S-816A51AMC-BBAT2G [SII]

EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR; 外部晶体管类型CMOS电压稳压器
S-816A51AMC-BBAT2G
型号: S-816A51AMC-BBAT2G
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR
外部晶体管类型CMOS电压稳压器

晶体 稳压器 晶体管
文件: 总24页 (文件大小:644K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.5.1_00  
EXTERNAL TRANSISTOR TYPE  
CMOS VOLTAGE REGULATOR  
S-816 Series  
The S-816 Series consists of external transistor type positive  
voltage regulators, which have been developed using the CMOS  
process. These voltage regulators incorporate an overcurrent  
protection, and shutdown function. A low drop-out type regulator  
with an output current ranging from several hundreds of mA to 1 A  
can be configured with the PNP transistor driven by this IC.  
Despite the features of the S-816, which is low current  
consumption, the improvement in its transient response  
characteristics of the IC with a newly deviced phase compensation  
circuit made it possible to employ the products of the S-816 Series  
even in applications where heavy input variation or load variation is  
experienced.  
The S-816 Series regulators serve as ideal power supply units for  
portable devices when coupled with the SOT-23-5 minipackage,  
providing numerous outstanding features, including low current  
consumption. Since this series can accommodate an input voltage  
of up to 16 V, it is also suitable when operating via an AC adapter.  
„ Features  
(1) Low current consumption  
Operation mode:  
30 µA typ., 40 µA max.  
Shutdown mode:  
1 µA max.  
(2) Input voltage range:  
(3) Output voltage accuracy:  
(4) Output voltage range:  
(5) With shutdown function.  
16 V max.  
2.0%  
Selectable between 2.5 V and 6.0 V in steps of 0.1 V.  
(6) A built-in current source (10 µA) eliminates the need of a base-emitter resistance.  
(7) With overcurrent (base current) protection function.  
(8) Lead-free products  
„ Applications  
Power supplies for on-board such as battery devices for portable telephones, electronic notebooks, PDAs.  
Constant voltage power supplies for cameras, video equipment and portable communications equipment.  
Power Supplies for CPUs.  
Post-Regulators for Switching Regulators.  
Main Regulators in Multiple-Power Supply Systems.  
„ Package  
Drawing Code  
Package Name  
Package  
MP005-A  
Tape  
Reel  
MP005-A  
SOT-23-5  
MP005-A  
Seiko Instruments Inc.  
1
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Block Diagram  
VIN  
EXT  
VOUT  
Current Source  
Pull-Up  
Overcurrent  
Protection  
Circuit  
+
+
+
Sink  
Error  
VREF  
Driver  
Amplifier  
ON/OFF  
VSS  
Remark 1. To ensure you power cutoff of the external transistor when the device is powered down, the  
EXT output is pulled up to VIN by a pull-up resistance (approx. 0.5 M) inside the IC.  
2. The diode inside the IC is a parasitic diode.  
Figure 1  
2
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Product Code Structure  
1. Product Name  
S-816A  
xx  
A
MC  
-
xxx  
T2  
G
IC direction in tape specifications  
Product name (abbreviation)  
Package name (abbreviation)  
MC: SOT-23-5  
Output voltage × 10  
25 to 60 (2.5 V to 6.0 V)  
2. Product Name List  
Table 1  
Output Voltage  
(V)  
Output Voltage  
(V)  
Product Name  
Product Name  
2.5 V 2.0%  
2.6 V 2.0%  
2.7 V 2.0%  
2.8 V 2.0%  
2.9 V 2.0%  
3.0 V 2.0%  
3.1 V 2.0%  
3.2 V 2.0%  
3.3 V 2.0%  
3.4 V 2.0%  
3.5 V 2.0%  
3.6 V 2.0%  
3.7 V 2.0%  
3.8 V 2.0%  
3.9 V 2.0%  
4.0 V 2.0%  
4.1 V 2.0%  
4.2 V 2.0%  
S-816A25AMC-BAAT2G  
S-816A26AMC-BABT2G  
S-816A27AMC-BACT2G  
S-816A28AMC-BADT2G  
S-816A29AMC-BAET2G  
S-816A30AMC-BAFT2G  
S-816A31AMC-BAGT2G  
S-816A32AMC-BAHT2G  
S-816A33AMC-BAIT2G  
S-816A34AMC-BAJT2G  
S-816A35AMC-BAKT2G  
S-816A36AMC-BALT2G  
S-816A37AMC-BAMT2G  
S-816A38AMC-BANT2G  
S-816A39AMC-BAOT2G  
S-816A40AMC-BAPT2G  
S-816A41AMC-BAQT2G  
S-816A42AMC-BART2G  
4.3 V 2.0%  
4.4 V 2.0%  
4.5 V 2.0%  
4.6 V 2.0%  
4.7 V 2.0%  
4.8 V 2.0%  
4.9 V 2.0%  
5.0 V 2.0%  
5.1 V 2.0%  
5.2 V 2.0%  
5.3 V 2.0%  
5.4 V 2.0%  
5.5 V 2.0%  
5.6 V 2.0%  
5.7 V 2.0%  
5.8 V 2.0%  
5.9 V 2.0%  
6.0 V 2.0%  
S-816A43AMC-BAST2G  
S-816A44AMC-BATT2G  
S-816A45AMC-BAUT2G  
S-816A46AMC-BAVT2G  
S-816A47AMC-BAWT2G  
S-816A48AMC-BAXT2G  
S-816A49AMC-BAYT2G  
S-816A50AMC-BAZT2G  
S-816A51AMC-BBAT2G  
S-816A52AMC-BBBT2G  
S-816A53AMC-BBCT2G  
S-816A54AMC-BBDT2G  
S-816A55AMC-BBET2G  
S-816A56AMC-BBFT2G  
S-816A57AMC-BBGT2G  
S-816A58AMC-BBHT2G  
S-816A59AMC-BBIT2G  
S-816A60AMC-BBJT2G  
Seiko Instruments Inc.  
3
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Pin Configuration  
SOT-23-5  
Top view  
Table 2  
5
1
4
Pin No.  
Symbol  
EXT  
Description  
1
2
3
4
5
Output Pin for Base-Current Control  
VSS  
GND Pin  
Shutdown Pin ("H" active)  
IC Power Supply Pin  
Output Voltage Monitoring Pin  
ON/OFF  
VIN  
VOUT  
2
3
Figure 2  
4
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Absolute Maximum Ratings  
Table 3  
Symbol  
VIN  
VOUT  
VON/OFF  
VEXT  
IEXT  
(Ta=25°C unless otherwise specified)  
Item  
VIN Pin Voltage  
VOUT Pin Voltage  
ON/OFF Pin Voltage  
EXT Pin Voltage  
EXT Pin Current  
Power Dissipation  
Absolute Maximum Ratings  
VSS0.3 to VSS+18  
VSS0.3 to VSS+18  
VSS0.3 to VSS+18  
VSS0.3 to VIN+0.3  
50  
Unit  
V
V
V
V
mA  
mW  
mW  
°C  
°C  
PD  
250 (When not mounted on board)  
600*1  
Operating Ambient Temperature  
Storage Temperature  
Topr  
Tstg  
40 to +85  
40 to +125  
*1. When mounted on board  
[Mounted on board]  
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name : JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product  
could suffer physical damage. These values must therefore not be exceeded  
under any conditions.  
(1) When mounted on board  
(2) When not mounted on board  
700  
300  
600  
250  
500  
200  
150  
400  
300  
100  
50  
200  
100  
0
0
100  
150  
50  
100  
150  
0
50  
0
Ambient Temperature (Ta) [
°
C]  
Ambient Temperature (Ta) [
°C]  
Figure 3 Power Dissipation of Package  
Seiko Instruments Inc.  
5
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Electrical Characteristics  
Table 4  
(Ta  
=
25°  
C unless otherwise specified)  
Test  
Item  
Symbol  
VIN  
Conditions  
Min.  
Typ.  
Max.  
Unit  
V
circuit  
1
Input Voltage  
16  
1 V, IOUT  
VOUT  
VIN  
=
VOUT  
+
=50 mA,  
VOUT  
VOUT  
Output Voltage  
VOUT  
V
1
VON/OFF  
=
"H"  
×0.98  
×
1.02  
Maximum Output Current (PNP  
Output) *1  
1
A
1
Drop-Out Voltage *1  
Vdrop  
IOUT  
=
100 mA  
100  
60  
mV  
mV  
1
1
Load Regulation (PNP Output) *1  
Line Regulation (PNP Output) *1  
VOUT  
VIN  
=VOUT  
+
1 V, 1 mA  
<
1 V  
IOUT  
<
<
1 A  
16  
VOUT  
IOUT  
=
50 mA, VOUT  
+
<
VIN  
0.15  
0.01  
0.15  
%/V  
1
V
VOUT • ∆VIN  
VOUT  
Output Voltage Temperature  
Coefficient  
VIN  
=
VOUT  
+
1 V, IOUT =50 mA,  
1
1
1
0.15  
30  
40  
1
mV/  
°
C
VON/OFF  
=
"H", Ta=−40 to 85°C  
Ta  
Current Consumption during  
ISS  
VIN  
=
VOUT  
+
1 V, VON/OFF  
="H"  
µ
µ
µ
A
Operation  
Current Consumption during  
Shutdown  
ISTB  
VIN  
VIN  
=
16 V, VON/OFF  
=
"L"  
A
EXT Output Source Constant  
Current  
=
VOUT 1 V, VON/OFF  
+
=
"H",  
ISRC  
RUP  
ISINK  
10  
A
2
2
2
1.00  
VEXT  
=
VOUT, VOUT VOUT  
16 V, VON/OFF "L"  
VOUT 1 V, VON/OFF  
VOUT 0.95  
VEXT VOUT  
VON/OFF "L"  
VIN VEXT 7 V, VON/OFF  
VOUT VOUT 0.95  
VIN VOUT 1 V, VOUT  
Check VEXT "L"  
VIN VOUT 1 V, VOUT  
"H"  
1 V  
=
×
0.95  
EXT Output Pull-Up Resistance  
VIN  
VIN  
=
=
=
0.25  
0.50  
10  
MΩ  
+
="H",  
EXT Output Sink Current  
mA  
VOUT  
=
×
Leakage Current during EXT  
Output Off  
EXT Output Sink Overcurrent  
Set Value  
VIN  
=
=
+1 V, VOUT  
=
0 V,  
IOFF  
IMAX  
VSH  
VSL  
0.1  
20  
µA  
2
2
3
12  
2.4  
16  
=
=
=
="H",  
mA  
V
=
×
=
+
=
0 V,  
0 V,  
Shutdown Pin Input Voltage  
=
=
+
=
0.3  
0.1  
Check VEXT  
=
Shutdown Pin Input Current  
ISH  
ISL  
VON/OFF  
VON/OFF  
=
VOUT  
+
µA  
2
=0 V  
0.1  
*1.  
The characteristics vary with the associated external components.  
The characteristics given above are those obtained when the IC is combined with a Toshiba Corporation 2SA1213-Y  
for the PNP transistor and a 10 F tantalum capacitor for the output capacitor (CL).  
µ
6
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Test Circuits  
1.  
2.  
A
EXT  
VSS  
EXT  
VSS  
A
A
A
A
A
VIN  
VOUT  
VIN  
VOUT  
+
+
V
ON/OFF  
ON/OFF  
Figure 4  
Figure 5  
3.  
EXT  
A
A
A
VIN  
VOUT  
V
ON/OFF  
VSS  
Figure 6  
Seiko Instruments Inc.  
7
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Operation  
1. Basic Operation  
Figure 7 shows a block diagram of the S-816 Series.  
The device compares the voltage which is obtained from dividing output voltage VOUT by feedback  
resistances RA and RB with reference voltage VREF through the error amplifier, output of which controls the  
sink driver. By regulating the base current of the external PNP transistor, the IC maintains a constant  
output voltage that is not susceptible to an input voltage variation or temperature variation.  
IN  
OUT  
VIN  
EXT  
VOUT  
Current Source  
RC  
Overcurrent  
+
Protection  
Circuit  
RA  
RB  
CL  
+
Error  
Sink  
VREF  
Amplifier  
Driver  
ON/OFF  
VSS  
Figure 7  
2. Internal Circuits  
2.1. Shutdown Pin (ON/OFF Pin)  
This pin activates and deactivates the regulating operation.  
When the shutdown pin is set to "L", the VIN voltage appears through the EXT pin, prodding the external  
PNP transistor to off. All the internal circuits stop working, and substantial savings in current consumption  
are achieved accordingly. In this condition, the EXT pin is pulled up to VIN by a pull-up resistance  
(approx. 0.5 M) inside the IC in order to ensure you power cut off of the external PNP transistor.  
The shutdown pin is configured as shown in Figure 8. Since neither pull-up or pull-down is performed  
internally, please avoid using the pin in a floating state. Also, be sure to refrain from applying a voltage of  
0.3 V to 2.4 V to this pin lest the current consumption increase. When this shutdown pin is not used,  
leave it coupled to the VIN pin.  
VIN  
Table 5  
Shutdown Pin  
Internal Circuit  
Activated  
Deactivated  
EXT Pin Voltage  
VOUT Pin Voltage  
Set value  
ON/OFF  
"H"  
"L"  
VINVBE  
VIN  
Hi-Z  
VSS  
Figure 8  
8
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
2.2. Overcurrent Protection Circuit  
The overcurrent protection function of the S-816 Series monitors the EXT pin sink current (base current of  
the external PNP transistor) with an overcurrent protection circuit incorporated in the IC, and limits that  
current (EXT pin sink current).  
As the load current increases, the EXT pin sink current (base current of the external PNP transistor) also  
grows larger to maintain the output voltage. The overcurrent protection circuit clamps and limits the EXT  
pin sink current to the EXT output sink overcurrent set value (IMAX) in order to prevent it from increasing  
beyond that value.  
The load current at which the overcurrent protection function works is represented by the following  
equation:  
IOUT_MAX = IMAX × hFE  
In this case, hFE is the DC amplification factor of the external PNP transistor.  
I
OUT_MAX represents the maximum output current of this regulator. If it is attempted to obtain a higher load  
current, the output voltage will fall.  
Note that within the overcurrent protection function of this IC, the external PNP transistor may not be able  
to be protected from collector overcurrents produced by an EXT-GND short-circuiting or other  
phenomenon occurring outside the IC. To protect the external PNP transistor from such collector  
overcurrents, it will be necessary to choose a transistor with a larger power dissipation than IOUT_MAX × VIN,  
or to add an external overcurrent protection circuit. With regard to this external overcurrent protection  
circuit, refer to "Overcurrent Protection Circuit" in "„ Application Circuits".  
2.3. Phase Compensation Circuit  
The S-816 Series performs phase compensation with a phase compensation circuit, incorporated in the  
IC, and the ESR (Equivalent Series Resistance) of an output capacitor, to secure stable operation even in  
the presence of output load variation. A uniquely devised phase compensation circuit has resulted in  
improved transient response characteristics of the IC, while preserving the same feature of low current  
consumption. This feature allows the IC to be used in applications where the input variation or load  
variation is heavy.  
Because the S-816 Series is designed to perform the phase compensation, utilizing the ESR of an output  
capacitor, such output capacitor (CL) should always be placed between VOUT and VSS. Since each  
capacitor to be employed has an optimum range of their own characteristics, be sure to choose  
components for the IC with your all attention. For details, refer to "„ Selection of Associated External  
Components".  
Seiko Instruments Inc.  
9
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Selection of Associated External Components  
1. External PNP Transistor  
Select an external transistor according to the conditions of input voltage, output voltage, and output  
current. A low-saturation voltage PNP transistor with "hFE" ranging from 100 to 300 will be suitable for this  
IC.  
The parameters for selection of the external PNP transistor include the maximum collector-base voltage,  
the maximum collector-emitter voltage, the DC amplification factor (hFE), the maximum collector current  
and the collector dissipation.  
The maximum collector-base voltage and the maximum collector-emitter voltage are determined by the  
input voltage range in each specific application to be employed. You may select a transistor with an input  
voltage at least several volts higher than the expected maximum input voltage.  
The DC amplification factor (hFE) affects the maximum output current that can be supplied to the load.  
With an internal overcurrent protection circuit of this IC, the base current is clamped, and will not exceed  
the overcurrent set value (IMAX). Select a transistor which is capable of delivering the required maximum  
output current to the intended application, with hfe and maximum collector current. (Refer to  
"„ Overcurrent Protection Circuit")  
Likewise, select a transistor, based on the maximum output current and the difference between the input  
and output voltages, with due attention to the collector dissipation.  
2. Output Capacitor (CL)  
The S-816 Series performs phase compensation by an internal phase compensation circuit of IC, and the  
ESR (Equivalent Series Resistance) of an output capacitor for to secure stable operation even in the  
presence of output load variation. Therefore, always place a capacitor (CL) of 4.7 µF or more between  
VOUT and VSS.  
For stable operation of the S-816 Series, it is essential to employ a capacitor with an ESR having  
optimum range. Whether an ESR is larger or smaller than that optimum range (approximately 0.1 to  
5 ), this could produce an unstable output, and cause a possibility of oscillations. For this reason, a  
tantalum electrolytic capacitor is recommended.  
When a ceramic capacitor or an OS capacitor having a low ESR is selected, it will be necessary to  
connect an additional resistance that serves for the ESR in series with the output capacitor, as illustrated  
in Figure 9. The resistance value that needs to be added will be from 0.1 to 5 , but this value may  
vary depends on the service conditions, and should be defined through careful evaluation in advance. In  
general, our recommendation is 0.3 or so.  
An aluminum electrolytic capacitor tends to produce oscillations as its ESR increases at a low  
temperature. Beware of this case. When this type of capacitor is employed, make thorough evaluation of  
it, including its temperature characteristics.  
IN  
OUT  
R 0.3 Ω  
CL  
VIN  
EXT  
VOUT  
S-816 Series  
ON/OFF  
VSS  
Figure 9  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform through evaluation using the actual application to set the constant.  
10  
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Standard Circuit  
VIN  
EXT  
VOUT  
Current Source  
Pull-Up  
Overcurrent  
Protection  
Circuit  
+
+
+
Sink  
Error  
VREF  
Driver  
Amplifier  
ON/OFF  
VSS  
Figure 10  
Caution The above connection diagram does not guarantee correct operation. Perform  
sufficient evaluation using the actual application to set the constant.  
Seiko Instruments Inc.  
11  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Precautions  
The overcurrent protection function of this IC detects and limits the sink current at the EXT pin inside the  
IC. Therefore, it does not work on collector overcurrents which are caused by an EXT-GND short-  
circuiting or other phenomenon outside the IC. To protect the external PNP transistor from collector  
overcurrents perfectly, it is necessary to provide another external overcurrent protection circuit.  
This IC performs phase compensation by using an internal phase compensator circuit and the ESR of an  
output capacitor. Therefore, always place a capacitor of 4.7 µF or more between VOUT and VSS.  
A tantalum type capacitor is recommended for this purpose. Moreover, to secure stable operation of the  
S-816 Series, it will be necessary to employ a capacitor having an ESR (Equivalent Series Resistance)  
covered in a certain optimum range (0.1 to 5 ). Whether an ESR is larger or smaller than that  
optimum range, this could result in an unstable output, and cause a possibility of oscillations. Select a  
capacitor through careful evaluation made according to the actual service conditions.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
Make sure that the power dissipation inside the IC due to the EXT output sink current (especially at a high  
temperature) will not surpass the power dissipation of the package.  
SII claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
12  
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Application Circuits  
1. Overcurrent Protection Circuit  
Figure 11 shows a sample of overcurrent protection implemented with an external circuit connected.  
The internal overcurrent protection function of the S-816 Series is designed to detect the sink current  
(base current of the PNP transistor) at the EXT pin, therefore it may not be able to protect the external  
PNP transistor from collector overcurrents caused by an EXT-GND short-circuiting or other phenomenon  
occurring outside the IC.  
This sample circuit activates the regulator intermittently against collector overcurrents, thereby  
suppressing the heat generation of the external PNP transistor.  
The duty of the on-time and off-time of the intermittent operation can be regulated through an external  
component.  
RS  
0.5 Ω  
2SA1213Y  
OUT  
R4  
2 kΩ  
EXT  
VOUT  
Tr1  
VIN  
+
+
VIN  
CIN  
10 µF  
CL  
10 µF  
R2  
R1  
100 kΩ  
2 kΩ  
ON/OFF  
S-816 Series  
VSS  
Tr2  
C1  
0.22 µF  
R3  
C2  
2 k0.22 µF  
Figure 11  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform through evaluation using the actual application to set the constant.  
S-816A30AMC (VIN =4 V)  
S-816A30AMC (VIN =4 V)  
1 A  
1 A  
Load Current  
Load Current  
(0.5 A/div)  
(0.5 A/div)  
0 A  
0 A  
2 V  
2 V  
VON/OFF  
(1 V/div)  
VON/OFF  
(1 V/div)  
0 V  
0 V  
t (2 ms/div)  
t (100 µs/div)  
Figure 12 Output Current Waveforms during Intermittent Operation Prompted by Load Short-Circuiting  
Seiko Instruments Inc.  
13  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
The detection of the overcurrent is done by the sense resistance (RS) and the PNP transistor (Tr1).  
When Tr1 comes on, triggered by a voltage drop of RS, the NPN transistor (Tr2) also comes on, according  
to the time constants of the capacitor (C2) and resistance (R2). This causes the shutdown pin to turn to  
the "L" level, and the regulating operation to stop, and interrupting the current to the load.  
When the load current is cut off, the voltage drop of RS stops. This makes Tr1 off again, and also makes  
the NPN transistor (Tr2) off.  
In this condition, the shutdown pin returns to the "H" level, according to the time constants of the  
capacitor (C1) and resistance (R1). This delay time in which shutdown pin returns to the "H" level from the  
"L" level is the time in which the load current remains cut off.  
If an overcurrent flows again after the shutdown pin has assumed the "H" level following the delay time  
and the regulating operation has been restarted, the circuit will again suspend the regulating operation  
and resume the intermittent operation. This intermittent operation will be continued till the overcurrentt is  
eliminated, and once theovercurrent disappears, the normal operation will be restored.  
The overcurrent detection value (IOUT_MAX) is represented by the following equation:  
IOUT_MAX = |VBE1| / RS  
In this case, RS denotes the resistance value of the sense resistance, and VBE1 denotes the base-emitter  
saturation voltage of Tr1.  
For the PNP transistor (Tr1) and the NPN transistor (Tr2), try to select those of small-signal type that offer  
a sufficient withstand voltage against the input voltage (VIN).  
The on-time (tON) and the off-time (tOFF) of the intermittent operation are broadly expressed by the  
following equations:  
t
ON = −1 × C2 × R2 × LN ( 1 ( VBE2 × ( 1 + R2 / R3 ) ) / ( VIN VBE1 ) )  
OFF = −1 × C1 × R1 × LN ( 1 VSH / VIN )  
t
In this case, VBE2 denotes the base-emitter saturation voltage of Tr2, VIN denotes the input voltage, and  
VSH denotes the inversion voltage ("L""H") of the shutdown pin.  
Set the on-time value that does not cause the overcurrent protection to be activated by a rush current to  
the load capacitor. Then, compute the ratio between the on-time and the off-time from the maximum  
input voltage of the appropriate application and the power dissipation of the external PNP transistor, and  
decide the off-time with reference to the on-time established earlier.  
Take the equation above as a rough guide, because the actual on-time (tON) and off-time (tOFF) should be  
defined and checked using the utilizing components.  
2. External Adjustment of Output Voltage  
The S-816 Series allows you to adjust the output voltage or to set its value over the output voltage range  
(6 V) of the products of this series, when external resistances RA, RB and capacitor CC are added, as  
illustrated in Figure 13. Moreover, a temperature gradient can be obtained by inserting a thermistor or  
other element in series with external resistances RA and RB.  
OUT  
CC  
RA  
RB  
VIN  
EXT  
VOUT  
R1  
R2  
Error  
+
+
amplifier  
+
VIN  
CIN  
CL  
VREF  
ON/OFF  
VSS  
Figure 13  
Seiko Instruments Inc.  
14  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
The S-816 Series has an internal impedance resulting from R1 and R2 between the VOUT and the VSS  
pin, as shown in Figure 13. Therefore, the influence of the internal resistances (R1, R2) of the IC has to  
be taken into consideration in defining the output voltage (OUT).  
The output voltage (OUT) is expressed by the following equation:  
OUT = VOUT + VOUT × RA ÷ ( RB // *1 RI )  
*1. "//" denotes a combined resistance in parallel.  
In this case, VOUT is the output voltage value of the S-816 Series, RA and RB is the resistance values of  
the external resistances, and RI is the resistance value (R1+R2) of the internal resistances in the IC.  
The accuracy of the output voltage (OUT) is determined by the absolute accuracy of external connecting  
resistances RA and RB, the output voltage accuracy (VOUT 2.0%) of the S-816 Series, and deviations in  
the absolute value of the internal resistance (RI) in the IC.  
The maximum value (OUTmax) and the minimum value (OUTmin) of the output voltage (OUT), including  
deviations, are expressed by the following equations:  
OUTmax = VOUT × 1.02 + VOUT × 1.02 × RAmax ÷ ( RBmin // RImin  
OUTmin = VOUT × 0.98 + VOUT × 0.98 × RAmin ÷ ( RBmax // RImax  
)
)
Where RAmax, RAmin, RBmax and RBmin denote the maximum and minimum of the absolute accuracy of  
external resistances RA and RB, and RImax and RImin denote the maximum and minimum deviations of the  
absolute value of the internal resistance (RI) in the IC, respectively.  
The deviations in the absolute value of internal resistance (RI) in the IC vary with the output voltage set  
value of the S-816 Series, and are broadly classified as follows:  
Output voltage (VOUT) 2.5 V to 2.7 V 3.29 Mto 21.78 MΩ  
Output voltage (VOUT) 2.8 V to 3.1 V 3.29 Mto 20.06 MΩ  
Output voltage (VOUT) 3.2 V to 3.7 V 2.23 Mto 18.33 MΩ  
Output voltage (VOUT) 3.8 V to 5.1 V 2.23 Mto 16.61 MΩ  
Output voltage (VOUT) 5.2 V to 6.0 V 2.25 Mto 14.18 MΩ  
If a value of RI given by the equation shown below is taken in calculating the output voltage (OUT), a  
median voltage deviation of the output voltage (OUT) will be obtained.  
RI  
= 2 ÷ ( 1 ÷ (Maximum value of internal resistance of IC) + 1 ÷ (Minimum value of internal resistance of IC) )  
The closer the output voltage (OUT) and the output voltage set value (VOUT) of the IC are brought to each  
other, the more the accuracy of the output voltage (OUT) remains immune to deviations in the absolute  
accuracy of external resistances (RA, RB) and the absolute value of the internal resistance (RI) of the IC.  
In particular, to suppress the influence of deviations in the internal resistance (RI), the resistance values  
of external resistances (RA, RB) need to be limited to a much smaller value than that of the internal  
resistance (RI). However, since reactive current flows through the external resistances (RA, RB), there is a  
tradeoff between the accuracy of the output voltage (OUT) and the reactive current. This should be taken  
into consideration, according to the requirements of the intended application.  
Note that when larger value (more than 1 M) is taken for the external resistances (RA, RB), IC is  
vulnerable to external noise. Check the influence of this value well with the actual application.  
Furthermore, add a capacitor CC in parallel to the external resistance RA in order to avoid output  
oscillations and other types of instability. (Refer to Figure 13)  
Make sure that the capacitance value of CC is larger than the value given by the following equation:  
CC[F] 1 ÷ ( 2 × π × RA[] × 6000 )  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform through evaluation using the actual application to set the constant.  
Seiko Instruments Inc.  
15  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Typical Characteristics  
1. Input Voltage (VIN) - Output Voltage (VOUT) Characteristics  
VIN-VOUT  
VIN-VOUT  
S-816A30AMC (IOUT=50 mA)  
S-816A50AMC (IOUT=50 mA)  
3.10  
3.08  
3.06  
5.10  
5.08  
5.06  
Ta=25°C  
Ta=85°C  
Ta=25°C  
3.04  
Ta=−40°C  
5.04  
3.02  
5.02  
VOUT  
VOUT  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
(V)  
(V)  
Ta=−40°C  
Ta=85°C  
2
4
6
8
10  
12  
14  
16  
2
4
6
8
10  
12  
14  
16  
VIN (V)  
VIN (V)  
VIN-VOUT  
VIN-VOUT  
S-816A30AMC (Ta=25°C)  
S-816A50AMC (Ta=25°C)  
3.10  
5.10  
3.05  
5.05  
3.00  
VOUT  
5.00  
VOUT  
2.95  
2.90  
2.85  
2.80  
4.95  
4.90  
4.85  
4.80  
(V)  
(V)  
I
I
I
OUT=500 mA  
OUT=100 mA  
OUT=1 mA  
I
I
I
OUT=500 mA  
OUT=100 mA  
OUT=1 mA  
I
OUT=1 A  
IOUT=1 A  
2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8  
IN (V)  
4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8  
IN (V)  
V
V
2. Output Current (IOUT) - Output Voltage (VOUT) Characteristics  
IOUT-VOUT  
IOUT-VOUT  
S-816A30AMC (VIN=4 V)  
S-816A50AMC (VIN=6 V)  
3.10  
5.10  
3.08  
3.06  
3.04  
5.08  
5.06  
5.04  
Ta=25°C  
Ta=85°C  
Ta=25°C  
Ta=−40°C  
3.02  
5.02  
VOUT  
VOUT  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
(V)  
(V)  
Ta=−40°C  
Ta=85°C  
1
10  
100  
1000  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
16  
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
3. Temperature (Ta) - Output Voltage (VOUT) Characteristics  
Ta-VOUT  
Ta-VOUT  
S-816A30AMC (VIN=4 V, IOUT=50 mA)  
S-816A50AMC (VIN=6 V, IOUT=50 mA)  
3.10  
5.10  
3.08  
3.06  
3.04  
5.08  
5.06  
5.04  
3.02  
5.02  
VOUT  
VOUT  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
(V)  
(V)  
50  
25  
0
25  
50  
75  
100  
50  
25  
0
25  
50  
75  
100  
Ta (°C)  
Ta (°C)  
4. Input Voltage (VIN) - Consumption Current (ISS) Characteristics  
VIN-ISS  
S-816A30AMC (VON/OFF="H")  
50  
45  
Ta=85°C  
Ta=25°C  
40  
35  
30  
25  
20  
15  
10  
5
ISS  
(µA)  
Ta=−40°C  
0
0
2
4
6
8
10  
12  
14  
16  
VIN (V)  
5. Input Voltage (VIN) - EXT Output Sink Overcurrent Set Value (IMAX) Characteristics  
VIN-IMAX  
S-816A30AMC  
22  
Ta=85°C  
Ta=25°C  
20  
18  
16  
14  
12  
10  
IMAX  
(mA)  
Ta=−40°C  
4
6
8
10  
12  
14  
16  
VIN (V)  
Seiko Instruments Inc.  
17  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
6. Input Voltage (VIN) - Shutdown Pin Input Voltage (VSH, VSL) Characteristics  
VIN-VSH  
S-816A30AMC  
2.5  
VIN-VSL  
S-816A30AMC  
2.5  
Ta=85°C  
2.0  
2.0  
1.5  
1.5  
VSL  
Ta=−40°C  
Ta=25°C  
VSH  
Ta=25°C  
(V)  
1.0  
(V)  
1.0  
Ta=−40°C  
0.5  
0.5  
Ta=85°C  
0.0  
4
0.0  
4
6
8
10  
12  
14  
16  
6
8
10  
12  
14  
16  
VIN (V)  
VIN (V)  
18  
Seiko Instruments Inc.  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
„ Transient Response Characteristics (Typical Data)  
1. Input Transient Response Characteristics (Power-on VIN=0 V VOUT+1 V, IOUT=0 A, CL=10 µF)  
S-816A30AMC (VIN =0 V 4 V)  
S-816A50AMC (VIN =0 V 6 V)  
6 V  
4 V  
VIN  
VIN  
(2 V/div)  
(2 V/div)  
0 V  
0 V  
VOUT  
VOUT  
(2 V/div)  
(2 V/div)  
0 V  
0 V  
t (100 µs/div)  
t (100 µs/div)  
2. Input Transient Response Characteristics (Supply voltage variation VIN  
=
VOUT  
+1 V VOUT+2 V, CL=10 µF)  
S-816A30AMC (IOUT =10 mA)  
S-816A30AMC (IOUT =300 mA)  
5 V  
5 V  
VIN  
VIN  
(0.5 V/div)  
(0.5 V/div)  
4 V  
4 V  
VOUT  
VOUT  
(20 mV/div)  
(20 mV/div)  
3 V  
3 V  
t (100 µs/div)  
t (100 µs/div)  
S-816A50AMC (IOUT =10 mA)  
S-816A50AMC (IOUT =300 mA)  
7 V  
7 V  
VIN  
VIN  
(0.5 V/div)  
(0.5 V/div)  
6 V  
6 V  
VOUT  
VOUT  
(20 mV/div)  
(20 mV/div)  
5 V  
5 V  
t (100 µs/div)  
t (100 µs/div)  
Seiko Instruments Inc.  
19  
EXTERNAL TRANSISTOR TYPE CMOS VOLTAGE REGULATOR  
S-816 Series  
Rev.5.1_00  
3. Load Transient Response Characteristics (Power-on IOUT=1 mA 100 mA, CL=10 µF)  
S-816A30AMC (VIN =4 V)  
S-816A30AMC (VIN =4 V)  
100 mA  
100 mA  
IOUT  
IOUT  
(50 mA/div)  
(50 mA/div)  
1 mA  
1 mA  
3 V  
3 V  
VOUT  
VOUT  
(20 mV/div)  
(20 mV/div)  
t (50 µs/div)  
t (50 µs/div)  
S-816A50AMC (VIN =6 V)  
S-816A50AMC (VIN =6 V)  
100 mA  
100 mA  
IOUT  
IOUT  
(50 mA/div)  
(50 mA/div)  
1 mA  
1 mA  
5 V  
5 V  
VOUT  
VOUT  
(20 mV/div)  
(20 mV/div)  
t (50 µs/div)  
t (50 µs/div)  
4. Shutdown Pin Transient Response Characteristics (VON/OFF=0 V VIN, IOUT=0 A, CL=10 µF)  
S-816A30AMC (VIN =4 V)  
S-816A50AMC (VIN =6 V)  
6 V  
4 V  
VON/OFF  
VON/OFF  
(2 V/div)  
(2 V/div)  
0 V  
0 V  
VOUT  
VOUT  
(2 V/div)  
(2 V/div)  
0 V  
0 V  
t (100 µs/div)  
t (100 µs/div)  
20  
Seiko Instruments Inc.  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.2  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.2  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY