S-8232NJFT-T2-G [SII]

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK; 电池保护IC 2串联用电池组
S-8232NJFT-T2-G
型号: S-8232NJFT-T2-G
厂家: SEIKO INSTRUMENTS INC    SEIKO INSTRUMENTS INC
描述:

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
电池保护IC 2串联用电池组

电池 光电二极管
文件: 总27页 (文件大小:678K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev.5.4_00  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
The 8232 series is a lithium-ion / lithium-polymer  
rechargeable battery protection IC incorporating high-  
accuracy voltage detection circuit and delay circuit.  
The S-8232 series is suitable for 2-cell serial lithium-ion  
/ lithium-polymer battery packs.  
„ Features  
(1) Internal high-accuracy voltage detection circuit  
Overcharge detection voltage  
3.85 V 25 mV to 4.60 V 25 mV  
3.60 V 50 mV to 4.60 V 50 mV  
Applicable in 5 mV step  
Applicable in 5 mV step  
Overcharge release voltage  
(The overcharge release voltage can be selected within the range where a difference from overcharge  
detection voltage is 0 to 0.3 V.)  
Overdischarge detection voltage 1.70 V 80 mV to 2.60 V 80 mV  
Applicable in 50 mV step  
Overdischarge release voltage  
1.70 V 100 mV to 3.80 V 100 mV Applicable in 50 mV step  
(The overdischarge release voltage can be selected within the range where a difference from  
overdischarge detection voltage is 0 to 1.2 V.)  
Overcurrent detection voltage 1 0.07 V 20 mV to 0.30 V 20 mV  
(2) High input-voltage device : Absolute maximum ratings 18 V.  
(3) Wide operating voltage range : 2 to 16 V  
Applicable in 5 mV step  
(4) The delay time for every detection can be set via an external capacitor.  
(Each delay time for Overcharge detection, Overdischarge detection, Overcurrent detection are  
“Proportion of hundred to ten to one”.)  
(5) Two overcurrent detection levels (Protection for short-circuiting)  
(6) Internal auxiliary over voltage detection circuit (Fail-safe for overcharge detection voltage)  
(7) Internal charge circuit for 0 V battery (Unavailable is option)  
(8) Low current consumption  
Operation mode  
7.5 µA typ. 14.2 µA max. (40 to + 85 °C)  
Power-down mode 0.2 nA typ. 0.1 µA max. (40 to + 85 °C)  
(9) Lead-free products  
„ Application  
Lithium-ion rechargeable battery packs  
Lithium- polymer rechargeable battery packs  
„ Package  
Package Name  
Drawing Code  
Package  
FT008-A  
Tape  
Reel  
FT008-E  
8-Pin TSSOP  
FT008-E  
Seiko Instruments Inc.  
1
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Block Diagram  
VCC  
Reference  
voltage 1  
SENS  
Auxiliary  
overcharge  
detector 1  
+
Overcharge  
detector 1  
+
Over-  
DO  
Delay circuit  
control signal  
discharge  
detector 1  
+
Control  
logic  
VC  
CO  
Over-  
discharge  
detector 2  
RCOL  
+
Overcharge  
detector 2  
Over current  
+
VM  
detection circuit  
Delay circuit control signal  
Delay circuit  
Delay circuit  
control signal  
+
control signal  
Auxiliary  
Delay circuit  
overcharge  
detector 2  
ICT  
Reference  
voltage 2  
VSS  
DO, CO control signal  
Remark Resistor (RCOL) is connected to the Nch transistor although CO pin serves as a CMOS output.  
For this, impedance becomes high when outputting “L” from CO pin. Refer to the “„ Electrical  
Characteristics” for the impedance value.  
Figure 1  
2
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Product Name Structure  
1. Product Name  
S-8232 xx FT - T2 - G  
IC direction in tape specifications *1  
Package code  
FT : 8-Pin TSSOP  
Serial code  
Sequentially set from AA to ZZ  
*1. Refer to the taping specifications.  
2. Product Name List  
Table 1 (1 / 2)  
Overcharge  
detection  
delay time  
tCU  
Overcharge  
Overcharge  
detection  
voltage 1, 2  
VCU  
Overdischarge  
detection  
voltage 1, 2  
VDD  
Overdischarge  
Overcurrent  
detection  
voltage 1  
VIOV1  
0 V battery  
charging  
function  
release  
voltage1, 2  
VDU  
Product name / Item  
release voltage 1, 2  
VCD  
(C3 = 0.22 µF)  
S-8232AAFT-T2-G 4.25 V 25 mV  
S-8232ABFT-T2-G 4.35 V 25 mV  
S-8232ACFT-T2-G 4.35 V 25 mV  
S-8232AEFT-T2-G 4.35 V 25 mV  
S-8232AFFT-T2-G 4.25 V 25 mV  
S-8232AGFT-T2-G 4.25 V 25 mV  
S-8232AHFT-T2-G 4.25 V 25 mV  
4.05 V 50 mV  
4.15 V 50 mV  
4.15 V 50 mV  
4.28 V 50 mV  
4.05 V 50 mV  
4.05 V 50 mV  
4.05 V 50 mV  
2.40 V 80 mV 3.00 V 100 mV 0.150 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.300 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.300 V 20 mV  
2.15 V 80 mV 2.80 V 100 mV 0.100 V 20 mV  
2.30 V 80 mV 2.70 V 100 mV 0.300 V 20 mV  
2.20 V 80 mV 2.40 V 100 mV 0.200 V 20 mV  
2.20 V 80 mV 2.40 V 100 mV 0.300 V 20 mV  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
Available  
Available  
Unavailable  
Available  
Available  
Available  
Available  
S-8232AIFT-T2-G 4.325 V 25 mV 4.325 V 25 mV *1 *2 2.40 V 80 mV 3.00 V 100 mV 0.300 V 20 mV  
Unavailable  
Unavailable  
Available  
Available  
Available  
Unavailable  
Available  
Unavailable  
Unavailable  
Unavailable  
Available  
Unavailable  
Available  
Unavailable  
Unavailable  
Available  
S-8232AJFT-T2-G 4.25 V 25 mV  
S-8232AKFT-T2-G 4.20 V 25 mV  
S-8232ALFT-T2-G 4.30 V 25 mV  
S-8232AMFT-T2-G 4.19 V 25 mV  
4.05 V 50 mV  
4.00 V 50 mV  
4.05 V 50 mV  
4.19 V 25 mV *1  
2.40 V 80 mV 3.00 V 100 mV 0.150 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.200 V 20 mV  
2.00 V 80 mV 3.00 V 100 mV 0.200 V 20 mV  
2.00 V 80 mV 3.00 V 100 mV 0.190 V 20 mV  
S-8232ANFT-T2-G 4.325 V 25 mV 4.325 V 25 mV *1 *3 2.40 V 80 mV 3.00 V 100 mV 0.300 V 20 mV  
S-8232AOFT-T2-G 4.30 V 25 mV  
S-8232APFT-T2-G 4.28 V 25 mV  
4.05 V 50 mV  
4.05 V 50 mV  
2.00 V 80 mV 3.00 V 100 mV 0.230 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.100 V 20 mV  
S-8232ARFT-T2-G 4.325 V 25 mV 4.325 V 25 mV *1 *3 2.00 V 80 mV 2.50 V 100 mV 0.300 V 20 mV  
S-8232ASFT-T2-G*4 4.295 V 25 mV 4.20 V 50 mV *3  
2.30 V 80 mV 3.00 V 100 mV 0.300 V 20 mV  
S-8232ATFT-T2-G 4.125 V 25 mV 4.125 V 25 mV *1 2.00 V 80 mV 3.00 V 100 mV 0.190 V 20 mV  
S-8232AUFT-T2-G 4.30 V 25 mV  
S-8232AVFT-T2-G 4.30 V 25 mV  
S-8232AWFT-T2-G 4.35 V 25 mV  
S-8232AXFT-T2-G 4.325 V 25 mV 4.200 V 50 mV  
S-8232AYFT-T2-G 4.30 V 25 mV  
S-8232AZFT-T2-G 4.30 V 25 mV  
4.10 V 50 mV  
4.05 V 50 mV  
4.15 V 50 mV  
2.40 V 80 mV 3.00 V 100 mV 0.200 V 20 mV  
2.00 V 80 mV 3.00 V 100 mV 0.300 V 20mV  
2.30 V 80 mV 3.00 V 100 mV 0.150 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.20 V 20 mV  
4.05 V 50 mV  
4.05 V 50 mV  
2.00 V 80 mV 2.00 V 80 mV  
2.30 V 80 mV 2.30 V 80 mV  
0.20 V 20 mV  
0.20 V 20 mV  
Available  
Seiko Instruments Inc.  
3
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
Table 1 (2 / 2)  
Overcharge  
Overcharge  
detection  
voltage 1, 2  
VCU  
Overdischarge  
detection  
voltage 1, 2  
VDD  
Overdischarge  
release  
voltage1, 2  
VDU  
Overcurrent  
detection  
voltage 1  
VIOV1  
Overcharge  
release voltage 1, 2  
VCD  
detection  
delay time  
tCU  
0 V battery  
charging  
function  
Product name / Item  
(C3 = 0.22 µF)  
S-8232NAFT-T2-G 4.325 V 25 mV 4.325 V 25 mV *1 *3 2.40 V 80 mV 3.00 V 100 mV 0.15 V 20 mV  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
1.0 s  
Unavailable  
Unavailable  
Unavailable  
Available  
Available  
Unavailable  
Available  
Unavailable  
Unavailable  
Available  
Available  
Available  
S-8232NBFT-T2-G 4.35 V 25 mV  
S-8232NCFT-T2-G 4.275 V 25 mV  
S-8232NDFT-T2-G 4.35 V 25 mV  
S-8232NEFT-T2-G 4.35 V 25 mV  
S-8232NFFT-T2-G 4.325 V 25 mV  
S-8232NGFT-T2-G 4.35 V 25 mV  
S-8232NHFT-T2-G 4.28 V 25 mV  
4.25 V 25 mV  
4.28 V 25 mV  
S-8232NKFT-T2-G 4.35 V 25 mV  
S-8232NLFT-T2-G 4.30 V 25 mV  
4.25 V 50 mV  
4.05 V 50 mV  
4.15 V 50 mV  
4.15 V 50 mV  
4.1 V 50 mV *3  
4.15 V 50 mV  
4.05 V 50 mV  
4.05 V 50 mV *3  
4.05 V 50 mV  
4.15 V 50 mV  
4.05 V 50 mV  
4.05 V 50 mV  
4.08 V 50 mV *3  
3.00 V 80 mV 3.70 V 100 mV 0.30 V 20 mV  
2.20 V 80 mV 3.00 V 100 mV 0.20 V 20 mV  
2.30 V 80 mV 2.30 V 80 mV 0.15 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.23 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.21 V 20 mV  
2.60 V 80 mV 3.00 V 100 mV 0.30 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.11 V 20 mV  
2.50 V 80 mV 3.00 V 100 mV 0.15 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.11 V 20 mV  
2.30 V 80 mV 2.30 V 80 mV 0.12 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.23 V 20 mV  
2.30 V 80 mV 2.90 V 100 mV 0.08 V 20 mV  
2.20 V 80 mV 2.40 V 100 mV 0.13 V 20 mV  
S-8232NIFT-T2-G  
S-8232NJFT-T2-G  
S-8232NMFT-T2-G 4.28 V 25 mV  
S-8232NNFT-T2-G 4.28 V 25 mV  
Available  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Unavailable  
Available  
S-8232NOFT-T2-G 4.295 V 25 mV 4.045 V 50 mV *3 2.20 V 80 mV 2.40 V 100 mV 0.13 V 20 mV  
S-8232NPFT-T2-G 4.25 V 25 mV  
S-8232NQFT-T2-G 4.25 V 25 mV  
S-8232NRFT-T2-G 4.15 V 25 mV  
S-8232NSFT-T2-G 4.15 V 25 mV  
S-8232NTFT-T2-G 4.225 V 25 mV  
S-8232NUFT-T2-G 3.85 V 25 mV  
4.05 V 50 mV  
4.05 V 50 mV  
3.95 V 50 mV  
3.95 V 50 mV  
4.15 V 50 mV  
2.30 V 80 mV 3.00 V 100 mV 0.30 V 20 mV  
2.60 V 80 mV 3.00 V 100 mV 0.30 V 20 mV  
2.60 V 80 mV 3.00 V 100 mV 0.30 V 20 mV  
2.30 V 80 mV 3.00 V 100 mV 0.30 V 20 mV  
2.00 V 80 mV 2.00 V 100 mV 0.09 V 20 mV  
2.23 V 80 mV 2.23 V 80 mV 0.15 V 20 mV  
2.00 V 80 mV 2.00 V 80 mV 0.09 V 20 mV  
3.75 V 50 mV  
S-8232NWFT-T2-G  
Unavailable  
4.210 V 25 mV 4.125 V 50 mV  
*1. No overcharge detection / release hysteresis  
*2. The magnification of final overcharge is 1.11; the others are 1.25.  
*3. No final overcharging function  
*4. Refer to the *2 in the „ Operation”.  
Remark 1. Please contact our sales office for the products with detection voltage value other than those  
specified above.  
2. The overdischarge detection voltage can be selected within the range from 1.7 to 3.0 V. When the  
overdischarge detection voltage is higher than 2.6 V, the overcharge detection voltage and the  
overcharge release voltage are limited as “Table 2”.  
Table 2  
Overdischarge  
Overcharge  
Voltage difference between overcharge detection  
voltage and overcharge release voltage  
detection voltage 1, 2 detection voltage 1, 2  
VDD  
VCU  
VCU VCD  
1.70 to 2.60 V  
1.70 to 2.80 V  
1.70 to 3.00 V  
3.85 to 4.60 V  
3.85 to 4.60 V  
3.85 to 4.50 V  
0 to 0.30 V  
0 to 0.20 V  
0 to 0.10 V  
4
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Pin Configuration  
Table 3  
8-Pin TSSOP  
Top view  
Pin No. Symbol  
Description  
SENS  
DO  
8
7
6
5
VCC  
VC  
1
2
3
4
1
SENS Detection pin for voltage between SENS and  
VC (Detection for overcharge and  
overdischarge)  
CO  
ICT  
VM  
VSS  
2
3
4
DO  
CO  
VM  
FET gate connection pin for discharge  
control (CMOS output)  
FET gate connection pin for charge control  
(CMOS output)  
Detection pin for voltage between VM and  
VSS (Overcurrent detection pin)  
Negative power input pin  
Capacitor connection pin for detection delay  
Middle voltage input pin  
Positive power input pin  
Figure 2  
5
6
7
8
VSS  
ICT  
VC  
VCC  
Seiko Instruments Inc.  
5
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Absolute Maximum Ratings  
Table 4  
(Ta = 25 °C unless otherwise specified)  
Item  
Symbol Applied Pin  
Absolute Maximum Ratings  
Unit  
V
Input voltage between VCC and VSS  
SENS input pin voltage  
ICT input pin voltage  
VDS  
VSENS  
VICT  
VVM  
VCC  
SENS  
ICT  
V
SS 0.3 to VSS + 18  
V
V
V
SS 0.3 to VCC + 0.3  
SS 0.3 to VCC + 0.3  
V
VM input pin voltage  
DO output pin voltage  
CO output pin voltage  
VM  
V
V
CC 18 to VCC + 0.3  
VDO  
DO  
V
V
SS 0.3 to VCC + 0.3  
VCO  
CO  
V
V
VM 0.3 to VCC + 0.3  
300 (When not mounted on board) mW  
Power dissipation  
PD  
700*1  
40 to + 85  
40 to + 125  
mW  
°C  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
°C  
*1. When mounted on board  
[Mounted board]  
(1) Board size : 114.3 mm × 76.2 mm × t1.6 mm  
(2) Name :  
JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer  
physical damage. These values must therefore not be exceeded under any conditions.  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
150  
50  
0
Ambient Temperature (Ta) [
°
C]  
Figure 3 Power Dissipation of Package (When Mounted on Board)  
6
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Electrical Characteristics  
Table 5  
(Ta = 25 °C unless otherwise specified)  
Test  
Test  
Item  
[DETECTION VOLTAGE]  
Overcharge detection voltage 1, 2  
Symbol  
VCU1, 2  
Condition  
Min.  
Typ.  
Max.  
Unit  
ConditionCircuit  
3.85 to 4.60 V,  
Adjustable  
VCU1, 2 VCU1, 2 VCU1, 2  
0.025 0.025  
VCU1, 2 VCU1, 2 VCU1, 2  
1.21 1.25 1.29  
VCU1, 2 VCU1, 2 VCU1, 2  
1.07 1.11 1.15  
VCD1, 2 VCD1, 2 VCD1, 2  
0.050 0.050  
VDD1, 2 VDD1, 2 VDD1 ,2  
0.080 0.080  
V
V
V
V
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
3
1
1
1
1
1
1
1
1
+
Auxiliary overcharge detection voltage 1, 2 *1  
VCUaux1, 2 VCU1, 2  
×
1.25  
×
×
×
VCUaux1, VCUaux2  
=
=
VCU1, VCU2  
VCU1, VCU2  
×
×
1.25 or  
1.11  
V
CUaux1, VCUaux2  
VCUaux1, 2 VCU1, 2  
×
1.11  
×
×
×
3.60 to 4.60 V,  
Adjustable  
Overcharge release voltage 1, 2  
Overdischarge detection voltage 1, 2  
Overdischarge release voltage 1, 2  
Overcurrent detection voltage 1  
Overcurrent detection voltage 2  
VCD1, 2  
VDD1, 2  
VDU1, 2  
VIOV1  
+
1.70 to 2.60 V,  
Adjustable  
+
1.70 to 3.80 V,  
Adjustable  
VDU1, 2 VDU1, 2 VDU1, 2  
0.100  
VIOV1  
+
0.100  
VIOV1  
0.07 to 0.30 V,  
Adjustable  
VIOV1  
0.020  
+
0.020  
Load short circuit,  
VCC reference  
VIOV2  
1.57  
1.20  
0.83  
3
Temperature coefficient 1 for detection voltage *2 TCOE1 Ta = − 40 to  
+
+
85 °C  
85 °C  
0.6  
0
0.6  
mV/°C  
Temperature coefficient 2 for detection voltage *3 TCOE2 Ta = − 40 to  
0.24  
0.05  
0
mV/°C  
[DELAY TIME (C3 = 0.22 µF) ]  
Overcharge detection delay time 1, 2  
Overdischarge detection delay time 1, 2  
Overcurrent detection delay time 1  
[INPUT VOLTAGE]  
tCU1, 2 1.0 s  
tDD1, 2 0.1 s  
tIOV1 0.01 s  
0.73  
68  
1.00  
100  
10  
1.35  
138  
s
8, 9  
8, 9  
10  
5
5
5
ms  
ms  
6.7  
13.9  
Absolute maximum  
rating  
Input voltage between VCC and VSS  
VDS  
0.3  
18  
16  
V
V
[OPERATING VOLTAGE]  
Operating voltage between VCC and VSS *4  
[CURRENT CONSUMPTION]  
VDSOP Output logic fixed  
2.0  
Current consumption during normal operation  
Current consumption at power down  
[OUTPUT VOLTAGE]  
IOPE V1  
IPDN V1  
=
=
V2  
V2  
=
=
3.6 V  
1.5 V  
2.1  
0
7.5  
12.7  
0.04  
µ
A
4
4
2
2
0.0002  
µA  
VCC  
0.05  
VSS  
VCC  
VCC  
VSS  
DO voltage “H”  
DO voltage “L”  
CO voltage “H”  
VDO(H) IOUT  
VDO(L) IOUT  
VCO(H) IOUT  
=
10  
10  
10  
µ
A
V
6
6
7
3
3
4
+
0.003  
VSS  
=
=
µA  
V
V
0.003  
VCC  
+
0.05  
VCC  
VCC  
µA  
0.15  
0.019  
[CO PIN INTERNAL RESISTANCE]  
Resistance between VSS and CO  
[INTERNAL RESISTANCE]  
RCOL VCO  
VSS  
=
9.4 V  
0.29  
0.6  
1.44  
MΩ  
7
4
Resistance between VCC and VM  
Resistance between VSS and VM  
[0 V BATTERY CHARGE FUNCTION]  
RVCM VCC  
RVSM VVM  
VVM  
VSS  
=
=
0.5 V  
1.1 V  
105  
511  
240  
597  
575  
977  
k
5
5
2
2
k
0 V battery charging  
function “available”  
0 V battery charging  
0 V battery charge starting charger voltage  
V0CHA  
0.38  
0.32  
0.75  
0.88  
1.12  
1.44  
V
11  
6
6
0 V battery charge inhibition battery voltage 1, 2 V0INH1, 2 function  
V
12, 13  
“unavailable”  
*1. Auxiliary overcharge detection voltage is equal to the overcharge detection voltage times 1.11 for the  
products without overcharge hysteresis, and times 1.25 for other products.  
*2. Temperature coefficient 1 for detection voltage should be applied to overcharge detection voltage,  
overcharge release voltage, overdischarge detection voltage, and overdischarge release voltage.  
*3. Temperature coefficient 2 for detection voltage should be applied to overcurrent detection voltage.  
*4. The DO and CO pin logic are established at the operating voltage.  
Seiko Instruments Inc.  
7
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
Table 6  
(Ta = − 20 to + 70 °C unless otherwise specified)  
Test  
Test  
Item  
[DETECTION VOLTAGE]  
Overcharge detection voltage 1, 2  
Symbol  
VCU1, 2  
Condition  
Min.  
Typ.  
Max.  
Unit  
ConditionCircuit  
3.85 to 4.60 V,  
Adjustable  
VCU1, 2 VCU1, 2 VCU1, 2  
0.045 0.040  
VCU1, 2 VCU1, 2 VCU1, 2  
1.19 1.25 1.31  
VCU1, 2 VCU1, 2 VCU1, 2  
1.05 1.11 1.17  
VCD1, 2 VCD1, 2 VCD1, 2  
0.070 0.065  
VDD1, 2 VDD1, 2 VDD1 ,2  
0.100 0.095  
V
V
V
V
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
3
1
1
1
1
1
1
1
1
+
Auxiliary overcharge detection voltage 1, 2 *1  
VCUaux1, 2 VCU1, 2  
×
1.25  
×
×
×
VCUaux1, VCUaux2  
=
=
VCU1, VCU2  
VCU1, VCU2  
×
×
1.25 or  
1.11  
V
CUaux1, VCUaux2  
VCUaux1, 2 VCU1, 2  
×
1.11  
×
×
×
3.60 to 4.60 V,  
Adjustable  
Overcharge release voltage 1, 2  
Overdischarge detection voltage 1, 2  
Overdischarge release voltage 1, 2  
Overcurrent detection voltage 1  
Overcurrent detection voltage 2  
VCD1, 2  
VDD1, 2  
VDU1, 2  
VIOV1  
+
1.70 to 2.60 V,  
Adjustable  
+
1.70 to 3.80 V,  
Adjustable  
VDU1, 2 VDU1, 2 VDU1, 2  
0.120  
VIOV1  
+
0.115  
VIOV1  
0.07 to 0.30 V,  
Adjustable  
VIOV1  
0.029  
+
0.029  
Load short circuit,  
VCC reference  
VIOV2  
1.66  
1.20  
0.74  
3
Temperature coefficient 1 for detection voltage *2 TCOE1 Ta = − 40 to  
+
+
85 °C  
85 °C  
0.6  
0
0.6  
mV/°C  
Temperature coefficient 2 for detection voltage *3 TCOE2 Ta = − 40 to  
0.24  
0.05  
0
mV/°C  
[DELAY TIME (C3 = 0.22 µF) ]  
Overcharge detection delay time 1, 2  
Overdischarge detection delay time 1, 2  
Overcurrent detection delay time 1  
[INPUT VOLTAGE]  
tCU1, 2 1.0 s  
tDD1, 2 0.1 s  
tIOV1 0.01 s  
0.60  
67  
1.00  
100  
10  
1.84  
140  
s
8, 9  
8, 9  
10  
5
5
5
ms  
ms  
6.5  
14.5  
Absolute maximum  
rating  
Input voltage between VCC and VSS  
VDS  
0.3  
18  
16  
V
V
[OPERATING VOLTAGE]  
Operating voltage between VCC and VSS *4  
[CURRENT CONSUMPTION]  
VDSOP Output logic fixed  
2.0  
Current consumption during normal operation  
Current consumption at power down  
[OUTPUT VOLTAGE]  
IOPE V1  
IPDN V1  
=
=
V2  
V2  
=
=
3.6 V  
1.5 V  
1.9  
0
7.5  
13.8  
0.06  
µ
A
4
4
2
2
0.0002  
µA  
VCC  
0.14  
VSS  
VCC  
VCC  
VSS  
DO voltage “H”  
DO voltage “L”  
CO voltage “H”  
VDO(H) IOUT  
VDO(L) IOUT  
VCO(H) IOUT  
=
10  
10  
10  
µ
A
V
6
6
7
3
3
4
+
0.003  
VSS  
=
=
µA  
V
V
0.003  
VCC  
+
0.14  
VCC  
VCC  
µA  
0.24  
0.019  
[CO PIN INTERNAL RESISTANCE]  
Resistance between VSS and CO  
[INTERNAL RESISTANCE]  
RCOL VCO  
VSS  
=
9.4 V  
0.24  
0.6  
1.96  
785  
MΩ  
7
4
Resistance between VCC and VM  
Resistance between VSS and VM  
[0 V BATTERY CHARGE FUNCTION]  
RVCM VCC  
RVSM VVM  
VVM  
VSS  
=
=
0.5 V  
1.1 V  
86  
240  
597  
k
5
5
2
2
418  
1332  
1.21  
1.53  
kΩ  
0 V battery charging  
function “available”  
0 V battery charging  
0 V battery charge starting charger voltage  
V0CHA  
0.29  
0.23  
0.75  
0.88  
V
11  
6
6
0 V battery charge inhibition battery voltage 1, 2 V0INH1, 2 function  
V
12, 13  
“unavailable”  
*1. Auxiliary overcharge detection voltage is equal to the overcharge detection voltage times 1.11 for the  
products without overcharge hysteresis, and times 1.25 for other products.  
*2. Temperature coefficient 1 for detection voltage should be applied to overcharge detection voltage,  
overcharge release voltage, overdischarge detection voltage, and overdischarge release voltage.  
*3. Temperature coefficient 2 for detection voltage should be applied to overcurrent detection voltage.  
*4. The DO pin and CO pin logic are established at the operating voltage.  
8
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
Table 7  
(Ta = − 40 to +85 °C unless otherwise specified)  
Test  
Test  
Item  
Symbol  
VCU1, 2  
Condition  
Min.  
Typ.  
Max.  
Unit  
ConditionCircuit  
[DETECTION VOLTAGE]  
Overcharge detection voltage 1, 2  
3.85 to 4.60 V,  
Adjustable  
VCU1, 2 VCU1, 2 VCU1, 2  
0.055 0.045  
VCU1, 2 VCU1, 2 VCU1, 2  
1.19 1.25 1.31  
VCU1, 2 VCU1, 2 VCU1, 2  
1.05 1.11 1.17  
VCD1, 2 VCD1, 2 VCD1, 2  
0.080 0.070  
VDD1, 2 VDD1, 2 VDD1 ,2  
0.110 0.100  
V
V
V
V
V
V
V
V
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
3
1
1
1
1
1
1
1
1
+
Auxiliary overcharge detection voltage 1, 2 *1  
VCUaux1, 2 VCU1, 2  
×
1.25  
×
×
×
VCUaux1, VCUaux2  
=
=
VCU1, VCU2  
VCU1, VCU2  
×
×
1.25 or  
1.11  
VCUaux1, VCUaux2  
VCUaux1, 2 VCU1, 2  
×
1.11  
×
×
×
3.60 to 4.60 V,  
Adjustable  
Overcharge release voltage 1, 2  
Overdischarge detection voltage 1, 2  
Overdischarge release voltage 1, 2  
Overcurrent detection voltage 1  
Overcurrent detection voltage 2  
VCD1, 2  
VDD1, 2  
VDU1, 2  
VIOV1  
+
1.70 to 2.60 V,  
Adjustable  
+
1.70 to 3.80 V,  
Adjustable  
VDU1, 2 VDU1, 2 VDU1, 2  
0.130  
VIOV1  
+
0.120  
VIOV1  
0.07 to 0.30 V,  
Adjustable  
VIOV1  
0.033  
+
0.033  
Load short circuit,  
VCC reference  
VIOV2  
1.70  
1.20  
0.71  
3
Temperature coefficient 1 for detection voltage *2 TCOE1 Ta = − 40 to  
+
+
85 °C  
85 °C  
0.6  
0
0.6  
mV/°C  
Temperature coefficient 2 for detection voltage *3 TCOE2 Ta = − 40 to  
0.24  
0.05  
0
mV/°C  
[DELAY TIME (C3 = 0.22 µF) ]  
Overcharge detection delay time 1, 2  
Overdischarge detection delay time 1, 2  
Overcurrent detection delay time 1  
[INPUT VOLTAGE]  
tCU1, 2 1.0 s  
tDD1, 2 0.1 s  
tIOV1 0.01 s  
0.55  
67  
1.00  
100  
10  
2.06  
141  
s
8, 9  
8, 9  
10  
5
5
5
ms  
ms  
6.3  
14.7  
Absolute maximum  
rating  
Input voltage between VCC and VSS  
VDS  
0.3  
18  
16  
V
V
[OPERATING VOLTAGE]  
Operating voltage between VCC and VSS *4  
[CURRENT CONSUMPTION]  
VDSOP Output logic fixed  
2.0  
Current consumption during normal operation  
Current consumption at power down  
[OUTPUT VOLTAGE]  
IOPE V1  
IPDN V1  
=
=
V2  
V2  
=
=
3.6 V  
1.5 V  
1.8  
0
7.5  
14.2  
0.10  
µ
A
4
4
2
2
0.0002  
µA  
VCC  
0.17  
VSS  
VCC  
VCC  
VSS  
DO voltage “H”  
DO voltage “L”  
CO voltage “H”  
VDO(H) IOUT  
VDO(L) IOUT  
VCO(H) IOUT  
=
10  
10  
10  
µ
A
V
6
6
7
3
3
4
+
0.003  
VSS  
=
=
µA  
V
V
0.003  
VCC  
+
0.17  
VCC  
VCC  
µA  
0.27  
0.019  
[CO PIN INTERNAL RESISTANCE]  
Resistance between VSS and CO  
[INTERNAL RESISTANCE]  
RCOL VCO  
VSS  
=
9.4 V  
0.22  
0.6  
2.20  
878  
MΩ  
7
4
Resistance between VCC and VM  
Resistance between VSS and VM  
[0 V BATTERY CHARGE FUNCTION]  
RVCM VCC  
RVSM VVM  
VVM  
VSS  
=
=
0.5 V  
1.1 V  
79  
240  
597  
k
5
5
2
2
387  
1491  
1.25  
1.57  
kΩ  
0 V battery charging  
function “available”  
0 V battery charging  
0 V battery charge starting charger voltage  
V0CHA  
0.26  
0.20  
0.75  
0.88  
V
11  
6
6
0 V battery charge inhibition battery voltage 1, 2 V0INH1, 2 function  
V
12, 13  
“unavailable”  
*1. Auxiliary overcharge detection voltage is equal to the overcharge detection voltage times 1.11 for the  
products without overcharge hysteresis, and times 1.25 for other products.  
*2. Temperature coefficient 1 for detection voltage should be applied to overcharge detection voltage,  
overcharge release voltage, overdischarge detection voltage, and overdischarge release voltage.  
*3. Temperature coefficient 2 for detection voltage should be applied to overcurrent detection voltage.  
*4. The DO pin and CO pin logic are established at the operating voltage.  
Seiko Instruments Inc.  
9
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Test Circuits  
(1) Test Condition 1, Test Circuit 1  
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V1 from 3.6 V gradually.  
The V1 voltage when CO = “L” is overcharge detection voltage 1 (VCU1). Decrease V1 gradually. The V1  
voltage when CO = “H” is overcharge release voltage 1 (VCD1). Further decrease V1. The V1 voltage  
when DO = “L” is overdischarge voltage 1 (VDD1). Increase V1 gradually. The V1 voltage when DO = “H”  
is overdischarge release voltage 1 (VDU1). Set S1 = ON, and V1 = V2 = 3.6 V and V3 = 0 V under normal  
condition. Increase V1 from 3.6 V gradually. The V1 voltage when CO = “L” is auxiliary overcharge  
detection voltage 1 (VCUaux1).  
(2) Test Condition 2, Test Circuit 1  
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V2 from 3.6 V gradually.  
The V2 voltage when CO = “L” is overcharge detection voltage 2 (VCU2). Decrease V2 gradually. The V2  
voltage when CO = “H” is overcharge release voltage 2 (VCD2). Further decrease V2. The V2 voltage  
when DO = “L” is overdischarge voltage 2 (VDD2). Increase V2 gradually. The V2 voltage when DO = “H”  
is overdischarge release voltage 2 (VDU2). Set S1 = ON, and V1 = V2 = 3.6 V and V3 = 0 V under normal  
condition. Increase V2 from 3.6 V gradually. The V2 voltage when CO = “L” is auxiliary overcharge  
detection voltage 2 (VCUaux2).  
(3) Test Condition 3, Test Circuit 1  
Set S1 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V3 from 0 V gradually.  
The V3 voltage when DO = “L” is overcurrent detection voltage 1 (VIOV1). Set S1 = ON, V1 = V2 = 3.6 V,  
V3 = 0 under normal condition. Increase V3 from 0 V gradually. (The voltage change rate < 1.0 V / ms)  
V3 (V1 + V2) voltage when DO = “L” is overcurrent detection voltage 2 (VIOV2).  
(4) Test Condition 4, Test Circuit 2  
Set S1 = ON, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition and measure current consumption.  
Current consumption I1 is the normal condition current consumption (IOPE). Set S1 = OFF, V1 = V2 =  
1.5 V under overdischarge condition and measure current consumption. Current consumption I1 is the  
power-down current consumption (IPDN).  
(5) Test Condition 5, Test Circuit 2  
Set S1 = ON, V1 = V2 = V3 = 1.5 V, and V3 = 2.5 V under overdischarge condition. (V1 + V2 V3) / I2 is  
the internal resistance between VCC and VM (RVCM).  
Set S1 = ON, V1 = V2 = 3.6 V, and V3 = 1.1 V under overcurrent condition. V3 / I2 is the internal  
resistance between VSS and VM (RVSM).  
(6) Test Condition 6, Test Circuit 3  
Set S1 = ON, S2 = OFF, V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V4 from 0 V  
gradually. The V4 voltage when I1 = 10 µA is DO voltage “H” (VDO(H)).  
Set S1 = OFF, S2 = ON, V1 = V2 = 3.6 V, and V3 = 0.5 V under overcurrent condition. Increase V5 from  
0 V gradually. The V5 voltage when I2 = 10 µA is the DO voltage “L” (VDO(L)).  
10  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
(7) Test Condition 7, Test Circuit 4  
Set S1 = ON, S2 = OFF, V1 = V2 = 3.6 V and V3 = 0 V under normal condition. Increase V4 from 0 V  
gradually. The V4 voltage when I1 = 10 µA is the CO “H” voltage (VCO(H)).  
Set S1 = OFF, S2 = ON, V1 = V2 = 4.7, V3 = 0 V, and V5 = 9.4 V under over voltage condition. (V5) / I2  
is the CO pin internal resistance (RCO(L)).  
(8) Test Condition 8, Test Circuit 5  
Set V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V1 from (VCU1 0.2 V) to (VCU1  
+
0.2 V) immediately (within 10 µs). The time after V1 becomes (VCU1 + 0.2 V) until CO goes “L” is the  
overcharge detection delay time 1 (tCU1).  
Set V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Decrease V1 from (VDD1 + 0.2 V) to (VDD1  
0.2 V) immediately (within 10 µs). The time after V1 becomes (VDD1 0.2 V) until DO goes “L” is the  
overdischarge detection delay time 1 (tDD1).  
(9) Test Condition 9, Test Circuit 5  
Set V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V2 from (VCU2 0.2 V) to (VCU2  
+
0.2 V) immediately (within 10 µs). The time after V2 becomes (VCU2 + 0.2 V) until CO goes “L” is the  
overcharge detection delay time 2 (tCU2).  
Set V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Decrease V2 from (VDD2 + 0.2 V) to (VDD2  
0.2 V) immediately (within 10 µs). The time after V2 becomes (VDD2 0.2 V) until DO goes “L” is the  
overdischarge detection delay time 2 (tDD2).  
(10) Test Condition 10, Test Circuit 5  
Set V1 = V2 = 3.6 V, and V3 = 0 V under normal condition. Increase V3 from 0 V to 0.5 V immediately  
(within 10 µs). The time after V3 becomes 0.5 V until DO goes “L” is the overcurrent detection delay time  
1 (tIOV1).  
(11) Test Condition 11, Test Circuit 6  
Set V1 = V2 = 0 V, and V3 = 0 V, and increase V3 gradually. The V3 voltage when CO = “L” (VVM + 0.3 V  
or higher) is the 0 V charge starting voltage (V0CHA).  
(12) Test Condition 12, Test Circuit 6  
Set V1 = 0 V, V2 = 3.6 V, and V3 = 12 V, and increase V1 gradually. The V1 voltage when CO = “H” (VVM  
+ 0.3 V or higher) is the 0 V charge inhibiting voltage 1 (V0INH1).  
(13) Test Condition 13, Test Circuit 6  
Set V1 = 3.6 V, V2 = 0 V, and V3 = 12 V, and increase V2 gradually. The V2 voltage when CO = “H” (VVM  
+ 0.3 V or higher) is the 0 V charge inhibiting voltage 2 (V0INH2).  
Seiko Instruments Inc.  
11  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
SENS  
SENS  
VCC  
I1  
VCC  
V1  
V2  
S-8232 Series  
S-8232 Series  
V1  
V2  
ICT  
VM  
ICT  
VC  
S1  
VC  
VM  
VSS  
VSS  
DO  
CO  
DO  
CO  
I2  
V3  
V3  
S1  
Test Circuit 1  
Test Circuit 2  
SENS  
SENS  
VCC  
VCC  
S-8232 Series  
S-8232 Series  
V1  
V2  
V1  
V2  
ICT  
VM  
ICT  
VM  
VC  
VC  
VSS  
VSS  
CO  
DO  
DO  
CO  
V3  
V3  
S2  
S1  
S2  
S1  
I2  
I1  
I2  
I1  
V5  
V4  
V5  
V4  
Test Circuit 3  
Test Circuit 4  
SENS  
SENS  
C3 = 0.22 µF  
VCC  
C3  
VCC  
ICT  
S-8232 Series  
S-8232 Series  
V1  
V2  
V1  
ICT  
VM  
VC  
VC  
V2  
VM  
VSS  
VSS  
DO  
CO  
DO  
CO  
4.7 M  
V3  
V3  
Test Circuit 5  
Test Circuit 6  
Figure 4  
12  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Operation  
Normal Condition *1, *2  
This IC monitors the voltages of the two serially connected batteries and the discharge current to control  
charging and discharging. When the voltages of two batteries are in the range from the overdischarge  
detection voltage (VDD1, 2) to the overcharge detection voltage (VCU1, 2), and the current flowing through the  
batteries becomes equal or lower than a specified value (the VM pin voltage is equal or lower than  
overcurrent detection voltage 1), the charging and discharging FETs are turned on. In this condition,  
charging and discharging can be carried out freely. This condition is called normal condition. In this  
condition, the VM and VSS pins are shorted by the RVSM resistor.  
Overcurrent Condition  
When the discharging current becomes equal to or higher than a specified value (the VM pin voltage is  
equal to or higher than the overcurrent detection voltage) during discharging under normal condition and  
it continues for the overcurrent detection delay time (tIOV) or longer, the discharging FET is turned off to  
stop discharging. This condition is called overcurrent condition. The VM and VSS pins are shorted by  
the RVSM resistor at this time. The charging FET is also turned off. When the discharging FET is off and  
a load is connected, the VM pin voltage equals the VCC potential.  
The overcurrent condition returns to the normal condition when the load is released and the impedance  
between the EBand EB+ pins (refer to the Figure 8) is 200 Mor higher. When the load is released,  
the VM pin, which is shorted to the VSS pin with the RVSM resistor, goes back to the VSS potential. The  
IC detects that the VM pin potential returns to overcurrent detection voltage 1 (VIOV1) or lower and returns  
to the normal condition.  
Overcharge Condition  
Following two cases are detected as overcharge conditions :  
(1) If one of the battery voltages becomes higher than the overcharge detection voltage (VCU1, 2  
)
during charging under normal condition and it continues for the overcharge detection delay time  
(tCU1, 2) or longer, the charging FET turns off to stop charging.  
(2) If one of the battery voltages becomes higher than the auxiliary overcharge detection voltage  
(VCUaux1, 2) the charging FET turns off immediately to stop charging. The VM and VSS pins are  
shorted by the RVSM resistor under the overcharge condition.  
The auxiliary overcharge detection voltages (VCUaux1, 2) are correlated with the overcharge detection  
voltages (VCU1, 2) and are defined by following equations :  
VCUaux1, 2 [V] = 1.25 × VCU1, 2 [V]  
or for no overcharge hysteresis type (VCU1, 2 = VCD1, 2) VCUaux1, 2 [V] = 1.11 × VCU1, 2 [V]  
The overcharge condition is released in two cases :  
(1) The battery voltage which exceeded the overcharge detection voltage (VCU1, 2) falls below the  
overcharge release voltage (VCD1, 2), the charging FET turns on and the normal condition returns.  
(2) If the battery voltage which exceeded the overcharge detection voltage (VCU1, 2) is equal or higher  
than the overcharge release voltage (VCD1, 2), but the charger is removed, a load is placed, and  
discharging starts, the charging FET turns on and the normal condition returns.  
The release mechanism is as follows : the discharge current flows through an internal parasitic diode of  
the charging FET immediately after a load is installed and discharging starts, and the VM pin voltage  
increases by about 0.6 V from the VSS pin voltage momentarily. The IC detects this voltage (overcurrent  
detection voltage 1 or higher), releases the overcharge condition and returns to the normal condition.  
Overdischarge Condition  
If any one of the battery voltages falls below the overdischarge detection voltage (VDD1, 2) during  
discharging under normal condition and it continues for the overdischarge detection delay time (tDD1, 2) or  
longer, the discharging FET turns off and discharging stops. This condition is called the overdischarge  
condition. When the discharging FET turns off, the VM pin voltage becomes equal to the VCC voltage and  
the IC’s current consumption falls below the power-down current consumption (IPDN). This condition is  
called the power-down condition. The VM and VCC pins are shorted by the RVCM resistor under the  
overdischarge and power-down conditions.  
The power-down condition is canceled when the charger is connected and the voltage between VM and  
VCC is overcurrent detection voltage 2 or higher. When all the battery voltages becomes equal to or  
higher than the overdischarge release voltage (VDU1, 2) in this condition, the overdischarge condition  
changes to the normal condition.  
Seiko Instruments Inc.  
13  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
Delay Circuit  
The overcharge detection delay time (tCU1, 2), the overdischarge detection delay time (tDD1, 2), and the  
overcurrent detection delay time 1 (tI0V1) change with an external capacitor (C3). Since one capacitor  
determine each delay time, delay times are correlated by the following ratio :  
Overcharge delay time : Overdischarge delay time : Overcurrent delay time = 100 : 10 : 1  
The delay times are calculated by the following equations : (Ta = − 40 to + 85 °C)  
Min.,  
( 2.500, 4.545, 9.364 ) × C3 [µF]  
Overdischarge detection delay time tDD [s] = Delay factor ( 0.3045, 0.4545, 0.6409 ) × C3 [µF]  
Overcurrent detection delay time tIOV1 [s] = Delay factor ( 0.02864,0.04545,0.06682 ) × C3 [µF]  
Typ.,  
Max.  
Overcharge detection delay time tCU [s] = Delay factor  
Remark The delay time for overcurrent detection 2 is fixed by an internal circuit. The delay time cannot  
be changed via an external capacitor.  
0 V Battery Charging Function *3  
This function is used to recharge both of two serially-connected batteries after they self-discharge to 0 V.  
When the 0 V charging start voltage (V0CHA) or higher is applied to between VM and VCC by connecting  
the charger, the charging FET gate is fixed to VCC potential.  
When the voltage between the gate and the source of the charging FET becomes equal to or higher than  
the turn-on voltage by the charger voltage, the charging FET turns on to start charging. At this time, the  
discharging FET turns off and the charging current flows through the internal parasitic diode in the  
discharging FET. If all the battery voltages become equal to or higher than the overdischarge release  
voltage (VDU1, 2), the normal condition returns.  
0 V Battery Charge Inhibiting Function *3  
This function is used for inhibiting charging when either of the connected batteries goes 0 V due to its  
self-discharge. When the voltage of either of the connected batteries goes below 0 V charge inhibit  
voltage 1 and 2 (V0INH1, 2), the charging FET gate is fixed to "EB" to inhibit charging. Charging is  
possible only when the voltage of both connected batteries goes 0 V charge inhibit voltage 1 and 2  
(V0INH1, 2) or more.  
Note that charging may be possible when the total voltage of both connected batteries is less than the  
minimum value (VDSOPmin) of the operating voltage between VCC and VSS even if the voltage of either of  
the connected batteries is 0 V charge inhibit voltage 1 and 2 (V0INH1, 2) or less. Charging is prohibited  
when the total voltage of both connected batteries reaches the minimum value (VDSOPmin) of the operating  
voltage between VCC and VSS.  
When using this optional function, a resistor of 4.7 Mis needed between the gate and the source of the  
charging control FET (refer to the Figure 8).  
*1. When initially connecting batteries, the IC may fail to enter the normal condition (discharging ready  
state). If so, once set the VM pin to VSS voltage (short pins VM and VSS or connect a charger).  
*2. The products indicated with *4 of the 2. Product Name List in the “„ Product Name Structure” are set  
to “overcharge detection / release hysteresis”, “no final overcharge function”, and “0 V battery charge  
inhibiting function.” The following phenomena may be found, but there is no problem for practical use.  
The product is an overcurrent condition due to overload connection when the battery voltage is  
overcharge release voltage (VCD1, 2) or more and overcharge detection voltage (VCU1, 2) or less. Usually,  
the IC returns to its normal condition when overload is removed under this condition. However, the  
charging FET may be turned OFF when overload is removed under this condition, leading to an  
overcharge condition. If so, attach load to start discharge. The charging FET is turned ON to return to  
the normal condition. Refer to the “Overcharge condition” in this section.  
*3. Some lithium ion batteries are not recommended to be recharged after having been completely  
discharged. Please contact the battery manufacturer when you decide to select a 0 V battery charging  
function.  
14  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Timing Charts  
1. Overcharge Detection  
V2 battery  
V1 battery  
VCUaux  
VCU  
Battery  
VCD  
VDU  
VDD  
voltage  
VSS  
VCC  
DO pin  
voltage  
V1 auxiliary over  
voltage detect  
V2 auxiliary over  
voltage detect  
V2 over voltage detect  
V1 over voltage detect  
VSS  
VCC  
CO pin  
voltage  
VSS  
EB  
VCC  
VIOV2  
VM pin  
voltage VIOV1  
VSS  
EB−  
Charger connection  
Load connection  
Delay time  
= 0  
Delay time  
= 0  
Delay  
Delay  
Mode *1  
<1>  
<2>  
<1>  
<2>  
<1>  
<2>  
<1>  
<2>  
<1>  
*1. <1> Normal mode  
<2> Over charge mode  
<3> Over discharge mode  
<4> Over current mode  
Remark The charger is assumed to charge with a constant current.  
Figure 5  
Seiko Instruments Inc.  
15  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
2. Overdischarge Detection  
V2 battery  
V1 battery  
VCU  
VCD  
VDU  
VDD  
Battery  
voltage  
VSS  
VCC  
DO pin  
voltage  
VSS  
Vcc  
CO pin  
voltage  
Vss  
EB  
VCC  
VIOV2  
VIOV1  
VSS  
VM pin  
voltage  
EB−  
Charger connection  
Load connection  
Delay  
No Delay  
Delay  
Mode *1  
<1>  
<3>  
<1>  
<3>  
<2> & <3>  
<3>  
*1. <1> Normal mode  
<2> Over charge mode  
<3> Over discharge mode  
<4> Over current mode  
Remark The charger is assumed to charge with a constant current.  
Figure 6  
16  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
3. Overcurrent Detection  
V1 = V2 battery  
VCU  
VCD  
Battery  
voltage  
VDU  
VDD  
VCC  
DO pin  
voltage  
VSS  
VCC  
CO pin  
voltage  
VSS  
EB−  
VCC  
VIOV2  
VM pin  
voltage  
VIOV1  
VSS  
EB−  
Charger connection  
Load connection  
delay = tIOV1  
delay = tIOV2  
< tIOV1  
Mode *1  
<1>  
<4>  
<1>  
<4>  
<1>  
*1. <1> Normal mode  
<2> Over charge mode  
<3> Over discharge mode  
<4> Over current mode  
Remark The charger is assumed to charge with a constant current.  
Figure 7  
Seiko Instruments Inc.  
17  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Battery Protection IC Connection Example  
EB+  
R4  
1 kΩ  
SENS  
R1  
1 kΩ  
VCC  
Battery 1  
C1  
C2  
0.22 µF  
R2  
1 kΩ  
S-8232 Series  
VC  
Battery 2  
0.22 µF  
Delay time setting  
ICT  
VM  
VSS  
DO  
CO  
C3  
0.22 µF  
R3  
1 kΩ  
R5  
4.7 MΩ  
FET1  
FET2  
EB−  
Figure 8  
Table 8 Constants for External Components  
Symbol  
FET1  
FET2  
R1  
Parts  
Purpose  
Typ.  
1 k  
0.22 µF  
1 kΩ  
0.22 µF  
1 kΩ  
Min.  
300 Ω  
0 µF  
300 Ω  
0 µF  
Max.  
1 kΩ  
1 µF  
1 kΩ  
1 µF  
Remark  
Nch MOS FET Discharge control  
Nch MOS FET Charge control  
Chip resistor  
ESD protection  
C1  
Chip capacitor Filter  
R2  
Chip resistor  
ESD protection  
C2  
Chip capacitor Filter  
R4  
Chip resistor  
ESD protection  
= R1 min. = R1 max. Same value as R1 and R2. *1  
Attention should be paid to leak  
C3  
Chip capacitor Delay time setting  
0.22 µF  
0 µF  
1 µF  
current of C3. *2  
Protection for  
charger reverse  
connection  
Discharge can’t be stopped at less  
than 300 when a charger is  
reverse-connected. *3  
R3  
Chip resistor  
Chip resistor  
1 kΩ  
300 Ω  
5 kΩ  
R5 should be added when the  
product has 0 V battery charge  
inhibition. Lower resistance  
increases current consumption. *4  
0 V battery  
charging inhibition  
R5  
(4.7 M)  
(1 M)  
(10 M)  
*1. R4  
= R1 is required. Overcharge detection voltage increases by R4. For example 10 k(R4) increases overcharge  
detection voltage by 20 mV.  
*2. The overcharge detection delay time (tCU), the overdischarge detection delay time (tCD), and the over current detection  
delay time (tIOV) change with the external capacitor C3. Refer to the “„ Electrical Characteristics”.  
*3. When the resistor R3 is set less than 300  
and a charger is reverse-connected, current which exceeds the power  
dissipation of the package will flow and the IC may break. But excessive R3 causes increase of overcurrent detection  
voltage 1 (VIOV1). VIOV1 changes to VIOV1 = (R3 + RVSM) / RVSM × VIOV1. For example, 50 k  
overcurrent detection voltage 1 (VIOV1) from 0.100 V to 0.113 V.  
resistor (R3) increases  
*4. A 4.7 M  
resistor is needed for R5 to inhibit 0 V battery charging. Current consumption increases when the R5  
resistance is below 4.7 M. R5 should be connected when the product has 0 V battery charging inhibition.  
Caution 1. The above constants may be changed without notice.  
2. It has not been confirmed whether the operation is normal or not in circuits other than the above  
example of connection. In addition, the example of connection shown above and the constant do not  
guarantee proper operation. Perform through evaluation using the actual application to set the  
constant.  
18  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Precautions  
After the overcurrent detection delay, if either one of battery voltages equals the overdischarge detection  
voltage (VDD1,2) or lower, the overdischarge detection delay time becomes shorter than 10ms (min.). It  
occurs because capacitor C3 sets all of delay times (refer to the Figure 9) .  
The battery voltage is equal to  
or less the overdischarge voltage (VDD  
)
after stopping the overcurrent.  
VDD  
Battery  
voltage  
0 V  
VCC  
VSS  
DO pin  
voltage  
VCC  
VIOV2  
VIOV1  
VSS  
VM pin  
voltage  
EB  
The over current delay  
Load connect  
The delay time becomes shorter than typical  
The over discharge delay  
Figure 9  
[Cause]  
When overcurrent detection is released until tIOV1, the capacitor C3 is charged by S-8232 Series. If all  
battery voltage is lower than VDD1, 2 at that time, charging goes on. So delay time is shorter than  
typical.  
[Conclusion]  
This phenomenon occurs when all battery voltage is nearly equal to the overdischarge voltage (VDD1, 2  
)
after overcurrent detected. It means that the battery capacity is small and those must be charged in  
the future. Even if the state changes to overdischarge condition, the battery package capacity is same  
as typical.  
When one of the battery voltages is overdischarge detection voltage (VDD1, 2) or lower and the other one  
becomes higher than the overcharge detection voltage (VCU1, 2), the IC detects the overcharge without the  
overcharge detection delay time (tCU) (refer to the Figure 10) .  
VCU  
Battery  
oltage  
VCD  
VDU  
VDD  
v
Overdischarge state  
Overcharge detect  
V
1
VCU  
VCD  
Battery  
oltage  
v
VDU  
VDD  
V
2
VCC  
CO pin  
oltage  
v
VSS  
EB  
Delay time = 0  
Charger connected  
Figure 10  
[Cause]  
It is same as the overdischarge detection under the overcurrent condition. It occurs because capacitor  
C3 sets all of delay times.  
[Conclusion]  
This phenomenon occurs when one battery voltage is lower than overdischarge voltage (VDD1, 2) and  
batteries are charged by charger. Since voltage difference between two batteries is large in this  
situation, the S-8232 Series immediately stops the charging of the other battery to reduce voltage  
difference. This action improves the safety of a battery pack and dose not do any harm to the pack.  
Seiko Instruments Inc.  
19  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
After the overcurrent detection, the load was connected for a long time, even if one of the battery voltage  
became lower than overdischarge detection voltage (VDD1, 2), the IC can’t detects the overdischarge as  
long as the load is connected. Therefore the IC’s current consumption at the one of the battery voltage is  
lower than the overdischarge detection voltage is same as normal condition current consumption (IOPE  
)
(refer to the Figure 11).  
The battery voltage is less than the overdischarge  
detection voltage, by self current consumption  
Battery  
voltage  
VDD  
0 V  
As long as the load is connected, the IC’s current is  
same as normal current consumption (IOPE  
)
IOPE  
Current  
consumption  
IPDN  
0 A  
VCC  
VSS  
DO pin  
voltage  
VCC  
VIOV2  
VIOV1  
VSS  
VM pin  
voltage  
EB  
Load connect  
The over current delay  
Long haul load connected  
Figure 11  
[Cause]  
The reason is as follows. If the overcurrent detection and overdischarge detection occur at same time,  
the overcurrent detection takes precedence the overdischarge detection. As long as the IC detects  
overcurrent, the IC can’t detect overdischarge.  
[Conclusion]  
If the load is taken off at least one time, the overcurrent is released and the overdischarge detection  
works.  
Unless keeping the IC with load for a long time, the reduction of battery voltage will be neglected,  
because of the IC’s current consumption (typ. 7.5 µA) is small.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in  
electrostatic protection circuit.  
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement  
of the products including this IC upon patents owned by a third party.  
20  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
„ Typical Characteristics  
1. Detection Voltage Temperature Characteristics  
Overcharge detection voltage1 vs. temperature  
Overcharge detection voltage2 vs. temperature  
VCU2 = 4.30 [V]  
VCU1 = 4.30 [V]  
4.4  
4.3  
4.2  
4.4  
4.3  
4.2  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Overcharge release voltage1 vs. temperature  
Overcharge release voltage2 vs. temperature  
VCD1 = 4.00 [V]  
VCD2 = 4.00 [V]  
4.1  
4
4.1  
4
3.9  
-40  
3.9  
-40  
-20  
0
20  
40  
60  
80  
100  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Auxiliary overcharge detection voltage1 vs. temperature  
Auxiliary overcharge detection voltage2 vs. temperature  
VCUaux1 = 5.375 [V]  
VCUaux2 = 5.375 [V]  
5.45  
5.35  
5.25  
5.45  
5.35  
5.25  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Seiko Instruments Inc.  
21  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
Overdischarge detection voltage1 vs. temperature  
Overdischarge detection voltage2 vs. temperature  
V
DD1 = 2.00 [V]  
VDD2 = 2.00 [V]  
2.1  
2.1  
2
2
1.9  
1.9  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Overdischarge release voltage1 vs. temperature  
Overdischarge release voltage1 vs. temperature  
V
DU1 = 2.60 [V]  
VDU2 = 2.60 [V]  
2.7  
2.6  
2.5  
2.7  
2.6  
2.5  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Overcurrent1 detection voltage vs. temperature  
Overcurrent1 detection voltage vs. temperature  
VIOV2 = 1.20 [V] (VCC reference)  
VIOV1 = 0.1 [V]  
-1.10  
-1.15  
-1.20  
-1.25  
-1.30  
0.12  
0.10  
0.08  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta
[
°C]  
22  
Seiko Instruments Inc.  
BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK  
S-8232 Series  
Rev.5.4_00  
2. Current Consumption Temperature Characteristics  
Current consumption vs. temperature in normal mode  
Current consumption vs. temperature in power-down mode  
VCC = 7.2 [V]  
V
CC = 3.0 [V]  
15  
10  
5
100  
50  
0
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
3. Delay Time Temperature Characteristics  
Overcharge detection1 time vs. temperature  
Overcharge detection1 time vs. temperature  
C3 = 0.22 [µF]  
C3 =
0.22 [
µ
F]  
1.5  
150  
1
100  
50  
0.5  
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Ta [°C]  
Overcurrent1 detection time vs. temperature  
C3 = 0.22 [µF]  
12  
11  
10  
9
8
7
-40  
-20  
0
20  
40  
60  
80  
100  
Ta [°C]  
Seiko Instruments Inc.  
23  
+0.3  
-0.2  
3.00  
5
8
1
4
0.17±0.05  
0.2±0.1  
0.65  
No. FT008-A-P-SD-1.1  
TSSOP8-E-PKG Dimensions  
FT008-A-P-SD-1.1  
TITLE  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
4.0±0.1  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
+0.1  
-0.05  
8.0±0.1  
ø1.55  
(4.4)  
+0.4  
-0.2  
6.6  
8
1
4
5
Feed direction  
No. FT008-E-C-SD-1.0  
TITLE  
TSSOP8-E-Carrier Tape  
FT008-E-C-SD-1.0  
No.  
SCALE  
UNIT  
mm  
Seiko Instruments Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-SD-1.0  
TSSOP8-E-Reel  
FT008-E-R-SD-1.0  
TITLE  
No.  
SCALE  
UNIT  
QTY.  
3,000  
mm  
Seiko Instruments Inc.  
·
·
The information described herein is subject to change without notice.  
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein  
whose related industrial properties, patents, or other rights belong to third parties. The application circuit  
examples explain typical applications of the products, and do not guarantee the success of any specific  
mass-production design.  
·
·
·
When the products described herein are regulated products subject to the Wassenaar Arrangement or other  
agreements, they may not be exported without authorization from the appropriate governmental authority.  
Use of the information described herein for other purposes and/or reproduction or copying without the  
express permission of Seiko Instruments Inc. is strictly prohibited.  
The products described herein cannot be used as part of any device or equipment affecting the human  
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus  
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.  
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the  
failure or malfunction of semiconductor products may occur. The user of these products should therefore  
give thorough consideration to safety design, including redundancy, fire-prevention measures, and  
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.  
·

相关型号:

S-8232NKFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NLFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NMFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NNFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NOFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NPFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NQFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NRFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NSFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NTFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NUFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII

S-8232NWFT-T2-G

BATTERY PROTECTION IC FOR 2-SERIAL-CELL PACK
SII