SI8421AD-D-ISR [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16;
SI8421AD-D-ISR
型号: SI8421AD-D-ISR
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16

光电二极管 接口集成电路
文件: 总37页 (文件大小:815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV)  
Data Sheet  
Low-Power, Single and Dual-Channel Digital Isolators  
KEY FEATURES  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-  
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-  
tages when compared to legacy isolation technologies. The operating parameters of  
these products remain stable across wide temperature ranges and throughout device  
• High-speed operation  
• DC to 150 Mbps  
• No start-up initialization required  
• Wide Operating Supply Voltage:  
• 2.6 – 5.5 V  
service life for ease of design and highly uniform performance. All device versions have  
Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors.  
• Up to 5000 V  
isolation  
RMS  
Data rates up to 150 Mbps are supported, and all devices achieve worst-case propaga-  
tion delays of less than 10 ns. Ordering options include a choice of isolation ratings (up  
to 5 kV) and a selectable fail-safe operating mode to control the default output state dur-  
ing power loss. All products are safety certified by UL, CSA, and VDE, and products in  
• High electromagnetic immunity  
• Ultra low power (typical)  
• 5 V Operation:  
• < 2.6 mA/channel at 1 Mbps  
wide-body packages support reinforced insulation withstanding up to 5 kVRMS  
.
• < 6.8 mA/channel at 100 Mbps  
• 2.70 V Operation:  
• < 2.3 mA/channel at 1 Mbps  
Applications  
• < 4.6 mA/channel at 100 Mbps  
• Schmitt trigger inputs  
• Industrial automation systems  
• Medical electronics  
• Isolated ADC, DAC  
• Motor control  
• Selectable fail-safe mode  
• Default high or low output  
• Hybrid electric vehicles  
• Isolated switch mode supplies  
• Power inverters  
• Communication systems  
• Precise timing (typical)  
• 11 ns propagation delay max  
• 1.5 ns pulse width distortion  
• 0.5 ns channel-channel skew  
• 2 ns propagation delay skew  
• 5 ns minimum pulse width  
• Transient immunity 45 kV/µs  
• AEC-Q100 qualification  
Safety Regulatory Approvals  
• UL 1577 recognized  
• VDE certification conformity  
• Up to 5000 VRMS for 1 minute  
• CSA component notice 5A approval  
• IEC 60747-5-5 (VDE0884 Part 5)  
• EN60950-1 (reinforced insulation)  
• IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
• Wide temperature range  
• –40 to 125 °C at 150 Mbps  
• RoHS compliant packages  
• SOIC-16 wide body  
• SOIC-8 narrow body  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Features List  
1. Features List  
• High-speed operation  
• Schmitt trigger inputs  
• DC to 150 Mbps  
• Selectable fail-safe mode  
• Default high or low output  
• Precise timing (typical)  
• No start-up initialization required  
• Wide Operating Supply Voltage:  
• 2.6 – 5.5 V  
• 11 ns propagation delay max  
• 1.5 ns pulse width distortion  
• 0.5 ns channel-channel skew  
• 2 ns propagation delay skew  
• 5 ns minimum pulse width  
• Transient immunity 45 kV/µs  
• AEC-Q100 qualification  
• Wide temperature range  
• –40 to 125 °C at 150 Mbps  
• RoHS compliant packages  
• SOIC-16 wide body  
• Up to 5000 VRMS isolation  
• High electromagnetic immunity  
• Ultra low power (typical)  
• 5 V Operation:  
• < 2.6 mA/channel at 1 Mbps  
• < 6.8 mA/channel at 100 Mbps  
• 2.70 V Operation:  
• < 2.3 mA/channel at 1 Mbps  
• < 4.6 mA/channel at 100 Mbps  
• SOIC-8 narrow body  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 1  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide1,2,3  
Ordering Part  
Number (OPN)  
Number of Number of Maximum  
Default  
Output  
State  
Isolation  
Rating  
Temp  
Range  
Package  
Type  
Inputs  
Inputs  
Data Rate  
(Mbps)  
VDD1 Side VDD2 Side  
Si8422AB-D-IS  
Si8422BB-D-IS  
Si8423AB-D-IS  
Si8423BB-D-IS  
1
1
2
2
1
1
1
0
0
0
1
150  
1
High  
High  
High  
High  
Low  
2.5 kVrms  
–40 to 125 °C  
NB SOIC-8  
150  
1
Si8410AD-D-IS4  
Si8410BD-D-IS4  
Si8420AD-D-IS4  
Si8420BD-D-IS4  
Si8421AD-D-IS4  
5.0 kVrms  
–40 to 125 °C  
WB SOIC-16  
1
2
2
1
1
0
0
0
1
1
150  
1
Low  
Low  
Low  
Low  
Low  
150  
1
Si8421BD-D-IS4  
Si8422AD-D-IS  
Si8422BD-D-IS  
Si8423AD-D-IS  
Si8423BD-D-IS  
150  
1
1
2
2
1
1
0
0
1
High  
High  
High  
High  
150  
1
150  
1. All devices >1 kVRMS are AEC-Q100 qualified.  
2. “Si” and “SI” are used interchangeably.  
3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard clas-  
sifications.  
4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products.  
5. An "R" at the end of the part number denotes tape and reel packaging option.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 2  
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Functional Description  
3. Functional Description  
3.1 Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This  
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified  
block diagram for a single Si84xx channel is shown in the figure below.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 3.1. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the  
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that  
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to  
magnetic fields. See the figure below for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 3.2. Modulation Scheme  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 3  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Functional Description  
3.2 Eye Diagram  
The figure below illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern  
Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were captured on an oscilloscope. The re-  
sults illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width  
distortion and 350 ps peak jitter were exhibited.  
Figure 3.3. Eye Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 4  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Device Operation  
4. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 4.1 Device Behavior during Normal Operation on  
page 6, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to  
determine outputs when power supply (VDD) is not present.  
Table 4.1. Si84xx Logic Operation Table  
VI Input1,4  
VDDI State1,2,3 VDDO State1,2,3  
VO Output1,4  
Comments  
H
L
P
P
P
P
P
H
L
Normal operation.  
X5  
H6 (Si8422/23)  
UP  
Upon transition of VDDI from unpowered to powered,  
O returns to the same state as VI in less than 1 μs.  
V
L6 (Si8410/20/21)  
X5  
P
UP  
Undetermined Upon transition of VDDO from unpowered to powered,  
VO returns to the same state as VI within 1 μs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V.  
3. Unpowered (UP) state is defined as VDD = 0 V.  
4. X = not applicable; H = Logic High; L = Logic Low.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
6. See Section 2. Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have  
default output state = H, and some have default output state = L, depending on the ordering part number (OPN).  
4.1 Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow  
the states of inputs.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 5  
 
 
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Device Operation  
4.2 Under Voltage Lockout  
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below  
its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter  
or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO  
when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 4.1. Device Behavior during Normal Operation  
4.3 Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the  
safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a  
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 5.5 Regulatory Information1 on  
page 20 and Table 5.6 Insulation and Safety-Related Specifications on page 21 detail the working voltage and creepage/clearance  
capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted  
by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1,  
60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.  
4.3.1 Supply Bypass  
The Si841x/2x family requires a 0.1 μF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be  
placed as close as possible to the package. To enhance the robustness of a design, it is further recommended that the user also add 1  
μF bypass capacitors and include 100 Ω resistors in series with the inputs and outputs if the system is excessively noisy.  
4.3.2 Pin Connections  
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
4.3.3 Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-  
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will  
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
4.4 Fail-Safe Operating Mode  
Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered)  
can either be a logic high or logic low when the output supply is powered. See Table 4.1 Si84xx Logic Operation Table on page 5 and  
Section 2. Ordering Guide for more information.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 6  
 
 
 
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Device Operation  
4.5 Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Table 5.2 Electri-  
cal Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on page 17 for actual specification limits.  
Figure 4.2. Si8410 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 4.3. Si8420 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 4.4. Si8421 Typical VDD1 or VDD2 Supply Current vs.  
Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)  
Figure 4.5. Si8410 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 4.6. Si8420 Typical VDD2 Supply Current vs. Data Rate  
5, 3.3, and 2.70 V Operation  
Figure 4.7. Si8422 Typical VDD1 or VDD2 Supply Current vs.  
Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)  
(15 pF Load)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 7  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Device Operation  
Figure 4.8. Si8423 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 4.9. Si8423 Typical VDD2 Supply Current vs. Data Rate  
5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 4.10. Propagation Delay  
vs. Temperature  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 8  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Ambient Operating Temperature1  
Supply Voltage  
TA  
–40  
25  
125  
C°  
VDD1  
VDD2  
2.70  
2.70  
5.5  
5.5  
V
V
Note:  
1. The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating channels, and  
supply voltage.  
Table 5.2. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDHYS  
Test Condition  
Min  
2.15  
45  
Typ  
2.3  
75  
Max  
2.5  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD1, VDD2 rising  
VDD Negative-Going Lockout  
Hysteresis  
mV  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
VHYS  
VIH  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
V
V
V
0.45  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
VIL  
0.8  
VOH  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2  
– 0.4  
4.8  
Low Level Output Voltage  
Input Leakage Current  
VOL  
IL  
0.2  
0.4  
±10  
V
μA  
Ω
Output Impedance1  
ZO  
50  
DC Supply Current (All inputs 0 V or at Supply)  
Si8410Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
3.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
mA  
VDD2  
VDD1  
VDD2  
Si8420Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
mA  
VDD2  
VDD1  
VDD2  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 9  
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Si8421Ax, Bx  
VDD1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
mA  
VDD2  
VDD1  
VDD2  
Si8422Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
3.7  
3.7  
1.7  
1.7  
5.6  
5.6  
2.6  
2.6  
mA  
VDD2  
VDD1  
VDD2  
Si8423Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
mA  
VDD2  
VDD1  
VDD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)  
Si8410Ax, Bx  
VDD1  
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Ax, Bx  
VDD1  
3.5  
1.9  
5.3  
2.9  
VDD2  
Si8421Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8422Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8423Ax, Bx  
VDD1  
3.4  
1.9  
5.1  
2.9  
VDD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.1  
1.5  
3.1  
2.1  
mA  
VDD2  
Si8420Bx  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 10  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
3.6  
2.6  
Max  
5.4  
Unit  
VDD1  
mA  
3.6  
VDD2  
Si8421Bx  
VDD1  
3.2  
3.2  
4.5  
4.5  
mA  
mA  
mA  
VDD2  
Si8422Bx  
VDD1  
3.2  
3.2  
4.5  
4.5  
VDD2  
Si8423Bx  
VDD1  
3.4  
2.5  
5.1  
3.5  
VDD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.1  
5.0  
3.1  
6.3  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Bx  
VDD1  
3.7  
9.8  
5.4  
12.3  
VDD2  
Si8421Bx  
VDD1  
6.8  
6.8  
8.5  
8.5  
VDD2  
Si8422Bx  
VDD1  
6.8  
6.8  
8.5  
8.5  
VDD2  
Si8423Bx  
VDD1  
3.4  
9.2  
5.1  
11.5  
VDD2  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1.0  
250  
35  
Mbps  
ns  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
ns  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
25  
40  
ns  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew2  
tPSK(P-P)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 11  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
tPSK  
35  
ns  
0
150  
6.0  
11  
Mbps  
ns  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
4.0  
8.0  
ns  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
1.5  
3.0  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
All Models  
tPSK(P-P)  
tPSK  
2.0  
0.5  
3.0  
1.5  
ns  
ns  
Output Rise Time  
tr  
tf  
CL = 15 pF  
CL = 15 pF  
2.0  
2.0  
350  
4.0  
4.0  
ns  
ns  
ps  
Output Fall Time  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 3.3 Eye Diagram  
on page 4  
Common Mode Transient  
Immunity  
CMTI  
tSU  
VI = VDD or 0 V  
20  
45  
15  
kV/μs  
μs  
Start-up Time3  
40  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 5.1. Propagation Delay Timing  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 12  
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.3. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDHYS  
Test Condition  
Min  
2.15  
45  
Typ  
2.3  
75  
Max  
2.5  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD1, VDD2 rising  
VDD Negative-Going Lockout  
Hysteresis  
mV  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
VHYS  
VIH  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
V
V
V
0.45  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
VIL  
0.8  
VOH  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2  
3.1  
– 0.4  
Low Level Output Voltage  
Input Leakage Current  
VOL  
IL  
0.2  
0.4  
±10  
V
μA  
Ω
Output Impedance (Si8410/20)1  
ZO  
50  
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8420Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
VDD2  
VDD1  
VDD2  
Si8421Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
VDD2  
VDD1  
VDD2  
Si8422Ax, Bx  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 13  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
Min  
Typ  
3.7  
3.7  
1.7  
1.7  
Max  
5.6  
5.6  
2.6  
2.6  
Unit  
VDD1  
mA  
VDD2  
VDD1  
VDD2  
Si8423Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
mA  
VDD2  
VDD1  
VDD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)  
Si8410Ax, Bx  
VDD1  
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Ax, Bx  
VDD1  
3.5  
1.9  
5.3  
2.9  
VDD2  
Si8421Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8422Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8423Ax, Bx  
VDD1  
3.4  
1.9  
5.1  
2.9  
VDD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.0  
1.3  
3.0  
1.8  
mA  
mA  
mA  
VDD2  
Si8420Bx  
VDD1  
3.5  
2.3  
5.3  
3.2  
VDD2  
Si8421Bx  
VDD1  
3.0  
3.0  
4.4  
4.4  
VDD2  
Si8422Bx  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 14  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
3.0  
3.0  
Max  
4.4  
Unit  
VDD1  
mA  
4.4  
VDD2  
Si8423Bx  
VDD1  
3.4  
2.2  
5.1  
3.1  
mA  
VDD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.0  
3.6  
3.0  
4.5  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Bx  
VDD1  
4.5  
7.0  
5.3  
8.8  
VDD2  
Si8421Bx  
VDD1  
5.3  
5.3  
6.6  
6.6  
VDD2  
Si8422Bx  
VDD1  
5.3  
5.3  
6.6  
6.6  
VDD2  
Si8423Bx  
VDD1  
3.4  
6.6  
5.1  
8.3  
VDD2  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
0
1.0  
250  
35  
Mbps  
ns  
Propagation Delay  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
ns  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
25  
ns  
|tPLH – tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
tPSK(P-P)  
tPSK  
40  
35  
ns  
ns  
0
150  
6.0  
11  
Mbps  
ns  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
4.0  
8.0  
ns  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 15  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
1.5  
3.0  
ns  
|tPLH – tPHL  
|
Propagation Delay Skew2  
Channel-Channel Skew  
All Models  
tPSK(P-P)  
tPSK  
2.0  
0.5  
3.0  
1.5  
ns  
ns  
Output Rise Time  
tr  
tf  
CL = 15 pF  
CL = 15 pF  
2.0  
2.0  
350  
4.0  
4.0  
ns  
ns  
ps  
Output Fall Time  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 3.3 Eye Diagram  
on page 4  
Common Mode Transient  
Immunity  
CMTI  
tSU  
VI = VDD or 0 V  
20  
45  
15  
kV/μs  
μs  
Start-up Time3  
40  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 16  
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.4. Electrical Characteristics1  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDHYS  
Test Condition  
Min  
2.15  
45  
Typ  
2.3  
75  
Max  
2.5  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD1, VDD2 rising  
VDD Negative-Going Lockout  
Hysteresis  
mV  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
VHYS  
VIH  
All inputs rising  
All inputs falling  
1.6  
1.1  
0.40  
2.0  
1.9  
1.4  
0.50  
V
V
V
V
V
V
0.45  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
VIL  
0.8  
VOH  
loh = –4 mA  
lol = 4 mA  
VDD1,VDD2  
2.3  
– 0.4  
Low Level Output Voltage  
Input Leakage Current  
VOL  
IL  
0.2  
0.4  
±10  
V
μA  
Ω
Output Impedance2  
ZO  
50  
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.0  
3.0  
1.0  
1.5  
1.5  
4.5  
1.5  
mA  
mA  
mA  
VDD2  
VDD1  
VDD2  
Si8420Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.7  
5.8  
1.7  
2.0  
2.6  
8.7  
2.6  
VDD2  
VDD1  
VDD2  
Si8421Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.7  
1.7  
3.7  
3.7  
2.6  
2.6  
5.6  
5.6  
VDD2  
VDD1  
VDD2  
Si8422Ax, Bx  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 17  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
Min  
Typ  
3.7  
3.7  
1.7  
1.7  
Max  
5.6  
5.6  
2.6  
2.6  
Unit  
VDD1  
mA  
VDD2  
VDD1  
VDD2  
Si8423Ax, Bx  
VDD1  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5.4  
1.7  
1.3  
1.7  
8.1  
2.6  
2.0  
2.6  
mA  
VDD2  
VDD1  
VDD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)  
Si8410Ax, Bx  
VDD1  
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Ax, Bx  
VDD1  
3.5  
1.9  
5.3  
2.9  
VDD2  
Si8421Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8422Ax, Bx  
VDD1  
2.8  
2.8  
4.2  
4.2  
VDD2  
Si8423Ax, Bx  
VDD1  
3.3  
1.8  
5.0  
2.8  
VDD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.0  
1.1  
3.0  
1.7  
mA  
mA  
mA  
VDD2  
Si8420Bx  
VDD1  
3.5  
2.1  
5.3  
3.0  
VDD2  
Si8421Bx  
VDD1  
2.9  
2.9  
4.3  
4.3  
VDD2  
Si8422Bx  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 18  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
2.9  
2.9  
Max  
4.3  
Unit  
VDD1  
mA  
4.3  
VDD2  
Si8423Bx  
VDD1  
3.4  
2.0  
5.1  
2.9  
mA  
VDD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)  
Si8410Bx  
VDD1  
2.0  
2.0  
3.0  
3.0  
mA  
mA  
mA  
mA  
mA  
VDD2  
Si8420Bx  
VDD1  
3.5  
5.5  
5.3  
6.9  
VDD2  
Si8421Bx  
VDD1  
4.6  
4.6  
5.8  
5.8  
VDD2  
Si8422Bx  
VDD1  
4.6  
4.6  
5.8  
5.8  
VDD2  
Si8423Bx  
VDD1  
3.4  
5.2  
5.1  
6.5  
VDD2  
Timing Characteristics  
Si841xAx, Si842xAx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
1.0  
250  
35  
Mbps  
ns  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
ns  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
25  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew3  
Channel-Channel Skew  
Si841xBx, Si842xBx  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
tPSK(P-P)  
tPSK  
40  
35  
ns  
ns  
0
150  
6.0  
11  
Mbps  
ns  
tPHL, tPLH  
See Figure 5.1 Propagation  
Delay Timing on page 12  
4.0  
8.0  
ns  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 19  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Pulse Width Distortion  
PWD  
See Figure 5.1 Propagation  
Delay Timing on page 12  
1.5  
3.0  
ns  
|tPLH - tPHL  
|
Propagation Delay Skew3  
Channel-Channel Skew  
All Models  
tPSK(P-P)  
tPSK  
2.0  
0.5  
3.0  
1.5  
ns  
ns  
Output Rise Time  
tr  
tf  
CL = 15 pF  
CL = 15 pF  
2.0  
2.0  
350  
4.0  
4.0  
ns  
ns  
ps  
Output Fall Time  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 3.3 Eye Diagram  
on page 4  
Common Mode Transient  
Immunity  
CMTI  
tSU  
VI = VDD or 0 V  
20  
45  
15  
kV/μs  
μs  
Start-up Time4  
40  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained  
to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Table 5.5. Regulatory Information1  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.  
VDE  
The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.  
60747-5-5: Up to 891 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic insulation.  
Note:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifi-  
cations apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see Section 2. Ordering Guide.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 20  
 
 
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.6. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condi-  
tion  
Value  
Unit  
WB SOIC-16  
NB SOIC-8  
Nominal Air Gap (Clearance)1  
L(IO1)  
L(IO2)  
8.0 min  
8.0 min  
4.9 min  
mm  
mm  
Nominal External Tracking (Creepage)1  
Minimum Internal Gap (Internal Clearance)  
4.01 min  
0.014  
600  
0.008  
600  
mm  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
VRMS  
IEC60112  
Erosion Depth  
ED  
0.019  
0.040  
mm  
Ω
Resistance (Input-Output)2  
Capacitance (Input-Output)2  
101,2  
2.0  
101,2  
1.0  
RIO  
CIO  
CI  
f = 1 MHz  
pF  
pF  
Input Capacitance3  
4.0  
4.0  
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in Section 7.1 Package Outline  
(16-Pin Wide Body SOIC) and Section 7.2 Package Outline (8-Pin Narrow Body SOIC). VDE certifies the clearance and creepage  
limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does not impose  
a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm  
minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8) are shor-  
ted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second terminal. The  
parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 21  
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.7. IEC 60747-5-5 Insulation Characteristics for Si84xxxx1  
Parameter  
Symbol  
Test Condi-  
tion  
Characteristic  
Unit  
WB  
NB SOIC-8  
SOIC-16  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
VIORM  
891  
560  
Vpeak  
Method b1  
1671  
1050  
(VIORM  
x
1.875 = VPR  
,
100%  
Production  
Test, tm = 1  
sec,  
Partial Dis-  
charge < 5  
pC)  
Transient Overvoltage  
VIOTM  
t = 60 sec  
6000  
2
4000  
2
Vpeak  
Ω
Pollution Degree  
(DIN VDE 0110, Table 1)  
>109  
>109  
Insulation Resistance at TS, VIO = 500 V  
RS  
Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21.  
Table 5.8. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condi-  
tion  
Max  
WB SOIC-16  
Unit  
NB SOIC-8  
150  
Case Temperature  
TS  
IS  
150  
220  
°C  
Safety Input, Output, or Supply Current  
θJA = 140  
°C/W (NB  
160  
mA  
SOIC-8), 100  
°C (WB SO-  
IC-16),  
VI = 5.5 V, TJ  
= 150 °C, TA  
= 25 °C  
Device Power Dissipation2  
PD  
150  
150  
mW  
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 5.2 (WB SOIC-16) Thermal Derat-  
ing Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5 on page 23 and Figure 5.3 (NB SOIC-8) Thermal Derating Curve, Dependence  
of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5 on page 23.  
2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 22  
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.9. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-8  
Unit  
IC Junction-to-Air Thermal Resistance  
θJA  
100  
140  
°C/W  
500  
460  
VDD1, VDD2 = 2.70 V  
375  
250  
125  
0
360  
VDD1, VDD2 = 3.3 V  
VDD1, VDD2 = 5.5 V  
220  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 5.2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5  
400  
320  
VDD1, VDD2 = 2.70 V  
300  
270  
VDD1, VDD2 = 3.3 V  
200  
160  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 5.3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-5  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 23  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Electrical Specifications  
Table 5.10. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Storage Temperature2  
Operating Temperature  
Junction Temperature  
TSTG  
–65  
150  
C°  
TA  
–40  
125  
150  
C°  
°C  
TJ  
Supply Voltage  
VDD1, VDD2  
–0.5  
–0.5  
–0.5  
6.0  
V
Input Voltage  
VI  
VO  
IO  
VDD + 0.5  
VDD + 0.5  
10  
V
Output Voltage  
V
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s) NB SOIC-8  
mA  
C°  
260  
4500  
6500  
VRMS  
VRMS  
Maximum Isolation Voltage (1 s) WB SO-  
IC-16  
Notes:  
1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation should be re-  
stricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 24  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Pin Descriptions  
6. Pin Descriptions  
6.1 Pin Descriptions (Wide-Body SOIC)  
GND2  
NC  
GND2  
NC  
GND2  
NC  
GND2  
NC  
GND1  
NC  
GND1  
NC  
GND1  
NC  
GND1  
NC  
I
s
o
l
I
s
o
l
I
s
o
l
I
s
o
l
VDD1  
A1  
VDD1  
A1  
VDD1  
A1  
VDD1  
A1  
VDD2  
B1  
VDD2  
B1  
VDD2  
B1  
VDD2  
B1  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
a
t
i
o
n
a
t
i
o
n
a
t
i
o
n
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
NC  
NC  
A2  
NC  
B2  
A2  
NC  
B2  
A2  
NC  
B2  
NC  
GND1  
NC  
NC  
NC  
NC  
NC  
NC  
GND1  
NC  
NC  
GND1  
NC  
NC  
GND1  
NC  
NC  
GND2  
GND2  
GND2  
GND2  
Si8420/23 WB SOIC-16  
Si8410 WB SOIC-16  
Si8421 WB SOIC-16  
Si8422 WB SOIC-16  
Figure 6.1. Wide-Body SOIC  
Table 6.1. Pin Descriptions  
Name  
SOIC-16 Pin#  
SOIC-16 Pin#  
Type  
Description  
Si8410  
Si842x  
GND1  
NC1  
1
1
Ground  
Side 1 ground.  
NC  
2, 5, 6, 8,10,  
11, 12, 15  
2, 6, 8,10,  
11, 15  
No Connect  
VDD1  
A1  
3
4
3
4
Supply  
Digital I/O  
Digital I/O  
Ground  
Side 1 power supply.  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 ground.  
A2  
NC  
7
5
GND1  
GND2  
B2  
7
9
9
Ground  
Side 2 ground.  
NC  
13  
14  
16  
12  
13  
14  
16  
Digital I/O  
Digital I/O  
Supply  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
Side 2 ground.  
B1  
VDD2  
GND2  
Ground  
Note:  
1. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 25  
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Pin Descriptions  
6.2 Pin Descriptions (Narrow-Body SOIC)  
VDD1  
VDD1  
VDD2  
B1  
VDD2  
I
s
o
l
a
t
i
I
s
o
l
a
t
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B1  
A1  
A1  
A2  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR
A2  
B2  
B2  
i
o
n
o
n
GND2  
GND2  
GND1  
GND1  
Si8423 NB SOIC-8  
Si8422 NB SOIC-8  
Figure 6.2. Narrow-Body SOIC  
Type  
Name  
SOIC-8 Pin#  
Description  
Si842x  
VDD1  
GND1  
A1  
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
A2  
B1  
B2  
VDD2  
GND2  
Ground  
Side 2 ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 26  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Package Outlines  
7. Package Outlines  
7.1 Package Outline (16-Pin Wide Body SOIC)  
The figure below illustrates the package details for the Si84xx Digital Isolator. The table below lists the values for the dimensions shown  
in the illustration.  
Figure 7.1. 16-Pin Wide Body SOIC  
Table 7.1. Package Diagram Dimensions  
Symbol  
Millimeters  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.20  
0.51  
0.33  
c
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
θ
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 27  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Package Outlines  
7.2 Package Outline (8-Pin Narrow Body SOIC)  
The figure below illustrates the package details for the Si84xx. The table below lists the values for the dimensions shown in the illustra-  
tion.  
Figure 7.2. 8-pin Small Outline Integrated Circuit (SOIC) Package  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 28  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Package Outlines  
Table 7.2. Package Diagram Dimensions  
Symbol  
Millimeters  
Min  
1.35  
Max  
1.75  
A
A1  
A2  
B
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 29  
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Land Patterns  
8. Land Patterns  
8.1 Land Pattern (16-Pin Wide-Body SOIC)  
The figure below illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. The table below lists the  
values for the dimensions shown in the illustration.  
Figure 8.1. 16-Pin SOIC Land Pattern  
Table 8.1. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 30  
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Land Patterns  
8.2 Land Pattern (8-Pin Narrow Body SOIC)  
The figure below illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. The table below lists  
the values for the dimensions shown in the illustration.  
Figure 8.2. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 8.2. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 31  
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Top Markings  
9. Top Markings  
9.1 Top Marking (16-Pin Wide Body SOIC)  
Si84XYSV  
YYWWTTTTTT  
e4  
TW  
Figure 9.1. Isolator Top Marking  
Table 9.1. Top Marking Explanation  
Line 1 Marking: Base Part Number  
Si84 = Isolator product series  
Ordering Options  
XY = Channel Configuration  
X = # of data channels (2, 1)  
(See 2. Ordering Guide for more information).  
Y = # of reverse channels (1, 0)1,2  
S = Speed Grade  
A = 1 Mbps  
B = 150 Mbps  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV  
Line 2 Marking: YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the year  
and workweek of the mold date.  
TTTTTT = Mfg Code  
Line 3 Marking: Circle = 1.7 mm Diameter  
(Center-Justified)  
Manufacturing code from assembly house.  
“e4” Pb-Free Symbol.  
Country of Origin ISO Code Abbreviation  
TW = Taiwan.  
Notes:  
1. The Si8422 has one reverse channel.  
2. The Si8423 has zero reverse channels.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 32  
 
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Top Markings  
9.2 Top Marking (8-Pin Narrow-Body SOIC)  
Si84XYSV  
YYWWRF  
e3  
AIXX  
Figure 9.2. Isolator Top Marking  
Table 9.2. Top Marking Explanation  
Line 1 Marking: Base Part Number  
Si84 = Isolator product series  
Ordering Options  
XY = Channel Configuration  
X = # of data channels (2, 1)  
(See 2. Ordering Guide for more information).  
Y = # of reverse channels (1, 0)1,2  
S = Speed Grade  
A = 1 Mbps  
B = 150 Mbps  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV  
Line 2 Marking: YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the year  
and workweek of the mold date.  
R = Product (OPN) Revision  
F = Wafer Fab  
Line 3 Marking: Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol.  
First two characters of the manufacturing code.  
Last four characters of the manufacturing code.  
A = Assembly Site  
I = Internal Code  
XX = Serial Lot Number  
Notes:  
1. The Si8422 has one reverse channel.  
2. The Si8423 has zero reverse channels.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 33  
 
 
 
Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Data Sheet  
Document Change List  
10. Document Change List  
10.1 Revision 0.1  
• Initial release.  
10.2 Revision 0.1 to Revision 1.0  
• Updated features list.  
• Updated transient immunity.  
• Removed block diagram from front page.  
• Added chip graphics on front page.  
Added Peak Eye Diagram jitter in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on  
page 17.  
• Updated transient immunity  
• Moved Table 4.1 Si84xx Logic Operation Table on page 5 to Section 4. Device Operation.  
• Added Section 4. Device Operation.  
• Added Section 4.4 Fail-Safe Operating Mode.  
• Moved Section 4.5 Typical Performance Characteristics.  
• Deleted RF Radiated Emissions section.  
• Deleted RF Magnetic and Common-Mode Transient Immunity section.  
• Updated MSL rating to MSL2A.  
10.3 Revision 1.0 to Revision 1.1  
• Numerous text edits.  
• Added table notes to Table 9.1 Top Marking Explanation on page 32 and Table 9.2 Top Marking Explanation on page 33.  
10.4 Revision 1.1 to Revision 1.2  
Updated Timing Characteristics in Table 5.2 Electrical Characteristics on page 9 through Table 5.4 Electrical Characteristics1 on  
page 17.  
10.5 Revision 1.2 to Revision 1.3  
• Added references to AEC-Q100 qualified throughout.  
• Changed all 60747-5-2 references to 60747-5-5.  
Updated Table 2.1 Ordering Guide1,2,3 on page 2.  
• Added table notes 1 and 2.  
• Removed references to moisture sensitivity levels.  
• Added Revision D ordering information.  
• Removed older revisions.  
• Updated Section 9.1 Top Marking (16-Pin Wide Body SOIC).  
10.6 Revision 1.3 to Revision 1.4  
September 16, 2016  
• Updated data sheet format.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.4 | 34  
 
 
 
 
 
 
 
Table of Contents  
1. Features List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.2 Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
4. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
4.2 Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.3 Layout Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.3.1 Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.3.2 Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.3.3 Output Pin Termination . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.4 Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.5 Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . 7  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.1 Pin Descriptions (Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . . .25  
6.2 Pin Descriptions (Narrow-Body SOIC). . . . . . . . . . . . . . . . . . . . . .26  
7. Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.1 Package Outline (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . .27  
7.2 Package Outline (8-Pin Narrow Body SOIC). . . . . . . . . . . . . . . . . . . .28  
8. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
8.1 Land Pattern (16-Pin Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . .30  
8.2 Land Pattern (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . .31  
9. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.1 Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . .32  
9.2 Top Marking (8-Pin Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . .33  
10. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.1 Revision 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
10.2 Revision 0.1 to Revision 1.0. . . . . . . . . . . . . . . . . . . . . . . . .34  
10.3 Revision 1.0 to Revision 1.1. . . . . . . . . . . . . . . . . . . . . . . . .34  
10.4 Revision 1.1 to Revision 1.2. . . . . . . . . . . . . . . . . . . . . . . . .34  
10.5 Revision 1.2 to Revision 1.3. . . . . . . . . . . . . . . . . . . . . . . . .34  
10.6 Revision 1.3 to Revision 1.4. . . . . . . . . . . . . . . . . . . . . . . . .34  
Table of Contents 35  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY