SI2706-A10 [SILICON]

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER; EMI减轻2.1X 5瓦D类音频放大器
SI2706-A10
型号: SI2706-A10
厂家: SILICON    SILICON
描述:

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
EMI减轻2.1X 5瓦D类音频放大器

音频放大器
文件: 总46页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si2704/05/06/07-A10  
EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER  
Features  
Digital input Delta-Sigma PWM  
Patent-pending EMI mitigation  
AM radio band noise-free notch  
GSM/iPhone friendly  
Wideband PWM carrier spreading  
Power stage slew rate control  
Power stage feedback for PSR/THD  
Programmable 7 band parametric EQ,  
dynamic range compressor, tone control  
Crossbar input mixer with scaling  
Digital tone and alert generation  
128 dB volume control in 0.5 dB steps  
Multiple low power operating modes  
Over-current and over-temperature  
detection w/ auto recovery  
2x 5 W @ 3  
BTL; 2x 3 W @ 8 BTL  
88% efficiency with >50 dB PSRR  
95 dB dynamic range and <0.1% THD  
Stereo PWM DAC line analog outputs  
Pop and click free operation  
Standard 2-wire control w/ 2 addresses  
System flexibility w/ 3 multi-function pins  
Dual supply voltage: 2.7–3.6 V main  
and 4.0–6.6 V power stage  
Available in 4x4 24-pin Power QFN and  
7x7 48-pin Power eTQFP package  
Both Pb-free/RoHS compliant  
Ordering Information:  
2
See page 37.  
Master/slave I S w/ 3 inputs & 1 output  
Automatic digital audio rate detection  
Standard audio rates from 32–192 kHz  
Audio activity detector w/ auto-standby  
Operates from external XTAL or clock  
Buffered master/regulator clock output  
Pin Assignments  
Si2704/05/06/07  
Applications  
PMP/MP3 docking stations  
Portable consumer audio electronics  
Table top and portable radios  
Active/wireless speakers  
TVs and monitors  
TV sound bars  
24 23  
22  
21  
20  
19  
DCLK  
DIN  
1
2
3
4
5
6
18 OUTPL  
17 OUTNL  
16 GNDL  
15 GNDR  
14 OUTNR  
13 OUTPR  
Description  
VIO  
GND PAD  
(Back Paddle)  
SCLK  
SDIO  
CLKO  
The Si2704/05/06/07 EMI mitigating 2.1 digital audio processing Class D  
amplifier integrates a power stage, PWM DAC, and digital audio processing  
(DAP) for simplified, low cost, power efficient system designs in consumer  
audio electronics. The digital input amplifier features delta-sigma PWM and  
innovative EMI mitigation technology for producing high-quality audio while  
effectively managing PWM switching noise for enhanced EMI compliance and  
AM/FM radio co-existence, while also being GSM/iPhone friendly.  
Top Down View  
24-Pin QFN Package  
7
8
9
10  
11  
12  
Functional Block Diagram  
48 47 46 45 44 43 42 41 40 39 38 37  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
NC  
Si270x Digital Class-D Amplifier  
LDO  
2
3
VPPL  
OUTPL  
GND  
DFS  
DCLK  
DIN  
VDD  
2.7 – 3.6 V  
Supply  
4
Power  
Stage  
5
VIO  
OUTNL  
GNDL  
GNDR  
OUTNR  
GND  
Clock  
Generation  
6
GND  
SCLK  
SDIO  
CLKO  
NC  
CH 1  
LF  
GND PAD  
(Back Paddle)  
7
PWM  
CLKO  
8
9
DSP  
I2S/AAD  
10  
11  
12  
OUTPR  
VPPR  
NC  
NC  
Mixer  
ASRC  
4.0 – 6.6 V  
Supply  
Top Down View  
48-Pin eTQFP Package  
I2S  
Feedback  
NC  
VPP  
13 14 15 16 17 18 19 20 21 22 23 24  
Tone Gen.  
Cross-over Filter  
Volume Control  
Tone Control  
7-Band EQ  
DRC  
Power  
Stage  
RF  
VIO  
1.62 – 3.6 V  
Supply  
CH 2  
PWM  
MFP  
MFP Control  
Over Current  
Over Temp  
AUXOL/R  
2-Wire Control  
System Control  
PWM DAC  
Rev. 0.6 8/10  
Copyright © 2010 by Silicon Laboratories  
Si2704/05/06/07-A10  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si2704/05/06/07-A10  
2
Rev. 0.6  
Si2704/05/06/07-A10  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Typical System Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.1. PWM Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1.1. PWM Switching Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1.2. EMI Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.2.1. Active Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.2.2. Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.2.3. Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.2.4. Power Down Mode and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.3. Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.3.1. Multi-Function Pins (MFPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.3.2. Output Mode Configuration (Si2705/07 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
4.4. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.4.1. Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.4.2. Reference Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
4.5. Digital Audio I2S Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.5.1. Auto-Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.2. Audio Activity Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.3. Digital Audio Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.5.4. Audio data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
4.5.5. I S Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.6. Digital Audio Processing (DAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.6.1. Parametric Equalization (Si2706/07 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.6.2. Tone Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4.6.3. De-Emphasis (Si2706/07 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.6.4. Crossover Filter (Si2706/07 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.6.5. Digital Volume Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
4.6.6. Dynamic Range Compression (Si2706/07 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.6.7. Hard Signal Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.6.8. DC Notch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.6.9. Tone and Alert Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4.7. Fault Detection and Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
4.8. Power Supply and Grounding Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.9. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.10. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5. Commands and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.1. 24-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.2. 48-Pin eTQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Rev. 0.6  
3
Si2704/05/06/07-A10  
8.1. 24-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
8.2. 48-Pin eTQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
9. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9.1. Si2707 Top Mark (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9.2. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9.3. Si2707 Top Mark (eTQFP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
9.4. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
4
Rev. 0.6  
Si2704/05/06/07-A10  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Power Output Supply Voltage  
Main Supply Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max  
6.6  
3.6  
3.6  
Unit  
V
2
V
4.0  
PP  
DD  
IO  
V
V
2.7  
1.62  
3.3  
V
Interface (I/O) Supply Voltage  
Load Impedance  
V
R
3–8  
25  
L
Ambient Temperature  
Junction Temperature  
Case Delta from Junction  
T
–20  
85  
°C  
°C  
°C/W  
A
T
135  
5
J
Temperature delta between junc-  
tion and top center of package  
JC  
3
Delta from Junction to Ambient  
QFN package  
eTQFP  
25  
30  
°C/W  
°C/W  
JA  
Notes:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
2. Operation with VPP as low as 3 V is possible at reduced performance.  
3. The is layout-dependent; therefore, PCB layout must provide adequate heat-sink capability. The.is specified,  
JA  
JA  
assuming adequate ground plane as in “AN470: 270x Layout Guidelines.”  
Table 2. Absolute Maximum Ratings1  
Parameter  
Power Output Supply Voltage  
Main Supply Voltage  
Symbol  
Value  
–0.5 to 7.0  
–0.5 to 3.9  
–0.5 to 3.9  
10  
Unit  
V
V
PP  
DD  
IO  
V
V
V
Interface (I/O) Supply Voltage  
V
2
Input Current  
I
mA  
V
IN  
2
Input Voltage  
V
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Junction Temperature  
Storage Temperature  
Notes:  
T
–20 to +85  
150  
°C  
°C  
°C  
A
T
J
T
–55 to +150  
A
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond  
recommended operating conditions for extended periods may affect device reliability.  
2. For input pins SCLK, SDIO, DCLK, DFS, DIN, RST, OUTSEL, MFPx.  
Rev. 0.6  
5
Si2704/05/06/07-A10  
Table 3. DC Characteristics—Supplies and Interfaces  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, VPP = 4 to 6.6 V, TA = –20 to +85 °C)  
Parameter  
Start Up Time  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
T
From Standby Mode  
with CLKO enabled  
2
ms  
ONSB  
From Standby Mode  
with CLKO disabled  
20  
ms  
T
From Sleep Mode  
50  
20  
200  
ms  
ms  
mA  
ON_SLP  
T
From Power Down Mode  
ON_PD  
Active Mode Quiescent  
Supply Current  
I
From V , No load, Both Chan-  
PQ  
PP  
nels Active, Spread Mode PWM  
From V , No load, Both Chan-  
45  
mA  
PP  
nels Active, Normal Mode PWM  
I
From V  
54  
mA  
mA  
DQ  
DD  
2
I
From V I S Slave Mode,  
1.3  
IOQ  
IO,  
CLKO Disabled  
Standby Mode Supply  
Current  
I
Standby Mode  
0.1  
8
mA  
mA  
PSTB  
I
Standby Mode  
DSTB  
with CLKO enabled  
Standby Mode  
4
mA  
with CLKO disabled  
I
Standby Mode  
SLEEP asserted  
SLEEP asserted  
SLEEP asserted  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IOSTB  
Sleep Mode Supply  
Current  
I
0.1  
2
PSLP  
DSLP  
IOSLP  
I
I
1.5  
0.1  
2
Power Down Mode Supply  
Current  
I
PPD  
DPD  
I
I
0.3  
IOPD  
Input pins SCLK, SDIO, DCLK, DFS, DIN, RST, OUTSEL, MFPx  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
V
0.7 x V  
0.3 x V  
10  
V
V
IH  
IO  
V
IL  
IO  
I
V
= V = 3.6 V  
–10  
μA  
μA  
IH  
IN  
IO  
I
V
= 0 V, V = 3.6 V  
–10  
10  
IL  
IN  
IO  
Output pins MFPx, CLKO*  
High Level Output Voltage  
Low Level Output Voltage  
High Level Output Current  
Low Level Output Current  
V
I
= 500 μA  
0.8 x V  
6
V
V
OH  
OUT  
IO  
V
I
= –500 μA  
0.2 x V  
OL  
OUT  
IO  
I
0.8 x V  
0.2 x V  
mA  
mA  
OH  
IO  
IO  
I
6
OL  
*Note: Valid for the configuration where MFPx is configured as an output or general purpose output.  
6
Rev. 0.6  
Si2704/05/06/07-A10  
Table 4. DC Characteristics—Class D Amplifier  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, VPP = 4 to 6.6 V, TA = –20 to +85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
±10  
648  
Max  
Unit  
mV  
Output Voltage Offset  
V
Differential Output  
OS  
Total Drain-Source On-State  
Resistance (Total Bridge)*  
R
V
= 6.6 V, I = 1A  
mΩ  
DSON  
PP  
O
*Note: Excludes package bond wire resistance.  
Table 5. AC Characteristics—Class D Amplifier  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, VPP = 6.6 V, RL = 8 , VOL = 0 dBFS, TA = –20 to +85 °C, unless otherwise noted.)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
Continuous Output Power  
P
THD+N = 10%, f = 1 kHz,  
2.7  
W
O
R = 8 Ω  
L
THD+N = 1%, f= 1 kHz,  
1.9  
4.7  
3.4  
5.0  
W
W
W
W
R = 8 Ω  
L
THD+N = 10%, f = 1 kHz,  
R = 4 Ω  
L
THD+N = 1%, f= 1 kHz,  
R = 4 Ω  
L
THD+N = 10%, f = 1 kHz,  
RL = 3 Ω  
Total Harmonic Distortion + Noise  
THD+N  
SNR  
P =1 W, f = 1 kHz  
0.1  
95  
%
O
Signal to Noise Ratio/Dynamic  
Range  
Normal mode PWM,  
f = 1 kHz, A-weighted  
dB  
Normal mode PWM,  
f = 1 kHz, Unweighted  
92  
90  
87  
24  
35  
dB  
dB  
dB  
dB  
dB  
Spread mode PWM,  
f = 1 kHz, A-weighted  
Spread mode PWM,  
f = 1 kHz, Unweighted  
Spread Mode Common Mode PWM  
f = 1 kHz,  
Relative to Normal Mode  
2
Carrier Peak Attenuation  
Common Mode AM Band Noise  
f = 1 kHz,  
3
Notch Attenuation  
Measured in ±10 kHz band  
around selected frequency  
Notes:  
1. Measured at filter output. Power measured at the chip output is greater.  
2. Guaranteed by characterization.  
3. Measured relative to the integrated noise floor in Spread mode. Guaranteed by characterization.  
4. Does not include filter efficiency losses.  
Rev. 0.6  
7
Si2704/05/06/07-A10  
Table 5. AC Characteristics—Class D Amplifier (Continued)  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, VPP = 6.6 V, RL = 8 , VOL = 0 dBFS, TA = –20 to +85 °C, unless otherwise noted.)  
Power Supply Rejection Ratio  
PSRR  
P = –3 dBFS, f = 1 kHz;  
50  
dB  
O
200 mV , f = 400 Hz  
PP  
r
supply ripple  
Crosstalk  
f = 1 kHz  
–92  
88  
dB  
%
4
Efficiency  
η
f = 1 kHz, half rate PWM and  
10 ns slew rate  
Output Pulse Repetition Frequency  
PRF  
Half Rate PWM  
Full Rate PWM  
480  
960  
kHz  
kHz  
Notes:  
1. Measured at filter output. Power measured at the chip output is greater.  
2. Guaranteed by characterization.  
3. Measured relative to the integrated noise floor in Spread mode. Guaranteed by characterization.  
4. Does not include filter efficiency losses.  
Table 6. AC Characteristics—PWM Digital to Analog Converter  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, VOL = 0 dBFS, TA = -20 to +85 °C, unless otherwise noted).  
Parameter  
Symbol  
THD+N  
SNR  
Test Condition  
f = 1 kHz  
Min  
5
Typ  
0.02  
88  
Max Unit  
Total Harmonic Distortion + Noise  
Signal to Noise Ratio/Dynamic Range  
50  
1
%
f = 1 kHz, A-weighted  
f = 1 kHz, Unweighted  
dB  
dB  
85  
Output Voltage Swing  
Vout  
1
V
P-P  
Output Voltage Common Mode Bias  
Output Load— Resistance  
Output Load— Capacitance  
Voutcm  
0.8  
V
R
C
AC coupled  
kΩ  
load  
load  
AC coupling capacitor  
0.1  
µF  
Table 7. I2S Digital Audio Interface Characteristics  
(VIO = 1.62 to 3.6 V, TA = –20 to +85 °C, unless otherwise noted).  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DCLK Input Cycle Time  
DCLK Input Pulse Width High  
t
70  
ns  
ns  
CYC:DCLK  
t
0.4 x  
0.6 x  
HI:DCLK  
t
t
t
t
CYC:DCLK  
CYC:DCLK  
DCLK Input Pulse Width Low  
t
0.4 x  
0.6 x  
ns  
LO:DCLK  
CYC:DCLK  
CYC:DCLK  
DFS Setup Time to DCLK↑  
DFS Hold Time after DCLK↑  
DOUT Output Delay  
t
10  
5
35  
15  
ns  
ns  
ns  
pF  
SU:DCLK  
t
HD:DCLK  
T
0
PD:DCLK  
Capacitive Loading  
C
B
8
Rev. 0.6  
Si2704/05/06/07-A10  
Figure 1. Digital Audio Timing Parameters  
Table 8. 2-Wire Control Interface Characteristics  
(VIO = 1.62 to 3.6 V, TA = –20 to +85 °C, unless otherwise noted).  
Parameter  
Symbol  
Test  
Min  
Typ  
Max  
Unit  
Condition  
SCLK Frequency  
f
0
400  
kHz  
µs  
SCL  
SCLK Low Time  
SCLK High Time  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input from SDIO Setup ↓  
t
µs  
SU:STA  
(START)  
SCLK Input to SDIO Hold (START)  
t
t
0.6  
µs  
HD:STA  
SDIO Input to SCLK Setup  
SDIO Input to SCLK Hold  
SDIO output delay  
100  
0
900  
900  
ns  
ns  
ns  
µs  
SU:DAT  
HD:DAT  
t
T
300  
0.6  
PD:DAT  
t
SU:STO  
SCLK input to SDIO Setup (STOP)  
STOP to START Time  
t
1.3  
µs  
ns  
ns  
BUF  
SDIO Output Fall Time  
t
250  
300  
f:OUT  
SDIO Input, SCLK Rise/Fall Time  
t
t
f:IN  
r:IN  
Capacitive Loading  
C
50  
50  
pF  
ns  
b
Pulse Width Rejected by Input Filter  
t
SP  
Rev. 0.6  
9
Si2704/05/06/07-A10  
Table 9. 2-Wire Control Interface Address Selection  
CLKO Startup Voltage (Pin  
2-Wire  
Connection)  
Device Address  
GND  
1001010 (0x94)  
0011011 (0x36)  
V
(Default)  
IO  
Table 10. Reset Timing Characteristics  
(VIO = 1.62 to 3.6 V, TA = -20 to +85 °C, unless otherwise noted).  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
μs  
CLKO Setup Time to RST↑  
CLKO Hold Time after RST↑  
t
100  
30  
SRST  
T
ns  
HRST  
tHRST  
tSRST  
70%  
RST  
30%  
70%  
CLKO  
30%  
Figure 2. Reset Timing Parameters for Configuration Mode Select  
10  
Rev. 0.6  
Si2704/05/06/07-A10  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCLK  
SDIO  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tPD:DAT  
tr:IN  
STOP  
START  
Figure 3. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
Command  
7-0  
Arg1  
7-0  
SDIO  
(Write)  
A6-A0, 0  
START  
ADDRESS + R/W  
ACK  
ACK  
DATA  
ACK  
ACK  
DATA  
ACK  
ACK  
STOP  
Status  
7-0  
Response  
7-0  
SDIO  
(Read)  
A6-A0, 1  
START  
ADDRESS + R/W  
DATA  
DATA  
STOP  
Figure 4. 2-Wire Control Interface Read and Write Timing Diagram  
Rev. 0.6  
11  
Si2704/05/06/07-A10  
Table 11. Reference Clock and Crystal Characteristics  
(VDD = 2.7 to 3.6 V, VIO = 1.62 to 3.6 V, TA = –20 to +85 °C, unless otherwise noted).  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock, Pin XTLI  
1
Supported Frequencies  
2
–1000  
49  
1000  
50  
MHz  
ppm  
Frequency Tolerance  
2
Jitter Tolerance  
Integrated from 20 Hz to  
1 MHz  
psrms  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
VIH  
VIL  
IIH  
0.7xVI0  
0.3xVI0  
10  
V
V
VIN = VI0 = 3.6 V  
–10  
μA  
μA  
IIL  
VIN = 0 V  
–10  
10  
VI0 = 3.6 V  
Crystal oscillator, Pins XTLI, XTLO  
3
Crystal Oscillator Frequency  
12.288  
–1000  
4
24.576  
1000  
20  
MHz  
ppm  
pF  
Crystal Frequency Tolerance  
Internal Crystal Load Capacitance  
Crystal Motion Resistance  
for 24.576 MHz Crystal  
100  
Reference Clock Output, Pin CLKO  
4
Frequency Range  
120  
24576  
10  
kHz  
pF  
Load Capacitance  
Notes:  
1. Supported reference clock frequencies at XTLI include 2.048, 2.822, 3.072, 4.096, 4.234, 4.608, 5.645, 6.144, 8.192,  
8.467, 9.216, 11.290, 11.2896, 12, 12.288, 16.368, 16.934, 18.432, 22.579, 24.576, 32.768, 32.869, 36.864, 45.158,  
and 49.152 MHz.  
2. Required to achieve specified performance.  
3. Supported crystal frequencies at XTLI include 12.288, 18.432, and 24.576 MHz.  
4. 120 kHz, 240 kHz, 480 kHz, 960 kHz, 1.92 MHz, 4.096 MHz, 6.144 MHz, 8.192 MHz, 12.288 MHz, 16.384 MHz, and  
24.576 MHz are available at CLKO.  
12  
Rev. 0.6  
Si2704/05/06/07-A10  
2. Typical Application Schematic  
VPP  
VDD  
4.0 to 6.6 V  
2.7 to 3.6 V  
C9  
C11  
0.1 uF  
220 uF  
C10  
0.1 uF  
C7  
0.1 uF  
VIO  
1.62 to 3.6 V  
Optional  
L1  
C8  
C1  
R1  
0.1 uF  
C15  
C16  
18  
OUTPL  
OUTNL  
21  
C5  
XTLI  
X1  
17  
22  
XTLO  
R2  
C2  
20  
RSTB  
16  
15  
24  
1
U1  
Si2705/07  
GNDL  
GNDR  
L2  
L3  
DFS  
DCLK  
DIN  
2
4
SCLK  
SDIO  
CLKO  
13  
14  
OUTPR  
OUTNR  
5
C3  
R3  
6
C17  
C18  
C6  
SLEEP/MFP3  
AUXOL  
R4  
C4  
L4  
C12  
C13  
Figure 5. Typical Application Schematic  
Table 12. Typical Application Schematic Bill of Materials  
Component  
C1, C2, C3, C4  
C15, C16, C17, C18  
C5, C6  
Inductor Filter  
0.68 µF, ceramic  
0.33 µF, ceramic  
0.47 µF, Film  
Ferrite Bead Filter  
1000 pF, ceramic  
1000 pF, ceramic  
100 pF, ceramic  
L1, L2, L3, L4  
10 µH, 1.5 A, inductor  
TDK MPZ2012S601A,  
ferrite bead  
Note: When using the ferrite bead output filter with AM radio, shielded cable is  
recommended.  
Rev. 0.6  
13  
Si2704/05/06/07-A10  
3. Typical System Configurations  
VDD/VIO  
VPP  
2.7–3.6 V  
Supply  
4.0–6.6 V  
Supply  
XTLI  
OUTPL  
OUTNL  
XTLO  
LF  
Dock  
I/F  
Dock  
CLKO  
Si270x  
Digital Audio  
Amplifier  
I2S  
Stereo  
ADC  
Line  
In  
OUTPR  
OUTNR  
RF  
HPDET  
OUTSEL  
AUXOL  
AUXOR  
2-Wire  
MFP  
User I/F  
System MCU  
Figure 6. Basic PMP Dock System Configuration  
VDD/VIO  
VPP  
2.7–3.6 V  
Supply  
4.0–6.6 V  
Supply  
XTLI  
XTLO  
CLKO  
OUTPL  
OUTNL  
LF  
Filter  
I2S DI2  
I2S DO  
Digital Media  
Controller  
Si270x  
Digital Audio  
Amplifier  
Dock  
I/F  
Dock  
Radio Tuner  
Si473x-D  
I2S DIN  
OUTPR  
OUTNR  
Filter  
RF  
Stereo  
ADC  
Line  
In  
2-Wire  
MFP  
AUXOL  
AUXOR  
User I/F  
System MCU  
HPDET  
Figure 7. PMP Dock with Radio and Digital Media Controller System Configuration  
14  
Rev. 0.6  
Si2704/05/06/07-A10  
External Subwoofer  
XTLI  
AUXOL  
XTLO  
Digital  
Media  
Controler  
I2S  
Midrange  
Amplifier  
L
L Midrange  
R Midrange  
Si270x  
R
I2C adress 0x36  
OUTSEL  
2-Wire  
System  
MCU  
CLKO  
XTLI  
L
L Tweeter  
Tweeter  
Amplifier  
R
R Tweeter  
Si270x  
OUTSEL  
AUXOL  
AUXOR  
I2S  
HPDET  
Radio  
I2C adress 0x94  
Headphone  
Figure 8. Stereo 2-Way Speaker System Configuration  
External Subwoofer  
AUXOL  
1
XTLI  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH8  
Si270x  
Digital Audio  
Amplifier  
XTLO  
2
Analog  
Audio 1  
CLKO  
XTLI  
Analog  
Audio 2  
Si270x  
Digital Audio  
Amplifier  
1
2
Receiver & Mux  
Audio Processor  
Delay Control  
Digital  
Audio  
XTLI  
Si270x  
Digital Audio  
Amplifier  
1
2
DVI/PC  
Audio  
From  
PMP  
dock  
XTLI  
Si270x  
Digital Audio  
Amplifier  
1
2
Figure 9. TV Sound Bar System Configuration  
Rev. 0.6  
15  
Si2704/05/06/07-A10  
4. Functional Description  
Si270x Digital Class-D Amplifier  
VDD  
2.7 – 3.6 V  
Supply  
LDO  
Power  
Stage  
Clock  
Generation  
CH 1  
LF  
PWM  
CLKO  
DSP  
I2S/AAD  
Mixer  
ASRC  
4.0 – 6.6 V  
Supply  
I2S  
Feedback  
VPP  
Tone Gen.  
Cross-over Filter  
Volume Control  
Tone Control  
7-Band EQ  
DRC  
Power  
Stage  
RF  
VIO  
1.62 – 3.6 V  
Supply  
CH 2  
PWM  
MFP  
MFP Control  
Over Current  
Over Temp  
AUXOL/R  
2-Wire Control  
System Control  
PWM DAC  
Figure 10. Functional Block Diagram  
The Si2704/05/06/07 EMI mitigating 2.1 x 5 W Class D audio amplifier integrates a stereo power stage, PWM DAC,  
and digital signal processor (DSP) to enable simplified, low cost, power efficient system designs in consumer audio  
electronics. The digital input amplifier features delta-sigma PWM for high quality audio while innovative EMI  
mitigation technology manages PWM switching noise to suppress peak emissions more than 20 dB while providing  
co-existence with AM/FM radio tuners.  
The power stage is capable of driving two 3 bridge-tied speakers with 5 W per channel at 10% THD+N from  
6.6 V power supplies. It can also drive 8 bridge-tied speakers at 3 W per channel with 88% efficiency. The power  
stage feedback systems improve power supply rejection and harmonic distortion performance.  
2
The Si270x connects up to three synchronous I S digital sources as either master or slave, two of which can be  
2
configured as input or output. The I S input is converted to a common sample rate for digital audio processing  
using an asynchronous sample rate converter (ASRC) and a digital crossbar mixer linearly combines any of the six  
inputs into the three audio processing channels  
Integrated digital audio processing enables the amplifier to compensate for speaker and enclosure acoustic  
characteristics. A programmable 7-biquad parametric equalizer for each main channel allows notching out of  
mechanical resonances and pre-compensation of the speaker frequency response, while programmable dynamic  
range compression protects from overdriving speakers and increases the average output power without increasing  
apparent distortion. Tone control enables ±18 dB of treble and bass boost/cut, while output volume is digitally  
2
controlled in 0.5 dB steps from –100 to +28 dB via the I C-Compliant 2-Wire interface or an analog potentiometer  
connected to the integrated ADC. Two independent tone generators enable mixing of multi-tone alarms and alerts  
into the audio channels.  
The auxiliary audio processing channel (Aux Channel) with optional sub-mixing and low pass filtering generates  
mono line level analog audio output for driving an external active subwoofer or center speaker. The main channel  
L/R outputs may also be connected to the PWM DAC for driving a headphone amplifier.  
A low jitter PLL generates internal system clocks referenced in master mode to an external crystal, or alternatively,  
2
in slave mode to either the I S data clock (DCLK) or the audio master clock (MCLK). A buffered clock (CLKO) can  
be output by the device to synchronously drive companion audio devices, additional amplifiers, and switching  
regulators.  
16  
Rev. 0.6  
Si2704/05/06/07-A10  
4.1. PWM Processing  
The Si270x is designed to operate using a bridge-tied-load (BTL) output configuration where both sides of the  
speaker are actively driven by the amplifier.  
4.1.1. PWM Switching Rate Control  
The output PWM switching frequency can be programmed via 2-wire control to be half rate (480 kHz) or full rate  
(960 kHz). The different rates can be configured by setting property PWM_FREQ.  
Full Rate PWM provides better audio performance and AM radio co-existence, while Half Rate PWM provides  
lower switching losses and lower switching energy harmonics at high frequencies. For each configuration, the  
switching frequency can be offset slightly for FM band frequency planning flexibility.  
4.1.2. EMI Mitigation  
By nature, the switching characteristic of Class D amplifiers that provides high power efficiency also creates  
harmonic spurs at multiples of the PWM switching rate that can radiate as EMI. Common mode PWM switching  
from ground to the supply translates into a radiated pattern with large energy components at the fundamental and  
odd harmonics of the switching frequency. Fast pulse edge transitions and differential mode ripple currents flowing  
through inductor windings further contribute to radiated interference. To simplify design for EMI compliance and  
radio receiver co-existence, the Si270x features EMI mitigation modes for managing the PWM switching noise,  
including pulse edge slew rate control, common mode switching noise spectral shifting, and common mode  
switching noise spectral spreading/shaping.  
4.1.2.1. Slew Rate Control  
Output pulse edge slew rate can be programmed via 2-Wire control for 10 ns or 20 ns (property  
PWM_OUTPUT_SLEW_RATE). While faster transition times are favorable for higher efficiency, slower transition  
times are favorable for EMI attenuation.  
4.1.2.2. Spectral Shifting  
The frequency locations for the PWM common mode switching energy can be shifted to facilitate frequency  
planning. This spectral shifting is useful for example in radios to avoid radiating interference at frequencies where  
the radio is being tuned.  
When spectral shifting is programmed for Integer Mode PWM, the common mode switching energy and harmonics  
are located at F x (2n–1) for all positive integers n, where Fc is the PWM switching frequency. Alternatively, when  
C
programmed for Fractional Mode PWM, the common mode switching energy and harmonics are shifted down in  
frequency by 50%, and are located at F x (2n–1)/2.  
C
The spectral shifting mode can be programmed dynamically by setting property PWM_CONFIG during normal  
operation without adversely affecting the internal audio processing or the amplified audio signal integrity.  
Rev. 0.6  
17  
Si2704/05/06/07-A10  
Figure 11. PWM CM Spectrum for Integer Mode PWM  
Figure 12. PWM CM Spectrum for Fractional Mode PWM  
4.1.2.3. Spectral Spreading  
Spread mode PWM can be used to spread PWM common mode switching energy resulting in a peak energy  
suppression greater than 20 dB at all frequencies. This Spectral Shaping feature is useful for mitigating EMI  
radiation and eliminating inductors for filter-less applications. Spread Mode PWM can be programmed dynamically  
by setting property PWM_CONFIG during normal operation without adversely affecting the internal audio  
processing or the differential output signal integrity.  
4.1.2.4. Spectral Shaping Noise-Free Notch for AM Radio (Si2705/07 only)  
When using Spread Mode PWM with full rate PWM switching (960 kHz), a tunable noise-free notch can be  
programmed via 2-Wire control to shape the switching noise and create a narrow frequency band in the AM radio  
spectrum in which the PWM common mode switching energy is not allowed to spread. This noise-free notch is  
18  
Rev. 0.6  
Si2704/05/06/07-A10  
nominally 20 kHz wide and tunable in 5 kHz increments from 520 to 1710 kHz, virtually equalizing the noise level  
across the band. The noise-free notch can be dynamically tuned during normal operation without adversely  
affecting the internal audio processing or the differential output signal integrity.  
Spread Mode PWM with the tunable noise-free notch is useful for systems in which the Si2705/07 needs to co-exist  
with an AM radio receiver. In normal AM radio operation, the system MCU programs the noise-free notch  
frequency in the Si2705/07 to the same frequency as the AM radio to inhibit PWM switching noise from interfering  
with radio reception. Because Spread Mode PWM is also engaged, switching noise outside of the noise-free notch  
band is also suppressed for mitigating broadband EMI radiation  
The noise-free notch can be placed at different frequencies by programming property PWM_AM_TUNE_FREQ.  
More information on the complete range of programming parameters and settings available for optimized operation  
can be found in the “AN469: Si270x Programming Guide”.  
Figure 13. PWM CM Spectrum for Spread Mode PWM with Noise-Free Notch  
4.2. Operating Modes  
The Si2704/05/06/07 features four operating modes: one active mode (Active) and three low power modes  
(Standby, Sleep and Power Down). The low power modes differ on power consumption and wake up times,  
providing the flexibility to meet system design requirements. See Table 3, “DC Characteristics—Supplies and  
Interfaces,” on page 6 for additional information on startup times and power consumption.  
Figure 14 illustrates the device state diagram highlighting the key operating modes and the allowed transitions.  
For more information concerning operating modes and their programming requirements, refer to “AN469: Si270x  
Programming Guide”.  
4.2.1. Active Mode  
2
Active mode is the normal operational mode in which the chip accepts digital I S data at the input, drives an audio  
output and is programmable via a 2-Wire interface bus.  
Active Mode is initiated by setting the ACTIVE argument of the ACTIVATE command via the 2-Wire interface. To  
avoid clicks and pops in the audio output, mute is de-asserted after entering Active Mode.  
Rev. 0.6  
19  
Si2704/05/06/07-A10  
RESET  
Assert  
RESET  
Release  
RESET  
Power Down  
Mode  
POWER_DOWN  
POWER_UP  
POWER_DOWN  
POWER_DOWN  
Standby  
Mode  
ACTIVATE  
[ ACTIVE / STANDBY / AAD ]  
ACTIVATE  
[ SLEEP / STANDBY ]  
ACTIVATE  
[ SLEEP / ACTIVE ]  
Sleep  
Mode  
Active  
Mode  
Figure 14. Operating Modes  
4.2.2. Standby Mode  
Standby Mode is a reduced power state where the register states are preserved and the 2-Wire interface is fully  
operational, allowing for new parameters and configuration settings to be programmed even though the amplifier  
output is powered down. This state has the shortest wake-up time relative to the other low power modes. If the  
buffered reference clock output (CLKO) is enabled, the timing generation circuitry remains active.  
Standby Mode is initiated by setting the STANDBY argument of the ACTIVATE command via the 2-Wire interface.  
Standby Mode can also be initiated by setting the AAD argument of the ACTIVATE command, which additionally  
enables the Audio Activity Detector. See "4.5.2. Audio Activity Detector" on page 24 for additional information  
about this setting.  
To avoid clicks and pops in the audio output, mute is first asserted before entering Standby Mode.  
4.2.3. Sleep Mode  
Sleep Mode is the lowest power consumption state in which the chip parameters and configurations are retained.  
However, chip parameter and configuration settings cannot be programmed and the buffered reference clock  
output (CLKO) is disabled in this mode. The time to activate the chip is shorter from the Sleep Mode than when  
activating from the Power Down Mode.  
Sleep mode is initiated by setting the SLEEP argument of the ACTIVATE command.  
4.2.4. Power Down Mode and Reset  
Asserting the RST pin low disables the analog and digital circuitry, resets the registers to their default settings, and  
disables the 2-Wire bus. The RST pin should always be asserted low when power to the device is ramped up, and  
released once the power supply voltages have stabilized.  
After RST is released high, the chip comes up in Power Down Mode with the registers set to their default values.  
The 2-Wire interface remains active but only responds to the POWER_UP command that puts the device into  
20  
Rev. 0.6  
Si2704/05/06/07-A10  
Standby Mode so that the high power outputs are prevented from being enabled prior to the registers being  
configured. Any other command sent to the device is acknowledged on the bus but ignored by the device. This  
mode has the highest wake-up time and lowest power consumption of the three low power modes.  
A POWER_DOWN command causes a transition to Power Down Mode, disabling the outputs and resetting all  
parameter registers to default values.  
4.3. Chip Configuration  
The Si270x can be programmed via the 2-Wire interface for several operating configurations.  
4.3.1. Multi-Function Pins (MFPs)  
Three multi-function pins (MFPs) support a wide range of system configurations while minimizing pin count. These  
MFPs are programmed via the 2-Wire interface. Table 13 outlines all available signals, and Table 14 shows the  
signal configuration options available on each MFP with the default in bold.  
Table 13. Multi-Function Signal Definitions  
Signal Name  
Functional Description  
Tri-level output mode select  
Interrupt flag  
OUTSEL  
INT  
DIN2  
2
I S data input 2  
2
DIN3  
I S data input 3  
2
DOUT  
GPO1–3  
I S data output  
General purpose output  
The MFPs default to High-Z state. MFP1 can be programmed to be signal INT or GPO1. MFP2 can be  
programmed to be signal OUTSEL, DIN2, DOUT2 or GPO2. MFP3 can be programmed to be signal DIN3, DOUT  
or GPO3. Table 14 summarizes the MFP configuration options with the default functionality shown in bold.  
Table 14. MFP Configuration Options  
Pin Name  
Pin Number  
Signal Options  
MFP1  
#10 (QFN)  
High-Z, INT, GPO1  
#13 (eTQFP)  
MFP2  
MFP3  
#11 (QFN)  
#14 (eTQFP)  
High-Z, OUTSEL, DIN2, DOUT, GPO2  
High-Z, DIN3, DOUT, GPO3  
#7 (QFN)  
#10 (eTQFP)  
2
The Si270x can receive digital I S audio signal from up to three different sources with the default configuration  
being only one input. For cases where more than one signal input is desired or alternatively a signal output is  
desired, the MFPs should be programmed to an appropriate configuration with additional DINx/DOUT signals.  
Three general purpose output (GPO) pins are also available. The GPOs can be programmed to output logic 1,  
logic 0, or a Hi-Z state. These pins can be used for example to control multiplexer switches in the application via  
the 2-Wire bus.  
MFP pin function is established using the MFP_PIN_CFG command. Refer to the “AN469: Si270x Programming  
Guide” for more information on the options and settings requested for operation of the multi function pins.  
Rev. 0.6  
21  
Si2704/05/06/07-A10  
4.3.2. Output Mode Configuration (Si2705/07 only)  
The Si2705/07 can be programmed via 2-Wire or configured using the OUTSEL MFP to operate in three different  
output modes: 2.1 mode, 2.0 mode and aux out mode, with the 2.0 mode being the default. If OUTSEL is not  
configured as OUTSEL, these output modes can instead be programmed by setting the argument  
OUTSEL_MODE of the ACTIVATE command. Refer to the “AN469: Si270x Programming Guide” for more  
information on the options and settings requested for the different operation modes.  
OUTSEL is a three-level input with decoding to configure the analog audio signal output at AUXOL/R pins as  
shown in Table 15.  
Table 15. OUTSEL MFP Decoding  
Description  
OUTSEL  
Output  
Configuration  
H-Bridge Amplifier  
Aux Channel  
Analog Output  
(mono aux out)  
Main Channel  
Analog Output  
(stereo aux out)  
GND  
Aux Out Mode  
2.0 Mode  
disable  
enable  
enable  
disable  
disable  
enable  
enable  
disable  
disable  
V /2  
IO  
V
2.1 Mode  
IO  
For stereo implementations, the 2.0 mode is selected enabling the main channel stereo power stage outputs. This  
is the default mode when OUTSEL is not externally driven, or when OUTSEL is driven to mid-level between V  
and GND.  
IO  
In 2.1 mode, with OUTSEL driven high to V , the main channel stereo power stage is enabled to drive stereo  
IO  
bridge-tied loads while a PWM DAC produces mono analog audio from the auxiliary channel to drive a subwoofer  
or central channel analog input amplifier.  
To drive an external stereo analog amplifier (e.g., for headphones) the PWM DAC can be configured to output the  
main stereo channel. In this case, OUTSEL is driven low to GND.  
To avoid unwanted audible pop noises on the output, the Si270x implements circuitry to minimize the output  
transients that occur while charging and discharging the PWM DAC ac coupling capacitor (see C10 and C11 in the  
typical application schematic on page 13). The click and pop noise reduction circuit controls the charging and  
discharging currents on the capacitors to prevent sudden changes in the output bias level and the consequent  
glitches in the output voltage.  
Left  
channel  
PWM  
Aux  
channel  
PWM  
Right  
channel  
PWM  
OUTSEL  
1
2
2
1
MUX  
MUX  
Left  
Right  
Stereo PWM DAC  
AUXOL  
AUXOR  
Figure 15. MUX OUTSEL Configuration  
OUTSEL can be driven by a headphone plug detection circuit as shown in Figure 16. The ratio between the two  
resistors in the diagram configures the outputs for a 2.0 (with R1=R2) or a 2.1 application (with R2>>R1). In this  
application example, OUTSEL may be used for enabling and disabling the external amplifiers.  
22  
Rev. 0.6  
Si2704/05/06/07-A10  
R1  
Audio Left  
OUTSEL  
Audio Right  
R2  
Figure 16. Headphone Plug Detection Application Schematic  
4.4. Clocking  
A low jitter on-chip PLL synchronizes to an external clock reference and generates all necessary internal clocks.  
2
Three options are available for the external reference: a crystal, a reference clock or the digital I S audio bit clock.  
In addition, a buffered user-programmable output clock can be generated on the CLKO pin for use as a clock  
reference for external circuits.  
4.4.1. Reference Clock Input  
Using an external crystal, the on-chip crystal oscillator generates a precise, low jitter internal clock reference for the  
best audio performance.  
For system design flexibility, the device also supports the options to use either an external reference clock or the  
2
I S bit clock as the PLL reference. Noise performance of the amplifier is a direct function of the jitter characteristics  
of the external source.  
The source of the external reference is programmed using the CLOCK_SOURCE property through the 2-Wire  
interface.  
4.4.1.1. Crystal Oscillator Operation  
When a crystal is connected between XTLI and XTLO pins and the chip is configured properly all the timing for the  
chip is derived from the on-chip crystal oscillator.  
A range of crystals are supported and the device needs to be programmed to the selected frequency using the  
CLOCK_REF_FREQ property. The crystal oscillator provides the best audio performance.  
4.4.1.2. External Reference Clock Operation  
In this mode, the device operates in slave clock mode and the reference clock is provided by an external clock  
source on pin XTLI. A wide range of input clock frequencies are supported in this mode ranging from 2.048 to  
49 MHz. Refer to Table 11 on page 12 or to the “AN469: Si270x Programming Guide” for more information on the  
complete range of frequencies and settings required for operation on this mode.  
2
4.4.1.3. I S Reference Clock Operation  
2
The device can operate in slave clock mode using the DCLK signal from the I S bus as a timing reference. In this  
mode the device needs to be programmed for one of the supported I S clock rates and pin XTLI should be  
2
connected to ground.  
4.4.2. Reference Clock Output  
The Si2704/05/06/07 may provide a buffered output clock to be used as reference for external circuits when the  
chip is programmed for either Active or Standby mode. The clock output frequency and synchronization source is  
programmable.  
The Si270x supports a number of reference clock frequencies that are related to the PWM switching rate. These  
CLKO output frequencies can be especially useful for synchronizing the amplifier to switching power supplies.  
Refer to the “AN469: Si270x Programming Guide” for more information on the settings requested for operation.  
Rev. 0.6  
23  
Si2704/05/06/07-A10  
2
4.5. Digital Audio I S Interface  
2
2
The Si270x receives digital audio data using its I S interface. I S inputs DIN2 and DIN3 can be configured as either  
an input or output while DIN is restricted to input only, and all three can be configured to operate in either master or  
slave mode. Only one output is supported at a time. All data ports operate synchronously from a single bit-clock  
and frame-clock signal. During normal operation, the crossbar mixer outputs are independently programmed to be  
a linear combination of any of the channels from the configured inputs with a scaling range from –1 to +1 for each  
channel with 8-bit precision.  
4.5.1. Auto-Rate Detection  
2
The Si270x features an auto-rate detector. It actively monitors the I S bit and frame clock inputs during operation,  
detects rate changes, and makes the necessary adjustments to various clock system parameters to ensure correct  
operation of the amplifier.  
4.5.2. Audio Activity Detector  
The device has an audio activity detector (AAD) that monitors the presence of audio at the input. In normal  
operation, if the input audio level falls below a programmable threshold for a programmable period of time, it  
causes the device to enter the low power Standby Mode. When the input audio level subsequently increases above  
the threshold, the device returns to normal Active Mode.  
4.5.3. Digital Audio Output  
2
2
The Si270x provides a bypass mode that routes I S audio input directly to the I S output port. The output port in  
turn can be connected to an off-chip device such as a DAC, DSP or digital media controller.  
4.5.4. Audio data formats  
2
The digital audio interface supports 3 different audio data formats: I S, Left-Justified and DSP Mode.  
2
In I S mode, the MSB is captured on the second rising edge of DCLK following each DFS transition. The remaining  
bits of the word are sent in order, down to the LSB. The left channel is transferred first when the DFS is low, and the  
2
right channel is transferred when the DFS is high. Figure 17 shows a diagram for the I S digital audio format.  
In Left-Justified mode, the MSB is captured on the first rising edge of DCLK following each DFS transition. The  
remaining bits of the word are sent in order, down to the LSB. The left channel is transferred first when the DFS is  
high, and the right channel is transferred when the DFS is low. Figure 18 shows a diagram for the Left-Justified  
digital audio format.  
In DSP mode, the DFS becomes a pulse, one DCLK period wide. The left channel is transferred first, followed  
immediately by the right channel. There are two options in transferring the digital audio data in DSP mode: the  
MSB of the left channel can be transferred on the first rising edge of DCLK following the DFS pulse or on the  
second rising edge. Figure 19 shows a diagram for the DSP digital audio format.  
In all audio formats, depending on the word size, DCLK frequency and sample rates, there may be unused DCLK  
cycles after the LSB of each word before the next DFS transition and MSB of the next word. In this event, for power  
2
saving, in I S slave mode DCLK sent to the Si270x can be programmed to remain low until the next DFS transition  
appears.  
The device supports both rising edge and falling edge DCLK. The number of audio bits in each audio sample  
defaults to 24 bits and can be configured to 16, 20, 24 or 32 bits. The leading edge and the data format are  
selected using the DIGITAL_AUDIO_CONFIG property.  
2
4.5.5. I S Master Mode  
2
In master mode, the Si270x is configured for 32-bit word per audio sample, rising edge DCLK, and I S mode data  
format.  
24  
Rev. 0.6  
Si2704/05/06/07-A10  
INVERTED  
DCLK  
(IFALL = 1)  
(IFALL = 0)  
DCLK  
DFS  
DIN  
LEFT CHANNEL  
RIGHT CHANNEL  
1 DCLK  
I2S 0x00  
1 DCLK  
n-2  
n
n-1  
2
1
0
n-1  
n-2  
n
2
1
0
MSB  
LSB  
MSB  
LSB  
Figure 17. I2S Digital Audio Format  
INVERTED  
DCLK  
(IFALL = 1)  
(IFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
2
Left-Justified  
0x03  
DOUT  
n
n-1  
n-2  
1
0
n
n-1  
n-2  
2
1
0
MSB  
LSB  
MSB  
LSB  
Figure 18. Left-Justified Digital Audio Format  
(IFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
LEFT CHANNEL  
DOUT  
DSP 0x06  
DSP 0x04  
n
n-1  
n-2  
n-1  
2
1
0
n
n-1  
n-2  
n-1  
2
1
0
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
1 DCLK  
RIGHT CHANNEL  
2
DOUT  
n
n-2  
2
1
0
n
n-2  
1
0
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 19. DSP Digital Audio Format  
Rev. 0.6  
25  
Si2704/05/06/07-A10  
4.6. Digital Audio Processing (DAP)  
The Si270x implements programmable digital audio processing which features volume control, dynamic range  
compressor (DRC), and audio filtering such as tone control, parametric equalization, crossover, and de-emphasis.  
The three channel digital audio processing chain for the Si2707 is shown in Figure 20.  
I2S  
I2S  
I2S  
Input 1  
Input 2  
Input 3  
Crossbar Mixer  
32.0  
44.1kHz  
48.0  
L+R  
2
L
R
Asynchronous Sample Rate Converter  
Tone1  
48.0 kHz  
ßL1  
ßL2  
ßR1  
ßR2  
ßM1  
ßM2  
Tone2  
7 Bi-Quad Parametric EQ  
2 Bi-Quad EQ  
Treble/Bass Shelving Filters  
De-Emphasis  
HP Cross Over Filter  
Volume Master  
LP X-over  
Volume Balance  
Volume Aux  
Dynamic Range Compression  
DC Notch Filter  
Limiter  
Left  
Right  
Aux  
channel channel  
channel  
Figure 20. Signal Processing Chain  
As outlined in "4.5. Digital Audio I2S Interface " on page 24, the crossbar mixer combines the selected audio  
sources and outputs the corresponding Left and Right main channels and an Aux Channel containing any linear  
combination of the inputs. The Aux Channel can either be disabled completely, configured as a mono low pass  
subwoofer channel, or as a mono full bandwidth center channel according to system requirement.  
2
To make all downstream audio processing independent of the input I S clock frequencies, an asynchronous  
sample rate converter (ASRC) normalizes the input rate to 48 kHz.  
Refer to the “AN469: Si270x Programming Guide” for more information on the complete range of programming  
parameters and settings requested for operation of the digital audio processing features.  
26  
Rev. 0.6  
Si2704/05/06/07-A10  
4.6.1. Parametric Equalization (Si2706/07 only)  
The Si2706/07 includes 16 fully programmable parametric equalizer filters. Seven of these filters are implemented  
in each of the Left/Right main channels and the remaining two are used for the Aux Channel. The filters are  
implemented using a biquad form and can be programmed to shape the frequency response of each channel  
independently. The filters implement the configuration presented on Figure 21 which can be represented by the  
following equation:  
y[n]=b0x[n]+b1x[n-1]+b2x[n-2]+a1y[n-1]+a2y[n-2];  
Where x[n] is the input sample and y[n] is the output sample.  
0
-1  
-1  
-1  
-1  
1
2
1
2
Figure 21. Biquad Filter Configuration  
The five coefficients for each biquad are programmed via the 2-Wire interface by using the command  
SET_EQ_BIQUAD_FILTER_COEFF.  
4.6.2. Tone Control  
The Si270x implements tone control in the form of two second order shelving filters for bass and treble. Each filter  
has programmable cut-off frequency and boost/cut gain. Cut-off frequency can be adjusted from 5 to 20 kHz by  
setting properties BASS_CORNER_FREQ (for bass) and TREBLE_CORNER_FREQ (for treble). Gain can be  
adjusted from –18 to +18 dB in 1 dB steps by setting properties BASS_BOOST_CUT (for bass) and  
TREBLE_BOOST_CUT (for treble). Figure 22 shows the characteristics of the bass and treble shelving filters.  
Gain  
Gain  
BASS  
TREBLE  
Shelving Filter  
Shelving Filter  
Boost  
Cut  
Boost  
Cut  
1
1
Cutoff  
Freq  
Cutoff  
Freq  
Frequency  
Frequency  
Figure 22. Generic Bass/Treble Shelving Filter Characteristics  
Rev. 0.6  
27  
Si2704/05/06/07-A10  
4.6.3. De-Emphasis (Si2706/07 only)  
The Si2706/07 features a de-emphasis filtering option in order to be able to process recorded audio that for noise  
reasons has been subject to 50/15 µs pre-emphasis. The 50/15 µs filter implemented has corner frequencies at  
3.183 kHz and 10.610 kHz.  
4.6.4. Crossover Filter (Si2706/07 only)  
The Si2706/07 features a programmable frequency 12 dB/octave Linkwitz-Riley type crossover filter that provides  
separation of the low and high frequency content of the audio signal. The filter high-pass output is used to drive the  
Left/Right main channel and the low-pass output feeds the Aux Channel to be used in 2.1 Mode with an external  
subwoofer power driver. The cutoff frequency can be programmed from 80 to 320 Hz in 40 Hz steps via the 2-Wire  
interface by setting the CROSSOVER_FREQ property. The same property can also be used to disable and bypass  
the crossover filter.  
4.6.5. Digital Volume Controls  
The volume control maintains a master volume for all the channels, including the Left/Right main channels and the  
Aux Channel. The channel volume can be set in 0.5 dB gain/attenuation steps ranging from –100 dB (mute level)  
to +28 dB using the VOLUME_MASTER property.  
To prevent audible artifacts due to volume transitions, the slope of the change in volume can be programmed by  
configuring the VOLUME_RAMP property. The default configuration is 0.1 dB/ms (dB per millisecond) and  
programming can be done in 0.1 dB/ms steps and ranging from 0.1 to 6.3 dB/ms.  
The device also provides balance control between the Left and Right channels through the use of the  
VOLUME_BALANCE property. This property specifies the audio gain/attenuation division in terms of percent split  
between the two channels.  
The Aux Channel volume control specifies the percentage of gain/attenuation levels relative to the master volume  
using the VOLUME_AUX_CHANNEL property.  
Mute is implemented using the VOLUME_MUTE. Un-muting returns the volume setting to the value stored in the  
volume registers at the programmed volume transition slope rate. During the mute condition, the PWM outputs  
switch at a 50% duty cycle.  
28  
Rev. 0.6  
Si2704/05/06/07-A10  
4.6.6. Dynamic Range Compression (Si2706/07 only)  
The Si2706/07 features dynamic range compression (DRC) with programmable linear gain, compression  
threshold, compression ratio, look ahead time, attack rate, and release rate.  
DRC increases the net output power without clipping by decreasing the peak amplitudes of audio signals and  
increasing the rms content of the lower amplitude audio signal. Audio signals below the threshold are increased by  
the linear gain and audio signals above the threshold are compressed by a pre-defined compression ratio.  
Figure 23 shows a plot of dynamic range compression audio processing with the DRC_THRESHOLD parameter  
set at –40 dBFS, DRC_GAIN parameter at +20 dB relative to an uncompressed transfer function and  
DRC_SLOPE set for a 2:1 compression ratio. For input signals below the compression threshold of –40 dBFS, the  
output signal is increased by 20 dB relative to the input signal. For input signals above the compression threshold  
the input signal is increased by 1 dB for every 2 dB increase in audio input level.  
Figure 23. Dynamic Range Compression Example  
In this example, the input dynamic range of 90 dB is reduced to an output dynamic range of 70 dB.  
Figure 24 shows the time domain response of the dynamic range compression. The DRC_ATTACK_TIME  
parameter sets how quickly the gain compression responds to changes in the input level, and the  
DRC_RELEASE_TIME parameter sets how quickly the gain compression returns to linear gain once the audio  
input level drops below the compression threshold.  
DRC_LOOKAHEAD_TIME allows setting the look ahead time that permits the DRC circuit to adjust the  
compression to sudden level changes thus preventing the clipping of the fast changing signal. Refer to “AN503:  
Si270x Class-D Amplifier—Dynamic Range Compressor Use” for additional information.  
Rev. 0.6  
29  
Si2704/05/06/07-A10  
Figure 24. Time Domain Characteristics of the Audio Dynamic Range Controller  
4.6.7. Hard Signal Limiter  
The device implements a hard limiter to avoid exceeding the maximum modulation rate of the amplifier. The hard  
limiter is always enabled.  
4.6.8. DC Notch Filter  
A dc notch filter with a 5 Hz corner frequency is implemented as the final function in the signal processing chain to  
remove any dc component from the output signal. Each channel has a separate dc notch filter.  
4.6.9. Tone and Alert Generation  
The Si270x includes two independent tone generators with programmable frequencies and on/off times.  
2
The output of both tone generators is fed to a mixer which combines the tones with the I S inputs. The tones’  
amplitudes can be adjusted by programming the mixer coefficients using the SET_AUDIO_INPUT_MIXER  
command.  
This feature allows customization of audible alarms and alerts. Programmable frequencies range from 100 Hz to  
20 kHz in 100 Hz steps and on/off times range from 0 to 65 seconds in 1 ms steps and are set via the 2-Wire  
interface using the properties TONE_ONE_FREQ, TONE_ONE_ON_TIME, TONE_ONE_OFF_TIME, and  
TONE_ONE_AMPLITUDE  
for  
the  
first  
tone  
and  
TONE_TWO_FREQ,  
TONE_TWO_ON_TIME,  
TONE_TWO_OFF_TIME, and TONE_TWO_AMPLITUDE for the second tone.  
4.7. Fault Detection and Response  
To help protect the H-bridge driver and external loads, the output stage has fault detection circuitry that allows the  
device to respond to over-current and over-temperature events.  
The over-temperature circuitry monitors the temperature of the device and if the temperature exceeds 135 ºC a  
thermal error is issued, and the output stage is shut down by transitioning the device to Standby Mode.  
The over-current protection circuit constantly monitors the current of the output stage and triggers a fault alarm if  
an over-current condition is detected from three different events: a short circuit across the speaker terminals, a  
short circuit of any of the outputs to ground and a short circuit of any of the outputs to the supply voltage. In each  
case, the detector issues a fault if the 2.5 A current threshold is exceeded. In response to this fault the device  
power stage is shut down by transitioning the device to Standby Mode.  
30  
Rev. 0.6  
Si2704/05/06/07-A10  
4.8. Power Supply and Grounding Considerations  
Careful attention should be given to the power and ground routing to allow for optimal performance of the Si270x.  
The low voltage supplies, V and V , should be decoupled with 0.1 µF capacitors soldered as close to the device  
DD  
IO  
as possible so that parasitic inductances are minimized. For the power stage supplies V  
and V  
, each should  
PPR  
PPL  
be bypassed with a 0.1 µF in ceramic capacitor, located as close to the device as possible, in parallel with a 220 µF  
electrolytic capacitor. This allows for optimal filtering in the full frequency spectrum. For detailed information on  
board layout considerations and examples refer to “AN470: Si270x Layout Guidelines.”  
4.9. Control Interface  
2
An I C-compatible 2-Wire serial port slave interface allows an external controller to send commands, configure  
properties, and receive responses from the Si270x. Commands may only be sent after V and V supplies are  
IO  
DD  
applied and the RST pin has been released high.  
The CLKO pin serves as a configuration boot-strap to select one of two unique addresses to which the Si270x  
responds. During reset, if CLKO is pulled low using a 2.2 kresistor connected to ground, then the 7 bit device  
address is 1001010 (0x94). If CLKO is left floating, a 22 kinternal pull-up within the Si270x causes the 2-Wire to  
select a device address of 0011011 (0x36).  
A 2-wire transaction begins with the START condition, which occurs when SDIO falls while SCLK is high. Next, the  
2-wire master drives an 8-bit control word serially on SDIO which is captured by the device on rising edges of  
SCLK. The control word consists of a 7 bit device address followed by a read/write bit (read = 1, write = 0). If the  
address matches, the Si270x acknowledges the control word by driving SDIO low on the next falling edge of SCLK.  
For write operations, the 2-Wire master sends an eight bit data byte on SDIO following the control word, which is  
captured by the device on rising edges of SCLK. The Si270x acknowledges each data byte by driving SDIO low for  
one cycle, on the next falling edge of SCLK. The 2-Wire master may write up to eight data bytes during a single  
2-wire transaction. The first byte is a command, and the next seven bytes are arguments.  
For read operations, after the Si270x has acknowledged the control byte, it drives a data byte on SDIO, changing  
the state of SDIO on the falling edge of SCLK. The 2-wire master acknowledges each data byte by driving SDIO  
low for one cycle on the next falling edge of SCLK. If a data byte is not acknowledged, the transaction ends. The  
2-wire master may read up to 16 data bytes in a single 2-wire transaction. These bytes contain the response data  
from the Si270x. A 2-wire transaction ends with the STOP condition, which occurs when SDIO rises while SCLK is  
high. For details on timing specifications and diagrams, refer to Table 8 on page 9, Figure 3 on page 11, and  
Figure 4 on page 11.  
4.10. Programming with Commands  
The Si270x provides a simple yet powerful software interface to program configuration and parameter settings. The  
device is programmed using commands, arguments, properties, and responses. To perform an action, the user  
writes a command byte and associated arguments causing the chip to execute the given command. Commands  
control actions, such as powering up the device, shutting down the device, or configure the audio input source.  
Arguments are specific to a given command and are used to modify the command. For example, for the  
SET_AUDIO_INPUT_MIXER command, arguments are required to set the coefficients of the linear combination of  
the sources. Properties are a special command argument used to modify the default chip operation and are  
generally configured immediately after power up. Examples of properties include CLOCK_SOURCE and  
DEEMPHASIS. A complete list of commands and properties is available in “5. Commands and Properties”.  
Responses provide the user information and are returned after a command and associated arguments are sent. At  
a minimum, all commands respond with a one-byte status reply indicating interrupt and clear-to-send status  
information. Subsequent sections of this data sheet mention many of the commands and properties that are used  
to alter different functions. More information on the complete list of programming modes of operation and  
properties can be found in the “AN469: Si270x Programming Guide.”  
Rev. 0.6  
31  
Si2704/05/06/07-A10  
5. Commands and Properties  
Table 16 and Table 17 are the summary of commands and properties for the Si270x Class D Audio Amplifier  
device.  
Table 16. Class D Audio Amplifier Command Summary  
Common Commands  
Number  
0x01  
0x10  
0x12  
0x13  
0x14  
0x15  
0x16  
0x21  
0x22  
0x23  
0x24  
0x31  
0x32  
Name  
Summary  
POWER_UP  
FUNC_INFO  
Power-up the device.  
Returns the Function revision information of the device.  
Set the value of a property.  
SET_PROPERTY  
GET_PROPERTY  
MFP_PIN_CFG  
Retrieve a property’s value.  
Configure MFP pins.  
SET_AUDIO_INPUT_MIXER  
OUTSEL  
Configure Audio input source.  
Select amplifier outputs.  
SET_EQ_BIQUAD_FILTER_COEFF Set Biquad Filter.  
GET_INT_STATUS  
GET_FAULT_STATUS  
GET_AUDIO_STATUS  
ACTIVATE  
Read interrupt status bit.  
Get the source of the fault condition.  
Read back audio parameters.  
Enable or disable audio processing & amplifier output operations.  
Power-down the device.  
POWER_DOWN  
Table 17. Class D Audio Amplifier Property Summary  
Category Number  
Name  
Summary  
Configure Interrupt Source.  
Interrupt 0x0001 INT_ENABLE  
Clock  
0x0101 REF_CLOCK_SOURCE  
0x0102 REF_CLOCK_FREQ  
0x0103 CLOCK_OUT_FREQ  
Select the reference source for PLL.  
Set the reference clock freq for the PLL in kHz units.  
Configure output clock frequency.  
I2S  
0x0104 DIGITAL_AUDIO_SAMPLE_RATE Set the digital audio sampling rate.  
0x0201 DIGITAL_AUDIO_CONFIG  
0x0301 AAD_CONFIG  
Sets the Digital Audio Input Format Configuration.  
AAD  
Set Audio Activity Detector (AAD) Configuration.  
0x0302 AAD_THRESHOLD  
Set audio level threshold where the device will go into  
standby if the audio input level falls below this thresh-  
old.  
0x0303 AAD_DURATION  
Set how long the signal has been below the threshold  
in ms before going to standby state.  
32  
Rev. 0.6  
Si2704/05/06/07-A10  
Table 17. Class D Audio Amplifier Property Summary (Continued)  
Category Number  
Name  
Summary  
Biquad  
Filter  
0x1901 CROSSOVER_FREQ  
0x2103 BASS_BOOST_CUT  
0x2104 BASS_CORNER_FREQ  
0x2105 TREBLE_BOOST_CUT  
0x2106 TREBLE_CORNER_FREQ  
Set crossover freq between Main Channel and Aux  
Channel.  
Set bass shelving filter boost/cut for the Left and Right  
Channel.  
Set bass shelving filter corner freq for the Left and  
Right Channel.  
Set treble shelving filter boost/cut for the Left and  
Right Channel.  
Set treble shelving filter corner freq for the Left and  
Right Channel.  
Volume  
0x2201 VOLUME_MUTE  
0x2202 VOLUME_MASTER  
0x2203 VOLUME_BALANCE  
0x2204 VOLUME_AUX_CHANNEL  
0x2205 VOLUME_RAMP  
0x2301 DRC_CONFIG  
Mute speaker output.  
Set Master Volume.  
Set L and R Volume Balance from 0% to 100%.  
Set Aux Channel Volume.  
Set volume transition slope.  
Configure DRC.  
DRC  
0x2302 DRC_THRESHOLD  
0x2303 DRC_SLOPE  
Set DRC threshold.  
Set the DRC slope. DRC slope is the inverse of DRC  
compression ratio.  
0x2304 DRC_GAIN  
Set DRC gain.  
0x2305 DRC_ATTACK_TIME  
0x2306 DRC_RELEASE_TIME  
0x2307 DRC_LOOKAHEAD_SAMPLES  
0x2701 PWM_CONFIG  
Set DRC attack time constant in ms units.  
Set DRC release time constant in ms units.  
Sets the number of look-ahead samples.  
Set PWM Output Mode and Max Modulation Index.  
Set PWM Freq in kHz units.  
PWM  
0x2702 PWM_FREQ  
0x2703 PWM_AM_TUNE_FREQ  
Set where the currently AM Tune Freq is to put the  
notch when EMI mitigation mode is used.  
0x2704 PWM_MAX_MODULATION_INDEX Set PWM maximum modulation index.  
0x2705 PWM_OUTPUT_SLEW_RATE  
Set output stage slew rate.  
Program- 0x2901 TONE_ONE_AMPLITUDE  
Set programmable tone generator amplitude.  
Set programmable tone generator frequency.  
Set programmable tone generator ON Time in ms.  
Set programmable tone generator OFF Time in ms.  
Set programmable tone generator amplitude.  
Set programmable tone generator frequency.  
Set programmable tone generator ON Time in ms.  
Set programmable tone generator OFF Time in ms.  
mable  
Tone  
0x2902 TONE_ONE_FREQ  
0x2903 TONE_ONE_ON_TIME  
0x2904 TONE_ONE_OFF_TIME  
0x2905 TONE_TWO_AMPLITUDE  
0x2906 TONE_TWO_FREQ  
0x2907 TONE_TWO_ON_TIME  
0x2908 TONE_TWO_OFF_TIME  
Rev. 0.6  
33  
Si2704/05/06/07-A10  
6. Pin Descriptions  
6.1. 24-Pin QFN Package  
24  
23  
22  
21 20  
19  
DCLK  
DIN  
1
18 OUTPL  
17 OUTNL  
16 GNDL  
15 GNDR  
14 OUTNR  
13 OUTPR  
2
3
4
5
6
VIO  
GND PAD  
(Back Paddle)  
SCLK  
SDIO  
CLKO  
Top Down View  
24-Pin QFN Package  
7
8
9
10 11  
12  
Figure 25. Pin Configuration  
Table 18. Pin Descriptions  
Pin Number  
Name  
GND  
Function  
GND PAD  
Low voltage ground for VDD. Connect to PCB ground plane.  
2
1
2
DCLK  
DIN  
I S digital I/O data clock.  
2
I S digital data input port.  
3
VIO  
I/O supply voltage.  
2
4
SCLK  
SDIO  
CLKO  
MFP3  
AUXOL  
AUXOR  
MFP1  
Serial clock input for I C-compliant 2-Wire control interface.  
2
5
Serial data input/output for I C-compliant 2-Wire control interface.  
6
Buffered reference clock output. Configures 2-Wire address on RST.  
Multi-function pin 3.  
7
8
PWMDAC left channel analog output on Si2705/07 (Reserved on Si2704/06).  
PWMDAC right channel analog output on Si2705/07 (Reserved on Si2704/06).  
Multi-function pin 1.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
OUTSEL/MFP2 Output select three-level control input: 2.0, 2.1 or line out mode.  
VPPR  
OUTPR  
OUTNR  
GNDR  
GNDL  
OUTNL  
OUTPL  
VPPL  
RST  
Right channel power stage supply voltage.  
Right channel power stage “P” output.  
Right channel power stage “N” output.  
Right channel power stage ground.  
Left channel power stage ground.  
Left channel power stage “N” output.  
Left channel power stage “P” output.  
Left channel power stage supply voltage.  
Device reset (active low) input.  
XTLO  
XTLI  
External crystal output.  
Reference clock or external crystal input.  
VDD  
Low voltage supply voltage.  
2
DFS  
I S digital I/O data frame synch.  
34  
Rev. 0.6  
Si2704/05/06/07-A10  
6.2. 48-Pin eTQFP Package  
48 47 46 45 44 43 42 41 40 39 38 37  
1
2
36  
NC  
DFS  
DCLK  
DIN  
NC  
35  
VPPL  
3
34  
OUTPL  
4
33  
GND  
5
32  
VIO  
OUTNL  
6
31  
GND  
SCLK  
SDIO  
CLKO  
NC  
GNDL  
GND PAD  
(Back Paddle)  
7
30  
GNDR  
8
29  
OUTNR  
9
28  
GND  
10  
11  
12  
27  
OUTPR  
26  
NC  
VPPR  
Top Down View  
48-Pin eTQFP Package  
25  
NC  
NC  
13 14 15 16 17 18 19 20 21 22 23 24  
Figure 26. Pin Configuration  
Table 19. Pin Descriptions  
Pin Number  
Name  
Function  
1, 10, 11, 12, 13,  
14, 15, 16, 23,  
24, 25, 36, 37,  
38, 39, 45, 46,  
47, 48  
NC  
No connect. Connect to PCB ground plane.  
2
2
DFS  
DCLK  
DIN  
I S digital I/O data frame synch.  
2
3
I S digital I/O data clock.  
2
4
I S digital data input port.  
5
VIO  
I/O supply voltage.  
6, 20, 28, 33, 43  
GND  
Ground. Connect to PCB ground plane.  
2
7
8
SCLK  
SDIO  
CLKO  
MFP3  
AUXOL  
Serial clock input for I C-compliant 2-Wire control interface.  
2
Serial data input/output for I C-compliant 2-Wire control interface.  
9
Buffered reference clock output. Configures 2-Wire address on RST.  
Multi-function pin 3.  
17  
18  
PWMDAC left channel analog output on Si2705/07 (Reserved on  
Si2704/06).  
19  
AUXOR  
PWMDAC right channel analog output on Si2705/07 (Reserved on  
Si2704/06).  
21  
22  
26  
27  
MFP1  
Multi-function pin 1.  
OUTSEL/MFP2 Output select three-level control input: 2.0, 2.1 or line out mode.  
VPPR  
Right channel power stage supply voltage.  
Right channel power stage “P” output.  
OUTPR  
Rev. 0.6  
35  
Si2704/05/06/07-A10  
Table 19. Pin Descriptions (Continued)  
Pin Number  
Name  
Function  
Right channel power stage “N” output.  
29  
OUTNR  
30  
31  
32  
34  
35  
40  
41  
42  
44  
GNDR  
GNDL  
OUTNL  
OUTPL  
VPPL  
RST  
Right channel power stage ground.  
Left channel power stage ground.  
Left channel power stage “N” output.  
Left channel power stage “P” output.  
Left channel power stage supply voltage.  
Device reset (active low) input.  
External crystal output.  
XTLO  
XTLI  
Reference clock or external crystal input.  
Low voltage supply voltage.  
VDD  
36  
Rev. 0.6  
Si2704/05/06/07-A10  
7. Ordering Guide  
Part Number*  
Si2704-A10-GM  
Si2704-A10-GQ  
Description  
Package Type  
Operating  
Temperature  
2.0 EMI Mitigating Class D Power Amplifier  
2.0 EMI Mitigating Class D Power Amplifier  
4x4 QFN  
Pb-Free  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
7x7 eTQFP  
Pb-Free  
Si2705-A10-GM  
Si2705-A10-GQ  
Si2706-A10-GM  
Si2706-A10-GQ  
Si2707-A10-GM  
Si2707-A10-GQ  
2.1 EMI Mitigating Class D Power Amplifier with  
tunable noise notch for AM radio  
4x4 QFN  
Pb-Free  
2.1 EMI Mitigating Class D Power Amplifier with  
tunable noise notch for AM radio  
7x7 eTQFP  
Pb-Free  
2.0 EMI Mitigating Class D Power Amplifier with  
EQ/DRC  
4x4 QFN  
Pb-Free  
2.0 EMI Mitigating Class D Power Amplifier with  
EQ/DRC  
7x7 eTQFP  
Pb-Free  
2.1 EMI Mitigating Class D Power Amplifier with  
tunable noise notch for AM radio with EQ/DRC  
4x4 QFN  
Pb-Free  
2.1 EMI Mitigating Class D Power Amplifier with  
tunable noise notch for AM radio with EQ/DRC  
7x7 eTQFP  
Pb-Free  
*Note: Add an “R” at the end of the device part number to denote tape and reel option.  
Rev. 0.6  
37  
Si2704/05/06/07-A10  
8. Package Outline  
8.1. 24-Pin QFN Package  
Figure 27 illustrates the package details for 24-pin QFN package option for the Si2704/05/06/07. Table 20 lists the  
values for the dimensions shown in the illustration.  
Figure 27. 24-Pin QFN  
Table 20. 24-Pin QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Dimension  
Min  
2.40  
0.20  
Nom  
2.50  
0.25  
Max  
2.60  
0.30  
0.10  
0.10  
0.08  
0.10  
0.10  
A
E2  
L
A1  
0.02  
b
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
D
4.00 BSC  
2.50  
D2  
2.40  
2.60  
e
E
0.50 BSC  
4.00 BSC  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
38  
Rev. 0.6  
Si2704/05/06/07-A10  
8.2. 48-Pin eTQFP Package  
Figure 28 illustrates the package details for 48-pin eTQFP package option for the Si2704/05/06/07. Table 21 lists  
the values for the dimensions shown in the illustration.  
Figure 28. 48-Pin eTQFP  
Rev. 0.6  
39  
Si2704/05/06/07-A10  
Table 21. 48-Pin eTQFP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
Dimension  
Min  
Nom  
9.00 BSC  
7.00 BSC  
3.81  
Max  
A
E
E1  
E2  
L
A1  
0.05  
0.95  
0.17  
0.09  
A2  
1.00  
3.71  
0.45  
3.91  
0.75  
0.20  
0.20  
0.08  
0.08  
7°  
b
0.22  
0.60  
c
D
aaa  
bbb  
ccc  
ddd  
Θ
9.00 BSC  
7.00 BSC  
3.81  
D1  
D2  
3.71  
3.91  
e
0.50 BSC  
0°  
3.5°  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1982.  
3. This drawing conforms to JEDEC outline MS-026, variation ABC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
40  
Rev. 0.6  
Si2704/05/06/07-A10  
9. Package Markings (Top Marks)  
9.1. Si2707 Top Mark (QFN)  
9.2. Top Mark Explanation  
Mark Method  
YAG Laser  
Line 1 Marking  
Part Number  
04 = Si2704  
05 = Si2705  
06 = Si2706  
07 = Si2707  
Firmware Revision  
Die Revision  
10 = Firmware Revision 1.0  
A = Revision A Die  
Line 2 Marking  
Line 3 Marking  
TTTTT = Internal Code  
Internal Tracking Code  
Pin 1 Identifier  
Circle = 0.5 mm Diameter  
(Bottom-Left Justified)  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
Rev. 0.6  
41  
Si2704/05/06/07-A10  
9.3. Si2707 Top Mark (eTQFP)  
9.4. Top Mark Explanation  
Mark Method  
YAG Laser  
Line 1 Marking  
Part Number  
Si2704  
Si2705  
Si2706  
Si2707  
Firmware Revision  
Die Revision  
10 = Firmware Revision 1.0  
A = Revision A Die  
Line 2 Marking  
Line 3 Marking  
TTTTT = Internal Code  
Internal Tracking Code  
Pin 1 Identifier  
Circle = 0.5 mm Diameter  
(Bottom-Left Justified)  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
42  
Rev. 0.6  
Si2704/05/06/07-A10  
10. Additional Reference Resources  
Si270x Evaluation Board User’s Guide  
AN469: 270x Programming Guide  
AN470: 270x Layout Guidelines  
AN502: Si270x Class-D Amplifier—Analog Source Setup  
AN503: Si270x Class-D Amplifier—Dynamic Range Compressor Use  
AN504: Si270x Class-D Amplifier—Dynamic Bass Configuration  
AN505: Si270x Class-D Amplifier—Measuring Output Power  
AN509: Si270x Class-D Amplifier—Ferrite Bead Filter  
AN510: Si270x Class-D Amplifier—Calculating Filter Loss  
Si270x Customer Support Site:  
http://www.silabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for access to some of these documents. To request access, send mysilabs user name and request  
for access to AudioInfo@silabs.com.  
Rev. 0.6  
43  
Si2704/05/06/07-A10  
DOCUMENT CHANGE LIST  
Revision 0.4 to Revision 0.5  
Updated Table 3 on page 6.  
Updated Table 4 on page 7.  
Updated Table 5 on page 7.  
Updated Table 6 on page 8.  
Updated Table 11 on page 12.  
Updated "2. Typical Application Schematic" on page  
13.  
Updated Figure 15 on page 22.  
2
Added "4.5.5. I S Master Mode" on page 24.  
Added note to "7. Ordering Guide" on page 37.  
Added "9. Package Markings (Top Marks)" on page  
41.  
Added "9.3. Si2707 Top Mark (eTQFP)" on page 42.  
Revision 0.5 to Revision 0.6  
Updated eTQFP pin assignments on pages 1 and  
35.  
Updated eTQFP pin descriptions in Table 19 on  
page 35.  
Updated Table 1 on page 5.  
Updated Table 3 on page 6.  
Updated Table 4 on page 7.  
Updated Table 5 on page 7.  
Updated Table 11 on page 12.  
Updated "2. Typical Application Schematic" on page  
13.  
Updated "3. Typical System Configurations" on page  
14  
Updated Figure 6 on page 14.  
Updated Figure 9 on page 15.  
Updated "4. Functional Description" on page 16.  
Updated "4.4.1.2. External Reference Clock  
Operation" on page 23.  
Updated "5. Commands and Properties" on page 32.  
Updated Table 16 on page 32.  
Updated Table 17 on page 32.  
Updated "10. Additional Reference Resources" on  
page 43.  
44  
Rev. 0.6  
Si2704/05/06/07-A10  
NOTES:  
Rev. 0.6  
45  
Si2704/05/06/07-A10  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: Audioinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
46  
Rev. 0.6  

相关型号:

SI2706-A10-GM

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
SILICON

SI2706-A10-GQ

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
SILICON

SI2707-A10

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
SILICON

SI2707-A10-GM

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
SILICON

SI2707-A10-GQ

EMI MITIGATING 2.1X 5 W CLASS D AUDIO AMPLIFIER
SILICON

SI270M100

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M16

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M160

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M200

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M25

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M250

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE

SI270M35

SNAP-IN MOUNT ALUMINUM ELECTROLYTIC
NTE