560BAA150M000BBGR [SILICON]

LVDS Output Clock Oscillator,;
560BAA150M000BBGR
型号: 560BAA150M000BBGR
厂家: SILICON    SILICON
描述:

LVDS Output Clock Oscillator,

机械 输出元件 振荡器
文件: 总17页 (文件大小:925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Series Crystal Oscillator  
Si560 Data Sheet  
Ultra Low Jitter Any-Frequency XO (90 fs), 0.2 to 3000 MHz  
KEY FEATURES  
The Si560 Ultra Seriesoscillator utilizes Silicon Laboratories’ advanced 4th genera-  
tion DSPLL® technology to provide an ultra-low jitter, low phase noise clock at any  
output frequency. The device is factory-programmed to any frequency from 0.2 to  
3000 MHz with <1 ppb resolution and maintains exceptionally low jitter for both inte-  
ger and fractional frequencies across its operating range. The Si560 offers excellent  
reliability and frequency stability as well as guaranteed aging performance. On-chip  
power supply filtering provides industry-leading power supply noise rejection, simplify-  
ing the task of generating low jitter clocks in noisy systems that use switched-mode  
power supplies. Offered in industry-standard 3.2x5 mm and 5x7 mm footprints, the  
Si560 has a dramatically simplified supply chain that enables Silicon Labs to ship cus-  
tom frequency samples 1-2 weeks after receipt of order. Unlike a traditional XO,  
where a different crystal is required for each output frequency, the Si560 uses one  
simple crystal and a DSPLL IC-based approach to provide the desired output frequen-  
cy. This process also guarantees 100% electrical testing of every device. The Si560 is  
factory-configurable for a wide variety of user specifications, including frequency, out-  
put format, and OE pin location/polarity. Specific configurations are factory-program-  
med at time of shipment, eliminating the long lead times associated with custom oscil-  
lators.  
• Available with any frequency from 0.2  
MHz to 3000 MHz  
• Ultra low jitter: 90 fs RMS typical  
(12 kHz – 20 MHz)  
• Excellent PSRR and supply noise  
immunity: –80 dBc Typ  
• 20 ppm temp stability (–40 to 85 °C)  
• 3.3 V, 2.5 V and 1.8 V V supply  
DD  
operation from the same part number  
• LVPECL, LVDS, CML, HCSL, CMOS,  
and Dual CMOS output options  
• 3.2x5, 5x7 mm package footprints  
• Samples available with 1-2 week lead  
times  
APPLICATIONS  
Pin Assignments  
• 100G/200G/400G OTN, coherent optics  
• 10G/40G/100G optical ethernet  
• 56G/112G PAM4 clocking  
1
2
3
6
5
4
VDD  
CLK-  
CLK+  
OE/NC  
NC/OE  
GND  
• 3G-SDI/12G-SDI/24G-SDI broadcast  
video  
• Datacenter  
• Test and measurement  
• FPGA/ASIC clocking  
(Top View)  
Fixed  
Frequency  
Crystal  
Frequency  
Flexible  
DSPLL  
Pin #  
Descriptions  
Low  
Noise  
Driver  
1, 2  
Selectable via ordering option  
DCO  
Digital  
Phase  
Detector  
Digital  
Phase Error  
Loop  
OE = Output enable; NC = No connect  
OSC  
Cancellation  
Filter  
Flexible  
Formats,  
1.8V – 3.3V  
3
4
5
6
GND = Ground  
Phase Error  
Fractional  
Operation  
Divider  
CLK+ = Clock output  
NVM  
Control  
CLK- = Complementary clock output. Not used for CMOS.  
VDD = Power supply  
Power Supply Regulation  
Output Enable  
(Pin Control)  
Built-in Power Supply  
Noise Rejection  
silabs.com | Building a more connected world.  
Rev. 1.0  
Si560 Data Sheet  
Ordering Guide  
1. Ordering Guide  
The Si560 XO supports a variety of options including frequency, output format, and OE pin location/polarity, as shown in the chart  
below. Specific device configurations are programmed into the part at time of shipment, and samples are available in 1-2 weeks. Silicon  
Laboratories provides an online part number configuration utility to simplify this process. Refer to www.silabs.com/oscillators to access  
this tool and for further ordering instructions.  
XO Series  
Description  
Temp Stability Total Stability2  
± 20 ppm  
± 50 ppm  
Package  
5x7 mm  
Temperature Grade  
560  
Single Frequency  
A
A
B
G
-40 to 85 °C  
3.2x5 mm  
560  
A
A
A
-
-
-
-
-
-
-
A
B
G
R
Device Revision  
Order  
Option  
Signal Format  
VDD Range  
OE Pin OE Polarity  
Reel  
LVPECL  
LVDS  
2.5, 3.3 V  
A
B
C
D
E
A
B
C
D
Pin 1  
Pin 1  
Pin 2  
Pin 2  
Active High  
Active Low  
Active High  
Active Low  
R
Tape and Reel  
Coil Tape  
1.8, 2.5, 3.3 V  
1.8, 2.5, 3.3 V  
1.8, 2.5, 3.3 V  
1.8, 2.5, 3.3 V  
<Blank>  
CMOS  
CML  
Frequency Code3  
Mxxxxxx  
Description  
HCSL  
FCLK < 1 MHz  
Dual CMOS  
(In-Phase)  
Dual CMOS  
1.8, 2.5, 3.3 V  
F
xMxxxxx  
1 MHz FCLK < 10 MHz  
xxMxxxx  
10 MHz FCLK < 100 MHz  
100 MHz FCLK < 1000 MHz  
1000 MHz FCLK 3000 MHz  
Custom code if FCLK > 6 digits  
1.8, 2.5, 3.3 V  
1.8, 2.5, 3.3 V  
G
X
xxxMxxx  
(Complementary)  
Custom1  
xxxxMxx  
xxxxxx  
Notes:  
1. Contact Silicon Labs for non-standard configurations.  
2. Total stability includes temp stability, initial accuracy, load pulling, VDD variation, and 20 year aging at 70 °C.  
3. For example: 156.25 MHz = 156M250; 25 MHz = 25M0000. Create custom part numbers at www.silabs.com/oscillators.  
1.1 Technical Support  
Frequently Asked Questions (FAQ)  
Oscillator Phase Noise Lookup Utility  
Quality and Reliability  
www.silabs.com/Si560-FAQ  
www.silabs.com/oscillator-phase-noise-lookup  
www.silabs.com/quality  
Development Kits  
www.silabs.com/oscillator-tools  
silabs.com | Building a more connected world.  
Rev. 1.0 | 2  
Si560 Data Sheet  
Electrical Specifications  
2. Electrical Specifications  
Table 2.1. Electrical Specifications  
Test Condition/Comment  
VDD = 1.8 V, 2.5 or 3.3 V ± 5%, TA = –40 to 85 ºC  
Parameter  
Temperature Range  
Frequency Range  
Symbol  
TA  
Min  
–40  
0.2  
0.2  
0.2  
3.135  
2.375  
1.71  
Typ  
Max  
85  
Unit  
ºC  
FCLK  
LVPECL, LVDS, CML  
HCSL  
3000  
400  
250  
3.465  
2.625  
1.89  
160  
157  
130  
135  
145  
MHz  
MHz  
MHz  
V
CMOS, Dual CMOS  
3.3 V  
Supply Voltage  
Supply Current  
VDD  
3.3  
2.5  
1.8  
110  
90  
85  
85  
95  
73  
2.5 V  
V
1.8 V  
V
IDD  
LVPECL (output enabled)  
LVDS/CML (output enabled)  
HCSL (output enabled)  
CMOS (output enabled)  
Dual CMOS (output enabled)  
Tristate Hi-Z (output disabled)  
Frequency stability Grade A  
Frequency stability Grade A  
mA  
mA  
mA  
mA  
mA  
mA  
ppm  
ppm  
Temperature Stability  
–20  
–50  
20  
Total Stability1  
FSTAB  
TR/TF  
50  
Rise/Fall Time  
LVPECL/LVDS/CML  
CMOS / Dual CMOS, (CL = 5 pF)  
HCSL, FCLK >50 MHz  
All formats  
0.5  
350  
ps  
ns  
ps  
%
(20% to 80% VPP  
Duty Cycle  
)
1.5  
550  
DC  
VIH  
VIL  
TD  
45  
55  
Output Enable (OE)2  
0.7 × VDD  
V
0.3 × VDD  
V
Output Disable Time, FCLK > 10 MHz  
Output Enable Time, FCLK > 10 MHz  
3
µs  
µs  
ms  
TE  
20  
10  
Powerup Time  
tOSC  
Time from 0.9 × VDD until output fre-  
quency (FCLK) within spec  
LVPECL Output Option3  
VOC  
VO  
Mid-level  
VDD – 1.42  
1.1  
VDD – 1.25  
1.9  
V
Swing (diff, FCLK < 1.5 GHz)  
VPP  
VPP  
Swing (diff, FCLK > 1.5 GHz)6  
Mid-level (2.5 V, 3.3 V VDD)  
Mid-level (1.8 V VDD)  
0.55  
1.7  
LVDS Output Option4  
VOC  
1.125  
0.8  
1.20  
0.9  
0.7  
0.5  
1.275  
1.0  
V
V
VO  
Swing (diff, FCLK < 1.5 GHz)  
0.5  
0.9  
VPP  
VPP  
Swing (diff, FCLK > 1.5 GHz) 6  
0.25  
0.8  
silabs.com | Building a more connected world.  
Rev. 1.0 | 3  
Si560 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
VOH  
VOL  
Test Condition/Comment  
Output voltage high  
Min  
660  
–150  
250  
0.6  
Typ  
800  
0
Max  
850  
150  
550  
1.0  
Unit  
mV  
HCSL Output Option5  
Output voltage low  
mV  
VC  
Crossing voltage  
410  
0.8  
0.55  
mV  
CML Output Option  
(AC-Coupled)  
VO  
Swing (diff, FCLK ≤ 1.5 GHz)  
VPP  
VPP  
Swing (diff, FCLK > 1.5 GHz)6  
0.3  
0.9  
CMOS Output Option  
VOH  
VOL  
IOH = 8/6/4 mA for 3.3/2.5/1.8 V VDD 0.85 × VDD  
IOL = 8/6/4 mA for 3.3/2.5/1.8 V VDD  
V
V
0.15 × VDD  
Notes:  
1. Total Stability includes temperature stability, initial accuracy, load pulling, VDD variation, and aging for 20 yrs at 70 ºC.  
2. OE includes a 50 kΩ pull-up to VDD for OE active high, or includes a 50 kΩ pull-down to GND for OE active low.  
3. Rterm = 50 Ω to VDD – 2.0 V (see Figure 4.1).  
4. Rterm = 100 Ω (differential) (see Figure 4.2).  
5. Rterm = 50 Ω to GND (see Figure 4.2).  
6. Refer to the figure below for Typical Clock Output Swing Amplitudes vs Frequency.  
Figure 2.1. Typical Clock Output Swing Amplitudes vs. Frequency  
silabs.com | Building a more connected world.  
Rev. 1.0 | 4  
Si560 Data Sheet  
Electrical Specifications  
Table 2.2. Clock Output Phase Jitter and PSRR  
VDD = 1.8 V, 2.5 or 3.3 V ± 5%, TA = –40 to 85 ºC  
Parameter  
Symbol  
Test Condition/Comment  
FCLK ≥ 200 MHz  
Min  
Typ  
90  
Max  
140  
160  
125  
Unit  
fs  
Phase Jitter (RMS, 12 kHz - 20 MHz)1  
All Differential Formats  
ϕJ  
100 MHz ≤ FCLK < 200 MHz  
LVPECL @ 156.25 MHz  
105  
95  
fs  
fs  
Phase Jitter (RMS, 12 kHz - 20 MHz)1  
CMOS / Dual CMOS Formats  
ϕJ  
10 MHz ≤ FCLK < 250 MHz  
200  
fs  
Spurs Induced by External Power Supply  
Noise, 50 mVpp Ripple. LVDS 156.25 MHz  
Output  
PSRR  
100 kHz sine wave  
200 kHz sine wave  
500 kHz sine wave  
1 MHz sine wave  
-83  
-83  
-82  
-85  
dBc  
Note:  
1. Jitter inclusive of any spurs.  
Table 2.3. 3.2 x 5 mm Clock Output Phase Noise (Typical)  
Offset Frequency (f)  
100 Hz  
156.25 MHz LVDS  
200 MHz LVDS  
–100  
644.53125 MHz LVDS  
Unit  
–105  
–129  
–136  
–142  
–150  
–159  
–160  
–92  
1 kHz  
–126  
–116  
–125  
–131  
–138  
–153  
–154  
10 kHz  
–133  
100 kHz  
–140  
dBc/Hz  
1 MHz  
–148  
10 MHz  
–161  
20 MHz  
–162  
Offset Frequency (f)  
156.25 MHz  
LVPECL  
200 MHz  
LVPECL  
644.53125 MHz  
LVPECL  
Unit  
100 Hz  
1 kHz  
–109  
–131  
–135  
–143  
–150  
–160  
–161  
–102  
–126  
–134  
–141  
–148  
–162  
–163  
–92  
–119  
–124  
–130  
–138  
–154  
–155  
10 kHz  
100 kHz  
1 MHz  
dBc/Hz  
10 MHz  
20 MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 5  
Si560 Data Sheet  
Electrical Specifications  
Figure 2.2. Phase Jitter vs. Output Frequency  
Phase jitter measured with Agilent E5052 using a differential-to-single ended converter (balun or buffer). Measurements collected for  
>700 commonly used frequencies. Phase noise plots for specific frequencies are available using our free, online Oscillator Phase Noise  
Lookup Tool at www.silabs.com/oscillators.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 6  
Si560 Data Sheet  
Electrical Specifications  
Table 2.4. Environmental Compliance and Package Information  
Parameter  
Test Condition  
Mechanical Shock  
Mechanical Vibration  
Solderability  
MIL-STD-883, Method 2002  
MIL-STD-883, Method 2007  
MIL-STD-883, Method 2003  
MIL-STD-883, Method 1014  
MIL-STD-883, Method 2036  
1
Gross and Fine Leak  
Resistance to Solder Heat  
Moisture Sensitivity Level (MSL)  
Contact Pads  
Gold over Nickel  
Note:  
1. For additional product information not listed in the data sheet (e.g. RoHS Certifications, MDDS data, qualification data, REACH  
Declarations, ECCN codes, etc.), refer to our "Corporate Request For Information" portal found here: www.silabs.com/support/  
quality/Pages/RoHSInformation.aspx.  
Table 2.5. Thermal Conditions  
Package  
Parameter  
Symbol  
ΘJA  
ΘJB  
TJ  
Test Condition  
Still Air, 85 °C  
Still Air, 85 °C  
Still Air, 85 °C  
Still Air, 85 °C  
Still Air, 85 °C  
Still Air, 85 °C  
Value  
80.3  
50.8  
125  
Unit  
ºC/W  
ºC/W  
ºC  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Board  
Max Junction Temperature  
3.2 × 5 mm  
6-pin CLCC  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Board  
Max Junction Temperature  
ΘJA  
ΘJB  
TJ  
68.4  
52.9  
125  
ºC/W  
ºC/W  
ºC  
5 × 7 mm  
6-pin CLCC  
Table 2.6. Absolute Maximum Ratings1  
Parameter  
Symbol  
TAMAX  
TS  
Rating  
95  
Unit  
Maximum Operating Temp.  
Storage Temperature  
Supply Voltage  
ºC  
ºC  
ºC  
V
–55 to 125  
–0.5 to 3.8  
–0.5 to VDD + 0.3  
2.0  
VDD  
Input Voltage  
VIN  
ESD HBM (JESD22-A114)  
Solder Temperature2  
HBM  
TPEAK  
kV  
ºC  
260  
2
TP  
20–40  
sec  
Solder Time at TPEAK  
Notes:  
1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification  
compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device  
reliability.  
2. The device is compliant with JEDEC J-STD-020.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 7  
Si560 Data Sheet  
Dual CMOS Buffer  
3. Dual CMOS Buffer  
Dual CMOS output format ordering options support either complementary or in-phase signals for two identical frequency outputs. This  
feature enables replacement of multiple XOs with a single Si560 device.  
~
Complementary  
Outputs  
~
In-Phase  
Outputs  
Figure 3.1. Integrated 1:2 CMOS Buffer Supports Complementary or In-Phase Outputs  
silabs.com | Building a more connected world.  
Rev. 1.0 | 8  
Si560 Data Sheet  
Recommended Output Terminations  
4. Recommended Output Terminations  
The output drivers support both AC-coupled and DC-coupled terminations as shown in figures below.  
VDD  
VDD  
R1  
VDD (3.3V, 2.5V)  
CLK+  
VDD (3.3V, 2.5V)  
CLK+  
R1  
R1  
R1  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
CLK-  
CLK-  
LVPECL  
Receiver  
LVPECL  
Receiver  
Rp  
Rp  
Si56x  
Si56x  
R2  
R2  
R2  
R2  
AC-Coupled LVPECL – Thevenin Termination  
DC-Coupled LVPECL – Thevenin Termination  
VDD (3.3V, 2.5V)  
50 Ω  
VDD (3.3V, 2.5V)  
50 Ω  
CLK+  
CLK+  
R1  
R2  
R1  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
VDD  
VDD  
VTT  
VTT  
CLK-  
Rp  
CLK-  
R2  
50 Ω  
50 Ω  
LVPECL  
Receiver  
LVPECL  
Receiver  
Si56x  
Si56x  
Rp  
AC-Coupled LVPECL - 50 Ω w/VTT Bias  
DC-Coupled LVPECL - 50 Ω w/VTT Bias  
Figure 4.1. LVPECL Output Terminations  
AC-Coupled LVPECL  
Termination Resistor Values  
DC-Coupled LVPECL  
Termination Resistor Values  
VDD  
R1  
R2  
Rp  
VDD  
3.3 V  
2.5 V  
R1  
R2  
3.3 V  
2.5 V  
127 Ω  
250 Ω  
82.5 Ω  
62.5 Ω  
130 Ω  
90 Ω  
127 Ω  
250 Ω  
82.5 Ω  
62.5 Ω  
silabs.com | Building a more connected world.  
Rev. 1.0 | 9  
Si560 Data Sheet  
Recommended Output Terminations  
(3.3V, 2.5V, 1.8V)  
VDD  
(3.3V, 2.5V, 1.8V)  
VDD  
50 Ω  
50 Ω  
33 Ω  
CLK+  
CLK-  
CLK+  
50 Ω  
50 Ω  
100 Ω  
33 Ω  
50 Ω  
CLK-  
50 Ω  
LVDS  
Receiver  
HCSL  
Receiver  
Si56x  
Si56x  
DC-Coupled LVDS  
Source Terminated HCSL  
(3.3V, 2.5V, 1.8V)  
(3.3V, 2.5V, 1.8V)  
VDD  
VDD  
50 Ω  
CLK+  
CLK+  
50 Ω  
100 Ω  
CLK-  
CLK-  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
LVDS  
Receiver  
HCSL  
Receiver  
Si56x  
Si56x  
AC-Coupled LVDS  
Destination Terminated HCSL  
Figure 4.2. LVDS and HCSL Output Terminations  
(3.3V, 2.5V, 1.8V)  
VDD  
(3.3V, 2.5V, 1.8V)  
VDD  
CLK  
50 Ω  
50 Ω  
CLK+  
CLK-  
50 Ω  
10  
100 Ω  
NC  
CMOS  
Receiver  
CML  
Receiver  
Si56x  
Si56x  
CML Termination without VCM  
Single CMOS Termination  
(3.3V, 2.5V, 1.8V)  
VDD  
(3.3V, 2.5V, 1.8V)  
VDD  
CLK+  
50 Ω  
50 Ω  
CLK+  
50 Ω  
50 Ω  
50 Ω  
50 Ω  
VCM  
10 Ω  
10 Ω  
CLK-  
CLK-  
CML  
Receiver  
CMOS  
Receivers  
Si56x  
Si56x  
CML Termination with VCM  
Dual CMOS Termination  
Figure 4.3. CML and CMOS Output Terminations  
silabs.com | Building a more connected world.  
Rev. 1.0 | 10  
Si560 Data Sheet  
Package Outline  
5. Package Outline  
5.1 Package Outline (5×7 mm)  
The figure below illustrates the package details for the 5×7 mm Si560. The table below lists the values for the dimensions shown in the  
illustration.  
Figure 5.1. Si560 (5×7 mm) Outline Diagram  
Table 5.1. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.13  
0.50  
0.50  
1.30  
0.50  
Nom  
1.28  
Max  
1.43  
0.60  
0.60  
1.50  
0.70  
Dimension  
Min  
1.17  
0.05  
1.70  
Nom  
1.27  
Max  
1.37  
0.15  
1.90  
A
L
A2  
0.55  
L1  
0.10  
A3  
0.55  
p
b
1.40  
R
0.70 REF  
0.15  
c
0.60  
aaa  
bbb  
ccc  
ddd  
eee  
D
5.00 BSC  
4.40  
0.15  
D1  
4.30  
4.50  
0.08  
e
E
2.54 BSC  
7.00 BSC  
6.20  
0.10  
0.05  
E1  
6.10  
6.30  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 11  
Si560 Data Sheet  
Package Outline  
5.2 Package Outline (3.2×5 mm)  
The figure below illustrates the package details for the 3.2×5 mm Si560. The table below lists the values for the dimensions shown in  
the illustration.  
Figure 5.2. Si560 (3.2×5 mm) Outline Diagram  
Table 5.2. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.06  
0.54  
0.35  
Nom  
1.17  
Max  
1.33  
0.74  
0.55  
A
b
0.64  
c
0.45  
D
3.20 BSC  
2.60  
D1  
e
2.55  
2.65  
1.27 BSC  
5.00 BSC  
4.40  
E
E1  
H
4.35  
0.45  
0.80  
0.05  
1.36  
4.45  
0.65  
1.00  
0.15  
1.56  
0.55  
L
0.90  
L1  
p
0.10  
1.46  
R
0.32 REF  
0.15  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.08  
0.10  
0.05  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 12  
Si560 Data Sheet  
PCB Land Pattern  
6. PCB Land Pattern  
6.1 PCB Land Pattern (5×7 mm)  
The figure below illustrates the 5×7 mm PCB land pattern for the Si560. The table below lists the values for the dimensions shown in  
the illustration.  
Figure 6.1. Si560 (5×7 mm) PCB Land Pattern  
Table 6.1. PCB Land Pattern Dimensions (mm)  
Dimension  
(mm)  
4.20  
2.54  
1.55  
1.95  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 13  
Si560 Data Sheet  
PCB Land Pattern  
6.2 PCB Land Pattern (3.2×5 mm)  
The figure below illustrates the 3.2×5.0 mm PCB land pattern for the Si560. The table below lists the values for the dimensions shown  
in the illustration.  
Figure 6.2. Si560 (3.2×5 mm) PCB Land Pattern  
Table 6.2. PCB Land Pattern Dimensions (mm)  
Dimension  
(mm)  
2.60  
1.27  
0.80  
1.70  
C1  
E
X1  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 14  
Si560 Data Sheet  
Top Marking  
7. Top Marking  
The figure below illustrates the mark specification for the Si560. The table below lists the line information.  
Figure 7.1. Mark Specification  
Table 7.1. Si560 Top Mark Description  
Line  
Position  
1–8  
Description  
1
2
"Si560", xxx = Ordering Option 1, Option 2, Option 3 (e.g. Si560AAA)  
1–7  
Frequency Code  
(e.g. 100M000 or 6-digit custom code as described in the Ordering Guide)  
3
Trace Code  
Pin 1 orientation mark (dot)  
Product Revision (B)  
Position 1  
Position 2  
Position 3–5  
Position 6–7  
Position 8–9  
Tiny Trace Code (3 alphanumeric characters per assembly release instructions)  
Year (last two digits of the year), to be assigned by assembly site (ex: 2017 = 17)  
Calendar Work Week number (1–53), to be assigned by assembly site  
silabs.com | Building a more connected world.  
Rev. 1.0 | 15  
Si560 Data Sheet  
Revision History  
8. Revision History  
Revision 1.0  
June, 2018  
• Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 16  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or  
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited.  
All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

560BAA200M000BBGR

LVDS Output Clock Oscillator,
SILICON

560BAC200M000BBG

LVDS Output Clock Oscillator,
SILICON

560BCR050K

+85°C Temperature Stable Ceramic Disc Capacitors
ILLINOISCAPAC

560GAA24M0000BBG

CMOS Output Clock Oscillator,
SILICON

560JY8C

5.0 mm DIA LED LAMP
HB

560KD05JX

11 to 460 Volts Varistor 0.7 to 29 Joule
MCC

560KD05NX

4 to 460 Volts Varistor 0.20 to 22.5 Joule
MCC

560KD07JI-TP

560KD07JI-TP
MCC

560KD07JS-TP

560KD07JS-TP
MCC

560KD07JX

11 to 510 Volts 1.5 to 60 Joule
MCC

560KD07NX

4 to 510 Volts Varistor 0.8 to 47 Joule
MCC

560KD10JI

RESISTOR, VOLTAGE DEPENDENT, 45V, 8.1J, THROUGH HOLE MOUNT, RADIAL LEADED
MCC