SI8630EC-B-IS1 [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16;
SI8630EC-B-IS1
型号: SI8630EC-B-IS1
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16

光电二极管
文件: 总37页 (文件大小:973K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8630/31/35 Data Sheet  
Low-Power Single and Dual-Channel Digital Isolators  
KEY FEATURES  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering sub-  
stantial data rate, propagation delay, power, size, reliability, and external BOM advan-  
tages over legacy isolation technologies. The operating parameters of these products  
remain stable across wide temperature ranges and throughout device service life for  
ease of design and highly uniform performance. All device versions have Schmitt trigger  
inputs for high noise immunity and only require VDD bypass capacitors.  
• High-speed operation  
• DC to 150 Mbps  
• No start-up initialization required  
• Wide Operating Supply Voltage  
• 2.5–5.5 V  
• Up to 5000 V  
isolation  
RMS  
Data rates up to 150 Mbps are supported, and all devices achieve propagation delays of  
less than 10 ns. Ordering options include a choice of isolation ratings (2.5, 3.75 and 5  
kV) and a selectable fail-safe operating mode to control the default output state during  
power loss. All products are safety certified by UL, CSA, VDE, and CQC, and products  
• Reinforced VDE 0884-10, 10 kV surge-  
capable (Si862xxT)  
• 60-year life at rated working voltage  
• High electromagnetic immunity  
• Ultra low power (typical)  
in wide-body packages support reinforced insulation withstanding up to 5 kVRMS  
.
Automotive Grade is available for certain part numbers. These products are built using  
automotive-specific flows at all steps in the manufacturing process to ensure the robust-  
ness and low defectivity required for automotive applications.  
5 V Operation  
• 1.6 mA per channel at 1 Mbps  
• 5.5 mA per channel at 100 Mbps  
Automotive Applications  
Industrial Applications  
• On-board chargers  
• Industrial automation systems  
2.5 V Operation  
• Battery management systems  
• 1.5 mA per channel at 1 Mbps  
• Medical electronics  
• 3.5 mA per channel at 100 Mbps  
• Schmitt trigger inputs  
• Charging stations  
• Isolated switch mode supplies  
• Traction inverters  
• Isolated ADC, DAC  
• Selectable fail-safe mode  
• Default high or low output (ordering  
option)  
• Hybrid Electric Vehicles  
• Motor control  
• Battery Electric Vehicles  
• Power inverters  
• Communications systems  
• Precise timing (typical)  
• 10 ns propagation delay  
Safety Regulatory Approvals  
• UL 1577 recognized  
• 1.5 ns pulse width distortion  
• 0.5 ns channel-channel skew  
• 2 ns propagation delay skew  
• 5 ns minimum pulse width  
• Transient Immunity 50 kV/µs  
• AEC-Q100 qualification  
• Up to 5000 VRMS for 1 minute  
• CSA component notice 5A approval  
• IEC 60950-1, 61010-1, 60601-1 (re-  
inforced insulation)  
• VDE certification conformity  
• Wide temperature range  
• –40 to 125 °C  
• Si862xxT options certified to rein-  
forced VDE 0884-10  
• RoHS-compliant packages  
• SOIC-16 wide body  
• All other options certified to IEC  
60747-5-5 and reinforced 60950-1  
• SOIC-16 narrow body  
• Automotive-grade OPNs available  
• AIAG compliant PPAP documentation  
support  
• CQC certification approval  
• GB4943.1  
• IMDS and CAMDS listing support  
silabs.com | Building a more connected world.  
Rev. 1.81  
Si8630/31/35 Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Ordering Guide for Valid OPNs1, 2  
Ordering Part Number (OPN) Number of Number of Max Data  
Default  
Output  
State  
Isolation  
Rating  
(kVrms)  
Temp Range (°C)  
Package  
Inputs  
Inputs  
Rate  
VDD1 Side VDD2 Side  
(Mbps)  
Si8630BB-B-IS  
Si8630BB-B-IS1  
Si8630BC-B-IS1  
Si8630EC-B-IS1  
Si8630BD-B-IS  
Si8630ED-B-IS  
Si8631BB-B-IS  
Si8631BB-B-IS1  
Si8631BC-B-IS1  
Si8631EC-B-IS1  
Si8631BD-B-IS  
Si8631ED-B-IS  
Si8635BB-B-IS  
Si8635BC-B-IS1  
Si8635BD-B-IS  
3
3
3
3
3
3
2
2
2
2
2
2
3
3
3
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
2.5  
2.5  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C NB SOIC-16  
–40 to +125 °C WB SOIC-16  
3.75  
3.75  
5.0  
5.0  
2.5  
2.5  
3.75  
3.75  
5.0  
5.0  
2.5  
3.75  
5.0  
Product Options with Reinforced VDE 0884-10 Rating with 10 kV Surge Capability  
Si8630BT-IS  
Si8630ET-IS  
Si8631BT-IS  
Si8631ET-IS  
Si8635BT-IS  
Si8635ET-IS  
3
3
2
2
3
3
0
0
1
1
0
0
150  
150  
150  
150  
150  
150  
Low  
High  
Low  
High  
Low  
High  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
–40 to +125 °C WB SOIC-16  
Note:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions and peak solder temperatures.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 2  
 
 
 
Si8630/31/35 Data Sheet  
Ordering Guide  
Automotive Grade OPNs  
Automotive-grade devices are built using automotive-specific flows at all steps in the manufacturing process to ensure robustness and  
low defectivity. These devices are supported with AIAG-compliant Production Part Approval Process (PPAP) documentation, and fea-  
ture International Material Data System (IMDS) and China Automotive Material Data System (CAMDS) listing. Qualifications are compli-  
ant with AEC-Q100, and a zero-defect methodology is maintained throughout definition, design, evaluation, qualification, and mass pro-  
duction steps.  
Table 1.2. Ordering Guide for Automotive Grade OPNs1, 2, 4, 5  
Ordering Part Number (OPN)  
Number Number Max Da- Default Isolation  
Temp  
Range  
(°C)  
Pack-  
age  
of In-  
puts  
of In-  
puts  
ta Rate Output  
Rating  
(kVrms)  
(Mbps)  
State  
VDD1  
Side  
VDD2  
Side  
Si8631BB-AS1  
Si8631BC-AS1  
Si8631BD-AS  
2
2
2
1
1
1
150  
150  
150  
Low  
Low  
Low  
2.5  
3.75  
5.0  
–40 to  
+125 °C  
NB SO-  
IC-16  
–40 to  
+125 °C  
NB SO-  
IC-16  
–40 to  
+125 °C  
WB SO-  
IC-16  
Note:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard classifica-  
tions.  
2. “Si” and “SI” are used interchangeably.  
3. An "R" at the end of the part number denotes tape and reel packaging option.  
4. Automotive-Grade devices (with an "–A" suffix) are identical in construction materials, topside marking, and electrical parameters  
to their Industrial-Grade (with a "–I" suffix) version counterparts. Automotive-Grade products are produced utilizing full automotive  
process flows and additional statistical process controls throughout the manufacturing flow. The Automotive-Grade part number is  
included on shipping labels.  
5. Additional Ordering Part Numbers may be available in Automotive-Grade. Please contact your local Silicon Labs sales represen-  
tative for further information.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 3  
 
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2 Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 Layout Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.1 Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.2 Output Pin Termination. . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4 Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.5 Typical Performance Characteristis. . . . . . . . . . . . . . . . . . . . . . .10  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6. Package Outline: 16-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . 27  
7. Land Pattern: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . 29  
8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . 30  
9. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . 32  
10. Top Marking: 16-Pin Wide Body SOIC. . . . . . . . . . . . . . . . . . . . . 33  
11. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . 34  
12. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
silabs.com | Building a more connected world.  
Rev. 1.81 | 4  
Si8630/31/35 Data Sheet  
System Overview  
2. System Overview  
2.1 Theory of Operation  
The operation of an Si863x channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This  
simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified  
block diagram for a single Si863x channel is shown in the figure below.  
Figure 2.1. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the trans-  
mitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that de-  
codes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and improved immunity  
to magnetic fields. See the following figure for more details.  
Figure 2.2. Modulation Scheme  
silabs.com | Building a more connected world.  
Rev. 1.81 | 5  
 
 
Si8630/31/35 Data Sheet  
System Overview  
2.2 Eye Diagram  
The figure below illustrates an eye diagram taken on an Si8630. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern  
Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8630 were captured on an oscilloscope. The re-  
sults illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width  
distortion and 350 ps peak jitter were exhibited.  
Figure 2.3. Eye Diagram  
silabs.com | Building a more connected world.  
Rev. 1.81 | 6  
 
 
Si8630/31/35 Data Sheet  
Device Operation  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 3.1 Device Behavior during Normal Operation on  
page 9, where UVLO+ and UVLO– are the respective positive-going and negative-going thresholds. Refer to the following tables to  
determine outputs when power supply (VDD) is not present and for logic conditions when enable pins are used.  
Table 3.1. Si86xx Logic Operation  
VI Input1, 2  
EN Input1, 2, 3, 4 VDDI State1, 5, 6 VDDO State1, 5, 6 VO Output1, 2  
Comments  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation.  
X7  
X7  
Hi-Z8  
L9  
Disabled.  
H or NC  
UP  
P
Upon transition of VDDI from unpowered to  
powered, VO returns to the same state as  
VI in less than 1 µs.  
H9  
X7  
X7  
Hi-Z8  
L
UP  
P
P
Disabled.  
X7  
UP  
Undetermined Upon transition of VDDO from unpowered  
to powered, VO returns to the same state  
as VI within 1 µs, if EN is in either the H or  
NC state. Upon transition of VDDO from  
unpowered to powered, VO returns to Hi-Z  
within 1 µs if EN is L.  
Note:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN is the  
enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is operating in noisy  
environments.  
4. No Connect (NC) replaces EN1 on Si8630/35. No Connect replaces EN2 on the Si8635. No Connects are not internally connec-  
ted and can be left floating, tied to VDD, or tied to GND.  
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.  
6. “Unpowered” state (UP) is defined as VDD = 0 V.  
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled  
(EN = 0).  
9. See Ordering Guide for details. This is the selectable fail-safe operating mode (ordering option). Some devices have default out-  
put state = H, and some have default output state = L, depending on the ordering part number (OPN). For default high devices,  
the data channels have pull-ups on inputs/outputs. For default low devices, the data channels have pull-downs on inputs/outputs.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 7  
 
 
 
 
 
 
 
 
Si8630/31/35 Data Sheet  
Device Operation  
Table 3.2. Enable Input Truth  
EN11, 2  
EN21, 2  
Part Number  
Operation  
Si8630  
H
L
Outputs B1, B2, B3 are enabled and follow input state.  
Outputs B1, B2, B3 are disabled and in high impedance state.3  
Output A3 enabled and follows the input state.  
Si8631  
H
L
X
X
Output A3 disabled and in high impedance state.3  
Outputs B1, B2 are enabled and follow the input state.  
X
X
H
L
Outputs B1, B2 are disabled and in high impedance state.3  
Outputs B1, B2, B3 are enabled and follow the input state.  
Si8635  
Note:  
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. These inputs are internally  
pulled-up to local VDD allowing them to be connected to an external logic level (high or low) or left floating. To minimize noise  
coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused, it is recommended they be  
connected to an external logic level, especially if the Si86xx is operating in a noisy environment.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is disabled  
(EN = 0).  
silabs.com | Building a more connected world.  
Rev. 1.81 | 8  
 
 
 
Si8630/31/35 Data Sheet  
Device Operation  
3.1 Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow  
the states of inputs.  
3.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its  
specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or  
exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when  
VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.  
Figure 3.1. Device Behavior during Normal Operation  
3.3 Layout Recommendations  
To ensure safety in the end-user application, high-voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the  
safety extra-low-voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a  
digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 4.6 Insulation and Safety-Related  
Specifications on page 22 and Table 4.8 IEC 60747-5-5 Insulation Characteristics for Si86xxxx 1 on page 23 detail the working volt-  
age and creepage/clearance capabilities of the Si86xx. These tables also detail the component standards (UL1577, IEC60747, CSA  
5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-  
system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.  
3.3.1 Supply Bypass  
The Si863x family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed  
as close as possible to the package. To enhance the robustness of a design, the user may also include resistors (50–300 Ω ) in series  
with the inputs and outputs if the system is excessively noisy.  
3.3.2 Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-  
chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will  
be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.  
3.4 Fail-Safe Operating Mode  
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered)  
can either be a logic high or logic low when the output supply is powered. See Table 3.1 Si86xx Logic Operation on page 7 and  
1. Ordering Guide for more information.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 9  
 
 
 
 
 
 
 
Si8630/31/35 Data Sheet  
Device Operation  
3.5 Typical Performance Characteristis  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to 4. Electrical  
Specifications for actual specification limits.  
Figure 3.2. Si8630/35 Typical VDD1 Supply Current vs. Data  
Figure 3.3. Si8630/35 Typical VDD2 Supply Current vs. Data  
Rate 5, 3.3, and 2.5 V Operation  
Rate 5, 3.3, and 2.5 V Operation (15 pF Load)  
Figure 3.4. Si8631 Typical VDD1 Supply Current vs. Data Rate  
Figure 3.5. Si8631 Typical VDD2 Supply Current vs. Data Rate  
5, 3.3, and 2.5 V Operation  
5, 3.3, and 2.5 V Operation (15 pF Load)  
Figure 3.6. Propagation Delay vs. Temperature (5.0 V Data)  
silabs.com | Building a more connected world.  
Rev. 1.81 | 10  
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
Table 4.1. Recommended Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Ambient Operating Temperature 1  
Supply Voltage  
125 1  
5.5  
TA  
–40  
25  
°C  
VDD1  
VDD2  
2.5  
2.5  
V
V
5.5  
Note:  
1. The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels, and supply  
voltage.  
Table 4.2. Electrical Characteristics 1  
Parameter  
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDD Undervoltage Hysteresis  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
Symbol  
VDDUV+  
VDDUV–  
VDDHYS  
VT+  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
1.95  
1.88  
V
50  
mV  
V
All inputs rising  
All inputs falling  
1.4  
1.67  
1.23  
0.44  
1.9  
VT–  
1.0  
1.4  
V
VHYS  
VIH  
0.38  
0.50  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Si863xxA/B/C/D  
2.0  
V
VIL  
VDD1, VDD2 – 0.4  
0.8  
V
VOH  
loh = –4 mA  
lol = 4 mA  
4.8  
V
VOL  
0.2  
0.4  
V
IL  
50  
±10  
±15  
µA  
Ω
Si863xxT  
Output Impedance 2  
Enable Input Current  
Si863xxA/B/C/D  
Si863xxT  
ZO  
IENH, IENL  
VENx = VIH or VIL  
2.0  
µA  
10.0  
DC Supply Current (All Inputs 0 V or at Supply)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
VDD1  
VDD2  
mA  
silabs.com | Building a more connected world.  
Rev. 1.81 | 11  
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si8631Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
mA  
VDD1  
VDD2  
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
2.2  
3.9  
3.1  
VDD2  
Si8631Bx, Ex  
VDD1  
2.7  
2.6  
3.8  
3.6  
VDD2  
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
3.1  
3.9  
4.3  
VDD2  
Si8631Bx, Ex  
VDD1  
3.0  
3.1  
4.2  
4.4  
VDD2  
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
3.9  
VDD2  
13.2  
17.8  
Si8631Bx, Ex  
VDD1  
6.6  
9.9  
8.8  
VDD2  
13.4  
Timing Characteristics  
Si863xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
0
150  
5.0  
13  
Mbps  
ns  
Propagation Delay  
tPHL, tPLH  
See Figure 4.2 Propagation  
Delay Timing on page 14  
5.0  
8.0  
ns  
Pulse Width Distortion  
|tPLH – tPHL|  
See Figure 4.2 Propagation  
Delay Timing on page 14  
PWD  
tPSK(P-P)  
tPSK  
0.2  
4.5  
ns  
Propagation Delay Skew 3  
Channel-Channel Skew  
2.0  
0.4  
4.5  
2.5  
ns  
ns  
silabs.com | Building a more connected world.  
Rev. 1.81 | 12  
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All Models  
CL = 15 pF  
tr  
Output Rise Time  
2.5  
4.0  
ns  
See Figure 4.2 Propagation  
Delay Timing on page 14  
CL = 15 pF  
tf  
Output Fall Time  
2.5  
4.0  
ns  
ps  
See Figure 4.2 Propagation  
Delay Timing on page 14  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 2.3 Eye Diagram  
on page 6  
350  
VI = VDD or 0 V  
VCM = 1500 V  
Common Mode Transient Immunity  
Si86xxxB/C/D  
CMTI  
kV/µs  
See Figure 4.3 Common-  
Mode Transient Immunity Test  
Circuit on page 14  
35  
60  
50  
100  
6.0  
11  
Si86xxxT  
Enable to Data Valid  
ten1  
ten2  
tSD  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
ns  
ns  
ns  
Enable to Data Tri-State  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
8.0  
8.0  
12  
12  
Input power loss to valid default output  
See Figure 3.1 Device Behav-  
ior during Normal Operation  
on page 9  
Start-up Time 4  
tSU  
15  
40  
µs  
Note:  
1. VDD1 = 5 V ±10%; VDD2 = 5 V ±10%, TA = –40 to 125 °C  
2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to the appearance of valid data at the output.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 13  
 
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Figure 4.1. ENABLE Timing Diagram  
Figure 4.2. Propagation Delay Timing  
Figure 4.3. Common-Mode Transient Immunity Test Circuit  
silabs.com | Building a more connected world.  
Rev. 1.81 | 14  
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.3. Electrical Characteristics 1  
Parameter  
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDD Undervoltage Hysteresis  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
Symbol  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDDUV+  
VDDUV–  
VDDHYS  
VT+  
1.95  
1.88  
V
50  
mV  
V
All inputs rising  
All inputs falling  
1.4  
1.67  
1.23  
0.44  
1.9  
VT–  
1.0  
1.4  
V
VHYS  
VIH  
0.38  
0.50  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Si863xxA/B/C/D  
2.0  
V
VIL  
VDD1, VDD2 – 0.4  
0.8  
V
VOH  
loh = –4 mA  
lol = 4 mA  
3.1  
V
VOL  
0.2  
0.4  
V
IL  
50  
±10  
±15  
µA  
Ω
Si863xxT  
Output Impedance 2  
Enable Input Current  
Si863xxA/B/C/D  
Si863xxT  
ZO  
IENH, IENL  
VENx = VIH or VIL  
2.0  
µA  
10.0  
DC Supply Current (All Inputs 0 V or at Supply)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
mA  
VDD1  
VDD2  
Si8631Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
mA  
VDD1  
VDD2  
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
2.8  
2.2  
3.9  
3.1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.81 | 15  
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si8631Bx, Ex  
VDD1  
mA  
2.7  
2.6  
3.8  
3.6  
VDD2  
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
2.6  
3.9  
3.6  
VDD2  
Si8631Bx, Ex  
VDD1  
2.8  
2.6  
4.0  
3.9  
VDD2  
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
9.3  
3.9  
VDD2  
12.5  
Si8631Bx, Ex  
VDD1  
5.2  
7.3  
7.0  
9.8  
VDD2  
Timing Characteristics  
Si863xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
0
150  
5.0  
13  
Mbps  
ns  
Propagation Delay  
tPHL, tPLH  
See Figure 4.2 Propagation  
Delay Timing on page 14  
5.0  
8.0  
ns  
Pulse Width Distortion  
|tPLH – tPHL|  
See Figure 4.2 Propagation  
Delay Timing on page 14  
PWD  
tPSK(P-P)  
tPSK  
0.2  
4.5  
ns  
Propagation Delay Skew 3  
Channel-Channel Skew  
All Models  
2.0  
0.4  
4.5  
2.5  
ns  
ns  
CL = 15 pF  
tr  
Output Rise Time  
2.5  
4.0  
ns  
See Figure 4.2 Propagation  
Delay Timing on page 14  
CL = 15 pF  
tf  
Output Fall Time  
2.5  
4.0  
ns  
ps  
See Figure 4.2 Propagation  
Delay Timing on page 14  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 2.3 Eye Diagram  
on page 6  
350  
silabs.com | Building a more connected world.  
Rev. 1.81 | 16  
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VI = VDD or 0 V  
VCM = 1500 V  
Common Mode Transient Immunity  
Si86xxxB/C/D  
CMTI  
kV/µs  
See Figure 4.3 Common-  
Mode Transient Immunity Test  
Circuit on page 14  
35  
60  
50  
100  
6.0  
11  
Si86xxxT  
Enable to Data Valid  
ten1  
ten2  
tSD  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
ns  
ns  
ns  
Enable to Data Tri-State  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
8.0  
8.0  
12  
12  
Input power loss to valid default output  
See Figure 3.1 Device Behav-  
ior during Normal Operation  
on page 9  
Start-up Time 4  
tSU  
15  
40  
µs  
Note:  
1. VDD1 = 3.3 V ±10%; VDD2 = 3.3 V ±10%, TA = –40 to 125 °C  
2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to the appearance of valid data at the output.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 17  
 
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.4. Electrical Characteristics 1  
Parameter  
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
VDD Undervoltage Hysteresis  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
Symbol  
Test Condition  
VDD1, VDD2 rising  
VDD1, VDD2 falling  
Min  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDDUV+  
VDDUV–  
VDDHYS  
VT+  
1.95  
1.88  
V
50  
mV  
V
All inputs rising  
All inputs falling  
1.4  
1.67  
1.23  
0.44  
1.9  
VT–  
1.0  
1.4  
V
VHYS  
VIH  
0.38  
0.50  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Si863xxA/B/C/D  
2.0  
V
VIL  
VDD1, VDD2 – 0.4  
0.8  
V
VOH  
loh = –4 mA  
lol = 4 mA  
2.3  
V
VOL  
0.2  
0.4  
V
IL  
50  
±10  
±15  
µA  
Ω
Si863xxT  
Output Impedance 2  
Enable Input Current  
Si863xxA/B/C/D  
Si863xxT  
ZO  
IENH, IENL  
VENx = VIH or VIL  
2.0  
µA  
10.0  
DC Supply Current (All Inputs 0 V or at Supply)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
0.9  
1.9  
4.6  
1.9  
1.6  
3.0  
7.4  
3.0  
VDD2  
mA  
VDD1  
VDD2  
Si8631Bx, Ex  
VDD1  
VI = 0(Bx), 1(Ex)  
VI = 0(Bx), 1(Ex)  
VI = 1(Bx), 0(Ex)  
VI = 1(Bx), 0(Ex)  
1.3  
1.7  
3.9  
3.0  
2.1  
2.7  
5.9  
4.5  
VDD2  
mA  
VDD1  
VDD2  
1 Mbps Supply Current (All Inputs = 500 kHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
2.8  
2.2  
3.9  
3.1  
VDD2  
silabs.com | Building a more connected world.  
Rev. 1.81 | 18  
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si8631Bx, Ex  
VDD1  
mA  
2.7  
2.6  
3.8  
3.6  
VDD2  
10 Mbps Supply Current (All Inputs = 5 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
2.4  
3.9  
3.3  
VDD2  
Si8631Bx, Ex  
VDD1  
2.8  
2.7  
3.9  
3.7  
VDD2  
100 Mbps Supply Current (All Inputs = 50 MHz Square Wave, CI = 15 pF on All Outputs)  
Si8630Bx, Ex, Si8635Bx  
VDD1  
mA  
mA  
2.8  
7.5  
3.9  
VDD2  
10.1  
Si8631Bx, Ex  
VDD1  
4.5  
6.1  
6.1  
8.2  
VDD2  
Timing Characteristics  
Si863xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
0
150  
5.0  
14  
Mbps  
ns  
Propagation Delay  
tPHL, tPLH  
See Figure 4.2 Propagation  
Delay Timing on page 14  
5.0  
8.0  
ns  
Pulse Width Distortion  
|tPLH -tPHL|  
See Figure 4.2 Propagation  
Delay Timing on page 14  
PWD  
tPSK(P-P)  
tPSK  
0.2  
5.0  
ns  
Propagation Delay Skew 3  
Channel-Channel Skew  
All Models  
2.0  
0.4  
5.0  
2.5  
ns  
ns  
CL = 15 pF  
tr  
Output Rise Time  
2.5  
4.0  
ns  
See Figure 4.2 Propagation  
Delay Timing on page 14  
CL = 15 pF  
tf  
Output Fall Time  
2.5  
4.0  
ns  
ps  
See Figure 4.2 Propagation  
Delay Timing on page 14  
Peak Eye Diagram Jitter  
tJIT(PK)  
See Figure 2.3 Eye Diagram  
on page 6  
350  
silabs.com | Building a more connected world.  
Rev. 1.81 | 19  
Si8630/31/35 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VI = VDD or 0 V  
VCM = 1500 V  
Common Mode Transient Immunity  
Si86xxxB/C/D  
CMTI  
kV/µs  
See Figure 4.3 Common-  
Mode Transient Immunity Test  
Circuit on page 14  
35  
60  
50  
100  
6.0  
11  
Si86xxxT  
Enable to Data Valid  
ten1  
ten2  
tSD  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
ns  
ns  
ns  
Enable to Data Tri-State  
See Figure 4.1 ENABLE Tim-  
ing Diagram on page 14  
8.0  
8.0  
12  
12  
Input power loss to valid default output  
See Figure 3.1 Device Behav-  
ior during Normal Operation  
on page 9  
Start-up Time 4  
tSU  
15  
40  
µs  
Note:  
1. VDD1 = 2.5 V ±5%; VDD2 = 2.5 V ±5%, TA = –40 to 125 °C  
2. The nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission  
line effects will be a factor, output pins should be appropriately terminated with controlled-impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same  
supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to the appearance of valid data at the output.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 20  
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.5. Regulatory Information 1, 2, 3, 4  
For All Product Options Except Si863xxT  
CSA  
The Si863x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.  
VDE  
The Si863x is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.  
60747-5-5: Up to 1200 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si863x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
CQC  
The Si863x is certified under GB4943.1-2011. For more details, see certificates CQC13001096110 and CQC13001096239.  
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
For All Si863xxT Product Options  
CSA  
Certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
VDE  
Certified according to VDE 0884-10.  
UL  
Certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
CQC  
Certified under GB4943.1-2011  
Rated up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
Note:  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices, which are production tested to 3.0 kVRMS for 1 s.  
2. Regulatory Certifications apply to 3.75 kVRMS rated devices, which are production tested to 4.5 kVRMS for 1 s.  
3. Regulatory Certifications apply to 5.0 kVRMS rated devices, which are production tested to 6.0 kVRMS for 1 s.  
4. For more information, see 1. Ordering Guide.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 21  
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.6. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WB SOIC-16  
NB SOIC-16  
Nominal Air Gap (Clearance) 1  
L(IO1)  
L(IO2)  
8.0  
4.9  
4.01  
0.014  
mm  
mm  
mm  
Nominal External Tracking 1  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
(Proof Tracking Index)  
Erosion Depth  
8.0  
0.014  
PTI  
IEC60112  
f = 1 MHz  
600  
600  
VRMS  
ED  
0.019  
0.019  
mm  
Ω
Resistance (Input-Output) 2  
Capacitance (Input-Output) 2  
1012  
2.0  
1012  
2.0  
RIO  
CIO  
CI  
pF  
pF  
Input Capacitance 3  
4.0  
4.0  
Note:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and creepage  
limits as 4.7 mm minimum for the NB SOIC-16 package and 8.5 mm minimum for the WB SOIC-16 package. UL does not impose  
a clearance and creepage minimum for component-level certifications. CSA certifies the clearance and creepage limits as 3.9 mm  
minimum for the NB SOIC-16 and 7.6 mm minimum for the WB SOIC-16 package.  
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted together to form  
the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are then measured between  
these two terminals.  
3. Measured from input pin to ground.  
Table 4.7. IEC 60664-1 Ratings  
Parameter  
Test Conditions  
Specification  
WB SOIC-16  
NB SOIC-16  
Basic Isolation Group  
Material Group  
I
I
Installation Classification  
Rated Mains Voltages < 150 VRMS  
Rated Mains Voltages < 300 VRMS  
Rated Mains Voltages < 400 VRMS  
Rated Mains Voltages < 600 VRMS  
I-IV  
I-IV  
I-III  
I-III  
I-IV  
I-III  
I-II  
I-II  
silabs.com | Building a more connected world.  
Rev. 1.81 | 22  
 
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.8. IEC 60747-5-5 Insulation Characteristics for Si86xxxx 1  
Test Condition  
Parameter  
Symbol  
Characteristic  
WB SOIC-16 NB SOIC-16  
Unit  
Maximum Working  
Insulation Voltage  
VIORM  
1200  
630  
Vpeak  
Vpeak  
Input to Output Test  
Voltage  
VPR  
Method b1  
2250  
6000  
1182  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
t = 60 sec  
Transient Overvolt-  
age  
VIOTM  
6000  
Vpeak  
Vpeak  
Tested per IEC 60065 with surge voltage of 1.2 µs/50 µs  
Si863xxT tested with magnitude 6250 V x 1.6 = 10 kV  
Si863xxB/C/D tested with 4000 V  
VIOSM  
Surge Voltage  
6250  
4000  
2
4000  
2
Pollution Degree  
(DIN VDE 0110, Ta-  
ble 1)  
>109  
>109  
Insulation Resist-  
RS  
Ω
ance at TS, VIO  
=
500 V  
Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of 40/125/21.  
Table 4.9. IEC Safety Limiting Values 1  
Parameter  
Symbol  
Test Condition  
Max  
WB SOIC-16  
Unit  
NB SOIC-16  
150  
Case Temperature  
TS  
IS  
150  
220  
°C  
Safety Input, Output, or Supply Current  
θJA = 100 °C/W (WB SOIC-16)  
105 °C/W (NB SOIC-16)  
210  
mA  
VI = 5.5 V, TJ = 150 °C, TA = 25 °C  
Device Power Dissipation 2  
PD  
275  
275  
mW  
Note:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 4.4 (WB SOIC-16) Thermal Derat-  
ing Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5/VDE 0884-10, as Applies on  
page 24 and Figure 4.5 (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature  
per DIN EN 60747-5-5/VDE 0884-10, as Applies on page 24.  
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V; TJ = 150 ºC; CL = 15 pF, input a 150 Mbps 50% duty cycle square wave.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 23  
 
 
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.10. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-16  
105  
Unit  
IC Junction-to-Air Thermal Resistance  
θJA  
100  
°C/W  
Figure 4.4. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN  
60747-5-5/VDE 0884-10, as Applies  
Figure 4.5. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN  
60747-5-5/VDE 0884-10, as Applies  
silabs.com | Building a more connected world.  
Rev. 1.81 | 24  
 
 
Si8630/31/35 Data Sheet  
Electrical Specifications  
Table 4.11. Absolute Maximum Ratings 1  
Parameter  
Storage Temperature 2  
Symbol  
Min  
Max  
Unit  
TSTG  
–65  
150  
°C  
Operating Temperature  
Junction Temperature  
Supply Voltage  
TA  
–40  
125  
150  
°C  
°C  
TJ  
VDD1, VDD2  
–0.5  
–0.5  
–0.5  
7.0  
V
Input Voltage  
VI  
VO  
IO  
VDD + 0.5  
VDD + 0.5  
10  
V
Output Voltage  
V
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16  
mA  
°C  
260  
4500  
VRMS  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
VRMS  
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum ratings for exteneded peri-  
ods may degrade performance.  
2. VDE certifies storage temperature from –40 to 150 °C.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 25  
 
 
Si8630/31/35 Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
VDD1  
GND1  
A1  
VDD1  
VDD2  
GND2  
B1  
VDD2  
GND2  
B1  
GND1  
I
s
o
l
a
t
i
o
n
I
s
o
l
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A2  
A3  
B2  
B2  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
B3  
A3  
NC  
B3  
NC  
NC  
NC  
EN2/NC  
GND2  
EN2  
GND2  
NC  
EN1  
GND1  
GND1  
Si8630/35  
Si8631  
Name  
SOIC-16 Pin#  
Type  
Supply  
Ground  
Description  
VDD1  
1
Side 1 power supply.  
Side 1 ground.  
21  
3
GND1  
A1  
A2  
A3  
NC  
Digital Input  
Digital Input  
Digital I/O  
NA  
Side 1 digital input.  
Side 1 digital input.  
4
5
Side 1 digital input or output.  
No Connect.  
6
EN1/NC2  
GND1  
7
Digital Input  
Side 1 active high enable. NC on Si8630/35  
Side 1 ground.  
81  
Ground  
Ground  
91  
GND2  
Side 2 ground.  
EN2/NC2  
NC  
10  
Digital Input  
Side 2 active high enable. NC on Si8635.  
11  
12  
13  
14  
NA  
No Connect.  
B3  
Digital I/O  
Digital Output  
Digital Output  
Ground  
Side 2 digital input or output.  
Side 2 digital output.  
Side 2 digital output.  
Side 2 ground.  
B2  
B1  
151  
16  
GND2  
VDD2  
Supply  
Side 2 power supply.  
Note:  
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pin 15 must also be  
connected to external ground.  
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 26  
 
 
 
Si8630/31/35 Data Sheet  
Package Outline: 16-Pin Wide Body SOIC  
6. Package Outline: 16-Pin Wide Body SOIC  
The figure below illustrates the package details for the Triple-Channel Digital Isolator. The table lists the values for the dimensions  
shown in the illustration.  
Figure 6.1. 16-Pin Wide Body SOIC  
silabs.com | Building a more connected world.  
Rev. 1.81 | 27  
 
Si8630/31/35 Data Sheet  
Package Outline: 16-Pin Wide Body SOIC  
Table 6.1. 16-Pin Wide Body SOIC Package Diagram Dimensions1, 2, 3, 4  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body, lead-free components.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 28  
 
 
Si8630/31/35 Data Sheet  
Land Pattern: 16-Pin Wide Body SOIC  
7. Land Pattern: 16-Pin Wide Body SOIC  
The figure below illustrates the recommended land pattern details for the Si863x in a 16-pin wide-body SOIC package. The table lists  
the values for the dimensions shown in the illustration.  
Figure 7.1. PCB Land Pattern: 16-Pin Wide Body SOIC  
Table 7.1. 16-Pin Wide Body SOIC Land Pattern Dimensions1, 2  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Note:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protru-  
sion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 29  
 
 
Si8630/31/35 Data Sheet  
Package Outline: 16-Pin Narrow Body SOIC  
8. Package Outline: 16-Pin Narrow Body SOIC  
The figure below illustrates the package details for the Si863x in a 16-pin narrow-body SOIC (SO-16). The table lists the values for the  
dimensions shown in the illustration.  
Figure 8.1. 16-Pin Narrow Body SOIC  
silabs.com | Building a more connected world.  
Rev. 1.81 | 30  
 
Si8630/31/35 Data Sheet  
Package Outline: 16-Pin Narrow Body SOIC  
Table 8.1. 16-Pin Narrow Body SOIC Package Diagram Dimensions1, 2, 3, 4  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 31  
 
 
 
Si8630/31/35 Data Sheet  
Land Pattern: 16-Pin Narrow Body SOIC  
9. Land Pattern: 16-Pin Narrow Body SOIC  
The figure below illustrates the recommended land pattern details for the Si863x in a 16-pin narrow-body SOIC package. The table lists  
the values for the dimensions shown in the illustration.  
Figure 9.1. PCB Land Pattern: 16-Pin Narrow Body SOIC  
Table 9.1. 16-Pin Narrow Body SOIC Land Pattern Dimensions1, 2  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Note:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 32  
 
 
Si8630/31/35 Data Sheet  
Top Marking: 16-Pin Wide Body SOIC  
10. Top Marking: 16-Pin Wide Body SOIC  
Si86XYSV  
YYWWRTTTTT  
e4  
CC  
Figure 10.1. 16-Pin Wide Body SOIC Top Marking  
Table 10.1. 16-Pin Wide Body SOIC Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
X = # of data channels (3)  
Y = # of reverse channels (5, 1, 0)1  
(See 1. Ordering Guide for more  
information.)  
S = Speed Grade (max data rate) and operating mode:  
B = 150 Mbps (default output = low)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
B = 2.5 kV; C = 3.75 kV; D = 5.0 kV; T = 5.0 kV with 10 kV surge  
capability.  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
Assigned by assembly subcontractor. Corresponds to the year  
and workweek of the mold date.  
WW = Workweek  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle = 1.7 mm Diameter  
(Center-Justified)  
“e4” Pb-Free Symbol  
Country of Origin ISO Code Ab- CC = Country of Origin ISO Code Abbreviation  
breviation  
• TW = Taiwan  
• TH = Thailand  
Note:  
1. Si8635 has 0 reverse channels.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 33  
 
 
Si8630/31/35 Data Sheet  
Top Marking: 16-Pin Narrow Body SOIC  
11. Top Marking: 16-Pin Narrow Body SOIC  
Si86XYSV  
YYWWRTTTTT  
e3  
Figure 11.1. 16-Pin Narrow Body SOIC Top Marking  
Table 11.1. 16-Pin Narrow Body SOIC Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (3)  
(See 1. Ordering Guide for more  
information.)  
Y = # of reverse channels (5, 1, 0)1  
S = Speed Grade (max data rate) and operating mode:  
B = 150 Mbps (default output = low)  
E = 150 Mbps (default output = high)  
V = Insulation rating  
B = 2.5 kV; C = 3.75 kV  
“e3” Pb-Free Symbol  
Line 2 Marking:  
Circle = 1.2 mm Diameter  
YY = Year  
Assigned by the Assembly House. Corresponds to the year and  
work week of the mold date.  
WW = Work Week  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Note:  
1. Si8635 has 0 reverse channels.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 34  
 
 
Si8630/31/35 Data Sheet  
Revision History  
12. Revision History  
Revision 1.81  
January 2018  
• Added new table to Ordering Guide for Automotive-Grade OPN options.  
Revision 1.8  
November 30th, 2016  
• Added note to Ordering Guide table for denoting tape and reel marking.  
Revision 1.7  
July 19, 2016  
• Added "R" part to the Ordering Guide.  
Revision 1.6  
October 29, 2015  
• Added product options Si863xxT in 1. Ordering Guide.  
• Added spec line items for Input and Enable Leakage Currents pertaining to Si863xxT in 4. Electrical Specifications.  
• Added new spec for tSD in Electrical Specifications  
• Updated IEC 60747-5-2 to IEC 60747-5-5 in all instances in document  
Revision 1.5  
June 6, 2015  
• Updated Table 5 on page 14.  
• Added CQC certificate numbers.  
• Updated "4. Ordering Guide" on page 10.  
• Removed references to moisture sensitivity levels.  
• Removed Note 2.  
Revision 1.4  
September 25, 2013  
• Added Figure 3, “Common-Mode Transient Immunity Test Circuit,” on page 8.  
• Added references to CQC throughout.  
• Added references to 2.5 kVRMS devices throughout.  
• Updated "4. Ordering Guide" on page 10.  
• Updated "9.1. Si863x Top Marking (16-Pin Wide Body SOIC)" on page 17.  
Revision 1.3  
June 26, 2012  
• Updated Table 11 on page 20.  
• Added junction temperature spec.  
• Updated "2.3.1. Supply Bypass" on page 7.  
• Removed “3.3.2. Pin Connections” on page 23.  
• Updated "3. Pin Descriptions" on page 9.  
• Updated table notes.  
• Updated "4. Ordering Guide" on page 10.  
• Removed Rev A devices.  
• Updated "6. Land Pattern: 16-Pin Wide-Body SOIC" on page 13.  
• Updated Top Marks.  
• Added revision description.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 35  
 
Si8630/31/35 Data Sheet  
Revision History  
Revision 1.2  
March 21, 2012  
• Updated "4. Ordering Guide" on page 10 to include MSL2A.  
Revision 1.1  
September 14, 2011  
• Updated High Level Output Voltage VOH to 3.1 V in Table 3, “Electrical Characteristics,” on page 9.  
• Updated High Level Output Voltage VOH to 2.3 V in Table 4, “Electrical Characteristics,” on page 12.  
Revision 1.0  
July 14, 2011  
• Reordered spec tables to conform to new convention.  
• Removed “pending” throughout document.  
Revision 0.2  
March 31, 2011  
• Added chip graphics on page 1.  
• Moved Tables 1 and 11 to page 20.  
• Updated Table 6, “Insulation and Safety-Related Specifications,” on page 17.  
• Updated Table 8, “IEC 60747-5-5 Insulation Characteristics for Si86xxxx*,” on page 18.  
• Moved Table 1 to page 4.  
• Moved Table 2 to page 5.  
• Moved “Typical Performance Characteristics” to page 8.  
• Updated "3. Pin Descriptions" on page 9.  
• Updated "4. Ordering Guide" on page 10.  
• Removed references to QSOP-16 package.  
Revision 0.1  
September 15, 2010  
• Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.81 | 36  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY