S-817A17ANB-CUGT2G [SII]

SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR; 超小型CMOS电压稳压器
S-817A17ANB-CUGT2G
型号: S-817A17ANB-CUGT2G
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR
超小型CMOS电压稳压器

稳压器 调节器 光电二极管 输出元件 ISM频段
文件: 总52页 (文件大小:1203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.4.2_00  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
The S-817 Series is a 3-terminal positive voltage  
regulator, developed using CMOS technology. Small  
ceramic capacitors can be used as the output  
capacitor, and the S-817 series provides stable  
operation with low loads down to 1 µA.  
Compared with the conventional voltage regulator, it is  
of low current consumption, and with a lineup of the  
super small package (SNT-4A:1.2 x 1.6mm). It is  
optimal as a power supply of small portable device.  
„ Features  
Ultra-low current consumption: Operating current: Typ. 1.2 µA, Max. 2.5 µA  
Output voltage:  
1.1 to 6.0 V, selectable in 0.1 V steps.  
2.0%  
Output voltage accuracy:  
Output current:  
50 mA capable (3.0 V output product, VIN=5 V) *1  
75 mA capable (5.0 V output product, VIN=7 V) *1  
Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA)  
Dropout voltage:  
Low ESR capacitor Ceramic capacitor of 0.1 µF or more can be used as an output capacitor.  
Short circuit protection for:  
Excellent Line Regulation:  
Lead-free product  
Series A  
Stable operation at light load of 1 µA  
*1. Attention should be paid to the power dissipation of the package when the load is large.  
„ Applications  
Power source for battery-powered devices  
Power source for personal communication devices  
Power source for home electric/electronic appliances  
„ Packages  
Package name  
Drawing code  
Reel  
PF004-A  
NP004-A  
MP005-A  
UP003-A  
Package  
PF004-A  
NP004-A  
MP005-A  
UP003-A  
YS003-B  
YF003-A  
YF003-A  
Tape  
PF004-A  
NP004-A  
MP005-A  
UP003-A  
Zigzag  
Land  
SNT-4A  
PF004-A  
SC-82AB  
SOT-23-5  
SOT-89-3  
TO-92 (Bulk)  
TO-92 (Tape and reel)  
TO-92 (Tape and ammo)  
YF003-A  
YZ003-C  
YF003-A  
YZ003-C  
1
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Block Diagrams  
1. S-817A Series  
*1  
VIN  
VOUT  
+
Reference  
Short circuit  
protection  
voltage circuit  
VSS  
*1. Parasitic diode  
Figure 1  
2. S-817B Series  
*1  
VIN  
VOUT  
+
Reference  
voltage circuit  
VSS  
*1. Parasitic diode  
Figure 2  
2
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Product Name Structure  
The product types and output voltage for the S-817 Series can be selected at the user’s request. Refer  
to the “Product name” for the meanings of the characters in the product name and “Product name list” for  
the full product names.  
1. Product name  
1. 1 S-817A series  
S-817  
A
xx  
A
xx  
-
xxx xx  
G
IC direction in tape specifications*1  
TF : SNT-4A  
T2 : SC-82AB, SOT-23-5  
Product name (abbreviation)  
Package name (abbreviation)*2  
PF : SNT-4A  
NB : SC-82AB  
MC : SOT-23-5  
Output voltage  
11 to 60  
(e.g. When the output voltage is  
1.5 V, it is expressed 15)  
Short circuit protection  
A :  
Yes  
*1. Refer to the specifications at the end of this book.  
*2. Refer to the “2. Product name list”.  
3
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
1. 2 S-817B series  
1. 2. 1 SOT-23-5 and SOT-89-3 package  
S-817  
B
xx  
A
xx  
-
xxx T2  
G
IC direction in tape specifications*1  
Product name (abbreviation)  
Package name (abbreviation)*2  
MC : SOT-23-5  
UA : SOT-89-3  
Output voltage  
11 to 60  
(e.g. When the output voltage is  
1.5 V, it is expressed 15)  
Short circuit protection  
B :  
No  
*1. Refer to the specifications at the end of this book.  
*2. Refer to the “2. Product name list”.  
1. 2. 2 TO-92 package  
S-817  
B
xx  
A
Y
-
x
-
G
Packing form  
B :  
T :  
Z :  
Bulk  
Tape and reel  
Tape and ammo  
Package name (abbreviation)*1  
Y :  
TO-92  
Output voltage  
11 to 60  
(e.g. When the output voltage is  
1.5 V, it is expressed 15)  
Short circuit protection  
B :  
No  
*1. Refer to the “2. Product name list”.  
4
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
2. Product name list  
2. 1 S-817A series  
Table 1  
Output voltage  
1.1 V 2.0 %  
1.2 V 2.0 %  
1.3 V 2.0 %  
1.4 V 2.0 %  
1.5 V 2.0 %  
1.6 V 2.0 %  
1.7 V 2.0 %  
1.8 V 2.0 %  
1.9 V 2.0 %  
2.0 V 2.0 %  
2.1 V 2.0 %  
2.2 V 2.0 %  
2.3 V 2.0 %  
2.4 V 2.0 %  
2.5 V 2.0 %  
2.6 V 2.0 %  
2.7 V 2.0 %  
2.8 V 2.0 %  
2.9 V 2.0 %  
3.0 V 2.0 %  
3.1 V 2.0 %  
3.2 V 2.0 %  
3.3 V 2.0 %  
3.4 V 2.0 %  
3.5 V 2.0 %  
3.6 V 2.0 %  
3.7 V 2.0 %  
3.8 V 2.0 %  
3.9 V 2.0 %  
4.0 V 2.0 %  
4.1 V 2.0 %  
4.2 V 2.0 %  
4.3 V 2.0 %  
4.4 V 2.0 %  
4.5 V 2.0 %  
4.6 V 2.0 %  
4.7 V 2.0 %  
4.8 V 2.0 %  
4.9 V 2.0 %  
5.0 V 2.0 %  
5.1 V 2.0 %  
5.2 V 2.0 %  
5.3 V 2.0 %  
5.4 V 2.0 %  
5.5 V 2.0 %  
5.6 V 2.0 %  
5.7 V 2.0 %  
5.8 V 2.0 %  
5.9 V 2.0 %  
6.0 V 2.0 %  
SNT-4A  
SC-82AB  
SOT-23-5  
S-817A11APF-CUATFG  
S-817A12APF-CUBTFG  
S-817A13APF-CUCTFG  
S-817A14APF-CUDTFG  
S-817A15APF-CUETFG  
S-817A16APF-CUFTFG  
S-817A17APF-CUGTFG  
S-817A18APF-CUHTFG  
S-817A19APF-CUITFG  
S-817A20APF-CUJTFG  
S-817A21APF-CUKTFG  
S-817A22APF-CULTFG  
S-817A23APF-CUMTFG  
S-817A24APF-CUNTFG  
S-817A25APF-CUOTFG  
S-817A26APF-CUPTFG  
S-817A27APF-CUQTFG  
S-817A28APF-CURTFG  
S-817A29APF-CUSTFG  
S-817A30APF-CUTTFG  
S-817A31APF-CUUTFG  
S-817A32APF-CUVTFG  
S-817A33APF-CUWTFG  
S-817A34APF-CUXTFG  
S-817A35APF-CUYTFG  
S-817A36APF-CUZTFG  
S-817A37APF-CVATFG  
S-817A38APF-CVBTFG  
S-817A39APF-CVCTFG  
S-817A40APF-CVDTFG  
S-817A41APF-CVETFG  
S-817A42APF-CVFTFG  
S-817A43APF-CVGTFG  
S-817A44APF-CVHTFG  
S-817A45APF-CVITFG  
S-817A46APF-CVJTFG  
S-817A47APF-CVKTFG  
S-817A48APF-CVLTFG  
S-817A49APF-CVMTFG  
S-817A50APF-CVNTFG  
S-817A51APF-CVOTFG  
S-817A52APF-CVPTFG  
S-817A53APF-CVQTFG  
S-817A54APF-CVRTFG  
S-817A55APF-CVSTFG  
S-817A56APF-CVTTFG  
S-817A57APF-CVUTFG  
S-817A58APF-CVVTFG  
S-817A59APF-CVWTFG  
S-817A60APF-CVXTFG  
S-817A11ANB-CUAT2G  
S-817A12ANB-CUBT2G  
S-817A13ANB-CUCT2G  
S-817A14ANB-CUDT2G  
S-817A15ANB-CUET2G  
S-817A16ANB-CUFT2G  
S-817A17ANB-CUGT2G  
S-817A18ANB-CUHT2G  
S-817A19ANB-CUIT2G  
S-817A20ANB-CUJT2G  
S-817A21ANB-CUKT2G  
S-817A22ANB-CULT2G  
S-817A23ANB-CUMT2G  
S-817A24ANB-CUNT2G  
S-817A25ANB-CUOT2G  
S-817A26ANB-CUPT2G  
S-817A27ANB-CUQT2G  
S-817A28ANB-CURT2G  
S-817A29ANB-CUST2G  
S-817A30ANB-CUTT2G  
S-817A31ANB-CUUT2G  
S-817A32ANB-CUVT2G  
S-817A33ANB-CUWT2G  
S-817A34ANB-CUXT2G  
S-817A35ANB-CUYT2G  
S-817A36ANB-CUZT2G  
S-817A37ANB-CVAT2G  
S-817A38ANB-CVBT2G  
S-817A39ANB-CVCT2G  
S-817A40ANB-CVDT2G  
S-817A41ANB-CVET2G  
S-817A42ANB-CVFT2G  
S-817A43ANB-CVGT2G  
S-817A44ANB-CVHT2G  
S-817A45ANB-CVIT2G  
S-817A46ANB-CVJT2G  
S-817A47ANB-CVKT2G  
S-817A48ANB-CVLT2G  
S-817A49ANB-CVMT2G  
S-817A50ANB-CVNT2G  
S-817A51ANB-CVOT2G  
S-817A52ANB-CVPT2G  
S-817A53ANB-CVQT2G  
S-817A54ANB-CVRT2G  
S-817A55ANB-CVST2G  
S-817A56ANB-CVTT2G  
S-817A57ANB-CVUT2G  
S-817A58ANB-CVVT2G  
S-817A59ANB-CVWT2G  
S-817A60ANB-CVXT2G  
S-817A14AMC-CUDT2G  
S-817A16AMC-CUFT2G  
Remark Please contact the SII marketing department for products with an output voltage over than those  
specified above.  
5
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
2. 2 S-817B series  
Table 2  
Output voltage  
1.1 V 2.0 %  
1.2 V 2.0 %  
1.3 V 2.0 %  
1.4 V 2.0 %  
1.5 V 2.0 %  
1.6 V 2.0 %  
1.7 V 2.0 %  
1.8 V 2.0 %  
1.9 V 2.0 %  
2.0 V 2.0 %  
2.1 V 2.0 %  
2.2 V 2.0 %  
2.3 V 2.0 %  
2.4 V 2.0 %  
2.5 V 2.0 %  
2.6 V 2.0 %  
2.7 V 2.0 %  
2.8 V 2.0 %  
2.9 V 2.0 %  
3.0 V 2.0 %  
3.1 V 2.0 %  
3.2 V 2.0 %  
3.3 V 2.0 %  
3.4 V 2.0 %  
3.5 V 2.0 %  
3.6 V 2.0 %  
3.7 V 2.0 %  
3.8 V 2.0 %  
3.9 V 2.0 %  
4.0 V 2.0 %  
4.1 V 2.0 %  
4.2 V 2.0 %  
4.3 V 2.0 %  
4.4 V 2.0 %  
4.5 V 2.0 %  
4.6 V 2.0 %  
4.7 V 2.0 %  
4.8 V 2.0 %  
4.9 V 2.0 %  
5.0 V 2.0 %  
5.1 V 2.0 %  
5.2 V 2.0 %  
5.3 V 2.0 %  
5.4 V 2.0 %  
5.5 V 2.0 %  
5.6 V 2.0 %  
5.7 V 2.0 %  
5.8 V 2.0 %  
5.9 V 2.0 %  
6.0 V 2.0 %  
SOT-23-5  
SOT-89-3  
TO-92*1  
S-817B11AMC-CWAT2G  
S-817B12AMC-CWBT2G  
S-817B13AMC-CWCT2G  
S-817B14AMC-CWDT2G  
S-817B15AMC-CWET2G  
S-817B16AMC-CWFT2G  
S-817B17AMC-CWGT2G  
S-817B18AMC-CWHT2G  
S-817B19AMC-CWIT2G  
S-817B20AMC-CWJT2G  
S-817B21AMC-CWKT2G  
S-817B22AMC-CWLT2G  
S-817B23AMC-CWMT2G  
S-817B24AMC-CWNT2G  
S-817B25AMC-CWOT2G  
S-817B26AMC-CWPT2G  
S-817B27AMC-CWQT2G  
S-817B28AMC-CWRT2G  
S-817B29AMC-CWST2G  
S-817B30AMC-CWTT2G  
S-817B31AMC-CWUT2G  
S-817B32AMC-CWVT2G  
S-817B33AMC-CWWT2G  
S-817B34AMC-CWXT2G  
S-817B35AMC-CWYT2G  
S-817B36AMC-CWZT2G  
S-817B37AMC-CXAT2G  
S-817B38AMC-CXBT2G  
S-817B39AMC-CXCT2G  
S-817B40AMC-CXDT2G  
S-817B41AMC-CXET2G  
S-817B42AMC-CXFT2G  
S-817B43AMC-CXGT2G  
S-817B44AMC-CXHT2G  
S-817B45AMC-CXIT2G  
S-817B46AMC-CXJT2G  
S-817B47AMC-CXKT2G  
S-817B48AMC-CXLT2G  
S-817B49AMC-CXMT2G  
S-817B50AMC-CXNT2G  
S-817B51AMC-CXOT2G  
S-817B52AMC-CXPT2G  
S-817B53AMC-CXQT2G  
S-817B54AMC-CXRT2G  
S-817B55AMC-CXST2G  
S-817B56AMC-CXTT2G  
S-817B57AMC-CXUT2G  
S-817B58AMC-CXVT2G  
S-817B59AMC-CXWT2G  
S-817B60AMC-CXXT2G  
S-817B11AUA-CWAT2G  
S-817B12AUA-CWBT2G  
S-817B13AUA-CWCT2G  
S-817B14AUA-CWDT2G  
S-817B15AUA-CWET2G  
S-817B16AUA-CWFT2G  
S-817B17AUA-CWGT2G  
S-817B18AUA-CWHT2G  
S-817B19AUA-CWIT2G  
S-817B20AUA-CWJT2G  
S-817B21AUA-CWKT2G  
S-817B22AUA-CWLT2G  
S-817B23AUA-CWMT2G  
S-817B24AUA-CWNT2G  
S-817B25AUA-CWOT2G  
S-817B26AUA-CWPT2G  
S-817B27AUA-CWQT2G  
S-817B28AUA-CWRT2G  
S-817B29AUA-CWST2G  
S-817B30AUA-CWTT2G  
S-817B31AUA-CWUT2G  
S-817B32AUA-CWVT2G  
S-817B33AUA-CWWT2G  
S-817B34AUA-CWXT2G  
S-817B35AUA-CWYT2G  
S-817B36AUA-CWZT2G  
S-817B37AUA-CXAT2G  
S-817B38AUA-CXBT2G  
S-817B39AUA-CXCT2G  
S-817B40AUA-CXDT2G  
S-817B41AUA-CXET2G  
S-817B42AUA-CXFT2G  
S-817B43AUA-CXGT2G  
S-817B44AUA-CXHT2G  
S-817B45AUA-CXIT2G  
S-817B46AUA-CXJT2G  
S-817B47AUA-CXKT2G  
S-817B48AUA-CXLT2G  
S-817B49AUA-CXMT2G  
S-817B50AUA-CXNT2G  
S-817B51AUA-CXOT2G  
S-817B52AUA-CXPT2G  
S-817B53AUA-CXQT2G  
S-817B54AUA-CXRT2G  
S-817B55AUA-CXST2G  
S-817B56AUA-CXTT2G  
S-817B57AUA-CXUT2G  
S-817B58AUA-CXVT2G  
S-817B59AUA-CXWT2G  
S-817B60AUA-CXXT2G  
S-817B11AY-X-G  
S-817B12AY-X-G  
S-817B13AY-X-G  
S-817B14AY-X-G  
S-817B15AY-X-G  
S-817B16AY-X-G  
S-817B17AY-X-G  
S-817B18AY-X-G  
S-817B19AY-X-G  
S-817B20AY-X-G  
S-817B21AY-X-G  
S-817B22AY-X-G  
S-817B23AY-X-G  
S-817B24AY-X-G  
S-817B25AY-X-G  
S-817B26AY-X-G  
S-817B27AY-X-G  
S-817B28AY-X-G  
S-817B29AY-X-G  
S-817B30AY-X-G  
S-817B31AY-X-G  
S-817B32AY-X-G  
S-817B33AY-X-G  
S-817B34AY-X-G  
S-817B35AY-X-G  
S-817B36AY-X-G  
S-817B37AY-X-G  
S-817B38AY-X-G  
S-817B39AY-X-G  
S-817B40AY-X-G  
S-817B41AY-X-G  
S-817B42AY-X-G  
S-817B43AY-X-G  
S-817B44AY-X-G  
S-817B45AY-X-G  
S-817B46AY-X-G  
S-817B47AY-X-G  
S-817B48AY-X-G  
S-817B49AY-X-G  
S-817B50AY-X-G  
S-817B51AY-X-G  
S-817B52AY-X-G  
S-817B53AY-X-G  
S-817B54AY-X-G  
S-817B55AY-X-G  
S-817B56AY-X-G  
S-817B57AY-X-G  
S-817B58AY-X-G  
S-817B59AY-X-G  
S-817B60AY-X-G  
*1. X changes according to the packing form in TO-92.  
B: Bulk, T: Tape and Reel, Z: Tape and ammo.  
6
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Pin Configurations  
Table 3  
SNT-4A  
Top view  
Pin No.  
Symbol  
VOUT  
VIN  
Description  
Output voltage pin  
Input voltage pin  
GND pin  
1
2
3
4
1
2
4
3
VSS  
NC*1  
No connection  
*1. The NC pin is electrically open.  
The NC pin can be connected to VIN or VSS.  
Figure 3  
Table 4  
SC-82AB  
Top view  
Pin No.  
Symbol  
VSS  
Description  
GND pin  
Input voltage pin  
Output voltage pin  
No connection  
4
1
3
1
2
3
4
VIN  
VOUT  
NC*1  
*1. The NC pin is electrically open.  
The NC pin can be connected to VIN or VSS.  
2
Figure 4  
Table 5  
SOT-23-5  
Top view  
Pin No.  
Symbol  
VSS  
Description  
GND pin  
Input voltage pin  
Output voltage pin  
No connection  
No connection  
5
4
1
2
3
4
5
VIN  
VOUT  
NC*1  
NC*1  
*1. The NC pin is electrically open.  
The NC pin can be connected to VIN or VSS.  
1
2
3
Figure 5  
Table 6  
SOT-89-3  
Top view  
Pin No.  
Symbol  
VSS  
Description  
GND pin  
Input voltage pin  
Output voltage pin  
1
2
3
VIN  
VOUT  
1
2
3
Figure 6  
7
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
Table 7  
Symbol  
VSS  
VIN  
VOUT  
TO-92  
Bottom view  
Pin No.  
Description  
1
GND pin  
1 2 3  
2
3
Input voltage pin  
Output voltage pin  
Figure 7  
„ Absolute Maximum Ratings  
Table 8  
(Ta=25°C unless otherwise specified)  
Item  
Input voltage  
Output voltage  
SNT-4A  
Symbol  
VIN  
VOUT  
Absolute Maximum Rating  
Units  
V
V
VSS0.3 to VSS+12  
VSS0.3 to VIN+0.3  
300*1  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
°C  
150 (When not mounted on board)  
SC-82AB  
400*1  
250 (When not mounted on board)  
SOT-23-5  
SOT-89-3  
TO-92  
Power  
600*1  
PD  
dissipation  
500 (When not mounted on board)  
1000*1  
400 (When not mounted on board)  
800*1  
Operating temperature range  
Storage temperature  
Topr  
Tstg  
40 to +85  
40 to +125  
°C  
*1. When mounted on board  
[Mounted board]  
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name : JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
1200  
SOT-89-3  
1000  
TO-92  
800  
SOT-23-5  
600  
SC-82AB  
400  
200  
SNT-4A  
0
150  
Ambient temperature (Ta) [°C]  
100  
50  
0
Figure 8 Power dissipation of The package (When mounted on board)  
8
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Electrical Characteristics  
1. S-817A series  
Table 9  
(Ta=25°C unless otherwise specified)  
Measur-  
ement  
Item  
Symbol  
Conditions  
2 V, IOUT 10 mA  
Min. Typ. Max. Units  
circuits  
VOUT(S)  
VOUT(S)  
Output voltage *1  
Output current *2  
VOUT(E) VIN  
=
VOUT(S)  
+
=
VOUT(S)  
V
1
3
×
0.98  
20  
35  
50  
65  
75  
×
1.02  
IOUT  
VOUT(S)  
+
2 V 1.1 V  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
10 V,  
1.9 V  
2.9 V  
3.9 V  
4.9 V  
6.0 V  
1.4 V  
1.9 V  
2.4 V  
2.9 V  
3.4 V  
3.9 V  
4.4 V  
4.9 V  
5.4 V  
6.0 V  
1.58  
0.99  
0.67  
0.51  
0.41  
0.35  
0.30  
0.27  
0.25  
0.23  
mA  
VIN  
10 V 2.0 V  
3.0 V  
4.0 V  
5.0 V  
Dropout voltage *3  
Vdrop  
IOUT  
=
10 mA  
1.1 V  
0.92  
0.58  
0.40  
0.31  
0.25  
0.22  
0.19  
0.18  
0.16  
0.15  
V
1
1.5 V  
2.0 V  
2.5 V  
3.0 V  
3.5 V  
4.0 V  
4.5 V  
5.0 V  
5.5 V  
VOUT(S)  
IOUT 1 mA  
VOUT(S) 1 V  
IOUT  
VIN VOUT(S)  
2 V  
+
1 V  
VIN  
Line regulation 1  
Line regulation 2  
Load regulation  
VOUT1  
VOUT2  
VOUT3  
5
20  
20  
20  
30  
45  
65  
80  
mV  
=
+
VIN  
10 V,  
5
=
1
µ
A
=
+
1.1 V  
VOUT(S)  
1.9 V,  
5
1
µ
A
IOUT  
10 mA  
2.0 V  
VOUT(S)  
IOUT 20 mA  
VOUT(S) 3.9 V,  
IOUT 30 mA  
VOUT(S) 4.9 V,  
IOUT 40 mA  
VOUT(S) 6.0 V,  
IOUT 50 mA  
1 V, IOUT 10 mA,  
85  
2.9 V,  
10  
20  
25  
35  
1
µA  
3.0 V  
1
µA  
4.0 V  
1
µA  
5.0 V  
1
µA  
VOUT  
TaVOUT  
Output voltage  
VIN  
=
VOUT(S)  
Ta  
VOUT(S)  
+
=
ppm  
100  
temperature coefficient *4  
40  
°
C
°C  
/
°
C
Current consumption  
ISS  
VIN  
IOS  
VIN  
=
+
2 V, no load  
1.2  
40  
2.5  
10  
µ
A
2
1
3
Input voltage  
V
Short current limit  
VIN  
=
VOUT(S)  
+
2 V, VOUT pin  
=
0 V  
mA  
*1. VOUT(S): Specified output voltage  
V
OUT(E): Effective output voltage  
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.  
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.  
*3. Vdrop = VIN1(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)  
after gradually decreasing input voltage.  
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.  
VOUT  
Ta  
VOUT  
Ta VOUT  
*1  
*2  
*3  
[
mV/°C  
]
= VOUT(S)  
[
V
]
×
[
ppm/°C  
]
÷ 1000  
*1. Temperature change ratio of the output voltage  
*2. Specified output voltage  
*3. Output voltage temperature coefficient  
9
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
2. S-817B series  
Table 10  
(Ta=25°C unless otherwise specified)  
Measur-  
ement  
Item  
Symbol  
Conditions  
2 V, IOUT 10 mA  
Min. Typ. Max. Units  
circuits  
VOUT(S)  
VOUT(S)  
Output voltage *1  
Output current *2  
VOUT(E) VIN  
=
VOUT(S)  
+
=
VOUT(S)  
V
1
3
×
0.98  
20  
×
1.02  
IOUT  
VOUT(S)  
+
2 V 1.1 V  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
1.9 V  
2.9 V  
3.9 V  
4.9 V  
6.0 V  
mA  
VIN  
10 V 2.0 V  
35  
3.0 V  
50  
4.0 V  
65  
5.0 V  
75  
IOUT  
mA  
=
10  
Dropout voltage *3  
Vdrop  
0.92 1.58  
V
1
1.1 V  
VOUT(S)  
1.4 V  
0.58 0.99  
0.40 0.67  
0.31 0.51  
0.25 0.41  
0.22 0.35  
0.19 0.30  
0.18 0.27  
0.16 0.25  
0.15 0.23  
1.5 V  
2.0 V  
2.5 V  
3.0 V  
3.5 V  
4.0 V  
4.5 V  
5.0 V  
5.5 V  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
VOUT(S)  
10 V,  
1.9 V  
2.4 V  
2.9 V  
3.4 V  
3.9 V  
4.4 V  
4.9 V  
5.4 V  
6.0 V  
VOUT(S)  
IOUT 1 mA  
1 V  
VOUT(S)  
+
1 V  
VIN  
Line regulation 1  
Line regulation 2  
Load regulation  
VOUT1  
5
5
5
20  
20  
20  
mV  
=
VOUT2 VOUT(S)  
VIN  
2 V  
+
VIN  
10 V, IOUT  
VOUT(S) 1.9 V,  
IOUT 10 mA  
VOUT(S) 2.9 V,  
IOUT 20 mA  
VOUT(S) 3.9 V,  
IOUT 30 mA  
VOUT(S) 4.9 V,  
IOUT 40 mA  
= 1 µA  
=
+
1.1 V  
VOUT3  
1
µ
A
2.0 V  
10  
20  
25  
35  
30  
45  
65  
80  
1
µ
A
3.0 V  
1
µ
A
4.0 V  
1
µ
A
5.0 V  
VOUT(S)  
6.0 V,  
1
µ
A
IOUT  
1 V, IOUT  
85  
=
50 mA  
10 mA,  
VOUT  
Output voltage  
VIN  
=
VOUT(S)  
Ta  
VOUT(S)  
+
ppm  
100  
temperature coefficient *4 TaVOUT  
40  
°
C
+
°C  
/
°
C
Current consumption  
ISS  
VIN  
=
2 V, no load  
1.2  
2.5  
10  
µA  
2
1
Input voltage  
VIN  
V
*1. VOUT(S): Specified output voltage  
VOUT(E): Effective output voltage  
i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.  
*2. Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.  
*3. Vdrop = VIN1(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E)  
after gradually decreasing input voltage.  
*4. Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.  
VOUT  
Ta  
VOUT  
*1  
*2  
*3  
[
mV/°C  
]
= VOUT(S)  
[
V
]
×
[
ppm/°C  
]
÷ 1000  
Ta VOUT  
*1. Temperature change ratio of the output voltage  
*2. Specified output voltage  
*3. Output voltage temperature coefficient  
10  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Measurement Circuits  
1.  
+
VIN  
VOUT  
VSS  
A
+
V
Figure 9  
2.  
3.  
+
A
VIN  
VOUT  
VSS  
Figure 10  
VOUT  
+
VIN  
A
+
V
VSS  
Figure 11  
„ Standard Circuit  
INPUT  
OUTPUT  
VIN  
VOUT  
*1  
*2  
CIN  
CL  
VSS  
GND  
Single GND  
*1. CIN is a capacitor used to stabilize input.  
*2. In addition to tantalum capacitor, ceramic capacitor of 0.1 µF or more can be used for CL.  
Figure 12  
Caution The above connection diagram and constant will not guarantee successful operation.  
Perform through evaluation using the actual application to set the constant.  
11  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Explanation of Terms  
1. Low ESR  
ESR is the abbreviation for Equivalent Series Resistance.  
Low ESR output capacitors (CL) can be used in the S-817 Series.  
2. Output voltage (VOUT  
)
The accuracy of the output voltage is 2.0% guaranteed under the specified conditions for input voltage,  
which differs depending upon the product items, output current, and temperature.  
Caution If the above conditions change, the output voltage value may vary and go out of the  
accuracy range of the output voltage. See the electrical characteristics and  
characteristics data for details.  
,
3. Line regulations 1 and 2 (VOUT1 VOUT2  
)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output  
voltage changes due to a change in the input voltage with the output current remained unchanged.  
4. Load regulation (VOUT3  
)
Indicates the output current dependencies of output voltage. That is, the values show how much the  
output voltage changes due to a change in the output current with the input voltage remained unchanged.  
5. Dropout voltage (Vdrop  
)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98% of  
VOUT(E) by gradually decreasing the input voltage (VIN).  
Vdrop = VIN1[VOUT(E) × 0.98]  
12  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
VOUT  
6. Temperature coefficient of output voltage  
Ta VOUT   
The shadowed area in Figure 13 is the range where VOUT varies in the operating temperature range  
when the temperature coefficient of the output voltage is 100 ppm/°C.  
Ex. S-817A15 Typ.  
VOUT  
[V]  
+0.15 mV / °C  
*1  
VOUT(E)  
0.15 mV / °C  
40  
25  
Ta [°C]  
85  
*1. VOUT(E) is the value of the output voltage measured at 25°C.  
Figure 13  
A change in the temperature of the output voltage [mV/°C] is calculated using the following equation.  
VOUT  
Ta  
VOUT  
Ta VOUT  
*2  
*3  
[
mV/°C  
]
*1 = VOUT(S)  
[
V
]
×
ppm/°C ÷1000  
[ ]  
*1. Change in temperature of output voltage  
*2. Specified output voltage  
*3. Output voltage temperature coefficient  
13  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Operation  
1. Basic Operation  
Figure 14 shows the block diagram of the S-817 Series.  
The error amplifier compares the reference voltage (Vref) with Vfb, which is the output voltage resistance-  
divided by feedback resistors Rs and Rf. It supplies the output transistor with the gate voltage necessary  
to ensure a certain output voltage free of any fluctuations of input voltage and temperature.  
VIN  
*1  
Current  
Error  
amplifier  
supply  
VOUT  
Vref  
Rf  
+
Vfb  
Reference voltage  
circuit  
Rs  
VSS  
*1. Parasitic diode  
Figure 14  
2. Output Transistor  
The S-817 series uses a P-channel MOS FET as the output transistor.  
Be sure that VOUT does not exceed VIN+0.3 V to prevent the voltage regulator from being damaged due to  
inverse current flowing from VOUT pin through a parastic diode to VIN pin.  
3. Short Circuit Protection  
The S-817A series incorporates a short circuit protection to protect the output transistor against short  
circuit between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the  
output transistor against short-circuit between VOUT and VSS can be selected in the S-817A series. The  
short-circuit protection controls output current as shown in the “Typical Characteristics 1.”. Output  
Voltage versus Output Current, and suppresses output current at about 40 mA even if VOUT and VSS  
pins are short-circuited.  
The short-circuit protection can not be a thermal protection at the same time. Attention should be paid to  
the Input voltage and the load current under the actual condition so as not to exceed the power  
dissipation of the package including the case for short-circuit.  
When the output current is large and the difference between input and output voltage is large even if not  
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.  
For details, refer to “„ Characteristics (Typical Data) 3. Maximum Output Current vs. Input  
Voltage”.  
In addition, S-817B series is removing a short-circuit protection, and is the product which enabled it to  
pass large current.  
14  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Selection of Output Capacitor (CL)  
To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT  
and VSS in the S-817 series because the phase is compensated with the help of the internal phase  
compensation circuit and the ESR of the output capacitor.  
When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and when selecting a  
tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and ESR 30 or  
less.  
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the  
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.  
Sufficient evaluation including temperature characteristics is indispensable. Overshoot and undershoot  
characteristics differ depending upon the type of the output capacitor. Refer to CL dependencies in “„  
Reference Data 1. Transient Response Characteristics”.  
„ Application Circuits  
1. Output Current Boosting Circuit  
Tr1  
VOUT  
VOUT  
R2  
S-817  
series  
VIN  
VIN  
R1  
CIN  
VSS  
CL  
GND  
Figure 15  
As shown in Figure 15, the output current can be boosted by externally attaching a PNP transistor. The  
base current of the PNP transistor is controlled so that output voltage (VOUT) goes the voltage specified  
in the S-817 Series when base-emitter voltage (VBE) necessary to turn on the PNP transistor is obtained  
between input voltage (VIN) and S-817 Series power source pin (VIN).  
The following are tips and hints for selecting and ensuring optimum use of external parts  
PNP transistor (Tr1):  
1. Set hFE to approx. 100 to 400.  
2. Confirm that no problem occurs due to power dissipation under normal operation conditions.  
Resistor (R1):  
Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more.  
Output capacitor (CL):  
Output capacitor (CL) is effective in minimizing output fluctuation at powering on or due to power  
or load fluctuation, but oscillation might occur. Always connect resistor R2 in series to output  
capacitor CL.  
Resistor (R2): Set R2 to 2 Ω × VOUT(S) or more.  
DO NOT attach a capacitor between the S-817 Series power source (VIN) and GND pins or  
between base and emitter of the PNP transistor to avoid oscillation.  
To improve transient response characteristics of the output current boosting circuit shown in  
Figure 15, check that no problem occurs due to output fluctuation at powering on or due to  
power or load fluctuation under normal operating conditions.  
Pay attention to the short current limit circuit incorporated into the S-817 Series because it does  
not function as a shortcircuiting protection circuit for this boosting circuit.  
15  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
The following graphs show the examples of input-output voltage characteristics (Ta=25°C, typ.) in the  
output current boosting circuit as seen in Figure 15:  
1. 1 S-817A11ANB/S-817B11AMC  
1. 2 S-817A50ANB/S-817B50AMC  
Tr1 : 2SA1213Y, R1 : 1 k, CL : 10 µF,  
R2 : 2 Ω  
Tr1 : 2SA1213Y, R1 : 200 , CL : 10 µF,  
R2 : 10 Ω  
1.20  
5.20  
100 mA  
1.10  
5.10  
50 mA  
1.00  
5.00  
100 mA  
10 mA  
50 mA  
10 mA  
0.90  
0.80  
0.70  
0.60  
1 mA  
800 mA  
600 mA  
400 mA  
200 mA  
4.90  
800 mA  
4.80  
4.70  
4.60  
5 mA  
600 mA  
400 mA  
200 mA  
1.4 1.5 1.6 1.7 1.8 1.9  
2
2.1 2.2 2.3 2.4  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
VIN (V)  
VIN (V)  
2. Constant Current Circuit  
2. 1 Constant Current Circuit  
VIN  
VIN  
S-817  
Series  
VSS  
VOUT  
RL  
V0  
IO  
CIN  
VO  
Device  
GND  
Figure 16  
2. 2 Constant Current Boosting Circuit  
Tr1  
VIN  
S-817  
Series  
VSS  
VOUT  
R1  
RL  
V0  
IO  
CIN  
Device  
VO  
GND  
Figure 17  
16  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
The S-817 Series can be configured as a constant current circuit. Refer to Figure 16 and 17.  
Constant amperage (IO) is calculated using the following equation (VOUT(E): Effective output voltage):  
IO = (VOUT(E) ÷ RL) +ISS.  
Note that by using a circuit in Figure16, it is impossible to set the better driving ability to the constant  
amperage (IO) than the S-817 Series basically has.  
To gain the driving ability which exceeds the S-817 Series, there’s a way to combine a constant current  
circuit and a current boosting circuit, as seen in Figure 17.  
The maximum input voltage for a constant current circuit is 10 V + the voltage for device (VO).  
It is not recommended to add a capacitor between the VIN (power supply) and VSS pin or the VOUT  
(output) and VSS pin because the rush current flows at power-on.  
The following is a characteristics example of input voltage between VIN and VO vs. IO current (Typ. Ta  
= 25°C) in constant current boosting circuit in Figure 17.  
V
IN, VO pins, Input voltage - IO current  
S-817A11ANB, S-817B11AMC, Tr : 2SK1213Y, R1 : 1 k, VO=2 V  
0.60  
RL=1.83 Ω  
0.50  
2.2 Ω  
2.75 Ω  
0.40  
3.67 Ω  
5.5 Ω  
11 Ω  
0.30  
0.20  
0.10  
0.00  
1.4  
1.6  
1.8  
2
2.2  
2.4  
VINVO(V)  
17  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
3. Output Voltage Adjustment Circuit (Only for S817B Series (Product without short circuit protection))  
VIN  
VIN  
S-817  
Series  
V0  
VOUT  
R1  
R2  
VSS  
CL  
CIN  
C1  
GND  
Figure 18  
The output voltage can be boosted by using the configuration shown in Figure 18. The output Voltage  
(VO) can be calculated using the following equation (VOUT(E):Effective output voltage):  
VO = VOUT(E) × (R1 + R2) ÷ R1 + R2 × ISS  
Set the values of resistors R1 and R2 so that the S-817 Series is not affected by current consumption  
(ISS).  
Capacitor C1 is effective in minimizing output fluctuation at powering on or due to power or load  
fluctuation. Determine the optimum value on your actual device. But it is not also recommended to  
attach a capacitor between the S-817 Series power source VIN and VSS pin or between output VOUT  
and VSS pin because output fluctuation or oscillation at powering on might occur. As shown in Figure  
18, a capacitor must be mounted between VIN and GND, and between VOUT and GND.  
„ Precautions  
Wiring patterns for the VIN, VOUT and GND pins should be designed so that the impedance is low.  
When mounting an output capacitor between the VOUT and VSS pins (CL) and a capacitor for stabilizing  
the input between VIN and VSS pins (CIN), the distance from the capacitors to these pins should be as  
short as possible.  
Note that the output voltage may increase when a series regulator is used at low load current (1.0 µA or  
less).  
Generally a series regulator may cause oscillation, depending on the selection of external parts. The  
following conditions are recommended for this IC. However, be sure to perform sufficient evaluation  
under the actual usage conditions for selection, including evaluation of temperature characteristics.  
Output capacitor (CL) :  
Equivalent Series Resistance (ESR) : 30 or less  
Input series resistance (RIN) : 10 or less  
0.1 µF or more  
The voltage regulator may oscillate when the impedance of the power supply is high and the input  
capacitor is small or an input capacitor is not connected.  
The application conditions for the input voltage, output voltage, and load current should not exceed the  
package power dissipation.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
SII claims no responsibility for any disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
18  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Characteristics (Typical Data)  
1. Output Voltage vs. Output Current (when load current increases)  
(a) S-817A Series  
S-817A11A (Ta=25°C)  
1.2  
S-817A20A (Ta=25°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10V  
8V  
0.9  
3V  
4V  
V =  
IN  
1.5V  
3.1V  
VOUT  
(V)  
0.6  
5V  
VOUT  
4.1V  
2.1V  
(V)  
0.3  
0.0  
V =  
IN  
2.4V  
0
20  
40  
(mA)  
60  
80  
0
30  
60  
IOUT (mA)  
90  
120  
IOUT  
S-817A30A (Ta=25 °C)  
S-817A50A (Ta=25°C)  
5.0  
3.0  
2.5  
5V  
10V  
4.0  
3.0  
2.0  
1.0  
0.0  
6V  
4V  
2.0  
1.5  
1.0  
0.5  
0.0  
6V  
VOUT  
(V)  
8V  
VOUT  
(V)  
V =5.4V  
7V  
IN  
10V  
V =  
3.4V  
IN  
0
30  
60  
90  
120  
150  
0
40  
80  
120  
160  
200  
IOUT (mA)  
IOUT (mA)  
(b) S-817B series  
S-817B11A (Ta=25°C)  
1.2  
S-817B20A (Ta=25°C)  
2.5  
10V  
V =2.4V  
8V  
IN  
2.0  
0.9  
4.1V  
3.1V  
1.5  
VOUT  
0.6  
(V)  
5V  
4V  
VOUT  
2.1V  
1.0  
(V)  
3V  
0.3  
0.0  
VIN=  
1.5V  
0.5  
0.0  
0
50  
100  
150  
200  
10V  
250  
0
50  
100 150  
200 250 300  
IOUT (mA)  
IOUT (mA)  
S-817B30A (Ta=25°C)  
S-817B50A (Ta=25°C)  
5.0  
3.5  
3.0  
10V  
4.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4V  
7V  
8V  
3.0  
VOUT  
(V)  
VOUT  
(V)  
6V  
VIN=5.4V  
2.0  
1.0  
0.0  
5V  
6V  
VIN=  
3.4V  
0
50  
100 150  
200 250 300  
0
50  
100 150  
200 250 300  
IOUT (mA)  
IOUT (mA)  
19  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
2. Output Voltage vs. Input Voltage  
S-817A11A/S-817B11A (Ta=25°C)  
1.5  
S-817A20A/S-817B20A (Ta=25°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
µ
OUT =1 A  
I
µ
OUT =1 A  
1.0  
0.5  
0.0  
50mA  
20mA  
10mA  
VOUT  
(V)  
VOUT  
(V)  
1mA  
10mA  
20mA  
1mA  
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN  
VIN (V)  
(V)  
S-817A30A/S-817B30A (Ta=25°C)  
3.5  
S-817A50A/S-817B50A (Ta=25°C)  
5.0  
4.0  
20mA  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
50mA  
50mA  
20mA  
1mA  
OUT =1µA  
10mA  
10mA  
3.0  
2.0  
1.0  
0.0  
VOUT  
(V)  
VOUT  
(V)  
1mA  
I
I
µ
OUT =1 A  
0
2
4
6
8
10  
0
2
4
6
8
10  
(V)  
VIN  
VIN (V)  
20  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
3. Maximum Output Current vs. Input Voltage  
(a) S-817A Series  
S-817A11A  
100  
S-817A20A  
120  
100  
25°C  
Ta=-40°C  
Ta=-40°C  
80  
80  
60  
I OUT  
I OUT  
max.(mA)  
60  
85°C  
max.(mA)  
40  
25°C  
40  
20  
0
85°C  
20  
0
1
3
5
7
9
0
2
4
6
8
10  
V
VIN (V)  
IN (V)  
S-817A50A  
250  
S-817A30A  
180  
25°C  
25°C  
150  
120  
200  
Ta=-40°C  
Ta=-40°C  
150  
I OUT  
I OUT  
90  
85°C  
max.(mA)  
100  
max.(mA)  
85°C  
60  
30  
0
50  
0
4
6
8
10  
2
4
6
8
10  
V
IN (V)  
V
IN (V)  
(b) S-817B Series  
S-817B11A  
300  
S-817B20A  
300  
250  
200  
250  
Ta=-40°C  
25°C  
Ta=-40°C  
25°C  
200  
150  
IOUT  
IOUT  
150  
max.(mA)  
max.(mA)  
100  
100  
85°C  
85°C  
50  
0
50  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN (V)  
VIN (V)  
S-817B30A  
300  
S-817B50A  
300  
Ta=-40°C  
25°C  
250  
250  
200  
Ta=-40°C  
25°C  
200  
IOUT  
IOUT  
150  
150  
max.(mA)  
max.(mA)  
100  
85°C  
100  
50  
0
85°C  
50  
0
2
4
6
8
10  
4
6
8
10  
VIN (V)  
VIN (V)  
21  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
4. Dropout Voltage vs. Output Current  
S-817A11A/S-817B11A  
S-817A20A/S-817B20A  
2000  
1500  
1000  
500  
0
2000  
1500  
1000  
500  
0
25°C  
25°C  
85°C  
85°C  
Ta=-40°C  
Ta=-40°C  
30  
0
5
10  
IOUT (mA)  
15  
20  
0
10  
20  
IOUT (mA)  
40  
S-817A30A/S-817B30A  
1600  
S-817A50A/S-817B50A  
1000  
800  
600  
400  
200  
0
85°C  
85°C  
1200  
800  
400  
0
25°C  
20  
25°C  
Ta=-40°C  
Ta=-40°C  
0
10  
30  
40  
50  
0
10  
20  
30  
40  
50  
IOUT (mA)  
5. Output Voltage vs. Ambient Temperature  
IOUT (mA)  
S-817A11A/S-817B11A  
1.12  
S-817A20A/S-817B20A  
2.04  
VIN=3.1V, IOUT=10mA  
VIN=4V, IOUT=10mA  
1.11  
1.10  
1.09  
2.02  
2.00  
1.98  
1.96  
-50  
1.08  
-50  
0
50  
100  
0
50  
100  
Ta (°C)  
Ta (°C)  
S-817A30A/S-817B30A  
3.06  
S-817A50A/S-817B50A  
5.10  
VIN=7V, IOUT=10mA  
VIN=5V, IOUT=10mA  
3.03  
3.00  
2.97  
5.05  
5.00  
4.95  
2.94  
-50  
4.90  
-50  
0
50  
100  
0
50  
100  
Ta (°C)  
Ta (°C)  
22  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
6. Line Regulation 1 vs. Ambient Temperature  
7. Line Regulation 2 vs. Ambient Temperature  
S-817A11/20/30/50A  
S-817A11/20/30/50A  
VIN=VOUT(S)+1V10V, IOUT=1µA  
S-817B11/20/30/50A  
VIN=VOUT(S)+1V10V, IOUT=1mA  
S-817B11/20/30/50A  
30  
25  
20  
15  
30  
25  
20  
15  
2V  
2V  
3V  
5V  
3V  
5V  
VOUT=1.1V  
VOUT=1.1V  
10  
5
10  
5
0
0
-50  
-25  
0
25  
Ta (°C)  
50  
75  
100  
-50  
-25  
0
25  
Ta (°C)  
50  
75  
100  
8. Load Regulation vs. Ambient Temperature  
S-817A11/20/30/50A  
VIN=VOUT(S)+2V, IOUT=1µAIOUT  
S-817B11/20/30/50A  
80  
VOUT=1.1V(IOUT=10mA)  
70  
60  
50  
40  
30  
20  
10  
0
2V(IOUT=20mA)  
3V(IOUT=30mA)  
5V(IOUT=50mA)  
-50  
-25  
0
25  
Ta (°C)  
50  
75  
100  
23  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
9. Current Consumption vs. Input Voltage  
S-817A11A/S-817B11A  
1.6  
S-817A20A/S-817B20A  
1.6  
1.2  
0.8  
0.4  
0
85°C  
25°C  
Ta=-40°C  
85°C  
1.2  
0.8  
0.4  
0
25°C  
Ta=-40°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN (V)  
VIN (V)  
S-817A30A/S-817B30A  
1.6  
S-817A50A/S-817B50A  
1.6  
85°C  
85°C  
25°C  
1.2  
0.8  
0.4  
0
1.2  
0.8  
0.4  
0
25°C  
Ta=-40°C  
Ta=-40°C  
0
2
4
6
8
10  
0
2
4
6
8
10  
VIN (V)  
VIN (V)  
24  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
„ Reference Data  
1. Transient Response Characteristics (Typical data: Ta=25 °C)  
Input voltage  
or  
Load current  
O vershoot  
O utput voltage  
U ndershoot  
1. 1 At powering on S-817A30A (when using a ceramic capacitor, CL=1 µF)  
VIN 0 V 10 V, I  
10 mA, C 1 F  
= µ  
=
=
OUT  
L
10 V  
0 V  
3 V  
VOUT  
(0.5 V/div)  
TIME(100 s/div)  
µ
Load dependencies of overshoot at powering on  
CL dependencies of overshoot at powering on  
VOUT=0 VVOUT(S)+2 V, CL=1 µF  
VIN=0 VVOUT(S)+2 V, IOUT=10 mA  
0.05  
0.05  
0.04  
0.03  
0.04  
0.03  
0.02  
0.01  
0
2V  
5V  
3V  
3V  
1
2V  
5V  
0.02  
0.01  
0
0.01  
0.1  
10  
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01  
IOUT(A)  
C ( F)  
µ
L
VDD dependencies of overshoot at powering on  
“Ta” dependencies of overshoot at powering on  
VIN=0 VVDD, IOUT=10 mA, CL=1 µF  
0.05  
VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1 µF  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.04  
5V  
0.03  
5V  
3V  
0.02  
3V  
2V  
2V  
0.01  
0
-50  
0
50  
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
25  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
1. 2 At powering on S-817B30A (when using a ceramic capacitor, CL=1 µF)  
VIN 0 V 10 V, I  
10 mA, C 1 F  
= µ  
=
=
OUT  
L
10 V  
0 V  
3 V  
VOUT  
(0.5 V/div)  
TIME(100 s/div)  
µ
Load dependencies of overshoot at powering on  
CL dependencies of overshoot at powering on  
VIN=0 VVOUT(S)+2 V, CL=1 µF  
VIN 0 V  
=
V
OUT(S)+2 V, IOUT 10 mA  
=
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
5V  
3V  
5V  
2V  
2V  
3V  
0.01  
0.1  
1
10  
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01  
IOUT(A)  
CL(µF)  
VDD dependencies of overshoot at powering on  
“Ta” dependencies of overshoot at powering on  
VIN=0 VVDD, IOUT=10 mA, CL=1 µF  
0.05  
VIN=0 VVOUT(S)+2 V, IOUT=10 mA, CL=1 µF  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.04  
0.03  
5V  
3V  
50  
0.02  
5V  
2V  
3V  
2V  
0.01  
0
-50  
0
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
26  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
1. 3 Power fluctuation S-817A30A / S-817B30A (when using a ceramic capacitor, CL=1 µF)  
VIN 4 V 10 V,I  
1 mA, C 1 F  
= µ  
=
=
OUT  
L
10 V  
4 V  
VOUT  
(0.2 V/div)  
3 V  
TIME(200 s/div)  
µ
Load dependencies of overshoot at power fluctuation CL dependencies of overshoot at power fluctuation  
VIN=VOUT(S)+1 VVOUT(S)+2 V, CL=1 µF  
VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.8  
0.6  
0.4  
0.2  
0
2 V  
3 V  
5 V  
2 V  
5 V  
0.1  
3 V  
0.01  
1
10  
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01  
IOUT(A)  
CL(µF)  
VDD dependencies of overshoot at power fluctuation  
“Ta” dependencies of overshoot at power fluctuation  
VIN=VOUT(S)+1 VVDD, IOUT=1 mA, CL=1 µF  
1
VIN=VOUT(S)+1 VVOUT(S)+2 V, IOUT=1 mA, CL=1 µF  
1
0.8  
0.8  
5V  
0.6  
0.6  
3V  
5V  
0.4  
0.4  
0.2  
0
3V  
2V  
2V  
0.2  
0
-50  
0
50  
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
27  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
VIN 10 V 4 V,IOUT 1 mA, C  
1
=
L
F
µ
=
=
10 V  
4 V  
3 V  
(0.02 V/div)  
VOUT  
TIME(50 s/div)  
µ
Load dependencies of undershoot at power fluctuation CL dependencies of undershoot at power fluctuation  
VIN=VOUT(S)+2 VVOUT(S)1 V, CL=1 µF  
VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.8  
0.6  
0.4  
0.2  
0
2V  
3V  
5V  
5V  
3V  
2V  
0.01  
0.1  
1
10  
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01  
IOUT(A)  
CL(µF)  
VDD dependencies of undershoot at power fluctuation “Ta” dependencies of undershoot at power fluctuation  
VIN=VDDVOUT(S)+1 V, IOUT=1 mA, CL=1 µF  
0.1  
0.08  
0.06  
0.04  
0.02  
0
VIN=VOUT(S)+2 VVOUT(S)+1 V, IOUT=1 mA, CL=1 µF  
0.1  
2V  
0.08  
0.06  
0.04  
0.02  
0
5V  
3V  
3V  
2V  
5V  
-50  
0
50  
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
28  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
1. 4 Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1 µF)  
IOUT=30 mA10 µA,V IN=5 V, CL=1 µF  
30 mA  
10 µA  
VOUT  
(0.2 V/div)  
3 V  
TIME(20 ms/div)  
Load current dependencies of overshoot at load  
fluctuation  
CL dependencies of overshoot at load fluctuation  
VIN=VOUT(S)+2 V, IOUT=IL10 µA, CL=1 µF  
VIN=VOUT(S)+2 V, IOUT=10 mA10 µA  
2
1
0.8  
0.6  
0.4  
0.2  
0
2V  
5V  
1.5  
3V  
5V  
2V  
3V  
1
0.5  
0
0.01  
0.1  
1
10  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00  
IOUT(A)  
CL(µF)  
VDD dependencies of overshoot at load fluctuation  
“Ta” dependencies of overshoot at load fluctuation  
VIN=VDD, IOUT=10 mA,10 µA, CL=1 µF  
0.2  
VIN=VOUT(S)+2 V, IOUT=10 mA10 µA, CL=1 µF  
0.2  
5V  
2V  
5V  
0.15  
0.15  
0.1  
0.05  
0
0.1  
3V  
3V  
2V  
0.05  
0
-50  
0
50  
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
29  
Seiko Instruments Inc.  
SUPER-SMALL PACKAGE CMOS VOLTAGE REGULATOR  
S-817 Series  
Rev.4.2_00  
IOUT=10 µA30mA, VIN=5V, CL=1 µF  
30mA  
10µA  
3V  
VOUT  
(0.2V/div)  
TIME(50 ms/div)  
Load current dependencies of undershoot at load  
fluctuation  
CL dependencies of undershoot at load fluctuation  
VIN=VOUT(S)+2 V, IOUT=10 µAIL, CL=1 µA  
VIN=VOUT(S)+2 V, IOUT=10 µA10 mA  
2
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
3V  
5V  
1.5  
1
5V  
3V  
2V  
0.5  
0
2V  
0.01  
0.1  
1
10  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00  
IOUT(A)  
CL(µF)  
VDD dependencies of undershoot at load fluctuation  
“Ta” dependencies of undershoot at load fluctuation  
VIN=VDD, IOUT=10 µA10 mA, CL=1 µF  
0.5  
VIN=VOUT(S)+2 V, IOUT=10 µA 10 mA, CL=1 µF  
0.5  
0.4  
0.4  
5V  
3V  
3V  
0.3  
0.2  
0.1  
0
5V  
0.3  
0.2  
2V  
2V  
0.1  
0
-50  
0
50  
100  
0
2
4
6
8
10  
Ta(°C)  
VDD(V)  
30  
Seiko Instruments Inc.  
1.2±0.04  
3
4
+0.05  
-0.02  
0.08  
2
1
0.65  
0.48±0.02  
0.2±0.05  
No. PF004-A-P-SD-4.0  
SNT-4A-A-PKG Dimensions  
PF004-A-P-SD-4.0  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
+0.1  
-0  
ø1.5  
4.0±0.1  
2.0±0.05  
0.25±0.05  
+0.1  
ø0.5  
-0  
4.0±0.1  
0.65±0.05  
1.45±0.1  
5°  
2
3
1
4
Feed direction  
No. PF004-A-C-SD-1.0  
TITLE  
SNT-4A-A-Carrier Tape  
PF004-A-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PF004-A-R-SD-1.0  
SNT-4A-A-Reel  
TITLE  
No.  
PF004-A-R-SD-1.0  
SCALE  
UNIT  
QTY.  
5,000  
mm  
Seiko Instruments Inc.  
0.52  
1.16  
0.52  
0.3  
0.3  
0.35  
Caution Making the wire pattern under the package is possible. However, note that the package  
may be upraised due to the thickness made by the silk screen printing and of a solder  
resist on the pattern because this package does not have the standoff.  
No. PF004-A-L-SD-3.0  
SNT-4A-A-Land Recommendation  
TITLE  
No.  
PF004-A-L-SD-3.0  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
2.0±0.2  
1.3±0.2  
4
3
0.05  
+0.1  
-0.06  
0.16  
2
1
+0.1  
-0.05  
0.4  
+0.1  
-0.05  
0.3  
No. NP004-A-P-SD-1.1  
SC82AB-A-PKG Dimensions  
NP004-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
2.0±0.05  
+0.1  
-0  
1.1±0.1  
ø1.5  
4.0±0.1  
4.0±0.1  
0.2±0.05  
ø1.05±0.1  
(0.7)  
2.2±0.2  
2
3
1
4
Feed direction  
No. NP004-A-C-SD-3.0  
TITLE  
SC82AB-A-Carrier Tape  
NP004-A-C-SD-3.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
1.1±0.1  
+0.1  
-0  
2.0±0.1  
4.0±0.1  
ø1.5  
0.2±0.05  
4.0±0.1  
ø1.05±0.1  
2.3±0.15  
2
3
1
4
Feed direction  
No. NP004-A-C-S1-2.0  
TITLE  
SC82AB-A-Carrier Tape  
NP004-A-C-S1-2.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. NP004-A-R-SD-1.1  
SC82AB-A-Reel  
TITLE  
NP004-A-R-SD-1.1  
No.  
QTY.  
SCALE  
UNIT  
3,000  
mm  
Seiko Instruments Inc.  
2.9±0.2  
1.9±0.2  
4
5
+0.1  
-0.06  
1
2
3
0.16  
0.95±0.1  
0.4±0.1  
No. MP005-A-P-SD-1.2  
TITLE  
SOT235-A-PKG Dimensions  
MP005-A-P-SD-1.2  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1(10 pitches:40.0±0.2)  
+0.1  
-0  
2.0±0.05  
0.25±0.1  
ø1.5  
+0.2  
-0  
4.0±0.1  
ø1.0  
1.4±0.2  
3.2±0.2  
3
4
2 1  
5
Feed direction  
No. MP005-A-C-SD-2.1  
TITLE  
SOT235-A-Carrier Tape  
MP005-A-C-SD-2.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. MP005-A-R-SD-1.1  
TITLE  
SOT235-A-Reel  
MP005-A-R-SD-1.1  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
Seiko Instruments Inc.  
4.5±0.1  
1.6±0.2  
1.5±0.1  
1
2
3
1.5±0.1 1.5±0.1  
0.4±0.05  
45°  
0.4±0.1  
0.4±0.1  
0.45±0.1  
No. UP003-A-P-SD-1.1  
TITLE  
No.  
SOT893-A-PKG Dimensions  
UP003-A-P-SD-1.1  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1(10 pitches : 40.0±0.2)  
+0.1  
-0  
ø1.5  
2.0±0.05  
+0.1  
-0  
ø1.5  
0.3±0.05  
2.0±0.1  
8.0±0.1  
5° max.  
4.75±0.1  
Feed direction  
No. UP003-A-C-SD-1.1  
TITLE  
No.  
SOT893-A-Carrier Tape  
UP003-A-C-SD-1.1  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
16.5max.  
13.0±0.3  
Enlarged drawing in the central part  
(60°)  
(60°)  
No. UP003-A-R-SD-1.1  
TITLE  
No.  
SOT893-A-Reel  
UP003-A-R-SD-1.1  
SCALE  
UNIT  
QTY.  
1,000  
mm  
Seiko Instruments Inc.  
4.2max.  
5.2max.  
Marked side  
0.6max.  
0.45±0.1  
0.45±0.1  
1.27  
No. YS003-B-P-SD-1.1  
TO92-B-PKG Dimensions  
YS003-B-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.2max.  
5.2max.  
Marked side  
0.6max.  
0.45±0.1  
0.45±0.1  
+0.4  
-0.1  
2.5  
1.27  
No. YF003-A-P-SD-1.1  
TO92-A-PKG Dimensions  
YF003-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.7±1.0  
1.0max.  
1.0max.  
Marked side  
#
#
0.5max.  
3 pin  
1 pin  
1.45max.  
0.7±0.2  
ø4.0±0.2  
6.35±0.4  
12.7±0.3(20 pitches : 254.0±1.0)  
Feed direction  
Marked side  
Feed direction  
No. YF003-A-C-SD-4.1  
TO92-A-Radial Tape  
YF003-A-C-SD-4.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
2±0.5  
5±0.5  
43±0.5  
ø358±2  
53±0.5  
No. YF003-A-R-SD-2.1  
TO92-A-Reel  
TITLE  
YF003-A-R-SD-2.1  
No.  
SCALE  
UNIT  
QTY.  
2,000  
mm  
Seiko Instruments Inc.  
4.2max.  
5.2max.  
Marked side  
0.6max.  
0.45±0.1  
0.45±0.1  
+0.4  
-0.1  
2.5  
1.27  
No. YF003-A-P-SD-1.1  
TITLE  
TO92-C-PKG Dimensions  
YF003-A-P-SD-1.1  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
12.7±1.0  
1.0max.  
1.0max.  
Marked side  
#
#
0.5max.  
3 pin  
1 pin  
1.45max.  
0.7±0.2  
ø4.0±0.2  
6.35±0.4  
12.7±0.3(20 pitches : 254.0±1.0)  
Z type  
Feed direction  
No. YZ003-C-C-SD-3.1  
TO92-C-Radial Tape  
YZ003-C-C-SD-3.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
Spacer  
60  
320  
40  
Side spacer placed in front side  
165  
320  
Space more than 4 strokes  
262  
330  
47  
No. YZ003-C-Z-SD-2.1  
TO92-C-Ammo Packing  
YZ003-C-Z-SD-2.1  
TITLE  
No.  
SCALE  
UNIT  
QTY.  
2,500  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY