SI8230BD-B-ISR [SILICON]

Peripheral Driver, PDSO16;
SI8230BD-B-ISR
型号: SI8230BD-B-ISR
厂家: SILICON    SILICON
描述:

Peripheral Driver, PDSO16

驱动
文件: 总52页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si823x  
0.5 AND 4.0 AMP ISODRIVERS (2.5 AND 5 KVRMS  
)
Features  
Pin Assignments  
Two completely isolated drivers 60 ns maximum propagation  
in one package  
delay  
Up to 5 kVRMS input-to-output  
isolation  
Up to 1500 VDC peak driver-to-  
driver differential voltage  
HS/LS and dual driver versions  
Independent HS and LS inputs or  
SOIC-16 (Wide)  
PWM input versions  
1
16  
15  
14  
13  
12  
11  
10  
9
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
2
Transient immunity >30 kV/µs  
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
Overlap protection and  
programmable dead time  
Si8230  
Si8233  
Up to 8 MHz switching frequency  
0.5 A peak output (Si8230/1/2)  
4.0 A peak output (Si8233/4/5/6)  
NC  
Operating temperature range  
VDDB  
VOB  
GNDB  
–40 to +125 °C  
NC  
UL/VDE/CSA approval  
RoHS-compliant  
VDDI  
SOIC-16 (Narrow)  
Applications  
1
16  
15  
14  
VIA  
VIB  
VDDA  
Power delivery systems  
Motor control systems  
Lighting control systems  
Plasma displays  
2
VOA  
GNDA  
NC  
VDDI  
GNDI  
3
4
5
6
7
8
Si823013  
Si8233 12  
Isolated dc-dc power supplies  
Solar and industrial inverters  
DISABLE  
DT  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
Description  
NC  
The Si823x isolated driver family combines two independent, isolated  
drivers into a single package. The Si8230/1/3/4 are high-side/low-side  
drivers, and the Si8232/5/6 are dual drivers. Versions with peak output  
currents of 0.5 A (Si8230/1/2) and 4.0 A (Si8233/4/5/6) are available. All  
drivers operate with a maximum supply voltage of 24 V.  
VDDI  
LGA-14 (5 x 5 mm)  
1
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
2
3
4
5
6
7
The Si823x drivers utilize Silicon Labs' proprietary silicon isolation  
technology, which provides up to 5 kV  
GNDA  
NC  
VIB  
withstand voltage per UL1577,  
RMS  
Si8230  
Si8233  
VDDI  
and fast 60 ns propagation times. Driver outputs can be grounded to the  
same or separate grounds or connected to a positive or negative voltage.  
The TTL level compatible inputs with >400 mV hysteresis are available in  
individual control input (Si8230/2/3/5/6) or PWM input (Si8231/4)  
configurations. High integration, low propagation delay, small installed  
size, flexibility, and cost-effectiveness make the Si823x family ideal for a  
wide range of isolated MOSFET/IGBT gate drive applications.  
DISABLE  
VDDB  
7
8
DT  
VOB  
VDDI  
GNDB  
Patents Pending  
Safety Approval  
UL 1577 recognized  
Up to 5000 Vrms for 1 minute  
CSA component notice 5A  
approval  
VDE certification conformity  
IEC 60747-5-2 (VDE 0884 Part 2)  
EN 60950 (reinforced insulation)  
(Pending)  
IEC 60950, 61010, 60601  
(reinforced insulation)  
Rev. 0.3 4/10  
Copyright © 2010 by Silicon Laboratories  
Si823x  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si823x  
Block Diagrams  
PWM  
VIA  
VIA  
DT  
VDDA  
VDDA  
VDDA  
VOA  
VOA  
VOA  
DT  
GNDA  
GNDA  
GNDA  
Overlap Protection,  
Programmable Dead  
Time, Control Gating  
Programmable Dead  
Time, Control Gating  
VDDI  
VDDI  
VDDI  
Control Gating  
UVLO  
UVLO  
UVLO  
VDDB  
VDDB  
VDDB  
DISABLE  
DISABLE  
DISABLE  
GNDI  
VOB  
VOB  
VOB  
VIB  
VIB  
GNDB  
GNDB  
GNDB  
GNDI  
GNDI  
Si8230/3  
Si8231/4  
Si8232/5/6  
2
Rev. 0.3  
Si823x  
TABLE OF CONTENTS  
Section  
Page  
1. Top-Level Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2.1. Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Typical Operating Characteristics (0.5 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Typical Operating Characteristics (4.0 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.1. Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.2. Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5.4. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5.5. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.6. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.7. Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . . . . . . . . . .26  
6. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.1. RF, Magnetic, and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . .28  
7. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
7.1. High-Side / Low-Side Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
7.2. Dual Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
7.3. Dual Driver with Thermally Enhanced Package (Si8236) . . . . . . . . . . . . . . . . . . . . .30  
8. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
10. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
11. Land Pattern: Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
12. Package Outline: Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
13. Land Pattern: Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
14. Package Outline: 14 LD LGA (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
15. Land Pattern: 14 LD LGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
16. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . .48  
17. Land Pattern: 14 LD LGA with Thermal Pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Rev. 0.3  
3
Si823x  
1. Top-Level Block Diagrams  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDI  
VDDB  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
VIB  
GNDI  
Si8230/3  
Figure 1. Si8230/3 Two-Input High-Side / Low-Side Isolated Drivers  
VDDI  
VDDA  
PWM  
LPWM  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
DT  
PROTECTION  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
LPWM  
GNDI  
Si8231/4  
Figure 2. Si8231/4 Single-Input High-Side / Low-Side Isolated Drivers  
4
Rev. 0.3  
Si823x  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDI  
VDDB  
DISABLE  
VOB  
UVLO  
GNDB  
VIB  
GNDI  
Si8232/5/6  
Figure 3. Si8232/5/6 Dual Isolated Drivers  
Rev. 0.3  
5
Si823x  
2. Electrical Specifications  
Table 1. Electrical Characteristics1  
4.5 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
DC Specifications  
Input-side Power Supply  
Voltage  
VDDI  
4.5  
6.5  
5.5  
24  
V
V
Voltage between VDDA and  
VDDA, VDDB GNDA, and VDDB and GNDB  
(See “9. Ordering Guide” )  
Driver Supply Voltage  
Si8230/32/33/35/36  
2
2
3
3
mA  
mA  
Input Supply Quiescent  
Current  
IDDI(Q)  
Si8231/34  
IDDA(Q),  
Output Supply Quiescent  
Current  
Current per channel  
IDDB(Q)  
3.0  
mA  
IDDI  
PWM freq = 500 kHz  
PWM freq = 500 kHz  
2.5  
3.6  
mA  
mA  
Input Supply Active Current  
Output Supply Active Current  
IDDO  
IVIA, IVIB,  
IPWM  
–10  
+10  
µA dc  
Input Pin Leakage Current  
IDISABLE  
VIH  
–10  
2.0  
+10  
µA dc  
V
Input Pin Leakage Current  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
VIL  
0.8  
V
VIHYST  
400  
450  
mV  
(VDDA  
/VDDB)  
— 0.04  
VOAH,  
VOBH  
IOA, IOB = –1 mA  
V
V
Logic High Output Voltage  
Logic Low Output Voltage  
VOAL, VOBL  
IOA, IOB = 1 mA  
Si8230/1/2, Figure 4  
Si8233/4/5/6, Figure 4  
Si8230/1/2, Figure 5  
Si8233/4/5/6, Figure 5  
Si8230/1/2  
0.5  
4.0  
0.25  
2.0  
5.0  
1.0  
15  
0.04  
IOA(SCL),  
IOB(SCL)  
Output Short-circuit Pulsed  
Sink Current  
A
IOA(SCH),  
IOB(SCH)  
Output Short-circuit Pulsed  
Source Current  
RON(SINK)  
Output Sink Resistance  
Si8233/4/5/6  
Si8230/1/2  
RON(SOURCE)  
Output Source Resistance  
Si8233/4/5/6  
2.7  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k.  
6
Rev. 0.3  
Si823x  
Table 1. Electrical Characteristics1 (Continued)  
4.5 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
VDDIUV+  
VDDIUV–  
VDDIHYS  
VDDAUV+  
Test Conditions  
VDDI rising  
Min  
3.60  
3.30  
Typ  
4.0  
Max  
4.45  
4.15  
Units  
V
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI Lockout Hysteresis  
VDDI falling  
3.70  
250  
V
mV  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB rising  
VDDBUV+  
See Figure 36 on page 25.  
See Figure 37 on page 25.  
See Figure 38 on page 25.  
See Figure 39 on page 25.  
5.20  
7.50  
9.60  
12.4  
5.80  
8.60  
11.1  
13.8  
6.30  
9.40  
12.2  
14.8  
V
V
V
V
5 V threshold  
8 V threshold  
10 V threshold  
12.5 V threshold  
VDDAUV–  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB falling  
VDDBUV–  
See Figure 36 on page 25.  
See Figure 37 on page 25.  
See Figure 38 on page 25.  
See Figure 39 on page 25.  
4.90  
7.20  
9.40  
11.6  
5.52  
8.10  
10.1  
12.8  
6.0  
V
V
V
V
5 V threshold  
8 V threshold  
10 V threshold  
12.5 V threshold  
8.70  
10.9  
13.8  
VDDAHYS  
,
VDDA, VDDB  
Lockout hysteresis  
UVLO voltage = 5 V  
UVLO voltage = 8 V  
280  
600  
mV  
mV  
mV  
VDDBHYS  
VDDAHYS  
,
VDDA, VDDB  
Lockout hysteresis  
VDDBHYS  
VDDAHYS  
,
VDDA, VDDB  
Lockout hysteresis  
UVLO voltage = 10 V or 12.5 V  
1000  
VDDBHYS  
AC Specifications  
Minimum Pulse Width  
10  
30  
60  
ns  
ns  
ns  
tPHL, tPLH  
PWD  
CL = 200 pF  
Propagation Delay  
Pulse Width Distortion  
5.60  
|t  
- t  
|
PLH PHL  
Minimum Overlap Time2  
TDD  
DT  
DT = VDDI, No-Connect  
Figure 41, RDT = 100 k  
Figure 41, RDT = 6 k  
0.4  
900  
70  
12  
20  
ns  
ns  
Programmed Dead Time3  
ns  
ns  
ns  
CL = 200 pF (Si8230/1/2)  
CL = 200 pF (Si8233/4/5/6)  
tR,tF  
Output Rise and Fall Time  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k.  
Rev. 0.3  
7
Si823x  
Table 1. Electrical Characteristics1 (Continued)  
4.5 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Units  
Shutdown Time from  
Disable True  
tSD  
60  
ns  
Restart Time from  
Disable False  
tRESTART  
tSTART  
CMTI  
30  
5
60  
7
ns  
µs  
Time from VDD_ = VDD_UV+  
to VOA, VOB = VIA, VIB  
Device Start-up Time  
Common Mode  
Transient Immunity  
VIA, VIB, PWM = VDDI or 0 V  
50  
kV/µs  
Notes:  
1. VDDA = VDDB = 12 V for 5, 8, and 10 V UVLO devices; VDDA = VDDB = 15 V for 12.5 V UVLO devices.  
2. TDD is the minimum overlap time without triggering overlap protection (Si8230/1/3/4 only).  
3. The largest RDT resistor that can be used is 220 k.  
8
Rev. 0.3  
Si823x  
2.1. Test Circuits  
Figures 4 and 5 depict sink current and source current test circuits.  
VDDA = VDDB = 15 V  
VDDI  
(5 V)  
VDD  
OUT_  
10  
IN_  
Si823x  
INPUT  
SCHOTTKY  
+
5 V  
VSS  
100 µF  
_
1 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
50 ns  
RSNS  
0.1  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 4. Sink Current Test Circuit  
VDDA = VDDB = 15 V  
VDDI  
(5 V)  
VDD  
OUT_  
10  
IN_  
Si823x  
INPUT  
SCHOTTKY  
1 µF  
+
VSS  
100 µF  
5 V  
_
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 5. Source Current Test Circuit  
Rev. 0.3  
9
Si823x  
Table 2. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.6  
–0.6  
–0.5  
Typ  
Max  
+150  
+125  
6.0  
Units  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Ambient Temperature under Bias  
Input-side Supply Voltage  
T
A
VDDI  
VDDA, VDDB  
VIN  
Driver-side Supply Voltage  
30  
V
Voltage on any pin with respect to ground  
Output Drive Current per channel  
Lead Solder Temperature (10 sec.)  
VDD + 0.5  
10  
V
I
mA  
°C  
O
260  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
2500  
4250  
2500  
3850  
650  
V
V
V
V
V
V
V
V
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
RMS  
Maximum Isolation (Output to Output) (1 sec)  
WB SOIC-16  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16  
Maximum Isolation (Output to Output) (1 sec)  
NB SOIC-16  
Maximum Isolation (Input to Output) (1 sec)  
14 LD LGA without thermal pad  
Maximum Isolation (Output to Output) (1 sec)  
14 LD LGA without thermal pad  
Maximum Isolation (Input to Output) (1 sec)  
14 LD LGA with thermal pad  
1850  
0
Maximum Isolation (Output to Output) (1 sec)  
14 LD LGA with thermal pad  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. VDE certifies storage temperature from –40 to 150 °C.  
Table 3. Regulatory Information*  
CSA  
The Si823x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
VDE  
The Si823x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si823x is certified under UL1577 component recognition program. For more details, see File E257455.  
*Note: Regulatory Certifications apply to 1.5 kV  
rated devices which are production tested to 1.8 kV  
for 1 sec.  
for 1 sec.  
RMS  
RMS  
rated devices which are production tested to 3.0 kV  
RMS  
Regulatory Certifications apply to 2.5 kV  
RMS  
Regulatory Certifications apply to 3.75 kV  
rated devices which are production tested to 4.5 kV  
for 1 sec.  
RMS  
RMS  
Regulatory Certifications apply to 5.0 kV  
rated devices which are production tested to 6.0 kV  
for 1 sec.  
RMS  
RMS  
For more information, see "9.Ordering Guide" on page 37.  
10  
Rev. 0.3  
Si823x  
Table 4. Insulation and Safety-Related Specifications  
Test  
Value  
NBSOIC-16  
14 LD  
LGA w/  
Pad  
14 LD  
LGA  
Parameter  
Symbol  
Unit  
WBSOIC-16  
Condition  
WBSOIC-16  
5 kV  
RMS  
2.5 kV  
2.5 kV  
RMS  
RMS  
1.5 kV  
RMS  
Nominal Air Gap  
(Clearance)  
L(1O1)  
L(1O2)  
8.0  
4.01  
4.01  
3.5  
3.5  
1.75  
1.75  
mm  
mm  
mm  
1
Nominal External Tracking  
8.0  
1
(Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
0.014  
0.014  
0.014  
0.014  
DIN IEC  
60112/VDE  
0303 Part 1  
Tracking Resistance  
(Comparative Tracking  
Index)  
CTI  
>175  
>175  
>175  
>175  
V
Resistance  
(Input-Output)  
12  
12  
12  
12  
R
10  
10  
10  
10  
IO  
2
Capacitance  
(Input-Output)  
C
f = 1 MHz  
1.4  
4.0  
1.4  
4.0  
1.4  
4.0  
1.4  
4.0  
pF  
pF  
IO  
2
3
C
Input Capacitance  
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “10. Package Outline:  
16-Pin Wide Body SOIC” , “12. Package Outline: Narrow Body SOIC” , “14. Package Outline: 14 LD LGA (5 x 5 mm)” ,  
and “16. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm)” . VDE certifies the clearance and creepage limits  
as 4.7 mm minimum for the NB SOIC-16 and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose a  
clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits  
as 3.9 mm minimum for the NB SOIC 16 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si823x is converted into a 2-terminal device. Pins 1–8 (1-7, 14 LD LGA)  
are shorted together to form the first terminal and pins 9–16 (8-14, 14 LD LGA) are shorted together to form the second  
terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 5. IEC 60664-1 (VDE 0884 Part 2) Ratings  
Specification  
14 LD  
Parameter  
Test Conditions  
WB  
NB  
14 LD  
LGA  
LGA  
SOIC-16 SOIC-16  
w/ Pad  
Basic Isolation Group  
Material Group  
IIIa  
I-IV  
I-IV  
I-III  
I-III  
IIIa  
I-IV  
I-III  
I-II  
IIIa  
I-IV  
I-III  
I-II  
IIIa  
I-IV  
I-III  
I-II  
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
I-II  
I-II  
I-I  
Rev. 0.3  
11  
Si823x  
Table 6. IEC 60747-5-2 Insulation Characteristics*  
Characteristic  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
NB SOIC-16 14 LD LGA  
SOIC-16  
14 LD LGA  
w/ Pad  
Maximum Working Insulation  
Voltage  
V
891  
560  
373  
V peak  
IORM  
Method a  
After Environmen-  
tal Tests  
Subgroup 1  
1590  
896  
597  
(V  
x 1.6 = V  
,
IORM  
PR  
t = 60 sec, Partial  
m
Discharge < 5 pC)  
Method b1  
(V  
x 1.875 = V  
, 100%  
IORM  
PR  
V
V peak  
Input to Output Test Voltage  
PR  
Production Test,  
1375  
1018  
1050  
672  
700  
448  
t = 1 sec,  
m
Partial Discharge <  
5 pC)  
After Input and/or  
Safety Test  
Subgroup 2/3  
(V  
x 1.2 = V  
,
IORM  
PR  
t = 60 sec, Partial  
m
Discharge < 5 pC)  
Highest Allowable Overvolt-  
age (Transient Overvoltage,  
V
6000  
2
4000  
2
2650  
2
V peak  
TR  
t
= 10 sec)  
TR  
Pollution Degree (DIN VDE  
0110, Table 1)  
Insulation Resistance at T ,  
9
9
9
S
R
>10  
>10  
>10  
S
V
= 500 V  
IO  
*Note: The Si823x is suitable for basic electrical isolation within the safety limit data. Maintenance of the safety data is  
ensured by protective circuits. The Si823x provides a climate classification of 40/125/21.  
12  
Rev. 0.3  
Si823x  
Table 7. IEC Safety Limiting Values1  
14 LD  
LGA w/  
Pad  
WB  
NB  
14  
Parameter  
Symbol  
Test Condition  
Unit  
SOIC-16 SOIC-16 LD LGA  
T
150  
50  
150  
50  
150  
50  
150  
100  
°C  
Case Temperature  
S
= 100 °C/W (WB SOIC-16),  
JA  
105 °C/W (NB SOIC-16, 14 LD LGA),  
50 °C/W (14 LD LGA w/ Pad)  
I
mA  
W
Safety Input Current  
Device Power  
S
V
= 5.5 V,  
DDI  
V
= V  
= 24 V,  
DDA  
DDB  
T = 150 °C, T = 25 °C  
J
A
P
1.2  
1.2  
1.2  
1.2  
D
2
Dissipation  
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 6.  
2. The Si823x is tested with V  
= 5.5 V, V  
= V  
= 24 V, T = 150 ºC, C = 100 pF, input 2 MHz 50% duty cycle  
DDI  
DDA  
DDB J L  
square wave.  
Rev. 0.3  
13  
Si823x  
Table 8. Thermal Characteristics  
Parameter  
14 LD  
LGA w/  
Pad  
WB  
SOIC-16  
NB  
SOIC-16  
14 LD  
LGA  
Symbol  
Unit  
IC Junction-to-Air Thermal Resis-  
tance  
100  
105  
105  
50  
°C/W  
JA  
60  
50  
40  
30  
20  
10  
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 6. WB SOIC-16, NB SOIC-16, 14 LD LGA Thermal Derating Curve, Dependence of Safety  
Limiting Values with Case Temperature per DIN EN 60747-5-2  
120  
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
100  
80  
60  
40  
20  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 7. 14 LD LGA with Pad Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
14  
Rev. 0.3  
Si823x  
2.2. Theory of Operation  
The operation of an Si823x channel is analogous to that of an opto coupler and gate driver, except an RF carrier is  
modulated instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si823x channel is shown in  
Figure 8.  
Transmitter  
Receiver  
Driver  
VDD  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
Dead  
time  
control  
B
MODULATOR  
DEMODULATOR  
A
0.5 to 4 A  
peak  
Gnd  
Figure 8. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 9 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 9. Modulation Scheme  
Rev. 0.3  
15  
Si823x  
3. Typical Operating Characteristics (0.5 Amp)  
The typical performance characteristics depicted in Figures 10 through 21 are for information purposes only. Refer  
to Table 1 on page 6 for actual specification limits.  
10  
7
Duty Cycle = 50%  
CL = 100 pF  
1 Channel Switching  
8
6
4
2
0
1MHz  
6
5
4
3
2
1
0
Tfall  
500kHz  
100kHz  
Trise  
50 kHz  
VDD=12V, 25°C  
CL = 100 pF  
9
14  
19  
24  
VDDA Supply Voltage (V)  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 13. Supply Current vs. Supply Voltage  
Figure 10. Rise/Fall Time vs. Supply Voltage  
30  
5
4
25  
H-L  
3
20  
VDDA = 15V,  
f = 250kHz, CL = 0 pF  
Duty Cycle = 50%  
2 Channels Switching  
2
1
L-H  
15  
VDD=12V, 25°C  
CL = 100 pF  
-50  
0
50  
Temperature (°C)  
100  
10  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 14. Supply Current vs. Temperature  
Figure 11. Propagation Delay vs. Supply  
Voltage  
40  
35  
Trise  
30  
4
Duty Cycle = 50%  
25  
CL = 0 pF  
1 Channel Switching  
3.5  
3
1MHz  
20  
15  
10  
5
Tfall  
500kHz  
100kHz  
2.5  
2
VDD=12V, 25°C  
1.5  
1
0
50 kHz  
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 15. Rise/Fall Time vs. Load  
Figure 12. Supply Current vs. Supply Voltage  
16  
Rev. 0.3  
Si823x  
4
3.75  
3.5  
3.25  
3
50  
45  
40  
35  
30  
25  
20  
15  
10  
L-H  
H-L  
2.75  
2.5  
2.25  
2
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
15  
20  
25  
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
Supply Voltage (V)  
Figure 16. Propagation Delay vs. Load  
Figure 19. Output Source Current vs. Supply  
Voltage  
30  
7
6.75  
6.5  
25  
L-H  
6.25  
6
20  
5.75  
5.5  
H-L  
5.25  
5
15  
4.75  
4.5  
VDD=12V, Load = 200pF  
10  
4.25  
4
VDD=12V, Vout=5V  
-10 20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
50  
80  
110  
Temperature (°C)  
Temperature (°C)  
Figure 17. Propagation Delay vs. Temperature  
Figure 20. Output Sink Current vs. Temperature  
9
8
7
6
5
3.5  
3.25  
3
2.75  
2.5  
VDD=12V, Vout=5V  
2.25  
4
VDD=12V, Vout=VDD-5V  
10  
12  
14  
16  
18  
20  
22  
24  
2
-40  
-10  
20  
50  
80  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 18. Output Sink Current vs. Supply  
Voltage  
Figure 21. Output Source Current vs.  
Temperature  
Rev. 0.3  
17  
Si823x  
4. Typical Operating Characteristics (4.0 Amp)  
The typical performance characteristics depicted in Figures 22 through 33 are for information purposes only. Refer  
to Table 1 on page 6 for actual specification limits.  
10  
14  
12  
10  
8
Duty Cycle = 50%  
CL = 100 pF  
1MHz  
1 Channel Switching  
8
6
4
2
0
Tfall  
500kHz  
6
Trise  
100kHz  
50 kHz  
4
2
0
9
14  
19  
24  
VDD=12V, 25°C  
CL = 100 pF  
VDDA Supply Voltage (V)  
Figure 25. Supply Current vs. Supply Voltage  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
10  
8
Figure 22. Rise/Fall Time vs. Supply Voltage  
30  
6
VDDA = 15V,  
f = 250kHz, CL = 0 pF  
4
25  
Duty Cycle = 50%  
2 Channels Switching  
2
L-H  
0
20  
-50  
0
50  
100  
H-L  
Temperature (°C)  
15  
Figure 26. Supply Current vs. Temperature  
VDD=12V, 25°C  
CL = 100 pF  
10  
40  
35  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Trise  
30  
Figure 23. Propagation Delay vs. Supply  
Voltage  
25  
20  
15  
10  
5
Tfall  
14  
Duty Cycle = 50%  
CL = 0 pF  
1 Channel Switching  
12  
10  
8
1MHz  
VDD=12V, 25°C  
0
500kHz  
0
1
2
3
4
5
6
7
8
9
10  
6
Load (nF)  
4
100kHz  
50 kHz  
2
Figure 27. Rise/Fall Time vs. Load  
0
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 24. Supply Current vs. Supply Voltage  
18  
Rev. 0.3  
Si823x  
4
3.75  
3.5  
3.25  
3
50  
45  
40  
35  
30  
25  
20  
15  
10  
H-L  
L-H  
2.75  
2.5  
2.25  
2
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
15  
20  
25  
0
1
2
3
4
5
6
7
8
9
10  
Supply Voltage (V)  
Load (nF)  
Figure 31. Output Source Current vs. Supply  
Voltage  
Figure 28. Propagation Delay vs. Load  
30  
7
6.75  
6.5  
H-L  
25  
20  
15  
10  
6.25  
6
L-H  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
VDD=12V, Vout=5V  
-10 20  
VDD=12V, Load = 200pF  
-40  
50  
80  
110  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 32. Output Sink Current vs. Temperature  
Figure 29. Propagation Delay vs. Temperature  
3.5  
3.25  
3
9
8
7
6
5
2.75  
2.5  
2.25  
VDD=12V, Vout=5V  
VDD=12V, Vout=VDD-5V  
4
2
10  
12  
14  
16  
18  
20  
22  
24  
-40  
-10  
20  
50  
80  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 30. Output Sink Current vs. Supply  
Voltage  
Figure 33. Output Source Current vs.  
Temperature  
Rev. 0.3  
19  
Si823x  
5. Application Information  
The Si823x family of isolated drivers consists of high-side, low-side, and dual driver configurations.  
5.1. Products  
Table 9 shows the configuration and functional overview for each product in this family.  
Table 9. Si823x Family Overview  
Part Number  
Configuration  
Overlap  
Protection  
Programmable  
Dead Time  
Inputs  
Peak Output  
Current (A)  
Si8230  
Si8231  
Si8232  
Si8233  
Si8234  
Si8235/6  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
VIA, VIB  
PWM  
0.5  
0.5  
0.5  
4.0  
4.0  
4.0  
VIA, VIB  
VIA, VIB  
PWM  
High-Side/Low-Side  
High-Side/Low-Side  
Dual Driver  
VIA, VIB  
5.2. Device Behavior  
Table 10 contains truth tables for the Si8230/3, Si8231/4, and Si8232/5/6 families.  
Table 10. Si823x Family Truth Table*  
Si8230/3 (High-Side/Low-Side) Truth Table  
Inputs  
Output  
VDDI State Disable  
Notes  
VIA  
VIB  
VOA  
VOB  
Output transition occurs after internal dead time  
expires.  
L
L
L
Powered  
Powered  
Powered  
Powered  
L
L
L
L
L
L
L
Output transition occurs after internal dead time  
expires.  
H
L
H
L
L
Output transition occurs after internal dead time  
expires.  
H
H
H
L
Invalid state. Output transition occurs after internal  
dead time expires.  
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
X
X
X
X
Unpowered  
Powered  
X
H
L
L
L
L
Device is disabled.  
Si8231/4 (PWM Input High-Side/Low-Side) Truth Table  
Output  
PWM Input  
VDDI State Disable  
Notes  
VOA  
VOB  
Output transition occurs after internal dead time  
expires.  
H
L
Powered  
Powered  
L
L
H
L
Output transition occurs after internal dead time  
expires.  
L
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
X
X
Unpowered  
Powered  
X
H
L
L
L
L
Device is disabled.  
*Note: This truth table assumes VDDA and VDDB are powered. If VDDA or VDDB power is lost, the respective output state  
(VOA or VOB) is undetermined.  
20  
Rev. 0.3  
Si823x  
Table 10. Si823x Family Truth Table* (Continued)  
Si8232/5/6 (Dual Driver) Truth Table  
Output  
Inputs  
VDDI State Disable  
Notes  
VIA  
VIB  
VOA  
VOB  
Output transition occurs immediately  
(no internal dead time).  
L
L
L
Powered  
Powered  
Powered  
Powered  
L
L
L
L
L
L
Output transition occurs immediately  
(no internal dead time).  
H
L
L
H
H
H
L
Output transition occurs immediately  
(no internal dead time).  
H
H
Output transition occurs immediately  
(no internal dead time).  
H
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
X
X
X
X
Unpowered  
Powered  
X
H
L
L
L
L
Device is disabled.  
*Note: This truth table assumes VDDA and VDDB are powered. If VDDA or VDDB power is lost, the respective output state  
(VOA or VOB) is undetermined.  
Rev. 0.3  
21  
Si823x  
5.3. Power Supply Connections  
Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these  
supplies must be placed as close to the VDD and GND pins of the Si823x as possible. The optimum values for  
these capacitors depend on load current and the distance between the chip and the regulator that powers it. Low  
effective series resistance (ESR) capacitors, such as Tantalum, are recommended.  
5.4. Power Dissipation Considerations  
Proper system design must assure that the Si823x operates within safe thermal limits across the entire load range.  
The Si823x total power dissipation is the sum of the power dissipated by bias supply current, internal switching  
losses, and power delivered to the load. Equation 1 shows total Si823x power dissipation. In a non-overlapping  
system, such as a high-side/low-side driver, n = 1. For a dual driver with each driver having an independent load, n  
can have a maximum value of 2, corresponding to a 100% overlap between the two outputs.  
PD = V  
I
DDI DDI + 2V I  
DDO QOUT + CintVDDO2F+ 2nCLVDDO2F  
where:  
PD is the total Si823x device power dissipation (W)  
IDDI is the input-side maximum bias current (3 mA)  
IQOUT is the driver die maximum bias current (2.5 mA)  
Cint is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver)  
VDDI is the input-side VDD supply voltage (4.5 to 5.5 V)  
VDDO is the driver-side supply voltage (10 to 24 V)  
F is the switching frequency (Hz)  
n is the overlap constant (max value = 2)  
Equation 1.  
The maximum power dissipation allowable for the Si823x is a function of the package thermal resistance, ambient  
temperature, and maximum allowable junction temperature, as shown in Equation 2:  
T
jmax TA  
---------------------------  
PDmax  
where:  
ja  
PDmax = Maximum Si823x power dissipation (W)  
Tjmax = Si823x maximum junction temperature (145 °C)  
TA = Ambient temperature (°C)  
ja = Si823x junction-to-air thermal resistance (105 °C/W)  
F = Si823x switching frequency (Hz)  
Equation 2.  
Substituting values for PDMAX TjMAX, TA, and into Equation 2 results in a maximum allowable total power  
ja  
dissipation of 1.1 W. Maximum allowable load is found by substituting this limit and the appropriate datasheet  
values from Table 1 on page 6 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and  
Equation 4 (4.0 A driver), both of which assume VDDI = 5 V and VDDA = VDDB = 18 V.  
1.4 103  
11  
10  
--------------------------  
CL(MAX)  
=
7.5 10  
F
Equation 3.  
1.4 103  
--------------------------  
CL(MAX)  
=
3.7 10  
F
Equation 4.  
22  
Rev. 0.3  
Si823x  
Equation 1 and Equation 2 are graphed in Figure 34 where the points along the load line represent the package  
dissipation-limited value of CL for the corresponding switching frequency.  
1 6 ,0 0 0  
0 .5 A D rive r (p F )  
1 4 ,0 0 0  
4 A D rive r (p F )  
1 2 ,0 0 0  
1 0 ,0 0 0  
8 ,0 0 0  
6 ,0 0 0  
4 ,0 0 0  
2 ,0 0 0  
0
F re q u e n c y (K h z)  
Figure 34. Max Load vs. Switching Frequency  
Rev. 0.3  
23  
Si823x  
5.5. Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si823x VDD lines. Care must be taken to  
minimize parasitic inductance in these paths by locating the Si823x as close to the device it is driving as possible.  
In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and  
ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for  
power devices and small signal components provides the best overall noise performance.  
5.6. Device Operation  
Device behavior during start-up, normal operation and shutdown is shown in Figure 35, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Note that outputs VOA and VOB default low  
when input side power supply (VDDI) is not present.  
5.6.1. Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period  
tSTART. Following this, the outputs follow the states of inputs VIA and VIB.  
5.6.2. Under Voltage Lockout  
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. The input (control) side, Driver A and Driver B, each have  
their own under voltage lockout monitors.  
The Si823x input side enters UVLO when VDDI < VDDI  
, and exits UVLO when VDDI > VDDI  
. The driver  
UV+  
UV–  
outputs, VOA and VOB, remain low when the input side of the Si823x is in UVLO and their respective VDD supply  
(VDDA, VDDB) is within tolerance. Each driver output can enter or exit UVLO independently. For example, VOA  
unconditionally enters UVLO when VDDA falls below VDDA  
and exits UVLO when VDDA rises above  
UV–  
VDDA  
.
UV+  
UVLO+  
VDDHYS  
UVLO-  
VDDI  
UVLO+  
UVLO-  
VDDHYS  
VDDA  
VIA  
DISABLE  
tSD  
tRESTART  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
VOA  
Figure 35. Device Behavior during Normal Operation and Shutdown  
24  
Rev. 0.3  
Si823x  
5.6.3. Under Voltage Lockout (UVLO)  
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Referring to Figures 36  
through 39, upon power up, the Si823x is maintained in UVLO until VDD rises above VDD . During power down,  
UV+  
the Si823x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDD  
UV+  
VDD  
).  
HYS  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
3.5  
4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
8.5  
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5  
Supply Voltage (VDD - VSS) (V)  
Supply Voltage (VDD - VSS) (V)  
Figure 36. Si823x UVLO Response (5 V)  
Figure 38. Si823x UVLO Response (10 V)  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
11.3 11.8 12.3 12.8 13.3 13.8 14.3 14.8 15.3  
6.0  
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
Supply Voltage (VDD - VSS) (V)  
Supply Voltage (VDD - VSS) (V)  
Figure 39. Si823x UVLO Response (12.5 V)  
Figure 37. Si823x UVLO Response (8 V)  
Rev. 0.3  
25  
Si823x  
5.6.4. Control Inputs  
VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB  
causes the corresponding output to go high. For PWM input versions (Si8231/4), VOA is high and VOB is low when  
the PWM input is high, and VOA is low and VOB is high when the PWM input is low.  
5.6.5. Disable Input  
When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of VIA  
and VIB. Device operation terminates within tSD after DISABLE = V and resumes within tRESTART after  
IH  
DISABLE = V . The DISABLE input has no effect if VDDI is below its UVLO level (i.e. VOA, VOB remain low).  
IL  
5.7. Programmable Dead Time and Overlap Protection  
All high-side/low-side drivers (Si8230/1/3/4) include programmable overlap protection to prevent outputs VOA and  
VOB from being high at the same time. These devices also include programmable dead time, which adds a user-  
programmable delay between transitions of VOA and VOB (Figure 26.A). When enabled, dead time is present on  
all transitions, even after overlap recovery (Figure 26.B). The amount of dead time delay (DT) is programmed by a  
single resistor (RDT) connected from the DT input to ground per Equation 5. Note that the dead time pin can be  
tied to VDDI or left floating to provide a nominal dead time at approximately 400 ps.  
DT 10 RDT  
where:  
DT= dead time (ns)  
and  
RDT= dead time programming resistor (k  
Equation 5.  
The device driving VIA and VIB should provide a minimum dead time of TDD to avoid activating overlap protection.  
Input/output timing waveforms for the two-input drivers are shown in Figure 40, and dead time waveforms are  
shown in Figure 41.  
Ref  
A
B
C
D
E
Description  
VIA  
Normal operation: VIA high, VIB low.  
Normal operation: VIB high, VIA low.  
Contention: VIA = VIB = high.  
`
VIB  
Recovery from contention: VIA transitions low.  
Normal operation: VIA = VIB = low.  
Normal operation: VIA high, VIB low.  
Contention: VIA = VIB = high.  
VOA  
VOB  
F
G
H
I
Recovery from contention: VIB transitions low.  
Normal operation: VIB transitions high.  
A
B
C
D
E
F
G
H
I
Figure 40. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers  
26  
Rev. 0.3  
Si823x  
OVERLAP  
OVERLAP  
VOB  
VIA  
VIB  
VIA  
VIB  
50%  
DT  
DT  
DT  
DT  
90%  
VOA  
VOA  
VOB  
10%  
DT  
DT  
90%  
VOB  
10%  
B. Dead Time Operation During Overlap  
A. Typical Dead Time Operation  
Figure 41. Dead Time Waveforms for High-Side/Low-Side Two-Input Drivers  
Rev. 0.3  
27  
Si823x  
6. RF Radiated Emissions  
The Si823x family uses a RF carrier frequency of approximately 700 MHz. This results in a small amount of  
radiated emissions at this frequency and its harmonics. The radiation is not from the IC but, rather, is due to a small  
amount of RF energy driving the isolated ground planes which can act as a dipole antenna.  
The unshielded Si8230 evaluation board passes FCC Class B (Part 15) requirements. Table 11 shows measured  
emissions compared to FCC requirements. Note that the data reflects worst-case conditions where all inputs are  
tied to logic 1 and the RF transmitters are fully active.  
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less  
efficient antenna.  
Table 11. Radiated Emissions  
Frequency Measured FCC Spec Compared to  
(MHz)  
(dBµV/m) (dBµV/m)  
Spec (dB)  
712  
29  
39  
42  
43  
44  
44  
44  
37  
54  
54  
54  
54  
54  
54  
–8  
1424  
2136  
2848  
4272  
4984  
5696  
–15  
–12  
–11  
–10  
–10  
–10  
6.1. RF, Magnetic, and Common Mode Transient Immunity  
The Si823x families have very high common mode transient immunity while transmitting data. This is typically  
measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements  
show no failures at 30 kV/µs (minimum). During a high surge event, the output may glitch low for up to 20–30 ns,  
but the output corrects immediately after the surge event.  
The Si823x families pass the industrial requirements of CISPR24 for RF immunity of 10 V/m using an unshielded  
evaluation board. As shown in Figure 20, the isolated ground planes form a parasitic dipole antenna. The PCB  
should be laid-out to not act as an efficient antenna for the RF frequency of interest. RF susceptibility is also  
significantly reduced when the end system is housed in a metal enclosure, or otherwise shielded.  
The Si823x digital isolator can be used in close proximity to large motors and various other magnetic-field  
producing equipment. In theory, data transmission errors can occur if the magnetic field is too large and the field is  
too close to the isolator. However, in actual use, the Si823x devices provide extremely high immunity to external  
magnetic fields and have been independently evaluated to withstand magnetic fields of at least 1000 A/m  
according to the IEC 61000-4-8 and IEC 61000-4-9 specifications.  
GND1  
GND2  
Isolator  
Dipole  
Antenna  
Figure 42. Dipole Antenna  
28  
Rev. 0.3  
Si823x  
7. Applications  
The following examples illustrate typical circuit configurations using the Si823x.  
7.1. High-Side / Low-Side Driver  
Figure 43A shows the Si8230/3 controlled using the VIA and VIB input signals, and Figure 43B shows the Si8231/4  
controlled by a single PWM signal.  
VDD2  
VDD2  
D1  
D1  
VDDI  
VDDI  
C2  
1 µF  
C2  
1 µF  
VDDI  
GNDI  
VDDI  
C1  
1uF  
C1  
1uF  
1500 V max  
1500 V max  
VDDA  
VDDA  
GNDI  
PWM  
CB  
CB  
Q1  
Q1  
OUT1  
OUT2  
VIA  
VIB  
PWMOUT  
CONTROLLER  
I/O  
VOA  
VOA  
GNDA  
GNDA  
DT  
DT  
RDT  
RDT  
CONTROLLER  
Si8230/3  
Si8231/4  
VDDB  
VDDB  
VDDB  
VDDB  
C3  
10uF  
C3  
10uF  
I/O  
DISABLE  
DISABLE  
GNDB  
VOB  
GNDB  
VOB  
Q2  
Q2  
A
B
Figure 43. Si823x in Half-Bridge Application  
For both cases, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver  
for Q1, which has a maximum drain voltage of 1500 V. VOB is connected as a conventional low-side driver. Note  
that the input side of the Si823x requires VDD in the range of 4.5 to 5.5 V, while the VDDA and VDDB output side  
supplies must be between 6.5 and 24 V with respect to their respective grounds. The boot-strap start up time will  
depend on the CB cap chosen. VDD2 is usually the same as VDDB. Also note that the bypass capacitors on the  
Si823x should be located as close to the chip as possible. Moreover, it is recommended that 0.1 and 10 µF bypass  
capacitors be used to reduce high frequency noise and maximize performance.  
Rev. 0.3  
29  
Si823x  
7.2. Dual Driver  
Figure 44 shows the Si823x configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be  
referenced to a common ground or to different grounds with as much as 1500 V dc between them.  
VDDI  
VDDI  
Q1  
C1  
10 µF  
VOA  
GNDI  
VDDA  
VDDA  
GNDA  
VIA  
VIB  
PH1  
PH2  
C2  
10 µF  
CONTROLLER  
Si8235/6  
VDDB  
VDDB  
GNDB  
C3  
I/O  
DISABLE  
10 µF  
Q2  
VOB  
Figure 44. Si8235 in a Dual Driver Application  
7.3. Dual Driver with Thermally Enhanced Package (Si8236)  
The thermal pad of the Si8236 must be connected to a heat spreader to lower thermal resistance. Generally, the  
larger the thermal shield’s area, the lower the thermal resistance. It is recommended that a thermal vias also be  
used to add mass to the shield. Vias generally have much more mass than the shield alone and consume less  
space, thus reducing thermal resistance more effectively. While the heat spreader is not generally a circuit ground,  
it is a good reference plane for the Si8236 and is also useful as a shield layer for EMI reduction.  
2
With a 10mm thermal plane on the outer layers (including 20 thermal vias), the thermal impedance of the Si8236  
was measured at 50 °C/W. This is a significant improvement over the Si835 which does not include a thermal pad.  
The Si8235’s thermal resistance was measured at 105 °C /W.  
30  
Rev. 0.3  
Si823x  
8. Pin Descriptions  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
16  
15  
14  
13  
12  
11  
10  
9
1
16  
15  
14  
VIA  
VIB  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
2
2
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
VDDI  
GNDI  
DISABLE  
DT  
Si8230  
Si8233  
Si823013  
Si8233 12  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
Table 12. Si8230/3 Two-Input HS/LS Isolated Driver (SOIC-16)  
Pin  
1
Name  
VIA  
Description  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
2
VIB  
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the  
dead time between output transitions of VOA and VOB. Defaults to 1 ns dead time when con-  
nected to VDDI or left open (see "5.7.Programmable Dead Time and Overlap Protection" on  
page 26).  
7
NC  
No connection.  
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
VOB Driver B output (low-side driver).  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output (high-side driver).  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 0.3  
31  
Si823x  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
16  
15  
14  
13  
12  
11  
10  
9
1
16  
15  
14  
PWM  
NC  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
2
2
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
GNDI  
DISABLE  
DT  
Si8231  
Si8234  
Si823113  
Si8234 12  
DISABLE  
DT  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
VDDI  
VDDI  
Table 13. Si8231/4 PWM Input HS/LS Isolated Driver (SOIC-16)  
Description  
Pin  
1
Name  
PWM PWM input.  
NC No connection.  
2
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the  
dead time between output transitions of VOA and VOB. Defaults to 1 ns dead time when con-  
nected to VDDI or left open (see "5.7.Programmable Dead Time and Overlap Protection" on  
page 26).  
7
NC  
No connection.  
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for VOB driver output.  
9
10  
11  
12  
13  
14  
15  
16  
VOB Driver B output (low-side driver).  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output (high-side driver).  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
32  
Rev. 0.3  
Si823x  
SOIC-16 (Narrow)  
SOIC-16 (Wide)  
1
16  
15  
14  
13  
12  
11  
10  
9
1
16  
15  
14  
VIA  
VIB  
VIA  
VIB  
VDDA  
VOA  
GNDA  
NC  
VDDA  
VOA  
GNDA  
NC  
2
2
3
4
5
6
7
8
3
4
5
6
7
8
VDDI  
GNDI  
VDDI  
GNDI  
Si8232  
Si8235  
Si823213  
Si8235 12  
DISABLE  
DISABLE  
NC  
NC  
11  
10  
9
VDDB  
VOB  
GNDB  
VDDB  
VOB  
GNDB  
NC  
NC  
NC  
NC  
VDDI  
VDDI  
Table 14. Si8232/5 Dual Isolated Driver (SOIC-16)  
Description  
Pin  
1
Name  
VIA  
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
2
VIB  
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
NC  
NC  
No connection.  
No connection.  
7
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for VOB driver output.  
9
10  
11  
12  
13  
14  
15  
16  
VOB  
Driver B output.  
VDDB Driver output VOB power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver B output.  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 0.3  
33  
Si823x  
LGA-14 (5 x 5 mm)  
1
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
2
3
4
5
GNDA  
NC  
VIB  
VDDI  
Si8233  
DISABLE  
VDDB  
6
7
7
8
DT  
VOB  
VDDI  
GNDB  
Table 15. Si8233 Two-Input HS/LS Isolated Driver (14 LD LGA)  
Pin  
GNDI  
VIA  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
Non-inverting logic input terminal for Driver A.  
VIB  
Non-inverting logic input terminal for Driver B.  
VDDI  
DISABLE  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 1 ns dead  
time when connected to VDDI or left open (see"5.7.Programmable Dead Time and  
Overlap Protection" on page 26).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
34  
Rev. 0.3  
Si823x  
LGA-14 (5 x 5 mm)  
1
14  
13  
12  
11  
10  
GNDI  
PWM  
VDDA  
VOA  
2
3
4
5
GNDA  
NC  
NC  
VDDI  
Si8234  
DISABLE  
VDDB  
6
7
7
8
DT  
VOB  
VDDI  
GNDB  
Table 16. Si8234 PWM Input HS/LS Isolated Driver (14 LD LGA)  
Pin  
GNDI  
PWM  
NC  
Name  
Description  
1
2
3
4
5
Input-side ground terminal.  
PWM input.  
No connection.  
VDDI  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
DT  
6
Dead time programming input. The value of the resistor connected from DT to ground  
sets the dead time between output transitions of VOA and VOB. Defaults to 1 ns dead  
time when connected to VDDI or left open (see "5.7.Programmable Dead Time and  
Overlap Protection" on page 26).  
VDDI  
GNDB  
VOB  
7
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
Rev. 0.3  
35  
Si823x  
LGA-14 (5 x 5 mm)  
1
14  
13  
12  
11  
10  
GNDI  
VIA  
VDDA  
VOA  
2
3
4
5
GNDA  
NC  
VIB  
Si8235  
Si8236  
VDDI  
DISABLE  
VDDB  
6
7
7
8
NC  
VOB  
VDDI  
GNDB  
Table 17. Si8235/6 Dual Isolated Driver (14 LD LGA)  
Pin  
GNDI  
VIA  
Name  
Description  
Input-side ground terminal.  
1
2
3
4
5
Non-inverting logic input terminal for Driver A.  
Non-inverting logic input terminal for Driver B.  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
VIB  
VDDI  
DISABLE  
Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW.  
It is strongly recommended that this input be connected to external logic level to avoid  
erroneous operation due to capacitive noise coupling.  
NC  
6
7
No connection.  
VDDI  
GNDB  
VOB  
Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
Ground terminal for Driver B.  
8
9
Driver B output (low-side driver).  
VDDB  
NC  
10  
11  
12  
13  
14  
Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
No connection.  
GNDA  
VOA  
Ground terminal for Driver A.  
Driver A output (high-side driver).  
VDDA  
Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
36  
Rev. 0.3  
Si823x  
9. Ordering Guide  
The ordering part number (OPN) naming convention is described in Figure 45. The currently available OPNs are  
listed in Table 18. The part number convention is not intended to imply that all possible device configuration options  
and their corresponding ordering part numbers (OPN) will be available or are included in the ordering guide table.  
However, if there is a specific device configuration of interest that is currently not listed in the ordering guide table,  
contact your local Silicon Labs sales representative, or go to the Silicon Labs Technical Support web page at  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a request for your  
specific device configuration and OPN. Ordering part number options for 10 V and 12.5 V UVLO will be made  
available only by request.  
Si823YUV-R-TPn  
ISOdriver Product  
Peak Output Current (0,1,2=0.5A, 3,4,5=4A)  
UVLO* level (A=5V, B=8V, C=10V, D=12.5V)  
Insulation Rating (A=1.5kV,B=2.5kV,C=3.75kV,D=5kV)  
Product Revision  
Temp Range (I=-40 to +125C)  
Package Type (S=SOIC, M=LGA)  
Package Extension (1=Narrow Body)  
Note: UVLO = Under Voltage Lock Out for VDDA, VDDB.  
Figure 45. ISODriver OPN Naming Convention  
Rev. 0.3  
37  
Si823x  
Table 18. Ordering Part Numbers  
Legacy  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Temperature  
Range  
Package Ordering Part  
Inputs Configuration  
Type  
Number (OPN)  
2.5 kV Only  
Wide Body (WB) Package Options  
High Side/  
Si8230BB-B-IS VIA, VIB  
Si8230-A-IS  
Low Side  
High Side/  
Low Side  
0.5 A  
4.0 A  
8 V  
Si8231BB-B-IS  
PWM  
Si8231-A-IS  
Si8232-A-IS  
Si8233-B-IS  
Si8232BB-B-IS VIA,VIB  
Si8233BB-C-IS VIA,VIB  
Dual Driver  
SOIC-16  
Wide Body  
2.5 kVrms –40 to +125 °C  
High Side/  
Low Side  
High Side/  
Low Side  
8 V  
Si8234BB-C-IS  
PWM  
Si8234-B-IS  
Si8235-B-IS  
Si8235BB-C-IS VIA,VIB  
Dual Driver  
Narrow Body (NB) Package Options  
High Side/  
Si8230BB-B-IS1 VIA,VIB  
Low Side  
High Side/  
Low Side  
0.5 A  
4.0 A  
8 V  
Si8231BB-B-IS1  
PWM  
SOIC-16  
Narrow  
Body  
Si8232BB-B-IS1 VIA,VIB  
Si8233BB-C-IS1 VIA,VIB  
Dual Driver  
2.5 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
High Side/  
Low Side  
8 V  
Si8234BB-C-IS1  
PWM  
Si8235BB-C-IS1 VIA,VIB  
Dual Driver  
Note: All packages are RoHS-compliant.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 and 14-LD LGA packages and MSL2A for narrow-body  
SOIC-16 packages with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications  
and peak solder temperatures.  
38  
Rev. 0.3  
Si823x  
Table 18. Ordering Part Numbers (Continued)  
Legacy  
Ordering Part  
Number (OPN)  
Peak  
Current Voltage  
UVLO  
Isolation  
Rating  
Temperature  
Range  
Package Ordering Part  
Inputs Configuration  
Type  
Number (OPN)  
2.5 kV Only  
LGA Package Options  
High Side/  
Low Side  
Si8233BB-C-IM VIA,VIB  
Si8233-B-IM  
Si8234-B-IM  
High Side/  
Low Side  
8 V  
LGA-14  
5x5 mm  
Si8234BB-C-IM  
PWM  
2.5 kVrms  
1.5 kVrms  
Si8235BB-C-IM VIA,VIB  
Si8235AB-C-IM VIA,VIB  
Si8236BA-C-IM VIA, VIB  
Dual Driver  
Dual Driver  
Dual Driver  
Si8235-B-IM  
N/A  
4.0 A  
5 V  
–40 to +125 °C  
8 V  
5 V  
LGA-14  
5x5 mm  
with Ther-  
mal Pad  
Si8236-B-IM  
Si8236AA-C-IM VIA,VIB  
Dual Driver  
5 kV Ordering Options  
High Side/  
Low Side  
Si8230BD-B-IS VIA, VIB  
High Side/  
Low Side  
0.5 A  
Si8231BD-B-IS  
PWM  
Si8232BD-B-IS VIA, VIB  
Si8233BD-C-IS VIA, VIB  
Dual Driver  
SOIC-16  
Wide Body  
8 V  
5.0 kVrms –40 to +125 °C  
N/A  
High Side/  
Low Side  
High Side/  
Low Side  
4.0 A  
Si8234BD-C-IS  
PWM  
Si8235BD-C-IS VIA, VIB  
Dual Driver  
Note: All packages are RoHS-compliant.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 and 14-LD LGA packages and MSL2A for narrow-body  
SOIC-16 packages with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifications  
and peak solder temperatures.  
Rev. 0.3  
39  
Si823x  
10. Package Outline: 16-Pin Wide Body SOIC  
Figure 46 illustrates the package details for the Si823x in a 16-Pin Wide Body SOIC. Table 19 lists the values for  
the dimensions shown in the illustration.  
Figure 46. 16-Pin Wide Body SOIC  
Table 19. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.51  
0.33  
c
0.20  
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
40  
Rev. 0.3  
Si823x  
11. Land Pattern: Wide-Body SOIC  
Figure 47 illustrates the recommended land pattern details for the Si823x in a 16-pin wide-body SOIC. Table 20  
lists the values for the dimensions shown in the illustration.  
Figure 47. 16-Pin SOIC Land Pattern  
Table 20. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 0.3  
41  
Si823x  
12. Package Outline: Narrow Body SOIC  
Figure 48 illustrates the package details for the Si823x in a 16-pin narrow-body SOIC (SO-16). Table 21 lists the  
values for the dimensions shown in the illustration.  
Figure 48. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 21. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
0.25 BSC  
42  
Rev. 0.3  
Si823x  
Table 21. Package Diagram Dimensions (Continued)  
h
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-  
012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-  
STD-020C specification for Small Body Components.  
Rev. 0.3  
43  
Si823x  
13. Land Pattern: Narrow Body SOIC  
Figure 49 illustrates the recommended land pattern details for the Si823x in a 16-pin narrow-body SOIC. Table 22  
lists the values for the dimensions shown in the illustration.  
Figure 49. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 22. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
44  
Rev. 0.3  
Si823x  
14. Package Outline: 14 LD LGA (5 x 5 mm)  
Figure 50 illustrates the package details for the Si823x in an LGA outline. Table 23 lists the values for the  
dimensions shown in the illustration.  
Figure 50. Si823x LGA Outline  
Table 23. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
0.80  
0.15  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
Rev. 0.3  
45  
Si823x  
15. Land Pattern: 14 LD LGA  
Figure 51 illustrates the recommended land pattern details for the Si823x in a 14-pin LGA. Table 24 lists the values  
for the dimensions shown in the illustration.  
Figure 51. 14-Pin LGA Land Pattern  
46  
Rev. 0.3  
Si823x  
Table 24. 14-Pin LGA Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
0.65  
0.80  
0.40  
C1  
E
X1  
Y1  
Notes:  
General:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05 mm.  
Solder Mask Design:  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design:  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly:  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-  
020D specification for Small Body Components.  
Rev. 0.3  
47  
Si823x  
16. Package Outline: 14 LD LGA with Thermal Pad (5 x 5 mm)  
Figure 52 illustrates the package details for the Si8236 ISOdriver in an LGA outline. Table 25 lists the values for the  
dimensions shown in the illustration.  
Figure 52. Si823x LGA Outline with Thermal Pad  
Table 25. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
1.40  
4.15  
0.80  
0.15  
1.50  
4.25  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
P1  
P2  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
1.45  
4.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
48  
Rev. 0.3  
Si823x  
17. Land Pattern: 14 LD LGA with Thermal Pad  
Figure 53 illustrates the recommended land pattern details for the Si8236 in a 14-pin LGA with thermal pad.  
Table 26 lists the values for the dimensions shown in the illustration.  
Figure 53. 14-Pin LGA with Thermal Pad Land Pattern  
Rev. 0.3  
49  
Si823x  
Table 26. 14-Pin LGA with Thermal Pad Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
1.50  
4.25  
0.65  
0.80  
0.40  
C1  
C2  
D2  
E
X1  
Y1  
Notes:  
General:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05 mm.  
Solder Mask Design:  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Stencil Design:  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly:  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-  
020D specification for Small Body Components.  
50  
Rev. 0.3  
Si823x  
DOCUMENT CHANGE LIST  
Revision 0.11 to Revision 0.2  
Updated all specs to reflect latest silicon revision.  
Updated Table 1 on page 6 to include new UVLO  
options.  
Updated Table 2 on page 10 to reflect new maximum  
package isolation ratings  
Added Figures 34, 35, and 36.  
Updated Ordering Guide to reflect new package  
offerings.  
Added "5.6.3.Under Voltage Lockout (UVLO)" on  
page 25 to describe UVLO operation.  
Revision 0.2 to Revision 0.3  
Moved Sections 2, 3, and 4 to after Section 5.  
Updated Tables 15, 16, and 17.  
Removed Si8230, Si8231, and Si8232 from pinout and  
from title.  
Updated and added Ordering Guide footnotes.  
Updated UVLO specifications in Table 1 on page 6.  
Added PWD and Output Supply Active Current  
specifications in Table 1.  
Updated and added typical operating condition  
graphs in "3.Typical Operating Characteristics  
(0.5 Amp)" on page 16 and "4.Typical Operating  
Characteristics (4.0 Amp)" on page 18.  
Rev. 0.3  
51  
Si823x  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
The sale of this product contains no licenses to Power-One’s intellectual property. Contact Power-One, Inc. for appropriate licenses.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
52  
Rev. 0.3  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY