PC929 [SHARP]

Shortcircuit Protector Circuit Built-in Photocoupler Suitable for Inverter-Driving MOS-FET/IGBT; 短路保护电路内置光电耦合器适用于逆变器驱动MOS -FET / IGBT
PC929
型号: PC929
厂家: SHARP ELECTRIONIC COMPONENTS    SHARP ELECTRIONIC COMPONENTS
描述:

Shortcircuit Protector Circuit Built-in Photocoupler Suitable for Inverter-Driving MOS-FET/IGBT
短路保护电路内置光电耦合器适用于逆变器驱动MOS -FET / IGBT

光电 双极性晶体管 驱动
文件: 总6页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PC929  
Shortcircuit Protector Circuit  
Built-in Photocoupler Suitable  
PC929  
for Inverter-Driving MOS-FET/IGBT  
TÜV VDE 0884 approved type is also available as an option.  
(
)
(Unit : mm)  
Features  
Outline Dimensions  
1. Built-in IGBT shortcircuit protector circuit  
2. Built-in direct drive circuit for IGBT drive  
(Peak output current ... IO1P, IO2P : MAX. 0.4A)  
3. High speed response (tPLH, tPHL : MAX. 0.5 µ s)  
14 13 12 11 10  
9
8
PC929  
4. High isolation voltage (Viso : 4000Vrms  
)
5. Half lead pin pitch (p=1.27 mm) package type  
6. Recognized by UL, file NO. E64380  
Primary  
side mark  
1
2
3
4
5
6
7
9.22  
7.62  
10.0  
Application  
1. IGBT control for inverter drive  
14 -  
12 -  
0.6  
1.27  
1.0  
1.0  
Internal connection diagram  
14  
13  
12  
11  
10  
9 8  
1
2
3
4
5
6
7
Cathode  
Cathode  
Anode  
NC  
NC  
NC  
8
9
FS  
C
GND  
10  
11  
12  
13  
14  
(Ta=Topr unless otherwise specified)  
Absolute Maximum Ratings  
O
O
2
IGBT protector  
circuit  
1
Parameter  
*1 Forward current  
Symbol  
IF  
Rating  
20  
Unit  
mA  
V
V
CC  
Interface  
NC  
GND  
Input  
( )  
VR 6 Ta= 25˚C  
Reverse voltage  
Supply voltage  
Amp.  
Terminals  
4
to  
7
:
VCC  
IO1  
35  
0.1  
V
Shortcircuit in element  
1
2
3
4
5
6
7
O1 output current  
A
*4 O1 peak output current  
IO1P  
IO2  
0.4  
A
* "OPIC" (Optical IC) is a trademark of the SHARP Corporation.  
An OPIC consists of a light-detecting element and signal processing circuit  
integrated onto a single chip.  
O2 output current  
*4 O2 peak output current  
0.1  
A
IO2P  
VO1  
PO  
0.4  
A
Output O1 output voltage  
*2 Power dissipation  
35  
V
Operation truth table is shown on the next page.  
500  
mW  
V
Overcurrent detecting voltage  
Overcurrent detecting current  
Error signal output voltage  
Error signal output current  
*3 Total power dissipation Ptot  
*5 Isolation voltage  
VC  
IC  
VCC  
30  
mA  
V
VFS  
IFS  
VCC  
20  
mA  
mW  
Vrms  
˚C  
550  
Viso  
Topr  
Tstg  
Tsol  
4 000  
- 25to + 80  
Operating temperature  
Storage temperature  
Soldering temperature  
- 55to + 125  
260 (for 10 sec)  
˚C  
˚C  
*1, 2, 3 Decrease in the ambient temperature range of the Absolute Max. Rating : Shown in Figs 1 and 2.  
*4  
*5  
Pulse width <=0.15 µs, Duty ratio=0.01  
40 to 60% RH, AC for 1 minute, Ta=25˚C  
In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,  
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”  
PC929  
(Ta=Topr unless otherwise specified)  
Measuring  
circuit  
Electro-optical Characteristics (1)  
Parameter  
Symbol  
VF1  
VF2  
IR  
Conditions  
Ta = 25˚C, IF = 10mA  
Ta = 25˚C, IF = 0.2mA  
Ta = 25˚C, VR = 5V  
Ta = 25˚C, V= 0, f= 1kHz  
Ta = - 10 to 60˚C  
-
MIN.  
TYP.  
MAX.  
1.75  
-
Unit  
V
-
1.2  
-
1.6  
1.5  
-
-
Forward voltage  
V
-
-
-
Reverse current  
10  
µ A  
pF  
V
Terminal capacitance  
Ct  
-
30  
-
250  
30  
15  
15  
Operating supply voltage  
VCC  
-
-
24  
V
V
CC1 = 12V, VCC2 = - 12V  
( )  
O1 low level output voltage  
O2 high level output voltage  
VO1L  
VO2H  
-
0.2  
22  
0.4  
-
V
V
1
I
O1 = 0.1A, IF = 5mA  
*8  
VCC = VO1 = 24V, IO2 = - 0.1A  
( )  
2
20  
IF = 5mA  
*8  
*8  
*8  
*8  
*8  
*8  
*8  
*8  
*8  
( )  
3
O2 low level output voltage  
O leak current  
VO2L  
VO1L  
VCC = VO1 = 24V, IO2 = 0.1A, IF = 0mA  
Ta = 25˚C, VCC = VO1 = 35V, IF = 0mA  
Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA  
VCC = VO1 = 24V, IF = 5mA  
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA  
VCC = VO1 = 24V, IF = 0mA  
Ta = 25˚C, VCC = VO1 = 24V  
-
-
1.2  
-
2.0  
500  
17  
V
( )  
4
µ A  
mA  
mA  
mA  
mA  
mA  
mA  
-
10  
-
High level supply current  
ICCH  
ICCL  
IFLH  
-
19  
( )  
6
-
11  
-
18  
Low level supply current  
-
20  
*7 "LowHigh"  
threshold input current  
0.3  
0.2  
1.5  
-
3.0  
5.0  
-
( )  
5
VCC = VO1 = 24V  
Isolation resistance  
"LowHigh" propagation delay time  
"HighLow" propagation delay time  
Rise time  
RISO  
tPLH  
tPHL  
tr  
Ta = 25˚C, DC500V, 40 to60% RH  
5 x 1010 1 x 1011  
-
-
-
-
-
0.3  
0.3  
0.2  
0.2  
0.5  
0.5  
0.5  
0.5  
µ s  
Ta = 25˚C, VCC = VO1 = 24V  
RG = 47, CG = 3 000pF, IF = 5mA  
µ s  
( )  
8
µ s  
*8  
Fall time  
tf  
µ s  
Instantaneous common mode rejection  
voltage "Output : High level"  
Ta = 25˚C, VCC = VO1 = 24V, IF = 5mA  
VCM = 600V peak , VO2H = 2.0V *8  
CMH  
CML  
- 1 500  
1 500  
-
-
-
-
V/ µs  
V/ µs  
(
)
( )  
7
Instantaneous common mode rejection  
voltage "Output : Low level"  
Ta = 25˚C, VCC = VO1 = 24V, IF = 0mA  
(
)
VCM = 600V peak , VO2L = 2.0V *8  
*6 When measuring output and transfer characteristics, connect a bypass capacitor (0.01 µ F or more) between V  
CC  
13 and GND 14 near the device.  
*7 I  
represents forward current when output goes from "Low" to "High".  
FLH  
*8 FS=OPEN, V =0V  
C
Truth Table  
Input  
C Input/Output  
Low level  
O2 Output  
High level  
Low level  
Low level  
Low level  
FS Output  
High level  
Low level  
High level  
High level  
ON  
High level  
Low level  
For protective operation  
OFF  
High level  
PC929  
(Ta=Topr unless otherwise specified)  
MIN. TYP. MAX. Unit Test circuit  
Electro-optical Characteristics (2)  
Parameter  
Symbol  
Conditions  
*9  
*10 Overcurrent detecting voltage  
VCTH  
VCC  
-
VCC  
-
VCC -  
Ta = 25˚C, IF = 5mA  
V
V
( )  
9
VCC = V01 = 24V, RG = 47Ω  
CG = 3 000pF, FS= OPEN  
6.5  
1
6.0  
2
5.5  
3
Overcurrent detecting voltage  
hysteresis width  
VCHIS  
*9  
O2 "HighLow" delay time  
tPCOHL  
tPCOtf  
VOE  
-
2
-
4
5
-
10  
-
Ta = 25˚C  
µ s  
µ s  
at protection from overcurrent  
(
)
13  
VCC = V01 = 24V, IF = 5mA  
CG = 3 000pF, RG = 47Ω  
CP = 1 000pF, RC = 1kΩ  
FS= OPEN  
O2 fall time at protection  
from overcurrent  
O2 output voltage at protection  
from overcurrent  
( )  
10  
2
V
V
*9  
T
a = 25˚C, IF = 5mA, IFS = 10mA  
Low level error  
signal voltage  
( )  
11  
VFSL  
VCC = VO1 = 24V, RG = 47, CG = 3 000pF,  
-
0.2  
0.4  
C = OPEN  
T
V
a = 25˚C, IF = 5mA, VFS = 24V  
CC = VO1 = 24V, RG = 47, CG = 3 000pF,  
High level error  
signal current  
( )  
12  
IFSH  
-
-
-
100  
µ A  
VC = 0V  
Error signal "HighLow"  
delay time  
Ta = 25˚C, RFS = 1.8kΩ  
VCC = VO1 = 24V, IF = 5mA  
CG = 3 000pF, RG = 47Ω  
CP = 1 000pF, RC = 1kΩ  
tPCFHL  
1
5
-
µ s  
µ s  
(
)
14  
Error signal output pulse width  
tFS  
20  
35  
*9 When measuring overcurrent, protective output and error signal output characteristics, connect a bypass capacitor (0.01 µ F or more) between V  
CC  
13 and GND 14 near the device.  
*10 V  
represents C-terminal voltage when O output goes from "High" to "Low".  
CTH  
2
Fig. 1 Forward Current vs. Ambient  
Fig. 2 Power Dissipation vs. Ambient  
Temperature  
Temperature  
60  
600  
550  
500  
50  
40  
30  
20  
400  
300  
200  
10  
0
100  
0
- 25  
0
25  
50  
75 80 100  
125  
- 25  
0
25  
50  
75 80 100  
125  
Ambient temperature Ta (˚C)  
Ambient temperature Ta (˚C)  
PC929  
Test Circuit Diagram  
( )  
( )  
2
1
13  
12  
11  
13  
12  
11  
3
1
3
1
I
I
O1  
V
O2  
CC1  
V
CC  
V
V
O1L  
V
O2H  
I  
PC929  
V
I  
F
PC929  
V
F
CC2  
14 10  
14 10  
9
8
9
8
2
2
2
2
2
2
( )  
3
( )  
4
13  
12  
11  
13  
12  
11  
A
I
O1L  
3
1
3
1
V
V
CC  
CC  
I
O2  
O2L  
V
I  
F
PC929  
I  
PC929  
V
F
14 10  
14 10  
9
8
9
8
( )  
5
( )  
6
13  
12  
11  
13  
12  
11  
A
I
3
CC  
3
1
V
V
CC  
CC  
V
V
I
PC929  
I  
PC929  
O2  
F
F
14 10  
14 10  
variable  
9
8
9
8
1
13  
( )  
7
( )  
8
3
1
12  
11  
SW  
B
13  
12  
11  
V
CC  
A
3
R
V
V
PC929  
G
O2  
V
CC  
t
r = tf = 0.01 µ s  
14 10  
V
OUT  
C
Pulse width : 5 µ s  
V
PC929  
G
IN  
9
8
14 10  
2
Duty ratio=50%  
9
8
1
2
+
-
V
CM  
V
(Peak)  
50%  
CM  
V
waveform  
waveform  
IN  
t
t
pHL  
pLH  
V
waveform  
GND  
CM  
90%  
V
O2H  
CM , V waveform  
50%  
10%  
H
O2  
I
V  
SW at A,  
= 5mA  
O2H  
F
V
OUT  
V  
O2L  
t
f
t
r
V
O2L  
CM , V waveform  
L
O2  
GND  
SW at B,  
I = 0mA  
F
( )  
9
( )  
10  
13  
13  
3
3
1
12  
11  
12  
11  
V
V
R
R
G
CC  
CC  
G
PC929  
R
I  
V
C
I  
PC929  
V
C
V
OE  
V
L
F
G
F
G
OUT  
14 10  
14 10  
V
V
V
C
C
CTH  
F
9
8
9
8
1
2
2
PC929  
Test Circuit Diagram  
(
)
11  
(
)
12  
13  
13  
3
1
3
1
12  
12  
R
R
G
V
V
CC  
G
CC  
11  
11  
I
PC929  
C
I
PC929  
C
G
F
G
F
14 10  
14 10  
V
9
8
V V  
FSL  
I
9
8
FS  
FS  
2
2
I
FSH  
A
V
OUT  
(
)
13  
(
)
14  
13  
12  
11  
13  
12  
11  
R
C
3
1
3
1
R
R
G
G
V
V
CC  
CC  
t
= t = 0.01µ s  
f
t
= t = 0.01µs  
f
r
r
C
C
G
Pulse width : 25 µ s  
Duty ratio=25%  
V
Pulse width : 25 µ s  
Duty ratio=25%  
PC929  
V
G
V
PC929  
IN  
IN  
14 10  
14 10  
R
C
C
R
P
FS  
9
8
9
8
V
2
2
IF  
(Input current)  
t
pCOTF  
90%  
50%  
10%  
VO2  
(O2 output voltage)  
t
pCOHL  
90%  
Error detecting threshold voltage (V  
)
CTH  
C
10%  
(Detecting terminal)  
t
t  
FS  
pCFHL  
FS  
(Error signal output)  
50%  
50%  
PC929  
Operations of Shortcircuit Protector Circuit  
PC929  
14 GND  
V
CC  
V
CC  
13  
12  
Light emitting diode  
Anode  
O
1
3
Constant voltage circuit  
Cathode  
O
2
11  
1
R
Amp.  
G
IGBT  
Photodiode  
R
TTL, microcomputer, etc.  
C
Interface  
C
9
8
IGBT protector circuit  
FS  
C
P
GND  
10  
V
EE  
Feedback to primary side  
1. Detection of increase in VCE (sat) of IGBT due to overcurrent by means of C-terminal  
2. Reduction of the IGBT gate voltage, and suppression of the collector current.  
9 terminal)  
3. Simultaneous output of signals to indicate the shortcircuit condition (FS signal) from FS terminal to the microcomputer  
4. Judgement and processing by the microcomputer  
In the case of instantaneous shortcircuit, run continues.  
At fault, input to the photocoupler is cut off, and IGBT is turned OFF.  
Precautions for Operation  
1. It is recommended that a capacitor of about 1000pF is added between C-terminal and GND in order to prevent  
malfunction of C-terminal due to noise. In the case of capacitor added, rise of the detecting voltage is delayed.  
Thus, use together a resistance of about 1kset between V and C-terminal.  
cc  
The C-terminal rise time varies with the time constant of CR added. Check sufficiently before use.  
2. The light-detecting element used for this product is provided with a parasitic diode between each terminal and GND.  
When a terminal happens to reach electric potential lower than GND potential even in a moment, malfunction  
or rupture may result. Design the circuit so that each terminal will be kept at electric potential lower than the  
GND potential at all times.  

相关型号:

PC929J00000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC929P

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, PLASTIC, SMD, MINI-FLAT, 14 PIN
SHARP

PC929PJ0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC929PY

暂无描述
SHARP

PC929PY0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC929Y

暂无描述
SHARP

PC929YJ0000F

Logic IC Output Optocoupler, 1-Element, 4000V Isolation, ROHS COMPLIANT, PLASTIC, SMT, MINIFLAT-14
SHARP

PC93-10-10-0.25

THERM PAD 10MMX10MM GRAY
ETC

PC93-10-10-1

THERM PAD 10MMX10MM GRAY
ETC

PC93-10-5-0.25

THERM PAD 10MMX5MM GRAY
ETC

PC93-10-5-1

THERM PAD 10MMX5MM GRAY
ETC

PC93-100-100-0.25-0

THERM PAD 100MMX100MM GRAY
ETC