCD via V driver IC.  
Power supply input (+3.3 V)  
Ground  
OBF12M  
OBF12M  
OBF12M  
Reset pulse output. Connect each pin to CCD via capacitor.  
Horizontal transmit pulse output  
Connect to CCD.  
74 FH1  
75 FH2  
76 VDD  
77 GND  
Power supply input (+3.3 V)  
Ground  
Pulse output for sample hold  
When using IR3Y48A1, connect to CSN pin for parameter setting.  
Pulse output for sample hold  
Pulse output for sample hold  
78 RS  
OBF4M  
79 FS  
OBF4M  
OBF4M  
80 FCDS  
IC  
: Input pin  
DAO  
: Output pin for D/A converter  
: Output pin for oscillation  
ICU  
ICD  
ICSU  
DAI  
OSCI  
: Input pin with pull-up resistor  
: Input pin with pull-down resistor  
: Schmidt input pin with pull-up resistor  
: Input pin for D/A converter  
: Input pin for oscillation  
OSCO  
IO4MU : Input/output pin with pull-up resistor  
IO4MD : Input/output pin with pull-down resistor  
IO4MSU : Input/output pin with pull-down resistor (schmidt  
input)  
OBF4M : Output pin  
OBF12M : Output pin  
6
LR38603  
DSP REGISTER TABLE  
ADDRESS  
NAME  
BIT  
CONTENTS  
00h  
STOP_EEPROM [7 : 0] Stop reading from EEPROM only when EEPROM data is FF.  
01h  
LPF_TH  
[7] H : Luminance signal processing without LPF (when using B/W CCD)  
CCD_SEL  
[6 : 5] 00 : 270 k pixel CCD (NTSC) 01 : 410 k pixel CCD (NTSC)  
10 : 320 k pixel CCD (PAL) 11 : 470 k pixel CCD (PAL)  
[4 : 3] Input data timing adjustment  
ADTI  
00 : Reference 01 : 1 clock delay 10 : 1 clock forward 11 : 2 clocks forward  
[2] 1 : Latch with inverted clock  
SEL_CDS  
NI  
[1 : 0] Fixed to 1X (IR3Y48A1)  
02h  
[6] 0 : Interlace 1 : Non-interlace  
MODE_OUT_SIG  
Select output mode.  
[5 : 3]  
000 : Analog video output  
001 : Analog video output  
EXCKI : Vertical reset pulse input  
EXCKI : 8 fsc clock input  
EEMD2 : Horizontal reset pulse input  
EEMD3 : Vertical reset pulse input  
010 : Analog video output  
EEMD2 : Horizontal reset pulse input  
EEMD3 : Vertical reset pulse input  
100 : YUV digital video output : Clock rate of video data pixel-CK  
101 : YUV digital video output : Clock rate of video data EXCKI  
110 : UYVY digital video output : Clock rate of video data EXCKI  
011, 111 are prohibited.  
START_EE  
AGC_FIX  
OB_SEL  
[2] Shutter speed at power-on  
[1] PGA control  
0 : minimum  
0 : Auto  
1 : maximum  
1 : Fixed  
[0] Carrier balance control  
0 : Auto  
1 : Fixed  
03h  
HD_SEL  
[6 : 5] Select output signal from HD pin  
00 : HD output (CCD drive timing) 01 : HD output (video output timing)  
10 : BELL pulse (in analog video output), HREF (in digital video output)  
11 : Fixed to L level  
VD_SEL  
[4 : 3] Select output signal from VD pin  
00 : VD output (CCD drive timing) 01 : VD output (video output timing)  
10 : Fixed to L level (in analog video output), VS (in digital video output)  
11 : Fixed to L level (in analog video output), CSYNC (in digital video  
output)  
DCK1_SEL  
DCK2_SEL  
SW_CTRL  
[2 : 1] Select output signal from DCK1 pin (in analog video output)  
00 : CSYNC 01 : CBLNK 1X : Fixed to L level  
[0] Select output signal from DCK2 pin (in analog video output)  
0 : Fluorescent signal 1 : Fixed to L level  
04h  
[7 : 0] Electronic shutter control (EEMDS, EEMD1, EEME2, EEMD3), mirror video  
output (MIR [MSB]), internal register for exposure-standard (BLC) and white  
balance (WB2, WB1 [LSB]) are set when selecting digital output mode with  
MODE_OUT_SIG (address 02h).  
Shutter control of EEMD2 and EEMD3 is set by the register of SW_CTRL  
and that of EEMDS and EEMD1 is set by pin 41 and pin 42 when setting  
"001" and "010" with MODE_OUT_SIG (address 02h).  
7
LR38603  
ADDRESS  
NAME  
MIN_SH_SEL  
MAX_SH  
BIT  
CONTENTS  
05h  
[7] Select minimum shutter speed 0 : 1/60 s (1/50 s) 1 : 1/100 s (1/120 s)  
[6 : 0] Restriction in maximum shutter speed  
(When EEMDS, EEMD1, EEMD2, EEMD3 = 4' b1110)  
[7 : 0] Reference of exposure  
06h  
07h  
REF_IRIS1  
CTLD_AGC  
[7 : 0] Outside range of error of exposure reference  
(Hysteresis range of IRIS and PGA tweaking range)  
[7 : 0] Inside range of error of exposure reference  
(Exposure control is stopped in REF_IRIS CTLD_0)  
[7 : 0] Exposure reference in condition against light (When BLC = H)  
[7 : 0] Ceiling clip in accumulate exposure data  
08h  
CTLD_0  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
REF_IRIS2  
CLIP_IRIS  
UW_E1  
UW_E2  
UW_E3  
UW_E4  
UW_E5  
UW_E6  
UW_E7  
UW_E8  
[7 : 0] Downward weight factor 1 in calculation of exposure. (upper of screen)  
[7 : 0] Downward weight factor 2 in calculation of exposure.  
[7 : 0] Downward weight factor 3 in calculation of exposure.  
[7 : 0] Downward weight factor 4 in calculation of exposure.  
[7 : 0] Downward weight factor 5 in calculation of exposure.  
[7 : 0] Downward weight factor 6 in calculation of exposure.  
[7 : 0] Downward weight factor 7 in calculation of exposure.  
[7 : 0] Downward weight factor 8 in calculation of exposure. (lower of screen)  
Sum of UW_E1 to UW_E8 must be 256d.  
13h  
14h  
15h  
16h  
CW_E  
[6 : 0] Ratio of downward IRIS against center  
CWP_E  
CWA_E  
EE_DIV_STP  
LPFE_O  
LPFE_I  
[5 : 0] Center point, position of left-upper area.  
[5 : 0] Center point, size of area.  
[6 : 4] Select dividing value of shutter speed control.  
[3 : 2] Select LPF of IRIS data in PGA normal adjustment.  
[1 : 0] Select LPF of IRIS data in PGA tweak.  
17h  
18h  
19h  
P_HEE  
[7 : 0] Ratio of luminance H peak of IRIS data  
P_LEE  
[7 : 0] Ratio of luminance L peak of IRIS data  
MOD8  
[4] Select peak accumulation. 0 : Avg. of 8 pixels 1 : Avg. of 4 pixels  
[3 : 2] Reduction of IRIS control in normal operation.  
IRIS_DLY  
00 : Operating always  
01 : Operating each 2VD timing  
10 : Operating each 4VD timing 11 : Operating each 8VD timing  
[1 : 0] Reduction of IRIS control in PGA tweak.  
IRIS_DLY  
00 : Operating always  
01 : Operating each 2VD timing  
10 : Operating each 4 VD timing 11 : Operating each 8VD timing  
[7 : 5] Select dividing value of PGA control.  
1Ah  
AG_DIV_STP  
AG_GAIN  
[4 : 0] Number of steps in PGA gain  
1Bh  
1Ch  
1Dh  
1Eh  
MAX_AGC  
REF_AGC  
[7 : 0] Upper limitation of PGA control.  
[7 : 0] Lower limitation of PGA control (initial value of PGA at power-on).  
[7 : 0] Fixed PGA gain [7 : 0 (LSB) ]  
S_38M_GA  
S_38M_GA_U  
S_38M_MX  
[3] Fixed PGA gain when using IR3Y48A1 [8 (MSB)]  
IR3Y48A1 minimum gain [1 : 0]  
[2 : 0]  
00 : 0 01 : +6 dB 10 : +12 dB 11 : –2 dB  
8
LR38603  
ADDRESS  
NAME  
BIT  
CONTENTS  
[7] Offset auto adjustment.  
1Fh  
S_38M_OFS  
0 : Auto 1 : Fixed (when using IR3Y48A1)  
[6 : 0] Factor in fixed offset mode  
Fixed to 40h when using IR3Y48A1.  
20h  
21h  
22h  
23h  
24h  
CSEPR  
CSEPB  
CB_R  
[7 : 0] R side factor of color separation (positive value)  
[7 : 0] B side factor of color separation (positive value)  
[7 : 0] R side factor of carrier balance (complement of 2)  
[7 : 0] B side factor of carrier balance (complement of 2)  
[5 : 3] Select characteristics of color gamma.  
[2 : 1] Manner of YL signal production ([2 : 1])  
00 : Avg. of 3 lines 01 : Each R, B line 1X : Fixed ratio  
[0] Manner of RG signal production  
CB_B  
C_GAM  
YL_SEL  
C1_RB_SEL  
0 : Use color separation factor (address 20h, 21h)  
1 : Use fixed color separation factor.  
MODE_MAT  
LC_ON_RB  
YL_SUB  
[7] Matrix factor 0 : Unsigned 1 : Signed  
[6] 1 : Operation against line crawl in color processing.  
[5] 1 : Set YL to 0 in chrominance generation.  
[4] Switch order of UV digital output  
25h  
UV_CTRL1  
SEL_RB  
[3] Swap R and B after color separation.  
[2] Swap R – Y and B – Y in output  
SEL_RB2  
SPCTRL  
[1] Switch attributes of SP1 and SP2.  
IDCO  
[0] Switch attribute of color separation HG.  
26h  
27h  
28h  
29h  
2Ah  
MAX_WBR  
MIN_WBR  
MAX_WBB  
MIN_WBB  
JMP_OFF  
AWB_HIGH  
MAX_IQAREA  
IQ_LPF  
[7 : 0] Upper limit of R side range of AWB gain (9 bits data which includes 1 at LSB)  
[7 : 0] Lower limit of R side range of AWB gain (9 bits data which includes 1 at LSB)  
[7 : 0] Upper limit of B side range of AWB gain (9 bits data which includes 1 at LSB)  
[7 : 0] Lower limit of B side range of AWB gain (9 bits data which includes 1 at LSB)  
[4] 0 : Normal 1 : Suppress AWB skipping  
[3] 0 : Normal 1 : Force fast processing in small frame  
[2] 0 : Address 36h to 3Dh 1 : Fix WB frame to maximum.  
[1 : 0] Select LPF of AWB I, Q.  
00 : Avg. of 4 V 01 : Avg. of 2 V 1X : Non  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
K_WBR_H  
K_WBB_H  
CMP_CT  
AWB_HCL  
AWB_LCL  
REF_WBPK  
K_CL  
[7 : 0] R side multiplier of capture speed in AWB fast processing.  
[7 : 0] B side multiplier of capture speed in AWB fast processing.  
[7 : 0] Number of operations of white balance (each CMP_CT x VD timing)  
[7 : 0] Initial value of AWBHCL  
[7 : 0] Initial value of AWBLCL  
[7 : 0] Reference data in calculation of intercept level of AWB accumulated luminance  
[7 : 0] H peak ratio in calculation of intercept level of AWB accumulated luminance  
[7 : 0] Multiplier in calculation of intercept level of AWB accumulated luminance  
[7] AWB detected data  
K_WBCL  
INT_I_R_Y  
0 : I, Q 1 : R – Y, B – Y  
CW_IQ  
[6 : 0] Ratio of AWB weighted center and downward.  
9
LR38603  
ADDRESS  
34h  
NAME  
CWPA_IQ  
CTLD_AW0  
AWB_IP_L  
AWB_IM_L  
AWB_QP_L  
AWB_QM_L  
AWB_IP_S  
AWB_IM_S  
AWB_QP_S  
AWB_QM_S  
AWB_IW_L  
AWB_QW_L  
AWB_IW_S  
AWB_QW_S  
AWB_C_I  
AWB_C_Q  
WBR1  
BIT  
CONTENTS  
[7 : 0] Position and area of AWB center.  
35h  
[7 : 0] Reset range of WB frame (compared with IRIS)  
36h  
[7 : 0] Outside, I-axis positive of AWB detect area (in fast processing)  
[7 : 0] Outside, I-axis negative of AWB detect area (in fast processing)  
[7 : 0] Outside, Q-axis positive of AWB detect area (in fast processing)  
[7 : 0] Outside, Q-axis negative of AWB detect area (in fast processing)  
[7 : 0] Inside, I-axis positive of AWB detect area (in normal processing)  
[7 : 0] Inside, I-axis negative of AWB detect area (in normal processing)  
[7 : 0] Inside, Q-axis positive of AWB detect area (in normal processing)  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
[7 : 0] Inside, Q-axis negative of AWB detect area (in normal processing)  
[6 : 0] White area, I-axis, outside (for hysteresis).  
[6 : 0] White area, Q-axis, outside (for hysteresis).  
40h  
[7 : 4] White area, I-axis, inside (for targeted white area).  
[3 : 0] White area, Q-axis, inside (for targeted white area).  
[7 : 4] WB convergence orientation, I-axis coordinate (complement of 2)  
[3 : 0] WB convergence orientation, Q-axis coordinate (complement of 2)  
[7 : 0] WB1 R side constant (9 bits data which includes 0 at MSB)  
[7 : 0] WB1 B side constant (9 bits data which includes 0 at MSB)  
[7 : 0] WB2 R side constant (9 bits data which includes 0 at MSB)  
[7 : 0] WB2 B side constant (9 bits data which includes 0 at MSB)  
[7 : 0] WB3 R side constant (9 bits data which includes 0 at MSB)  
[7 : 0] WB3 B side constant (9 bits data which includes 0 at MSB)  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
WBB1  
WBR2  
WBB2  
WBR3  
WBB3  
REF_GA_R1M [7 : 0] Chrominance gain of R – Y negative direction when WB1 is fixed or auto-  
controlled (present WBR factor ≤ WBR1).  
49h  
4Ah  
4Bh  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
REF_GA_B1M  
REF_GA_R1P  
REF_GA_B1P  
[7 : 0] Chrominance gain of B – Y negative direction when WB1 is fixed or auto-  
controlled (present WBR factor ≤ WBR1).  
[7 : 0] Chrominance gain of R – Y positive direction when WB1 is fixed or auto-  
controlled (present WBR factor ≤ WBR1).  
[7 : 0] Chrominance gain of B – Y positive direction when WB1 is fixed or auto-  
controlled (present WBR factor ≤ WBR1).  
REF_GA_R2M [7 : 0] Chrominance gain of R – Y negative direction when WB2 is fixed or auto-  
controlled (present WBR factor ≤ WBR2).  
REF_GA_B2M  
REF_GA_R2P  
REF_GA_B2P  
[7 : 0] Chrominance gain of B – Y negative direction when WB2 is fixed or auto-  
controlled (present WBR factor ≤ WBR2).  
[7 : 0] Chrominance gain of R – Y positive direction when WB2 is fixed or auto-  
controlled (present WBR factor ≤ WBR2).  
[7 : 0] Chrominance gain of B – Y positive direction when WB2 is fixed or auto-  
controlled (present WBR factor ≤ WBR2).  
REF_GA_R3M [7 : 0] Chrominance gain of R – Y negative direction when WB3 is fixed or auto-  
controlled (present WBR factor ≤ WBR3).  
REF_GA_B3M  
[7 : 0] Chrominance gain of B – Y negative direction when WB3 is fixed or auto-  
controlled (present WBR factor ≤ WBR3).  
10  
LR38603  
ADDRESS  
NAME  
BIT  
CONTENTS  
52h  
REF_GA_R3P  
[7 : 0] Chrominance gain of R – Y positive direction when WB3 is fixed or auto-  
controlled (present WBR factor ≤ WBR3).  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
65h  
66h  
REF_GA_B3P  
K_GA_R1M  
K_GA_B1M  
K_GA_R1P  
K_GA_B1P  
K_GA_R2M  
K_GA_B2M  
K_GA_R2P  
K_GA_B2P  
[7 : 0] Chrominance gain of B – Y positive direction when WB3 is fixed or auto-  
controlled (present WBR factor ≤ WBR3).  
[6 : 0] Chrominance gain slope of R – Y negative direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[6 : 0] Chrominance gain slope of B – Y negative direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[6 : 0] Chrominance gain slope of R – Y positive direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[6 : 0] Chrominance gain slope of B – Y positive direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[6 : 0] Chrominance gain slope of R – Y negative direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[6 : 0] Chrominance gain slope of B – Y negative direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[6 : 0] Chrominance gain slope of R – Y positive direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[6 : 0] Chrominance gain slope of B – Y positive direction in WB auto control  
(WBR2 < present WBR < WBR3)  
REF_MAT_R1M [5 : 0] Matrix correction factor of R – Y negative direction when WB1 is fixed or  
autocontrolled (present WBR factor ≤ WBR1).  
REF_MAT_B1M [5 : 0] Matrix correction factor of B – Y negative direction when WB1 is fixed or  
autocontrolled (present WBR factor ≤ WBR1).  
REF_MAT_R1P [5 : 0] Matrix correction factor of R – Y positive direction when WB1 is fixed or  
autocontrolled (present WBR factor ≤ WBR1).  
REF_MAT_B1P [5 : 0] Matrix correction factor of B – Y positive direction when WB1 is fixed or  
autocontrolled (present WBR factor ≤ WBR1).  
REF_MAT_R2M [5 : 0] Matrix correction factor of R – Y negative direction when WB2 is fixed or  
autocontrolled (present WBR factor = WBR2).  
REF_MAT_B2M [5 : 0] Matrix correction factor of B – Y negative direction when WB2 is fixed or  
autocontrolled (present WBR factor = WBR2).  
REF_MAT_R2P [5 : 0] Matrix correction factor of R – Y positive direction when WB2 is fixed or  
autocontrolled (present WBR factor = WBR2).  
REF_MAT_B2P [5 : 0] Matrix correction factor of B – Y positive direction when WB2 is fixed or  
autocontrolled (present WBR factor = WBR2).  
REF_MAT_R3M [5 : 0] Matrix correction factor of R – Y negative direction when WB3 is fixed or  
autocontrolled (present WBR factor = WBR3).  
REF_MAT_B3M [5 : 0] Matrix correction factor of B – Y negative direction when WB3 is fixed or  
autocontrolled (present WBR factor = WBR3).  
REF_MAT_R3P [5 : 0] Matrix correction factor of R – Y positive direction when WB3 is fixed or  
autocontrolled (present WBR factor = WBR3).  
11  
LR38603  
ADDRESS  
NAME  
BIT  
CONTENTS  
67h  
REF_MAT_B3P [5 : 0] Matrix correction factor of B – Y positive direction when WB3 is fixed or  
autocontrolled (present WBR factor = WBR3).  
68h  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
70h  
K_MAT_R1M  
K_MAT_B1M  
K_MAT_R1P  
K_MAT_B1P  
K_MAT_R2M  
K_MAT_B2M  
K_MAT_R2P  
K_MAT_B2P  
[7 : 0] Matrix correction slope factor of R – Y negative direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[7 : 0] Matrix correction slope factor of B – Y negative direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[7 : 0] Matrix correction slope factor of R – Y positive direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[7 : 0] Matrix correction slope factor of B – Y positive direction in WB auto control  
(WBR1 < present WBR < WBR2)  
[7 : 0] Matrix correction slope factor of R – Y negative direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[7 : 0] Matrix correction slope factor of B – Y negative direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[7 : 0] Matrix correction slope factor of R – Y positive direction in WB auto control  
(WBR2 < present WBR < WBR3)  
[7 : 0] Matrix correction slope factor of B – Y positive direction in WB auto control  
(WBR2 < present WBR < WBR3)  
CKIL_OFF  
COL_Y  
[6] 1 : Color killer OFF  
[5 : 0] Start point of luminance color suppression in maximum PGA gain.  
[7 : 0] Start point of low luminance color suppression (PGA gain).  
[5 : 0] Low luminance color suppression gain.  
71h  
72h  
73h  
74h  
75h  
COL_S  
COL_H  
CKI_HCL  
CKI_LCL  
CKI_HLGA  
[7 : 0] Start level of high luminance color suppression.  
[7 : 0] Start level of low luminance color suppression.  
[7 : 4] High luminance color suppression gain.  
[3 : 0] Low luminance color suppression gain.  
76h  
CKI_HLTI  
[5 : 3] Timing adjustment of high luminance color suppression : –2 to +2  
[2 : 0] Timing adjustment of low luminance color suppression : –2 to +2  
[7 : 0] Start point of horizontal edge color suppression.  
[7 : 0] Start point of vertical edge color suppression.  
[7 : 4] Gain of horizontal edge color suppression.  
77h  
78h  
79h  
CKI_HECL  
CKI_EVCL  
CKI_EGA  
[3 : 0] Gain of vertical edge color suppression.  
NSUP_R  
[7 : 4] R – Y signal low level suppression  
7Ah  
7Bh  
NSUP_B  
[3 : 0] B – Y signal low level suppression  
LC_ON_YL  
Y_GAM  
[7] 1 : Execute measure against line crawl in processing luminance signal.  
[6 : 4] Select characteristics of luminance gamma.  
[3] Select characteristics of luminance LPF.  
SEL_LPF_Y  
Y_SEL  
[2] Switch luminance signal processing 0 : Use only 1H 1 : 3-line process  
[1] 1 : Vertical aperture is OFF  
VAPT_OFF  
HAPT_OFF  
HAPT_SEL  
[0] 1 : Horizontal aperture is OFF  
[7] Switch characteristics of horizontal aperture.  
0 : (–1 + Z1) (1 – Z2) 1 : (–1 + Z1) (1 – Z1)  
7Ch  
APT_HTIM  
APT_HGA  
[6 : 5] Timing of horizontal aperture : –1 to +1  
[4 : 0] Initial value of APT_HGA (gain of horizontal edge signal)  
12  
LR38603  
ADDRESS  
7Dh  
7Eh  
NAME  
APT_HCL  
APT_VGA  
APT_VCL  
APT_S  
BIT  
CONTENTS  
[6 : 0] Suppression level of horizontal edge signal.  
[4 : 0] Initial value of APT_VGA (gain of vertical edge signal)  
[6 : 0] Suppression level of vertical edge signal.  
[7 : 0] Start point of edge signal suppression (PGA gain).  
[5 : 0] Gain of edge signal suppression.  
7Fh  
80h  
81h  
APT_H  
82h  
APT_Y  
[5 : 0] Start point of edge signal suppression in maximum PGA gained luminance.  
[7 : 0] Luminance suppression point of high luminance aperture.  
[6] Select level of edge signal, used in internal calculation. 1 : 1/4 times  
[5 : 3] Delete timing of horizontal edge : –2 to +2  
[2 : 0] Delete timing of vertical edge : –2 to +2  
83h  
CKI_HCL2  
CKI_ETI  
84h  
85h  
86h  
87h  
88h  
LC_K1  
LC_K2  
LC_MAX  
SETUP  
[7 : 0] Difference of 0H, 2H signal allowed level, for judgment of line crawl.  
[7 : 0] Difference of R, B signal allowed level, for judgment of line crawl.  
[7 : 0] Judgment of luminance level, for judgment of line crawl.  
[6] Switch CBLK level.  
[5 : 0] Adjustment of setup level (complement of 2).  
[7] Sign of burst level R – Y 1 : – direction 0 : + direction  
[6 : 0] Burst level R – Y.  
89h  
8Ah  
8Bh  
BAS_R  
BAS_B  
OUTGA  
[7] Sign of burst level B – Y 1 : – direction 0 : + direction  
[6 : 0] Burst level B – Y (sign + absolute value).  
[6] 1 : Mute in encoder.  
[5] 1 : Stop adding SYNC to analog output.  
[4 : 0] Gain of analog output (1 time at 10h).  
8Ch  
8Dh  
SYNCLEV  
[7 : 0] Adjustment of SYNC level.  
MUTE_OUT  
[7] 1 : Disable output mute at power-on.  
[6 : 0] Period of mute (MUTE_OUT x 2 vertical period)  
8Eh  
SEL_FH  
[7] Switch attribute of FH  
[6] Switch attribute of FR  
[5 : 3] ADCK phase adjustment  
1 : Inverted  
1 : Inverted  
SEL_FR  
SEL_ADCK  
When using 270 k, 320 k-pixel CCDs 000 : standard to 101 : 300˚ (delayed  
from "000" to "101" every 60˚.)  
When using 410 k, 470 k-pixel CCDs 000 : standard to 101 : 270˚ (delayed  
from "000" to "101" every 45˚.)  
SEL_FS  
[2 : 0] FS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from  
"000" to "111" every 2 ns.)  
8Fh  
90h  
SEL_FH2  
SEL_FCDS  
SEL_RS  
[7 : 6] FH2 phase adjustment  
00 : standard 01 : 1 ns delay 10 : 2 ns delay 11 : 3 ns delay  
[5 : 3] FCDS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from  
"000" to "111" every 2 ns.)  
[2 : 0] RS phase adjustment 000 : standard to 111 : 14 ns delay (delayed from  
"000" to "111" every 2 ns.)  
STANDBY  
[6] 1 : Standby  
[5 : 0] Period of return from standby (STANDBY x vertical period)  
13  
LR38603  
ADDRESS  
NAME  
KNEE  
BIT  
CONTENTS  
91h  
[7] 1 : Invert OBCP clock  
[6] 1 : Invert DCK2  
[5] 1 : Invert DCK1  
INV_DCK2  
INV_DCK1  
BUSY_SEL  
EI_ON_SEL  
HRI_SEL  
[4] 1 : Reset auto control factor, when EEPSL is at H.  
[3] 1 : Enable KEI pulse function.  
[2] 1 : Invert HRES (minus attribute)  
[1] 1 : Invert VRES (minus attribute)  
[0] Select vertical reset timing.  
VRI_SEL  
IN_VRES  
0 : Reset at CSYNC pulse timing.  
1 : Reset at VD pulse timing.  
92h  
93h  
KEI_KEISU  
ENCIN_PH  
[7 : 0] Gain of PGA which produces KEI pulse.  
[3] Latch encoder clock inverted.  
[2] 1 : Enable DFF.  
VARI_ENC  
[1 : 0] Delay adjustment of addition of luminance and color modulation.  
(Delay of color signal)  
00 : 0 clock delay to 11 : 3 clocks delay (delayed from "00" to "11" every 1  
clock .) 1 clock : Original clock  
94h  
ANA_VARI  
[6 : 4] Delay adjustment of addition of luminance and color modulation.  
(Delay of luminance signal)  
101 : –3 clocks delay to 011 : 3 clocks delay (delayed from "101" to "011"  
every 1 clock .)  
1 clock : Pixel CK (complement of 2)  
VARI_Y  
[3 : 0] Timing adjustment of luminance processing.  
1001 : –7 clocks delay to 0111 : 7 clocks delay (delayed from "1001" to  
"0111" every 1 clock.) 1 clock : Pixel CK (complement of 2)  
[7] Output 1/8 of original clock from DCK1.  
[6] Test mode. Set 0 in normal operation.  
(The LR38603 does not read EEPROM and registers are set by serial data.)  
[5] Make D/A converter standby.  
95h  
BUNSYU8_SEL  
TEST  
STDBY  
CHG_CKIL  
CHG_WB  
CHG_MTX  
CHG_CCD4  
HG_YL_SEL  
REF_AW  
REF_BW  
REF_CW  
REF_DW  
REF_AB  
[4] Swap R and B of color killer.  
[3] Swap R and B of white balance.  
[2] Swap R and B of matrix input.  
[1] Swap U and V of digital output.  
[0] Swap YL line selection for each R and B.  
[7 : 0] Factor for white detect correction  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
[7 : 0] Factor for white detect correction  
[7 : 0] Factor for white detect correction  
[7 : 0] Factor for white detect correction  
[7 : 0] Factor for black detect correction  
REF_BB  
[7 : 0] Factor for black detect correction  
REF_CB  
[7 : 0] Factor for black detect correction  
14  
LR38603  
ADDRESS  
9Dh  
NAME  
REF_DB  
BIT  
CONTENTS  
[7 : 0] Factor for black detect correction  
9Eh  
AWNC_SEL  
APT_O_LIM  
WN00H  
[5 : 0] ON/OFF control signal for each condition.  
9Fh  
[7 : 0] Limiter of aperture output.  
A0h  
[7 : 0] Lower bits of horizontal coordinate 1 of white defect.  
[7 : 0] Lower bits of vertical coordinate 1 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 1 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 1 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 2 of white defect.  
[7 : 0] Lower bits of vertical coordinate 2 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 2 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 2 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 3 of white defect.  
[7 : 0] Lower bits of vertical coordinate 3 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 3 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 3 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 4 of white defect.  
[7 : 0] Lower bits of vertical coordinate 4 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 4 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 4 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 5 of white defect.  
[7 : 0] Lower bits of vertical coordinate 5 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 5 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 5 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 6 of white defect.  
[7 : 0] Lower bits of vertical coordinate 6 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 6 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 6 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 7 of white defect.  
[7 : 0] Lower bits of vertical coordinate 7 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 7 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 7 of white defect.  
[7 : 0] Lower bits of horizontal coordinate 8 of white defect.  
[7 : 0] Lower bits of vertical coordinate 8 of white defect.  
[3 : 0] [3 : 2] Upper bits of vertical coordinate 8 of white defect.  
[1 : 0] Upper bits of horizontal coordinate 8 of white defect.  
[7 : 0] Test address (Set 00h)  
A1h  
WN00V  
A2h  
WN00HV  
A3h  
A4h  
A5h  
WN01H  
WN01V  
WN01HV  
A6h  
A7h  
A8h  
WN02H  
WN02V  
WN02HV  
A9h  
AAh  
ABh  
WN03H  
WN03V  
WN03HV  
ACh  
ADh  
AEh  
WN04H  
WN04V  
WN04HV  
AFh  
B0h  
B1h  
WN05H  
WN05V  
WN05HV  
B2h  
B3h  
B4h  
WN06H  
WN06V  
WN06HV  
B5h  
B6h  
B7h  
WN07H  
WN07V  
WN07HV  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
TST_SEL31  
TST_SEL32  
TST_SEL33  
TST_SEL1A  
TST_SEL1B  
TST_SEL1C  
[7 : 0] Test address (Set 00h)  
[0]  
Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
15  
LR38603  
ADDRESS  
C6h  
NAME  
BIT  
CONTENTS  
TST_SEL1D  
TST_SEL1V1  
TST_SEL1V2  
TST_SEL1V3  
TST_SEL1V4  
TST_C2_OB3  
TST_C2_OB4  
TST_C2_DL1  
TST_C2_DL2  
TST_C2_YL  
[1 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[6 : 0] Test address (Set 00h)  
[6 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[5 : 0] Test address (Set 00h)  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
D0h  
TST_C2_GAMMA1 [7 : 0] Test address (Set 00h)  
TST_SSG_SEL [2] Test address (Set 00h)  
TST_C2_GAMMA2 [1 : 0] Test address (Set 00h)  
D1h  
D2h  
D3h  
D4h  
D5h  
D6h  
D7h  
D8h  
D9h  
DAh  
DBh  
DCh  
DDh  
DEh  
DFh  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
E8h  
E9h  
F0h  
F1h  
F2h  
F3h  
TST_C6_00  
TST_C6_01  
TST_C6_02  
TST_C4_IO0  
TST_C4_IO1  
TST_C4_IO2  
TST_C4_S0  
TST_C4_S1  
TST_C4_S2  
TST_C5_T0  
TST_C5_T1  
TST_C5_T2  
TST_SEL71  
TST_SEL72  
TEST_C8_00  
TEST_C8_01  
TEST_C8_02  
TEST_C8_03  
TEST_C8_04  
TEST_C8_05  
TEST_C8_06  
TEST_C8_07  
TEST_C8_08  
TEST_C8_09  
TST_REG1  
TST_REG2  
TST_REG3  
TST_REG4  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[6 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[4 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[0]  
Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[5 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[1 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[6 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
16  
LR38603  
ADDRESS  
F4h  
NAME  
TST_REG5  
TST_REG6  
TST_REG7  
TST_REG8  
TST_REG9  
TST_REGA  
TST_REGB  
BIT  
CONTENTS  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[5 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
[7 : 0] Test address (Set 00h)  
F5h  
F6h  
F7h  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
TST_SEL_REG [5 : 0] Test address (Set 00h)  
WT_DAT30  
WT_DAT31  
TST_C5_WT3  
[7 : 0] Test address (Set 00h)  
[6 : 0] Test address (Set 00h)  
[5 : 0] Test address (Set 00h)  
17  
LR38603  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
SYMBOL  
RATING  
UNIT  
V
Supply voltage  
VDD  
–0.3 to +4.3  
Input voltage  
VI  
–0.3 to VDD + 0.3  
–0.3 to VDD + 0.3  
–55 to +150  
V
Output voltage  
Storage temperature  
VO  
V
TSTG  
˚C  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL MIN.  
PARAMETER  
TYP. MAX. UNIT  
Input voltage  
VDD  
TOPR  
FCK  
3.0  
3.3  
+25  
28.6  
3.6  
V
Output voltage  
Input clock  
–20  
+70  
˚C  
MHz  
ELECTRICAL CHARACTERISTICS 1  
(VDD = 3.3 V 10ꢀ, TA = –20 to +70˚C)  
PARAMETER  
Input "High" voltage  
Input "Low" voltage  
Input "High" voltage  
Input "Low" voltage  
Hysteresis voltage  
Input "High" current  
Input "Low" current  
Input "High" current  
Input "Low" current  
Input "High" current  
Input "Low" current  
Input "High" current  
Input "Low" current  
Output "High" voltage  
Output "Low" voltage  
Output "High" voltage  
Output "Low" voltage  
Output "High" voltage  
Output "Low" voltage  
SYMBOL  
CONDITIONS  
MIN. TYP. MAX. UNIT NOTE  
VIH  
0.8VDD  
0.8VDD  
0.2  
V
V
1
2
VIL  
0.2VDD  
0.2VDD  
VIH  
V
VIL  
V
VHIS  
V
|IIH1|  
|IIL1|  
|IIH2|  
|IIL2|  
|IIH3|  
|IIL3|  
|IIH4|  
|IIL4|  
VOH1  
VOL1  
VIN = VDD  
VIN = 0 V  
1.0  
1.0  
2.0  
70  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
V
3
4
5
6
7
8
9
VIN = VDD  
VIN = 0 V  
10  
33  
VIN = VDD  
2.0  
300  
70  
VIN = 0 V  
40  
10  
100  
33  
VIN = VDD  
VIN = 0 V  
2.0  
IOH = +4 mA  
IOL = –4 mA  
IOH = +12 mA  
IOL = –12 mA  
IOH = +2 mA  
IOL = –3 mA  
0.8VDD  
0.8VDD  
0.8VDD  
0.2VDD  
0.2VDD  
0.2VDD  
V
VOH3  
VOL3  
V
V
VOH4  
VOL4  
V
V
NOTES :  
1.Applied to inputs/outputs (IO4MU, IO4MD) and inputs 6.Applied to input (ICD), input/output (IO4MD).  
(IC, ICU, ICD, OSCI).  
7.Applied to inputs/outputs (IO4MU, IO4MD), output  
(OBF4M).  
2.Applied to input (ICSU), input/output (IO4MSU).  
3.Applied to input (IC, OSCI).  
8.Applied to output (OBF12M).  
9.Applied to output (OSCO).  
4.Applied to inputs (ICU, ICSU), input/output (IO4MSU).  
5.Applied to input/output (IO4MU).  
18  
LR38603  
ELECTRICAL CHARACTERISTICS 2  
(VDD = 3.3 10ꢀ, TA = –20 to +70˚C)  
PARAMETER  
SYMBOL  
RES  
EL  
CONDITIONS  
MIN.  
TYP. MAX. UNIT NOTE  
Resolution  
9
Bit  
LSB  
LSB  
mA  
$
Error of linearity  
VREF = 1.0 V  
RREF = 4.8 k$  
ROUT = 75 $  
5.0  
1.0  
Error of differential linearity  
Full scaled current  
Output impedance  
Reference voltage  
Reference resistance  
ED  
1
IFS  
13  
75  
ROUT  
VREF  
RREF  
1.0  
4.8  
V
2
3
k$  
NOTES :  
1.Applied to pin (VIDEO).  
2.Applied to pin R(VEF).  
3.Applied to pin R(EIF).  
19  
LR38603  
speed is held. And then PGA gain is controlled so  
that the exposure control data will be less than the  
data of CTLD_0 (Address 08h).  
AUTOMATIC CAMERA FUNCTION  
CONTROL  
If the exposure control data are greater than the  
data of CTLD_AGC (address 07h), exposure  
control starts again.  
Automatic Electronic Exposure Control  
Electronic shutter speed is controlled so that the  
exposure control data approach the data of  
REF_IRIS1 (address 06h).  
Electronic Shutter Speed Setting  
Electronic shutter speeds below can be selected by  
either hardware or coefficient data.  
Under BLC mode, the data of REF_IRIS2 (address  
09h) are available instead of REF_IRIS1.  
If the exposure control data are less than the data  
of CTLD_AGC (address 07h), an electronic shutter  
ELECTRONIC SHUTTER SPEED  
EEMDS  
EEMD1  
EEMD2  
EEMD3  
NTSC  
PAL  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1/60 s  
1/50 s  
1/100 s  
1/120 s  
1/250 s  
1/250 s  
1/500 s  
1/500 s  
1/1 000 s  
1/2 000 s  
1/5 000 s  
1/10 000 s  
1/20 000 s  
1/50 000 s  
1/100 000 s  
1/30 s  
1/1 000 s  
1/2 000 s  
1/5 000 s  
1/10 000 s  
1/20 000 s  
1/50 000 s  
1/100 000 s  
1/25 s  
1/15 s  
1/12.5 s  
1/6.25 s  
AUTO  
1/7.5 s  
AUTO  
1
1
1
1
1
1
0
1
1/60 s to MAX_SH (address 05h) 1/50 s to MAX_SH (address 05h)  
AUTO  
AUTO  
1/60 s to 1/100 000 s  
1/50 s to 1/100 000 s  
A slower shutter speed of less than 1/60 s (1/50 s  
of PAL) can make images whose interval is every  
two fields, every four fields, etc.  
Electronic exposure control data come from the  
following equation using averaged luminance levels  
of 64 areas in one image, made by DSP.  
VD pulse is also converted to the same frequency  
as the output image rate.  
20  
LR38603  
Electronic exposure control data =  
e Top level : The highest luminance data in one  
image by averaging either 4 pixels  
or 8 pixels in horizontal.  
[{Weighted data 1 q x (64 – CW_E (address 13h))  
+ Weighted data 2 w x CW_E}/64  
x (256 – P_HEE (address 17h) – P_LEE (address 18h))  
+ Top level e x P_HEE + Bottom level r x  
P_LEE]/256  
r Bottom level : The lowest luminance data in  
one image by averaging either 4  
pixels or 8 pixels in horizontal.  
Y11  
Y21  
Y31  
Y41  
Y51  
Y61  
Y71  
Y81  
Y12  
Y22  
Y32  
Y42  
Y52  
Y62  
Y72  
Y82  
Y13  
Y23  
Y33  
Y43  
Y53  
Y63  
Y73  
Y83  
Y14  
Y24  
Y34  
Y44  
Y54  
Y64  
Y74  
Y84  
Y15  
Y25  
Y35  
Y45  
Y55  
Y65  
Y75  
Y85  
Y16  
Y26  
Y36  
Y46  
Y56  
Y66  
Y76  
Y86  
Y17  
Y27  
Y37  
Y47  
Y57  
Y67  
Y77  
Y87  
Y18  
Y28  
Y38  
Y48  
Y58  
Y68  
Y78  
Y88  
Auto White Balance Control  
If white balance control data are less than the data  
of AWB_IW_S and AWB_QW_S (address 40h),  
then AWB stops.  
If white balance control data are less than the data  
of AWB_IW_L (address 3Eh) and AWB_QW_L  
(address 3Fh) AWB is made active so that white  
balance control data are less than the data of  
AWB_IW_S and AWB_QW_S.  
q Weighted data 1  
This comes from the following equation weighting in  
horizontal.  
When the data are greater than AWB_IW_L and  
AWB_QW_L, AWB will be active again.  
Weighting factors are the data from UW_E1  
(address 0Bh) to UW_E8 (address 12h).  
White balance data come from the following  
equation using averaged I and Q data of 16 areas  
in one image.  
Weighted data 1 =  
{(Y11 + Y12 + π + Y18)/8 x UW_E1 (address 0Bh)  
+ (Y21 + Y22 + π + Y28)/8 x UW_E2 (address 0Ch)  
I11  
I21  
I31  
I41  
I12  
I22  
I32  
I42  
I13  
I23  
I33  
I43  
I14  
I24  
I34  
I44  
:
+ (Y81 + Y82 + π + Y88)/8 x UW_E8 (address  
12h)}/256  
The sum from UW_E1 to UW_E8 shall be 256.  
Q11  
Q21  
Q31  
Q41  
Q12  
Q22  
Q32  
Q42  
Q13  
Q23  
Q33  
Q43  
Q14  
Q24  
Q34  
Q44  
w Weighted data 2  
Weighting area can be set by the data of CWP_E  
(address 14h), CWA_E (address 15h).  
Weighting position can be set by the data of  
CWP_E.  
White balance data =  
{Weighted data 3 q x (64 – CW_IQ (address 33h))  
+ weighted data 4 w x CW_IQ}/64  
Weighting area size can be set by the data of  
CWA_E.  
Weighted data come from averaged data in chosen  
area.  
21  
LR38603  
Setting target zone :  
q Weighted data 3  
AWB_IP_S (address 3Ah), AWB_IM_S (address 3Bh)  
AWB_QP_S (address 3Ch), AWB_QM_S (address 3Dh)  
I (or Q) data come from the following equation.  
Weighted data 3 =  
Auto Color Matrix and Level  
Compensation  
Color matrix compensation can be done by  
R – Y = R – Y (Data1 x B – Y)  
B – Y = B – Y (Data2 x R – Y)  
{(I11 + I12 + I13 + I14)/4 + (I21 + I22 + I23 + I24)/4 +  
+ (I31 + I32 + I33 + I34)/4 + (I41 + I42 + I43 +  
I44)/4}/4  
w Weighted data 4  
Weighting area can be chosen by CWPA_IQ  
Color level compensation can be done by  
R – Y = R – Y x Data3  
(address 34h).  
Weighted data come from averaged data in chosen  
area.  
B – Y = B – Y x Data4  
The above data come from the following equation  
along the variation of color temperature.  
e White balance area setting  
The sum of I and Q can be regulated by the  
luminance level and the color level.  
MODE1 : Present WBR factor < WBR1  
Setting available luminance level range :  
High level :  
MODE2 : WBR1 ≤ present WBR factor < WBR2  
MODE3 : WBR2 ≤ present WBR factor < WBR3  
MODE4 : WBR3 ≤ present WBR factor  
AWB_HCL (address 2Eh) + [{K_CL (address 31h)  
x H peak level + (256 – K_CL) x Exposure control  
data}/256  
REF_WBPK (address 30h)]  
x
MODE1 and MODE_MAT (address 25h) = 0  
Data1 = REF_MAT_R1M (address 5Ch)  
Data2 = REF_MAT_B1M (address 5Dh)  
Data3 = REF_GA_R1M (address 48h)  
Data4 = REF_GA_B1M (address 49h)  
K_WBCL (address 32h)  
Low level :  
AWB_LCL (address 2Fh) + [{K_CL (address 31h) x  
H peak level + (256 – K_CL) x Exposure control  
data}/256  
REF_WBPK (address 30h)]  
x
MODE1 and MODE_MAT = 1  
K_WBCL (address 32h)  
Data1 = REF_MAT_R1M (address 5Ch) : B – Y < 0  
REF_MAT_R1P (address 5Eh) : B – Y ≥ 0  
Data2 = REF_MAT_B1M (address 5Dh) : R – Y < 0  
REF_MAT_B1P (address 5Fh) : R – Y ≥ 0  
Data3 = REF_GA_R1M (address 48h) : R – Y < 0  
REF_GA_R1P (address 4Ah) : R – Y ≥ 0  
Data4 = REF_GA_B1M (address 49h) : B – Y < 0  
REF_GA_B1P (address 4Bh) : B – Y ≥ 0  
Setting target zone :  
AWB_IP_L (address 36h), AWB_IM_L (address 37h)  
AWB_QP_L (address 38h), AWB_QM_L (address 39h)  
If white balance data are less than the data of  
AWB_IW_S and AWB_QW_S (address 40h) the  
target zone of auto white balance changes to the  
zone by the data below.  
22  
LR38603  
MODE2 and MODE_MAT = 0  
MODE3 and MODE_MAT = 1  
Data1 = REF_MAT_R1M + K_MAT_R1M (address  
68h) x (WBR – WBR1)/32  
Data1 = REF_MAT_R2M (address 60h) +  
K_MAT_R2M (address 6Ch) x (WBR –  
WBR1)/32 : B – Y < 0  
Data2 = REF_MAT_B1M + K_MAT_B1M (address  
69h) x (WBR – WBR1)/32  
REF_MAT_R2P (address 62h) +  
K_MAT_R2P (address 6Eh) x (WBR –  
WBR1)/32 : B – Y ≥ 0  
Data3 = REF_GA_R1M + K_GA_R1M (address  
54h) x (WBR – WBR1)/32  
Data4 = REF_GA_B1M + K_GA_B1M (address  
55h) x (WBR – WBR1)/32  
Data2 = REF_MAT_B2M (address 61h) +  
K_MAT_B2M (address 6Dh) x (WBR –  
WBR1)/32 : R – Y < 0  
MODE2 and MODE_MAT = 1  
REF_MAT_B2P (address 63h) +  
K_MAT_B2P (address 6Fh) x (WBR –  
WBR1)/32 : R – Y ≥ 0  
Data1 = REF_MAT_R1M + K_MAT_R1M (address  
68h) x (WBR – WBR1)/32 : B – Y < 0  
REF_MAT_R1P + K_MAT_R1P (address  
6Ah) x (WBR – WBR1)/32 : B – Y ≥ 0  
Data2 = REF_MAT_B1M + K_MAT_B1M (address  
69h) x (WBR – WBR1)/32 : R – Y < 0  
REF_MAT_B1P + K_MAT_B1P (address  
6Bh) x (WBR – WBR1)/32 : R – Y ≥ 0  
Data3 = REF_GA_R1M + K_GA_R1M (address  
54h) x (WBR – WBR1)/32 : R – Y < 0  
REF_GA_R1P + K_GA_R1P (address  
56h) x (WBR – WBR1)/32 : R – Y ≥ 0  
Data4 = REF_GA_B1M + K_GA_B1M (address  
55h) x (WBR – WBR1)/32 : B – Y < 0  
REF_GA_B1P + K_GA_B1P (address  
57h) x (WBR – WBR1)/32 : B – Y ≥ 0  
Data3 = REF_GA_R2M (address 4Ch) +  
K_GA_R2M (address 58h) x (WBR –  
WBR1)/32 : R – Y < 0  
REF_GA_R2P (address 4Eh) +  
K_GA_R2P (address 5Ah) x (WBR –  
WBR1)/32 : R – Y ≥ 0  
Data4 = REF_GA_B2M (address 4Dh) +  
K_GA_B2M (address 59h) x (WBR –  
WBR1)/32 : B – Y < 0  
REF_GA_B2P (address 4Fh) +  
K_GA_B2P (address 5Bh) x (WBR –  
WBR1)/32 : B – Y ≥ 0  
MODE4 and MODE_MAT = 0  
Data1 = REF_MAT_R3M (address 64h)  
Data2 = REF_MAT_B3M (address 65h)  
Data3 = REF_GA_R3M (address 50h)  
Data4 = REF_GA_B3M (address 51h)  
MODE3 and MODE_MAT = 0  
Data1 = REF_MAT_R2M (address 60h) +  
K_MAT_R2M (address 6Ch) x (WBR –  
WBR1)/32  
Data2 = REF_MAT_B2M (address 61h) +  
K_MAT_B2M (address 6Dh) x (WBR –  
WBR1)/32  
MODE4 and MODE_MAT = 1  
Data1 = REF_MAT_R3M (address 64h) : B – Y < 0  
REF_MAT_R3P (address 66h) : B – Y ≥ 0  
Data2 = REF_MAT_B3M (address 65h) : R – Y < 0  
REF_MAT_B3P (address 67h) : R – Y ≥ 0  
Data3 = REF_GA_R3M (address 50h) : R – Y < 0  
REF_GA_R3P (address 52h) : R – Y ≥ 0  
Data4 = REF_GA_B3M (address 51h) : B – Y < 0  
REF_GA_B3P (address 53h) : B – Y ≥ 0  
Data3 = REF_GA_R2M (address 4Ch) +  
K_GA_R2M (address 58h) x (WBR –  
WBR1)/32  
Data4 = REF_GA_B2M (address 4Dh) +  
K_GA_B2M (address 59h) x (WBR –  
WBR1)/32  
23  
LR38603  
Color Level Suppression Under Lower  
Illumination  
Working PGA gain can control both R – Y level  
and B – Y level by the following equation.  
R – Y (B – Y) level  
= {32 – (working PGA gain – COL_S (address 71h))  
x COL_H (address 72h)}/32  
When (working PGA gain – COL_S (address 71h))  
≤ 0, ( ) = 0.  
Aperture Level Suppression Under  
Lower Illumination  
Working PGA gain can control both the horizontal  
aperture level and the vertical aperture level by the  
following equation.  
Horizontal aperture level  
= APT_HGA (address 7Ch) x {32 – (working PGA  
gain – APT_S (address 80h)) x APT_H (address  
81h)}/32  
Vertical aperture level  
= APT_VGA (address 7Eh) x {32 – (working PGA  
gain – APT_S (address 80h)) x APT_H (address  
81h)}/32  
When (working PGA gain – APT_S (address 80h))  
≤ 0 , ( ) = 0.  
24  
LR38603  
Gamma Characteristic Option  
• Luminance signal gamma option  
Y_GAM (address 7Bh) can choose one output of  
below 8 responses.  
256  
224  
192  
160  
128  
96  
000  
001  
010  
011  
100  
101  
64  
110  
111  
32  
0
0
64  
128 192 256 320 384 448 512 576 640 704 768 832 896 960 1 024  
Input Level  
• Color signal gamma option  
C_GAM (address 24h) can choose one output from  
8 responses below.  
256  
224  
192  
160  
128  
96  
000  
001  
010  
011  
100  
101  
64  
110  
111  
32  
0
0
64  
128 192 256 320 384 448 512 576 640 704 768 832 896 960 1 024  
Input Level  
25  
LR38603  
PACKAGE OUTLINES  
80 LQFP (P-LQFP080-1212)  
0.08  
(Unit : mm)  
M
0.05  
0.125  
TYP.  
0.08  
P-0.5  
80-0.2  
See Detail A  
41  
60  
61  
40  
80  
21  
Detail A  
1
20  
0.125  
0.15  
1.0  
0.64  
MAX.  
0.64  
0.2  
(1.0)  
(1.0)  
12.0  
1.70  
0.ꢀ  
14.0  
0.1  
0.1  
0.2  
1.4  
Seating plane  
0-10˚  
0.15  
0.55  
26  

相关型号:

LR38616

Timing Generator IC for 2 140 k-pixel CCDs
SHARP

LR38617

Timing Generator IC for 3 300 k/3 370 k-pixel CCDs
SHARP

LR38620

Timing Generator IC for 4200 k-pixwl CCD
SHARP

LR38627

Digital SIgnal Processing LSI for CCD
SHARP

LR38630

Digital Signal Processor for CIF CMOS Image Cameras
SHARP

LR38631

Digital Signal Processor, CMOS, PQFP100, 14 X 14 MM, PLASTIC, LQFP-100
SHARP

LR38637

Digital Signal Processor For VGA/CIF CMOS Image Sensors
SHARP

LR3865

2A LOW DROPOUT LINEAR REGULATOR
UTC

LR38653

Digital Signal Processing LSI for CCD
SHARP

LR3865G-15-S08--R

2A LOW DROPOUT LINEAR REGULATOR
UTC

LR3865G-15-S08-X-R

2A LOW DROPOUT LINEAR REGULATOR
UTC

LR3865G-15-SH2-R

2A LOW DROPOUT LINEAR REGULATOR
UTC