571AJA001757DGR [SILICON]

LVPECL Output Clock Oscillator,;
571AJA001757DGR
型号: 571AJA001757DGR
厂家: SILICON    SILICON
描述:

LVPECL Output Clock Oscillator,

振荡器
文件: 总37页 (文件大小:552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si570/Si571  
10 MHZ TO 1.4 GHZ I2C PROGRAMMABLE XO/VCXO  
Features  
Any programmable output  
frequencies from 10 to 945 MHz and  
select frequencies to 1.4 GHz  
Internal fixed crystal frequency  
ensures high reliability and low  
aging  
2
Available LVPECL, CMOS,  
LVDS, and CML outputs  
Industry-standard 5x7 mm  
package  
Pb-free/RoHS-compliant  
1.8, 2.5, or 3.3 V supply  
I C serial interface  
®
3rd generation DSPLL with superior  
jitter performance  
3x better frequency stability than  
SAW-based oscillators  
Applications  
Ordering Information:  
SONET/SDH  
xDSL  
10 GbE LAN/WAN  
ATE  
High performance  
instrumentation  
Low-jitter clock generation  
Optical modules  
Clock and data recovery  
See page 32.  
Pin Assignments:  
See page 31.  
Description  
(Top View)  
®
The Si570 XO/Si571 VCXO utilizes Silicon Laboratories’ advanced DSPLL  
circuitry to provide a low-jitter clock at any frequency. The Si570/Si571 are user-  
programmable to any output frequency from 10 to 945 MHz and select frequencies  
SDA  
7
2
NC  
VDD  
1
2
3
6
5
4
to 1400 MHz with <1 ppb resolution. The device is programmed via an I C serial  
interface. Unlike traditional XO/VCXOs where a different crystal is required for  
each output frequency, the Si57x uses one fixed-frequency crystal and a DSPLL  
clock synthesis IC to provide any-frequency operation. This IC-based approach  
allows the crystal resonator to provide exceptional frequency stability and  
reliability. In addition, DSPLL clock synthesis provides superior supply noise  
rejection, simplifying the task of generating low-jitter clocks in noisy environments  
typically found in communication systems.  
OE  
CLK–  
CLK+  
GND  
8
SCL  
Functional Block Diagram  
Si570  
CLK- CLK+  
VDD  
SDA  
7
OE  
VC  
VDD  
1
2
3
6
5
4
10-1400 MHz  
DSPLLClock  
Synthesis  
Fixed  
Frequency  
XO  
SDA  
SCL  
OE  
CLK–  
CLK+  
Si571 only  
GND  
ADC  
8
SCL  
GND  
Si571  
VC  
Rev. 1.5 4/14  
Copyright © 2014 by Silicon Laboratories  
Si570/Si571  
Si570/Si571  
2
Rev. 1.5  
Si570/Si571  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Programming a New Output Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Si570 Programming Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.3. Si570 Troubleshooting FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.4. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4. Serial Port Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Si570 (XO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
6. Si571 (VCXO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8. Si57x Mark Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9. Outline Diagram and Suggested Pad Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
10. 8-Pin PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Rev. 1.5  
3
Si570/Si571  
1. Detailed Block Diagrams  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
DCO  
÷HS_DIV  
÷N1  
+
fosc  
RFREQ  
Frequency  
Control  
OE  
Control  
Interface  
SDA  
SCL  
NVM  
RAM  
Figure 1. Si570 Detailed Block Diagram  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
VC  
ADC  
DCO  
÷HS_DIV  
÷N1  
+
fosc  
VCADC  
RFREQ  
Frequency  
Control  
OE  
SDA  
SCL  
Control  
Interface  
NVM  
RAM  
Figure 2. Si571 Detailed Block Diagram  
4
Rev. 1.5  
Si570/Si571  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Symbol  
Test Condition  
3.3 V option  
2.5 V option  
1.8 V option  
Min  
2.97  
2.25  
1.71  
Typ  
3.3  
2.5  
1.8  
Max  
3.63  
2.75  
1.89  
Unit  
Parameter  
Supply Voltage1  
VDD  
V
Output enabled  
LVPECL  
CML  
130  
117  
108  
98  
120  
108  
99  
Supply Current  
IDD  
mA  
LVDS  
CMOS  
90  
TriState mode  
0.75 x VDD  
60  
75  
Output Enable (OE)2,  
Serial Data (SDA),  
Serial Clock (SCL)  
VIH  
VIL  
V
0.5  
Operating Temperature Range  
TA  
–40  
85  
ºC  
Notes:  
1. Selectable parameter specified by part number. See Section "7. Ordering Information" on page 32 for further details.  
2. OE pin includes a 17 kpullup resistor to VDD. See “7.Ordering Information”.  
Table 2. VC Control Voltage Input (Si571)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
33  
45  
90  
Control Voltage Tuning Slope1,2,3  
KV  
VC 10 to 90% of VDD  
ppm/V  
135  
180  
356  
BSL  
–5  
–10  
9.3  
500  
±1  
±5  
+5  
+10  
10.7  
Control Voltage Linearity4  
LVC  
%
Incremental  
Modulation Bandwidth  
VC Input Impedance  
Nominal Control Voltage5  
Control Voltage Tuning Range  
Notes:  
BW  
ZVC  
10.0  
kHz  
k  
V
VCNOM  
VC  
@ fO  
VDD/2  
0
VDD  
V
1. Positive slope; selectable option by part number. See "7. Ordering Information" on page 32.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
3. KV variation is ±10% of typical values.  
4. BSL determined from deviation from best straight line fit with VC ranging from 10 to 90% of VDD. Incremental slope is  
determined with VC ranging from 10 to 90% of VDD  
.
5. Nominal output frequency set by VCNOM = 1/2 x VDD  
.
Rev. 1.5  
5
 
 
 
 
 
Si570/Si571  
Table 3. CLK± Output Frequency Characteristics  
Parameter  
Symbol  
Test Condition  
LVPECL/LVDS/CML  
CMOS  
Min  
10  
Typ  
Max  
1417.5  
160  
Unit  
Programmable Frequency  
Range1,2  
fO  
MHz  
10  
–7  
–20  
–50  
–100  
7
+20  
+50  
+100  
Temperature Stability1,3  
TA = –40 to +85 ºC  
ppm  
1.5  
±3  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ppm  
ms  
Initial Accuracy  
Aging  
Frequency drift over first year  
Frequency drift over 20-year life  
Temp stability = ±7 ppm  
fa  
±10  
±20  
±31.5  
±61.5  
±375  
10  
Total Stability  
Temp stability = ±20 ppm  
Temp stability = ±50 ppm  
Absolute Pull Range1,3  
APR  
tOSC  
±12  
Power up Time4  
Notes:  
1. See Section "7. Ordering Information" on page 32 for further details.  
2. Specified at time of order by part number. Three speed grades available:  
Grade A covers 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417.5 MHz.  
Grade B covers 10 to 810 MHz.  
Grade C covers 10 to 280 MHz.  
3. Selectable parameter specified by part number.  
4. Time from power up or tristate mode to fO.  
6
Rev. 1.5  
 
 
 
Si570/Si571  
Table 4. CLK± Output Levels and Symmetry  
Parameter  
Symbol  
VO  
Test Condition  
mid-level  
Min  
VDD – 1.42  
1.1  
Typ  
Max  
VDD – 1.25  
1.9  
Unit  
V
LVPECL Output Option1  
VOD  
VSE  
swing (diff)  
VPP  
VPP  
swing (single-ended)  
mid-level  
0.55  
0.95  
VO  
1.125  
0.5  
1.20  
0.7  
1.275  
0.9  
V
LVDS Output Option2  
CML Output Option2  
swing (diff)  
VOD  
VO  
VPP  
2.5/3.3 V option mid-level  
1.8 V option mid-level  
2.5/3.3 V option swing (diff)  
1.8 V option swing (diff)  
IOH = 32 mA  
VDD – 1.30  
V
V
VDD – 0.36  
1.10  
0.35  
0.8 x VDD  
1.50  
0.425  
1.90  
0.50  
VDD  
0.4  
350  
VPP  
VPP  
V
VOD  
VOH  
VOL  
CMOS Output Option3  
Rise/Fall time (20/80%)  
IOL = 32 mA  
V
LVPECL/LVDS/CML  
CMOS with CL = 15 pF  
ps  
ns  
t
R, tF  
1
LVPECL:  
LVDS:  
V
DD – 1.3 V (diff)  
SYM  
45  
55  
%
Symmetry (duty cycle)  
1.25 V (diff)  
CMOS:  
V
DD/2  
Notes:  
1. Rterm = 50 to VDD – 2.0 V.  
2. Rterm = 100 (differential).  
3. CL = 15 pF  
Rev. 1.5  
7
 
 
 
 
Si570/Si571  
Table 5. CLK± Output Phase Jitter (Si570)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
0.25  
0.26  
0.36  
0.34  
0.62  
0.61  
Max  
0.40  
0.37  
0.50  
0.42  
Unit  
Phase Jitter (RMS)1  
for FOUT > 500 MHz  
J  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)2  
12 kHz to 20 MHz (OC-48)2  
50 kHz to 20 MHz2  
ps  
Phase Jitter (RMS)1  
for FOUT of 125 to 500 MHz  
J  
J  
ps  
ps  
Phase Jitter (RMS)  
for FOUT of 10 to 160 MHz  
CMOS Output Only  
Notes:  
1. Refer to AN256 for further information.  
2. Max offset frequencies:  
80 MHz for FOUT > 250 MHz  
20 MHz for 50 MHz < FOUT <250 MHz  
2 MHz for 10 MHz < FOUT <50 MHz.  
8
Rev. 1.5  
 
 
 
Si570/Si571  
Table 6. CLK± Output Phase Jitter (Si571)  
Parameter  
Phase Jitter (RMS)1,2,3  
for FOUT > 500 MHz  
Symbol  
Test Condition  
Kv = 33 ppm/V  
Min  
Typ  
Max  
Unit  
J  
ps  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.26  
0.26  
Kv = 45 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.27  
0.26  
Kv = 90 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.32  
0.26  
Kv = 135 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.40  
0.27  
Kv = 180 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.49  
0.28  
Kv = 356 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.87  
0.33  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML. Refer to AN255, AN256, and AN266 for further information.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)” for more information.  
3. See “AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO” for comparison highlighting power supply  
rejection (PSR) advantage of Si55x versus SAW-based solutions.  
4. Single ended mode: CMOS. Refer to the following application notes for further information:  
“AN255: Replacing 622 MHz VCSO Devices with the Si55x VCXO”  
“AN256: Integrated Phase Noise”  
“AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)”  
5. Max offset frequencies:  
80 MHz for FOUT > 250 MHz  
20 MHz for 50 MHz < FOUT <250 MHz  
2 MHz for 10 MHz < FOUT <50 MHz.  
Rev. 1.5  
9
 
 
Si570/Si571  
Table 6. CLK± Output Phase Jitter (Si571) (Continued)  
Parameter  
Symbol  
Test Condition  
Kv = 33 ppm/V  
Min  
Typ  
Max  
Unit  
Phase Jitter (RMS)2,4,5  
for FOUT 10 to 160 MHz  
CMOS Output Only  
J  
ps  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
0.63  
0.62  
Kv = 45 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
0.63  
0.62  
Kv = 90 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
0.67  
0.66  
Kv = 135 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
0.74  
0.72  
Kv = 180 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
0.83  
0.8  
Kv = 356 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz  
1.26  
1.2  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML. Refer to AN255, AN256, and AN266 for further information.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)” for more information.  
3. See “AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO” for comparison highlighting power supply  
rejection (PSR) advantage of Si55x versus SAW-based solutions.  
4. Single ended mode: CMOS. Refer to the following application notes for further information:  
“AN255: Replacing 622 MHz VCSO Devices with the Si55x VCXO”  
“AN256: Integrated Phase Noise”  
“AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)”  
5. Max offset frequencies:  
80 MHz for FOUT > 250 MHz  
20 MHz for 50 MHz < FOUT <250 MHz  
2 MHz for 10 MHz < FOUT <50 MHz.  
10  
Rev. 1.5  
Si570/Si571  
Table 6. CLK± Output Phase Jitter (Si571) (Continued)  
Parameter  
Symbol  
Test Condition  
Kv = 33 ppm/V  
Min  
Typ  
Max  
Unit  
Phase Jitter (RMS)1,2,3,5  
for FOUT of 125 to  
500 MHz  
J  
ps  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.37  
0.33  
Kv = 45 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.37  
0.33  
Kv = 90 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.43  
0.34  
Kv = 135 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.50  
0.34  
Kv = 180 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.59  
0.35  
Kv = 356 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
1.00  
0.39  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML. Refer to AN255, AN256, and AN266 for further information.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)” for more information.  
3. See “AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO” for comparison highlighting power supply  
rejection (PSR) advantage of Si55x versus SAW-based solutions.  
4. Single ended mode: CMOS. Refer to the following application notes for further information:  
“AN255: Replacing 622 MHz VCSO Devices with the Si55x VCXO”  
“AN256: Integrated Phase Noise”  
“AN266: VCXO Tuning Slope (kV), Stability, and Absolute Pull Range (APR)”  
5. Max offset frequencies:  
80 MHz for FOUT > 250 MHz  
20 MHz for 50 MHz < FOUT <250 MHz  
2 MHz for 10 MHz < FOUT <50 MHz.  
Table 7. CLK± Output Period Jitter  
Parameter  
Symbol  
Test Condition  
RMS  
Min  
Typ  
2
Max  
Unit  
JPER  
ps  
Period Jitter*  
Peak-to-Peak  
14  
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to “AN279: Estimating Period Jitter  
from Phase Noise” for further information.  
Rev. 1.5  
11  
Si570/Si571  
Table 8. Typical CLK± Output Phase Noise (Si570)  
Offset Frequency (f)  
120.00 MHz  
LVDS  
156.25 MHz  
LVPECL  
622.08 MHz  
LVPECL  
Unit  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
–112  
–122  
–132  
–137  
–144  
–150  
n/a  
–105  
–122  
–128  
–135  
–144  
–147  
n/a  
–97  
–107  
–116  
–121  
–134  
–146  
–148  
dBc/Hz  
10 MHz  
100 MHz  
Table 9. Typical CLK± Output Phase Noise (Si571)  
Offset Frequency (f)  
74.25 MHz  
90 ppm/V  
LVPECL  
491.52 MHz  
45 ppm/V  
LVPECL  
622.08 MHz  
135 ppm/V  
LVPECL  
Unit  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
–87  
–114  
–132  
–142  
–148  
–150  
n/a  
–75  
–65  
–90  
–100  
–116  
–124  
–135  
–146  
–147  
–109  
–121  
–134  
–146  
–147  
dBc/Hz  
10 MHz  
100 MHz  
Table 10. Environmental Compliance  
(The Si570/571 meets the following qualification test requirements.)  
Parameter  
Conditions/Test Method  
MIL-STD-883, Method 2002  
MIL-STD-883, Method 2007  
MIL-STD-883, Method 2003  
MIL-STD-883, Method 1014  
MIL-STD-883, Method 2036  
J-STD-020, MSL1  
Mechanical Shock  
Mechanical Vibration  
Solderability  
Gross and Fine Leak  
Resistance to Solder Heat  
Moisture Sensitivity Level  
Contact Pads  
Gold over Nickel  
12  
Rev. 1.5  
 
Si570/Si571  
Table 11. Programming Constraints and Timing  
(VDD = 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
CKOF  
MRES  
Test Condition  
Min  
10  
Typ  
Max  
945  
Unit  
MHz  
MHz  
HS_DIV x N1 > = 6  
HS_DIV = 5  
N1 = 1  
970  
1134  
Output Frequency Range  
HS_DIV = 4  
N1 = 1  
1.2125  
1.4175  
GHz  
ppb  
Frequency Reprogramming  
Resolution  
fxtal = 114.285 MHz  
0.09  
Internal Oscillator Frequency  
fOSC  
4850  
5670  
MHz  
MHz  
Internal Crystal Frequency  
Accuracy  
fXTAL  
Maximum variation is  
±2000 ppm  
114.285  
Delta Frequency for  
Continuous Output  
From center frequency –3500  
+3500  
10  
ppm  
ms  
µs  
Unfreeze to NewFreq  
Timeout  
Settling Time for Small  
Frequency Change  
<±3500 ppm from  
center frequency  
100  
10  
Settling Time for Large  
Frequency Change  
>±3500 ppm from  
center frequency after  
setting NewFreq bit  
ms  
Table 12. Thermal Characteristics  
(Typical values TA = 25 ºC, VDD = 3.3 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
84.6  
38.8  
Max  
Unit  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
Ambient Temperature  
Still Air  
Still Air  
°C/W  
°C/W  
°C  
JA  
JC  
TA  
TJ  
–40  
85  
Junction Temperature  
125  
°C  
Rev. 1.5  
13  
 
 
Si570/Si571  
Table 13. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
VDD  
VDD  
VI  
Rating  
–0.5 to +1.9  
–0.5 to +3.8  
–0.5 to VDD + 0.3  
–55 to +125  
>2000  
Unit  
Supply Voltage, 1.8 V Option  
Supply Voltage, 2.5/3.3 V Option  
Input Voltage  
V
V
V
ºC  
Storage Temperature  
TS  
ESD Sensitivity (HBM, per JESD22-A114)  
Soldering Temperature (Lead-free Profile)  
Soldering Temperature Time @ TPEAK (Lead-free Profile)  
Notes:  
ESD  
TPEAK  
tP  
V
260  
ºC  
20–40  
seconds  
1. Stresses beyond the absolute maximum ratings may cause permanent damage to the device. Functional operation or  
specification compliance is not implied at these conditions.  
2. The device is compliant with JEDEC J-STD-020. Refer to packaging FAQ available for download at  
www.siliconlabs.com/VCXO for further information, including soldering profiles.  
14  
Rev. 1.5  
 
 
Si570/Si571  
As shown in Figure 3, the device allows reprogramming  
of the DCO frequency up to ±3500 ppm from the center  
3. Functional Description  
The Si570 XO and the Si571 VCXO are low-jitter frequency configuration without interruption to the  
oscillators ideally suited for applications requiring output clock. Changes greater than the ±3500 ppm  
programmable frequencies. The Si57x can be window will cause the device to recalibrate its internal  
programmed to generate virtually any output clock in tuning circuitry, forcing the output clock to momentarily  
the range of 10 MHz to 1.4 GHz. Output jitter stop and start at any arbitrary point during a clock cycle.  
performance complies with and exceeds the strict This re-calibration process establishes a new center  
requirements of high-speed communication systems frequency and can take up to 10 ms. Circuitry receiving  
including OC-192/STM-64 and 10 Gigabit Ethernet a clock from the Si57x device that is sensitive to glitches  
(10 GbE).  
or runt pulses may have to be reset once the  
recalibration process is complete.  
The Si57x consists of a digitally-controlled oscillator  
(DCO) based on Silicon Laboratories' third-generation 3.1.1. Reconfiguring the Output Clock for a Small  
DSPLL technology, which is driven by an internal fixed- Change in Frequency  
frequency crystal reference.  
For output changes less than ±3500 ppm from the  
The device's default output frequency is set at the center frequency configuration, the DCO frequency is  
factory and can be reprogrammed through the two-wire the only value that needs reprogramming. Since  
I2C serial port. Once the device is powered down, it will fDCO = fXTAL x RFREQ, and that fXTAL is fixed, changing  
return to its factory-set default output frequency.  
the DCO frequency is as simple as reconfiguring the  
RFREQ value as outlined below:  
While the Si570 outputs a fixed frequency, the Si571  
has a pullable output frequency using the voltage 1. Using the serial port, read the current RFREQ value  
control input pin. This makes the Si571 an ideal choice  
for high-performance, low-jitter, phase-locked loops.  
(addresses 7–12 for all Si571 devices and Si570  
devices with 20 ppm and 50 ppm temperature  
stability; or addresses 13–18 for Si570 devices with  
7 ppm temperature stability).  
3.1. Programming a New Output  
Frequency  
2. Calculate the new value of RFREQ given the change  
in frequency.  
The output frequency (fout  
)
is determined by  
programming the DCO frequency (fDCO) and the  
device's output dividers (HS_DIV, N1). The output  
frequency is calculated using the following equation:  
fout_new  
------------------------  
RFREQnew = RFREQcurrent  
fout_current  
fDCO  
fXTAL RFREQ  
------------------------------------------  
HSDIV N1  
3. Using the serial port, write the new RFREQ value  
(addresses 7–12 for all Si571 devices and Si570  
devices with 20 ppm and 50 ppm temperature  
stability; or addresses 13–18 for Si570 devices with  
7 ppm temperature stability).  
----------------------------------------  
Output Dividers  
fout  
=
=
The DCO frequency is adjustable in the range of 4.85 to  
5.67 GHz by setting the high-resolution 38-bit fractional  
multiplier (RFREQ). The DCO frequency is the product  
of the internal fixed-frequency crystal (fXTAL) and  
RFREQ.  
Example:  
An Si570 generating a 148.35 MHz clock must be  
reconfigured "on-the-fly" to generate a 148.5 MHz clock.  
This represents a change of +1011.122 ppm, which is  
well within the ±3500 ppm window.  
The 38-bit resolution of RFREQ allows the DCO  
frequency to have a programmable frequency resolution  
of 0.09 ppb.  
Center  
Frequency  
Configuration  
small frequency changes can be made  
“on-the-fly” without interruption to the  
output clock  
-3500 ppm  
+3500 ppm  
5.67 GHz  
4.85 GHz  
Figure 3. DCO Frequency Range  
Rev. 1.5  
15  
 
 
Si570/Si571  
A typical frequency configuration for this example:  
RFREQcurrent = 0x2EBB04CE0  
Fout HSDIV N1  
--------------------------------------------------  
RFREQ  
fXTAL  
=
F
F
out_current = 148.35 MHz  
out_new = 148.50 MHz  
Once fXTAL has been determined, new values for  
RFREQ, HSDIV, and N1 are calculated to generate a  
new output frequency (fout_new). New values can be  
calculated manually or with the Si57x-EVB software,  
which provides a user-friendly application to help find  
the optimum values.  
Calculate RFREQnew to change the output frequency  
from 148.35 MHz to 148.5 MHz:  
148.50 MHz  
148.35 MHz  
-------------------------------  
RFREQnew = 0x2EBB04CE0   
= 0x2EC71D666  
The first step in manually calculating the frequency  
configuration is to determine new frequency divider  
values (HSDIV, N1). Given the desired output frequency  
(fout_new), find the frequency divider values that will  
keep the DCO oscillation frequency in the range of 4.85  
to 5.67 GHz.  
Note: Performing calculations with RFREQ requires a mini-  
mum of 38-bit arithmetic precision.  
Even relatively small changes in output frequency may  
require writing more than 1 RFREQ register. Such multi-  
register RFREQ writes can impact the output clock  
fDCO_new = fout_new HSDIVnew N1new  
frequency on  
updating.  
a
register-by-register basis during  
Valid values of HSDIV are 4, 5, 6, 7, 9 or 11. N1 can be  
selected as 1 or any even number up to 128 (i.e. 1, 2, 4,  
6, 8, 10 … 128). To help minimize the device's power  
consumption, the divider values should be selected to  
keep the DCO's oscillation frequency as low as  
possible. The lowest value of N1 with the highest value  
of HS_DIV also results in the best power savings.  
Interim changes to the output clock during RFREQ  
writes can be prevented by using the following  
procedure:  
1. Freeze the “M” value (Set Register 135 bit 5 = 1).  
2. Write the new frequency configuration (RFREQ).  
3. Unfreeze the “M” value (Set Register 135 bit 5 = 0)  
Once HS_DIV and N1 have been determined, the next  
step is to calculate the reference frequency multiplier  
(RFREQ).  
3.1.2. Reconfiguring the Output Clock for Large  
Changes in Output Frequency  
For output frequency changes outside of ±3500 ppm  
from the center frequency, it is likely that both the DCO  
frequency and the output dividers need to be  
reprogrammed. Note that changing the DCO frequency  
outside of the ±3500 ppm window will cause the output  
to momentarily stop and restart at any arbitrary point in  
a clock cycle. Devices sensitive to glitches or runt  
pulses may have to be reset once reconfiguration is  
complete.  
fDCO_new  
----------------------  
=
RFREQnew  
fXTAL  
RFREQ is programmable as a 38-bit binary fractional  
frequency multiplier with the first 10 most significant bits  
(MSBs) representing the integer portion of the multiplier,  
and the 28 least significant bits (LSBs) representing the  
fractional portion.  
Before entering a fractional number into the RFREQ  
register, it must be converted to a 38-bit integer using a  
bitwise left shift operation by 28 bits, which effectively  
multiplies RFREQ by 228.  
The process for reconfiguring the output frequency  
outside of a ±3500 ppm window first requires reading  
the current RFREQ, HSDIV, and N1 values. Next,  
calculate fXTAL for the device. Note that, due to slight  
variations of the internal crystal frequency from one  
device to another, each device may have a different  
RFREQ value or possibly even different HSDIV or N1  
values to maintain the same output frequency. It is  
necessary to calculate fXTAL for each device. Third,  
write the new values back to the device using the  
appropriate registers (addresses 7–12 for all Si571  
devices and Si570 devices with 20 ppm and 50 ppm  
temperature stability; or addresses 13–18 for Si570  
devices with 7 ppm temperature stability) sequencing as  
described in “3.1.2.1.Writing the New Frequency  
Configuration”.  
Example:  
RFREQ = 46.043042064d  
Multiply RFREQ by 228 = 12359584992.1  
Discard the fractional portion = 12359584992  
Convert to hexadecimal = 02E0B04CE0h  
In the example above, the multiplication operation  
requires 38-bit precision. If 38-bit arithmetic precision is  
not available, then the fractional portion can be  
separated from the integer and shifted to the left by 28-  
bits. The result is concatenated with the integer portion  
16  
Rev. 1.5  
 
Si570/Si571  
to form a full 38-bit word. An example of this operation is shown in Figure 4.  
46.043042064  
Multiply the fractional portion by 228  
.043042064 x 228 = 11554016.077  
Truncate the remaining fractional portion  
= 11554016  
Convert integer portion to a 10-bit binary number  
46 = 00 0010 1110b  
Convert to a 28-bit binary number (pad 0s on the left)  
0000 1011 0000 0100 1100 1110 0000  
Concatenate the two results  
00 0010 1110 0000 1011 0000 0100 1100 1110 0000b  
Convert to Hex  
02E0B04CE0h  
Figure 4. Example of RFREQ Decimal to Hexadecimal Conversion  
3.1.2.1. Writing the New Frequency Configuration  
Once the new values for RFREQ, HSDIV, and N1 are determined, they can be written directly into the device from  
the serial port using the following procedure:  
1. Freeze the DCO (bit 4 of Register 137)  
2. Write the new frequency configuration (RFREQ, HSDIV, and N1) to addresses 7–12 for all Si571 devices and  
Si570 devices with 20 ppm and 50 ppm temperature stability; or addresses 13–18 for Si570 devices with 7 ppm  
temperature stability.  
3. Unfreeze the DCO and assert the NewFreq bit (bit 6 of Register 135) within the maximum Unfreeze to NewFreq  
Timeout specified in Table 11, “Programming Constraints and Timing,” on page 13.  
The process of freezing and unfreezing the DCO will cause the output clock to momentarily stop and start at any  
arbitrary point during a clock cycle. This process can take up to 10 ms. Circuitry that is sensitive to glitches or runt  
pulses may have to be reset after the new frequency configuration is written.  
Example:  
An Si570 generating 156.25 MHz must be re-configured to generate a 161.1328125 MHz clock (156.25 MHz x 66/  
64). This frequency change is greater than ±3500 ppm.  
fout = 156.25 MHz  
Read the current values for RFREQ, HS_DIV, N1:  
RFREQcurrent = 0x2BC011EB8h = 11744124600d, 11744124600d x 228 = 43.7502734363d  
HS_DIV = 4  
N1 = 8  
Calculate fXTAL, fDCO_current  
fDCO_current = fout HSDV N1 = 5.000000000 GHz  
fDCO_current  
--------------------------------------  
= 114.285 MHz  
fXTAL  
=
RFREQcurrent  
Rev. 1.5  
17  
 
Si570/Si571  
Given fout_new = 161.1328125 MHz, choose output dividers that will keep fDCO within the range of 4.85 to  
5.67 GHz. In this case, keeping the same output dividers will still keep fDCO within its range limits:  
fDCO_new = fout_new HSDVnew N1new  
= 161.1328125 MHz 4 8 = 5.156250000 GHz  
Calculate the new value of RFREQ given the new DCO frequency:  
fDCO_new  
----------------------  
= 45.11746948  
RFREQnew  
=
fXTAL  
= 0x2D1E127AD  
18  
Rev. 1.5  
Si570/Si571  
3.2. Si570 Programming Procedure  
This following example was generated using Si514/70/71/98/99 Programmable Oscillator Software V4.0.1 found  
under the Tools tab at the following web page.  
http://www.siliconlabs.com/products/clocksoscillators/oscillators/Pages/i2c-oscillator.aspx  
On that same web page, the AN334 Si57x I2C XO/VCXO ANSI C Reference Design contains example C code for  
calculating register settings on the fly.  
1. Read start-up frequency configuration (RFREQ, HS_DIV, and N1) from the device after power-up or register  
reset.  
Registers for the Current Configuration  
Register  
Data  
0x01  
0xC2  
0xBC  
0x01  
0x1E  
0xB8  
7
8
9
10  
11  
12  
RFREQ = 0x2BC011EB8  
= 0x2BC011EB8 / (2^28) = 43.75027344  
HS_DIV = 0x0 = 4  
N1 = 0x7 = 8  
2. Calculate the actual nominal crystal frequency where f0 is the start-up output frequency.  
fxtal = ( f0 x HS_DIV x N1 ) / RFREQ  
= (156.250000000 MHz x 4 x 8) / 43.750273436  
= 114.285000000 MHz  
3. Choose the new output frequency (f1).  
Output Frequency (f1) = 161.132812000 MHz  
4. Choose the output dividers for the new frequency configuration (HS_DIV and N1) by ensuring the DCO  
oscillation frequency (fdco) is between 4.85 GHz and 5.67 GHz where fdco = f1 x HS_DIV x N1. See the Divider  
Combinations tab for more options.  
HS_DIV = 0x0 = 4  
N1  
= 0x7 = 8  
fdco = f1 x HS_DIV x N1  
= 161.132812000 MHz x 4 x 8  
= 5.156249984 GHz  
Rev. 1.5  
19  
 
Si570/Si571  
5. Calculate the new crystal frequency multiplication ratio (RFREQ) as RFREQ = fdco / fxtal  
RFREQ = fdco / fxtal  
= 5.156249984 GHz / 114.285000000 MHz  
= 45.11746934  
= 45.11746934 x (2^28) = 0x2D1E12788  
6. Freeze the DCO by setting Freeze DCO = 1 (bit 4 of register 137).  
7. Write the new frequency configuration (RFREQ, HS_DIV, and N1)  
Registers for the New Configuration  
Register  
Data  
0x01  
0xC2  
0xD1  
0xE1  
0x27  
0x88  
7
8
9
10  
11  
12  
8. Unfreeze the DCO by setting Freeze DCO = 0 and assert the NewFreq bit (bit 6 of register 135) within 10 ms.  
20  
Rev. 1.5  
Si570/Si571  
3.3. Si570 Troubleshooting FAQ  
2
2
1. Is the I C bus working correctly and using the correct I C address?  
Probing the device I2C pins with an oscilloscope can sometimes reveal signal integrity problems. Si570/Si571 I2C  
communication is normally very robust, so if other devices on the I2C bus are communicating successfully, then the  
Si570/Si571 should also work.  
You can confirm the specific I2C address expected by an Si570/Si571 device by using the part number lookup  
utility available on the Silicon Laboratories web site.  
http://www.silabs.com/custom-timing  
2. Is the correct register bank being written based on device stability?  
Si570/Si571 devices use different configuration registers for 7 ppm temperature stability devices than they do for  
20 ppm or 50 ppm temperature stability devices. The temperature stability of a Si570/Si571 device can be  
confirmed using the part number lookup utility available on the Silicon Laboratories web site or by referencing the  
2nd ordering option code in the part number.  
http://www.silabs.com/custom-timing  
2nd Ordering Option Code:  
A : 50 ppm temperature stability, 61.5 ppm total stability => Configuration Registers 7-12  
B : 20 ppm temperature stability, 31.5 ppm total stability => Configuration Registers 7-12  
C : 7 ppm temperature stability, 20 ppm total stability => Configuration Registers 13-18  
3. Is the part-to-part variation in FXTAL included in calculations?  
It is required that one determine the internal crystal frequency for each individual part before calculating a new  
output frequency. The procedure for determining the internal crystal frequency from the register values of a device  
is described elsewhere in this data sheet. See Section 3.2.  
FXTAL = (FOUT x HSDIV x N1) / RFREQ <= note that RFREQ used here is the  
register value divided by 2^28  
It is a common error to calculate the internal crystal frequency for one device and then use that same crystal  
frequency for all later devices. This will lead to offset errors in the output frequency accuracy from part-to-part. The  
internal crystal frequency must be calculated for each individual device.  
4. Is the Unfreeze to NewFreq timeout spec being exceeded?  
The Si570/Si571 requires the DCO to be 'frozen' when changing register values and then 'unfrozen' and a  
calibration initiated by writing the 'NewFreq' bit to restart it properly. If the 'unfreeze' and 'NewFreq' writes are  
delayed by 10 ms or more, the internal state machine can timeout and cause the configuration to revert to default  
values.  
This 'unfreeze' and 'NewFreq' timing requirement is not usually a problem since the writes are done back-to-back,  
but if there is an interrupt or other system delay that may cause this 10 ms timing to be exceeded, it should be  
considered as a possible source of issues reprogramming the Si570/Si571.  
Rev. 1.5  
21  
Si570/Si571  
2
3.4. I C Interface  
The control interface to the Si570 is an I2C-compatible 2-wire bus for bidirectional communication. The bus  
consists of a bidirectional serial data line (SDA) and a serial clock input (SCL). Both lines must be connected to the  
positive supply via an external pullup. Fast mode operation is supported for transfer rates up to 400 kbps as  
specified in the I2C-Bus Specification standard.  
Figure 5 shows the command format for both read and write access. Data is always sent MSB. Data length is 1  
byte. Read and write commands support 1 or more data bytes as illustrated. The master must send a Not  
Acknowledge and a Stop after the last read data byte to terminate the read command. The timing specifications  
and timing diagram for the I2C bus can be found in the I2C-Bus Specification standard (fast mode operation). The  
device I2C address is specified in the part number.  
S Slave Address  
0
A Byte Address  
A
Data  
A
A
Data  
P
Write Command  
(Optional 2nd data byte and acknowledge illustrated)  
A Byte Address  
Data  
S Slave Address  
0
A
Data  
A
Slave Address  
N
P
S
1
A
Read Command  
(Optional data byte and acknowledge before the last data byte and not acknowledge illustrated)  
From master to slave  
From slave to master  
A – Acknowledge (SDA LOW)  
N – Not Acknowledge (SDA HIGH).  
Required after the last data byte to signal the end of the read comand to the slave.  
S – START condition  
P – STOP condition  
Figure 5. I2C Command Format  
22  
Rev. 1.5  
 
Si570/Si571  
4. Serial Port Registers  
Note: Any register not listed here is reserved and must not be written. All bits are R/W unless otherwise noted.  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
7
High Speed/  
N1 Dividers  
HS_DIV[2:0]  
N1[6:2]  
8
9
Reference  
Frequency  
N1[1:0]  
RFREQ[37:32]  
Reference  
Frequency  
RFREQ[31:24]  
RFREQ[23:16]  
RFREQ[15:8]  
RFREQ[7:0]  
10  
11  
Reference  
Frequency  
Reference  
Frequency  
12  
13  
14  
15  
16  
17  
18  
135  
137  
Reference  
Frequency  
High Speed/  
N1 Dividers  
HS_DIV_7PPM[2:0]  
N1_7PPM[1:0]  
N1_7PPM[6:2]  
Reference  
Frequency  
RFREQ_7PPM[37:32]  
Reference  
Frequency  
RFREQ_7PPM[31:24]  
Reference  
Frequency  
RFREQ_7PPM[23:16]  
RFREQ_7PPM[15:8]  
RFREQ_7PPM[7:0]  
Reference  
Frequency  
Reference  
Frequency  
Reset/Freeze/ RST_REG NewFreq Freeze M Freeze  
Memory Control  
RECALL  
VCADC  
Freeze DCO  
Freeze  
DCO  
Rev. 1.5  
23  
 
Si570/Si571  
Register 7. High Speed/N1 Dividers  
Bit  
D7  
D6  
HS_DIV[2:0]  
R/W  
D5  
D4  
D3  
D2  
N1[6:2]  
R/W  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:5  
HS_DIV[2:0] DCO High Speed Divider.  
Sets value for high speed divider that takes the DCO output fOSC as its clock input.  
000 = 4  
001 = 5  
010 = 6  
011 = 7  
100 = Not used.  
101 = 9  
110 = Not used.  
111 = 11  
4:0  
N1[6:2]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1] and [2, 4, 6, ..., 27]. Illegal  
odd divider values will be rounded up to the nearest even value. The value for the N1 reg-  
ister can be calculated by taking the divider ratio minus one. For example, to divide by 10,  
write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
Register 8. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N1[1:0]  
R/W  
RFREQ[37:32]  
R/W  
Bit  
Name  
Function  
7:6  
N1[1:0]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1, 2, 4, 6, ..., 27]. Illegal odd  
divider values will be rounded up to the nearest even value. The value for the N1 regis-  
ter can be calculated by taking the divider ratio minus one. For example, to divide by  
10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
5:0  
RFREQ[37:32] Reference Frequency.  
Frequency control input to DCO.  
24  
Rev. 1.5  
Si570/Si571  
Register 9. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
RFREQ[31:24]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[31:24]  
Reference Frequency.  
Frequency control input to DCO.  
Register 10. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
Name  
Type  
RFREQ[23:16]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[23:16] Reference Frequency.  
Frequency control input to DCO.  
Register 11. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[15:8]  
R/W  
D3  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[15:8] Reference Frequency.  
Frequency control input to DCO.  
Rev. 1.5  
25  
Si570/Si571  
Register 12. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[7:0]  
Reference Frequency.  
Frequency control input to DCO.  
Register 13. High Speed/N1 Dividers  
Bit  
D7  
D6  
HS_DIV_7PPM[2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N1_7PPM[6:2]  
R/W  
Bit  
Name  
Function  
7:5 HS_DIV_7PPM[2:0] DCO High Speed Divider.  
Sets value for high speed divider that takes the DCO output fOSC as its clock input.  
000 = 4  
001 = 5  
010 = 6  
011 = 7  
100 = Not used.  
101 = 9  
110 = Not used.  
111 = 11  
4:0  
N1_7PPM[6:2]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1] and [2, 4, 6, ..., 27]. Ille-  
gal odd divider values will be rounded up to the nearest even value. The value for the  
N1 register can be calculated by taking the divider ratio minus one. For example, to  
divide by 10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
Register 14. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N1_7PPM[1:0]  
R/W  
RFREQ_7PPM[37:32]  
R/W  
26  
Rev. 1.5  
Si570/Si571  
Bit  
Name  
Function  
7:6  
N1_7PPM[1:0]  
CLKOUT Output Divider.  
Sets value for CLKOUT output divider. Allowed values are [1, 2, 4, 6, ..., 27]. Illegal  
odd divider values will be rounded up to the nearest even value. The value for the  
N1 register can be calculated by taking the divider ratio minus one. For example, to  
divide by 10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
1111111 = 27  
5:0 RFREQ_7PPM[37:32] Reference Frequency.  
Frequency control input to DCO.  
Register 15. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
RFREQ_7PPM[31:24]  
R/W  
Bit  
Name  
Function  
7:0 RFREQ_7PPM[31:24] Reference Frequency.  
Frequency control input to DCO.  
Register 16. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
Name  
Type  
RFREQ_7PPM[23:16]  
R/W  
Bit  
Name  
Function  
7:0 RFREQ_7PPM[23:16] Reference Frequency.  
Frequency control input to DCO.  
Register 17. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
Name  
Type  
RFREQ_7PPM[15:8]  
R/W  
Rev. 1.5  
27  
Si570/Si571  
Bit  
7:0 RFREQ_7PPM[15:8] Reference Frequency.  
Frequency control input to DCO.  
Name  
Function  
Register 18. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RFREQ_7PPM[7:0]  
R/W  
Bit  
Name  
Function  
7:0 RFREQ_7PPM[7:0] Reference Frequency.  
Frequency control input to DCO.  
28  
Rev. 1.5  
Si570/Si571  
Register 135. Reset/Freeze/Memory Control  
Bit  
Name RST_REG NewFreq  
Type R/W R/W  
Reset settings = 00xx xx00  
D7  
D6  
D5  
D4  
D3  
D2  
N/A  
R/W  
D1  
D0  
RECALL  
R/W  
Freeze M Freeze VCADC  
R/W  
R/W  
Bit  
Name  
Function  
7
RST_REG  
Internal Reset.  
0 = Normal operation.  
1 = Reset of all internal logic. Output tristated during reset.  
Upon completion of internal logic reset, RST_REG is internally reset to zero.  
Note: Asserting RST_REG will interrupt the I2C state machine. It is not the recommended  
approach for starting from initial conditions.  
6
NewFreq  
Freeze M  
New Frequency Applied.  
Alerts the DSPLL that a new frequency configuration has been applied. This bit will  
clear itself when the new frequency is applied.  
5
4
Freezes the M Control Word.  
Prevents interim frequency changes when writing RFREQ registers.  
Freezes the VC ADC Output Word.  
Freeze  
VCADC  
May be used to hold the nominal output frequency of an Si571.  
3:1  
0
N/A  
Always Zero.  
RECALL  
Recall NVM into RAM.  
0 = No operation.  
1 = Write NVM bits into RAM. Bit is internally reset following completion of operation.  
Note: Asserting RECALL reloads the NVM contents in to the operating registers without  
interrupting the I2C state machine. It is the recommended approach for starting from  
initial conditions.  
Register 137. Freeze DCO  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Freeze  
DCO  
Type  
R/W  
Reset settings = 00xx xx00  
Bit  
Name  
Function  
7:5  
4
Reserved  
Freeze DCO Freeze DCO.  
Freezes the DSPLL so the frequency configuration can be modified.  
3:0  
Reserved  
Rev. 1.5  
29  
Si570/Si571  
5. Si570 (XO) Pin Descriptions  
(Top View)  
SDA  
7
NC  
VDD  
1
2
3
6
5
4
OE  
CLK–  
CLK+  
GND  
8
SCL  
Table 14. Si570 Pin Descriptions  
Type  
Pin  
Name  
Function  
1
NC  
N/A  
No Connect. Make no external connection to this pin.  
Output Enable:  
See "7. Ordering Information" on page 32.  
2
OE  
Input  
3
4
GND  
Ground  
Output  
Output  
Electrical and Case Ground.  
Oscillator Output.  
CLK+  
CLK–  
(NC for CMOS*)  
Complementary Output.  
5
(N/A for CMOS*) (NC for CMOS*).  
6
7
VDD  
Power  
Power Supply Voltage.  
SDA  
Bidirectional  
Open Drain  
I2C Serial Data.  
8
SCL  
Input  
I2C Serial Clock.  
*Note: CMOS output option only: make no external connection to this pin.  
30  
Rev. 1.5  
Si570/Si571  
6. Si571 (VCXO) Pin Descriptions  
(Top View)  
SDA  
7
VC  
VDD  
1
6
5
4
OE  
2
3
CLK–  
CLK+  
GND  
8
SCL  
Table 15. Si571 Pin Descriptions  
Type  
Pin  
Name  
Function  
1
VC  
Analog Input  
Input  
Control Voltage  
Output Enable:  
2
OE  
See "7. Ordering Information" on page 32.  
Electrical and Case Ground  
3
4
GND  
Ground  
Output  
Output  
CLK+  
Oscillator Output  
CLK–  
(NC for CMOS*)  
Complementary Output.  
(N/A for CMOS*) (NC for CMOS*).  
5
6
7
VDD  
Power  
Power Supply Voltage  
I2C Serial Data  
SDA  
Bidirectional  
Open Drain  
8
SCL  
Input  
I2C Serial Clock  
*Note: CMOS output option only: make no external connection to this pin.  
Rev. 1.5  
31  
Si570/Si571  
7. Ordering Information  
The Si570/Si571 supports a wide variety of options including frequency range, start-up frequency, temperature  
stability, tuning slope, output format, and VDD. Specific device configurations are programmed into the Si570/Si571  
at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon  
Labs provides a web browser-based part number configuration utility to simplify this process. Refer to  
www.siliconlabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si570/Si571  
XO/VCXO series is supplied in an industry-standard, RoHS compliant, 8-pad, 5 x 7 mm package. Tape and reel  
packaging is an ordering option.  
57x  
X
X
D
G
R
XXX XXX  
X
R = Tape & Reel  
Blank = Trays  
Operating Temp Range (°C)  
–40 to +85 °C  
570 Programmable  
XO Product Family  
G
Device Revision Letter  
571 Programmable  
VCXO Product Family  
Six-Digit Start-up Frequency/I2C Address Designator  
The Si57x supports a user-defined start-up frequency within the following  
bands of frequencies: 10–945 MHz, 970–1134 MHz, and 1213–1417 MHz.  
The start-up frequency must be in the same frequency range as that  
specified by the Frequency Grade 3rd option code.  
1st Option Code  
The Si57x supports a user-defined I2C 7-bit address. Each unique start-up  
frequency/I2C address combination is assigned a six-digit numerical code.  
This code can be requested during the part number request process. Refer  
to www.silabs.com/VCXOPartNumber to request an Si57x part number.  
VDD Output Format Output Enable Polarity  
A
B
C
D
E
F
G
H
J
K
M
N
P
Q
R
S
T
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
3rd Option Code  
Frequency Grade  
Code  
Frequency Range Supported (MHz)  
10-945, 970-1134, 1213-1417.5  
10-810  
A
B
C
10-280 (CMOS available to 160 MHz)  
2nd Option Code  
Code Temperature Stability (ppm, max, ±) Total Stablility (ppm, max, ±)  
Si570  
A
B
C
50  
20  
7
61.5  
31.5  
20  
U
V
W
2nd Option Code  
Temperature  
Stability  
± ppm (max)  
Tuning Slope  
Minimum APR  
(±ppm) for VDD @  
Note:  
Kv  
ppm/V (typ)  
180  
CMOS available to 160 MHz.  
Code  
A
B
C
3.3 V  
100  
30  
150  
80  
2.5 V  
75  
Note 6  
125  
1.8 V  
25  
Note 6  
75  
100  
100  
50  
90  
180  
90  
D
50  
30  
25  
E
F
G
H
J
K
M
20  
50  
20  
20  
20  
100  
20  
45  
135  
356  
180  
135  
356  
33  
25  
Note 6  
75  
300  
145  
104  
Note 6  
50  
235  
105  
70  
100  
375  
185  
130  
295  
12  
220  
Note 6  
155  
Note 6  
Si571  
Notes:  
1. For best jitter and phase noise performance, always choose the smallest Kv that meets  
the application’s minimum APR requirements. Unlike SAW-based solutions which  
require higher higher Kv values to account for their higher temperature dependence,  
the Si55x series provides lower Kv options to minimize noise coupling and jitter in real-  
world PLL designs. See AN255 and AN266 for more information.  
2. APR is the ability of a VCXO to track a signal over the product lifetime. A VCXO with an  
APR of ±25 ppm is able to lock to a clock with a ±25 ppm stability over 15 years over all  
operating conditions.  
3. Nominal Pull range (±) = 0.5 x VDD x tuning slope.  
4. Nominal Absolute Pull Range (±APR) = Pull range – stability – lifetime aging  
= 0.5 x VDD x tuning slope – stability – 10 ppm  
5. Minimum APR values noted above include worst case values for all parameters.  
6. Combination not available.  
Figure 6. Part Number Convention  
32  
Rev. 1.5  
 
Si570/Si571  
8. Si57x Mark Specification  
Figure 7 illustrates the mark specification for the Si57x. Table 16 lists the line information.  
Figure 7. Mark Specification  
Table 16. Si57x Top Mark Description  
Line  
Position  
Description  
1
1–10  
“SiLabs”+ Part Family Number, 57x (First 3 characters in part number where x = 0  
indicates a 570 device and x = 1 indicates a 571 device)  
2
3
1–10  
Si570, Si571: Option1 + Option2 + Option3 + ConfigNum(6) + Temp  
Trace Code  
Pin 1 orientation mark (dot)  
Position 1  
Position 2  
Product Revision (D)  
Tiny Trace Code (4 alphanumeric characters per assembly release instructions)  
Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)  
Calendar Work Week number (1–53), to be assigned by assembly site  
“+” to indicate Pb-Free and RoHS-compliant  
Position 3–6  
Position 7  
Position 8–9  
Position 10  
Rev. 1.5  
33  
 
 
Si570/Si571  
9. Outline Diagram and Suggested Pad Layout  
Figure 8 illustrates the package details for the Si570/Si571. Table 17 lists the values for the dimensions shown in  
the illustration.  
Figure 8. Si570/Si571 Outline Diagram  
Table 17. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.50  
1.30  
0.90  
0.50  
0.30  
Nom  
1.65  
1.40  
1.00  
0.60  
Max  
1.80  
1.50  
1.10  
0.70  
0.60  
A
b
b1  
c
c1  
D
D1  
e
E
E1  
H
L
L1  
p
5.00 BSC  
4.40  
2.54 BSC  
7.00 BSC  
6.20  
4.30  
4.50  
6.10  
0.55  
1.17  
1.07  
1.80  
6.30  
0.75  
1.37  
1.27  
2.60  
0.65  
1.27  
1.17  
R
0.70 REF  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.15  
0.10  
0.10  
0.05  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
34  
Rev. 1.5  
 
 
Si570/Si571  
10. 8-Pin PCB Land Pattern  
Figure 9 illustrates the 8-pin PCB land pattern for the Si570/Si571. Table 18 lists the values for the dimensions  
shown in the illustration.  
Figure 9. Si570/Si571 PCB Land Pattern  
Table 18. PCB Land Pattern Dimensions (mm)  
Dimension  
Min  
Max  
D2  
D3  
5.08 REF  
5.705 REF  
2.54 BSC  
4.20 REF  
e
E2  
GD  
GE  
VD  
VE  
0.84  
2.00  
8.20 REF  
7.30 REF  
1.70 TYP  
1.545 TYP  
2.15 REF  
1.3 REF  
X1  
X2  
Y1  
Y2  
ZD  
6.78  
6.30  
ZE  
Note:  
1. Dimensioning and tolerancing per the ANSI Y14.5M-1994  
specification.  
2. Land pattern design follows IPC-7351 guidelines.  
3. All dimensions shown are at maximum material condition  
(MMC).  
4. Controlling dimension is in millimeters (mm).  
Rev. 1.5  
35  
 
 
Si570/Si571  
Added text to "3. Functional Description" on page 15,  
paragraph 1, to state that the total output jitter  
complies to and exceeds strict requirements of  
various high-speed communication systems.  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Restored programming constraint information on  
page 15 and in Table 12, page 12.  
Revision 1.3 to Revision 1.4  
Clarified NC (No Connect) pin designations in Tables  
Added Table 12, “Thermal Characteristics,” on  
13–14 on pages 22–23.  
page 13.  
Revision 1.1 to Revision 1.2  
Revision 1.4 to Revision 1.5  
Replaced “Unfreeze to Newfreq Delay” with the  
clearer terminology “Unfreeze to Newfreq Timeout”  
on page 15 and in Table 11 on page 13.  
Added Section 3.2 and 3.3.  
Added Freeze M procedure on page 14 for  
preventing output clock changes during small  
frequency change multi-register RFREQ writes.  
Added Freeze M, Freeze VCADC, and RST_REG  
versus RECALL information to Register 135  
references in "4. Serial Port Registers" on pages 17  
and 20.  
Added Si570 20 ppm Total Stability Ordering Option  
to Figure 6 on page 32.  
Updated Figure 8 and Table 17 on page 34 to  
include production test sidepads. This change is for  
reference only as the sidepads are raised above the  
seating plane and do not impact PCB layout.  
Corrected errors in Table 10 on page 12.  
Revision 1.2 to Revision 1.3  
Updated Table 3 on page 6 to include 7 ppm  
temperature stability and 20 ppm to stability  
parameters. Also changed aging test condition  
(frequency drift over life) from 15 years to 20 years.  
Updated 2.5 V/3.3 V and 1.8 V CML output level  
specification for Table 4 on page 7.  
Added footnotes clarifying max offset frequency test  
conditions in Table 5 on page 8.  
Updated ESD HBM sensitivity rating and the JEDEC  
standard in Note 2 in Table 13 on page 14.  
Updated Table 10 on page 12 to include "Moisture  
Sensitivity Level" and "Contact Pads" rows.  
Added Si570 7 ppm Total Stability Ordering Option to  
Figure 6 on page 32.  
Updated Figure 7 and Table 16 on page 33 to reflect  
specific marking information. Previously, Figure 7  
was generic.  
Clarified "3.1.2. Reconfiguring the Output Clock for  
Large Changes in Output Frequency" on page 16  
and added new registers 13-18 in "4. Serial Port  
Registers" on page 23 for the Si570 7 ppm  
temperature stability / 20 ppm total stability ordering  
option.  
36  
Rev. 1.5  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY