571BJAFREQDG [SILICON]

LVDS Output Clock Oscillator, 10MHz Min, 945MHz Max, ROHS COMPLIANT PACKAGE-8;
571BJAFREQDG
型号: 571BJAFREQDG
厂家: SILICON    SILICON
描述:

LVDS Output Clock Oscillator, 10MHz Min, 945MHz Max, ROHS COMPLIANT PACKAGE-8

机械 振荡器
文件: 总26页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si570/Si571  
PRELIMINARY DATA SHEET  
ANY-RATE I2C PROGRAMMABLE XO/VCXO  
Features  
Any-rate programmable output  
frequencies from 10 to 945 MHz and  
select frequencies to 1.4 GHz  
Internal fixed crystal frequency  
ensures high reliability and low  
aging  
2
Available LVPECL, CMOS,  
LVDS, and CML outputs  
Industry-standard 5x7 mm  
package  
Pb-free/RoHS-compliant  
1.8, 2.5, or 3.3 V supply  
I C serial interface  
®
3rd generation DSPLL with superior  
jitter performance  
3x better frequency stability than  
SAW-based oscillators  
Applications  
Ordering Information:  
SONET / SDH  
xDSL  
10 GbE LAN / WAN  
Low-jitter clock generation  
Optical modules  
Clock and data recovery  
See page 21.  
Pin Assignments:  
Description  
See page 20.  
®
The Si570 XO/Si571 VCXO utilizes Silicon Laboratories’ advanced DSPLL  
circuitry to provide a low-jitter clock at any frequency. The Si570/Si571 are  
user-programmable to any output frequency from 10 to 945 MHz and select  
frequencies to 1400 MHz with <1 ppb resolution. The device is programmed  
(Top View)  
SDA  
7
2
via an I C serial interface. Unlike traditional XO/VCXOs where a different  
NC  
VDD  
1
2
3
6
5
4
crystal is required for each output frequency, the Si57x uses one fixed-  
frequency crystal and a DSPLL clock synthesis IC to provide any-rate  
frequency operation. This IC-based approach allows the crystal resonator to  
provide exceptional frequency stability and reliability. In addition, DSPLL  
clock synthesis provides superior supply noise rejection, simplifying the task  
of generating low-jitter clocks in noisy environments typically found in  
communication systems.  
OE  
CLK–  
CLK+  
GND  
8
SCL  
Functional Block Diagram  
Si570  
CLK-  
CLK+  
VDD  
SDA  
7
Any-rate  
VC  
VDD  
1
2
3
6
5
4
Fixed  
Frequency  
XO  
10-1400 MHz  
DSPLL®Clock  
Synthesis  
SDA  
SCL  
OE  
CLK–  
CLK+  
Si571 only  
GND  
ADC  
8
SCL  
GND  
OE  
Si571  
VC  
Rev. 0.31 8/07  
Copyright © 2007 by Silicon Laboratories  
Si570/Si571  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si570/Si571  
2
Rev. 0.31  
Si570/Si571  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1. Frequency Programming Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.2. Frequency Programming Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.3. I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4. Serial Port Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
5. Si570 (XO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Si571 (VCXO) Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
7. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
8. Si57x Mark Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
9. Outline Diagram and Suggested Pad Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
10. 8-Pin PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Rev. 0.31  
3
Si570/Si571  
1. Detailed Block Diagrams  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
DCO  
÷HS_DIV  
÷N1  
+
fosc  
RFREQ  
Frequency  
Control  
OE  
Control  
Interface  
SDA  
SCL  
NVM  
RAM  
Figure 1. Si570 Detailed Block Diagram  
VDD  
GND  
fXTAL  
M
CLKOUT+  
CLKOUT–  
VC  
ADC  
DCO  
÷HS_DIV  
÷N1  
+
fosc  
VCADC  
RFREQ  
Frequency  
Control  
OE  
SDA  
SCL  
Control  
Interface  
NVM  
RAM  
Figure 2. Si571 Detailed Block Diagram  
4
Rev. 0.31  
Si570/Si571  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
3.3 V option  
2.5 V option  
1.8 V option  
Min  
2.97  
2.25  
1.71  
Typ  
3.3  
2.5  
1.8  
Max  
3.63  
2.75  
1.89  
Units  
1
V
V
Supply Voltage  
DD  
Output enabled  
LVPECL  
CML  
130  
117  
108  
98  
120  
108  
99  
Supply Current  
I
mA  
DD  
LVDS  
CMOS  
90  
TriState mode  
0.75 x V  
60  
75  
V
IH  
DD  
2
V
Output Enable (OE)  
V
0.5  
85  
IL  
T
–40  
ºC  
Operating Temperature Range  
A
Notes:  
1. Selectable parameter specified by part number. See Section "7. Ordering Information" on page 21 for further details.  
2. OE pin includes a 17 kΩ pullup resistor to VDD or a 17 kΩ pulldown to GND depending on the OE polarity specified in  
the part number. See "7. Ordering Information" on page 21.  
Table 2. VC Control Voltage Input  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
33  
45  
90  
1,2,3  
K
V 10 to 90% of V  
ppm/V  
Control Voltage Tuning Slope  
V
C
DD  
135  
180  
356  
BSL  
–5  
–10  
9.3  
500  
±1  
±5  
+5  
+10  
10.7  
4
L
%
Control Voltage Linearity  
VC  
Incremental  
BW  
10.0  
kHz  
kΩ  
V
Modulation Bandwidth  
Z
V Input Impedance  
VC  
C
V
@ f  
V /2  
DD  
Nominal Control Voltage  
CNOM  
O
V
0
V
V
Control Voltage Tuning Range  
C
DD  
Notes:  
1. Positive slope; selectable option by part number. See "7. Ordering Information" on page 21.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
3. KV variation is ±10% of typical values.  
4. BSL determined from deviation from best straight line fit with VC ranging from 10 to 90% of VDD. Incremental slope  
determined with VC ranging from 10 to 90% of VDD  
.
Rev. 0.31  
5
Si570/Si571  
Table 3. CLK± Output Frequency Characteristics  
Parameter  
Symbol  
Test Condition  
LVPECL/LVDS/CML  
CMOS  
Min  
10  
Typ  
Max  
945  
160  
Units  
Programmable Frequency  
f
MHz  
O
1,2,3  
Range  
10  
–20  
–50  
–100  
+20  
+50  
+100  
1,4  
T = –40 to +85 ºC  
ppm  
Temperature Stability  
A
Frequency drift over first year  
Frequency drift over 15 year life  
Temp stability = ±20 ppm  
±3  
±10  
ppm  
ppm  
ppm  
ppm  
ppm  
ms  
Aging  
fa  
±31.5  
±61.5  
±375  
10  
Total Stability  
Temp stability = ±50 ppm  
1,4  
APR  
±25  
Absolute Pull Range  
5
t
Power up Time  
OSC  
f within ±100 ppm of f  
100  
10  
µs  
1
0
Settling Time after Frequency  
Change  
t
FRQ  
f > ±100 ppm of f  
ms  
1
0
Notes:  
1. See Section "7. Ordering Information" on page 21 for further details.  
2. Specified at time of order by part number. Also available in frequencies from 970 to 1134 MHz and 1213 to 1417 MHz.  
3. Nominal output frequency set by VCNOM = 1/2 x VDD  
4. Selectable parameter specified by part number.  
5. Time from power up or tristate mode to fO.  
.
6
Rev. 0.31  
Si570/Si571  
Table 4. CLK± Output Levels and Symmetry  
Parameter  
Symbol  
Test Condition  
mid-level  
Min  
VDD – 1.42  
1.1  
Typ  
Max  
VDD – 1.25  
1.9  
Units  
V
1
LVPECL Output Option  
V
O
VOD  
VSE  
swing (diff)  
VPP  
VPP  
swing (single-ended)  
mid-level  
0.55  
0.95  
2
LVDS Output Option  
V
1.125  
0.5  
1.20  
0.7  
1.275  
0.9  
V
O
swing (diff)  
VOD  
VPP  
VO  
mid-level  
0.70  
0.8 x VDD  
V
– 0.75  
1.20  
VDD  
0.4  
V
DD  
2
CML Output Option  
VOD  
VOH  
VOL  
swing (diff)  
0.95  
VPP  
I
= 32 mA  
OH  
3
V
CMOS Output Option  
IOL = 32 mA  
LVPECL/LVDS/CML  
350  
ps  
ns  
t
t
Rise/Fall time (20/80%)  
Symmetry (duty cycle)  
R, F  
CMOS with C = 15 pF  
1
L
LVPECL:  
LVDS:  
CMOS:  
V
– 1.3 V (diff)  
DD  
SYM  
45  
55  
%
1.25 V (diff)  
/2  
V
DD  
Notes:  
1. 50 Ω to VDD – 2.0 V.  
2. Rterm = 100 Ω (differential).  
3. CL = 15 pF  
Table 5. CLK± Output Phase Jitter (Si570)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
0.40  
0.37  
0.50  
0.42  
Units  
Phase Jitter (RMS)*  
φJ  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
12 kHz to 20 MHz (OC-48)  
50 kHz to 20 MHz (OC-192)  
0.25  
0.26  
0.36  
0.34  
ps  
for F  
> 500 MHz  
OUT  
Phase Jitter (RMS)*  
for F of 125 to 500 MHz  
φJ  
ps  
OUT  
*Note: Differential Modes: LVPECL/LVDS/CML. Refer to AN256 for further information.  
Rev. 0.31  
7
Si570/Si571  
Table 6. CLK± Output Phase Jitter (Si571)  
Parameter  
Symbol  
Test Condition  
Kv = 33 ppm/V  
Min  
Typ  
Max  
Units  
1,2,3  
Phase Jitter (RMS)  
for F > 500 MHz  
φJ  
ps  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.26  
0.26  
OUT  
Kv = 45 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.27  
0.26  
Kv = 90 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.32  
0.26  
Kv = 135 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.40  
0.27  
Kv = 180 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.49  
0.28  
Kv = 356 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.87  
0.33  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML. Refer to AN255, AN256, and AN266 for further information.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
3. See “AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO” for comparison highlighting power supply  
rejection (PSR) advantage of Si55x versus SAW-based solutions.  
8
Rev. 0.31  
Si570/Si571  
Table 6. CLK± Output Phase Jitter (Si571) (Continued)  
Parameter  
Symbol  
Test Condition  
Kv = 33 ppm/V  
Min  
Typ  
Max  
Units  
1,2,3  
Phase Jitter (RMS)  
for F of 125 to 500 MHz  
φJ  
ps  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.37  
0.33  
OUT  
Kv = 45 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.37  
0.33  
Kv = 90 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.43  
0.34  
Kv = 135 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.50  
0.34  
Kv = 180 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
0.59  
0.35  
Kv = 356 ppm/V  
12 kHz to 20 MHz (OC-48)  
50 kHz to 80 MHz (OC-192)  
1.00  
0.39  
Notes:  
1. Differential Modes: LVPECL/LVDS/CML. Refer to AN255, AN256, and AN266 for further information.  
2. For best jitter and phase noise performance, always choose the smallest KV that meets the application’s minimum APR  
requirements. See “AN266: VCXO Tuning Slope (KV), Stability, and Absolute Pull Range (APR)” for more information.  
3. See “AN255: Replacing 622 MHz VCSO devices with the Si550 VCXO” for comparison highlighting power supply  
rejection (PSR) advantage of Si55x versus SAW-based solutions.  
Table 7. CLK± Output Period Jitter  
Parameter  
Symbol  
Test Condition  
RMS  
Min  
Typ  
2
Max  
Units  
J
ps  
Period Jitter*  
PER  
Peak-to-Peak  
14  
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to “AN279: Estimating Period Jitter  
from Phase Noise” for further information.  
Rev. 0.31  
9
Si570/Si571  
Table 8. Typical CLK± Output Phase Noise (Si570)  
Offset Frequency (f)  
120.00 MHz  
LVDS  
156.25 MHz  
LVPECL  
622.08 MHz  
LVPECL  
Units  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
–112  
–122  
–132  
–137  
–144  
–150  
n/a  
–105  
–122  
–128  
–135  
–144  
–147  
n/a  
–97  
–107  
–116  
–121  
–134  
–146  
–148  
dBc/Hz  
10 MHz  
100 MHz  
Table 9. Typical CLK± Output Phase Noise (Si571)  
Offset Frequency  
74.25 MHz  
90 ppm/V  
LVPECL  
491.52 MHz  
622.08 MHz  
135 ppm/V  
LVPECL  
Units  
45 ppm/V  
LVPECL  
100 Hz  
1 kHz  
10 kHz  
100 kHz  
1 MHz  
–87  
–114  
–132  
–142  
–148  
–150  
n/a  
–75  
–65  
–90  
–100  
–116  
–124  
–135  
–146  
–147  
–109  
–121  
–134  
–146  
–147  
dBc/Hz  
10 MHz  
100 MHz  
Table 10. Absolute Maximum Ratings  
Parameter  
Supply Voltage  
Symbol  
Rating  
–0.5 to +3.8  
Units  
V
Volts  
Volts  
ºC  
DD  
Input Voltage  
V
–0.5 to V + 0.3  
I
DD  
Storage Temperature  
T
–55 to +125  
>2500  
S
ESD Sensitivity (HBM, per JESD22-A114)  
Soldering Temperature (lead-free profile)  
ESD  
Volts  
ºC  
T
260  
PEAK  
Soldering Temperature Time @ T  
(lead-free profile)  
t
20–40  
seconds  
PEAK  
P
Notes:  
1. Stresses beyond the absolute maximum ratings may cause permanent damage to the device. Functional operation or  
specification compliance is not implied at these conditions.  
2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at  
www.silabs.com/VCXO for further information, including soldering profiles.  
10  
Rev. 0.31  
Si570/Si571  
Table 11. Environmental Compliance  
The Si570/571 meets the following qualification test requirements.  
Parameter  
Mechanical Shock  
Conditions/Test Method  
MIL-STD-883F, Method 2002.3 B  
MIL-STD-883F, Method 2007.3 A  
MIL-STD-883F, Method 203.8  
MIL-STD-883F, Method 1014.7  
MIL-STD-883F, Method 2016  
Mechanical Vibration  
Solderability  
Gross & Fine Leak  
Resistance to Solvents  
Table 12. Programming Constraints  
(VDD = 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
10  
Typ  
Max  
945  
Unit  
MHz  
MHz  
HS_DIV x N1 > = 6  
HS_DIV x N1 = 5  
N1 = 1  
970  
1134  
Output Frequency  
CKO  
F
HS_DIV = 4  
N1 = 1  
1.2125  
1.4175  
GHz  
ppb  
M and RFREQ Value LSB  
Resolution  
M
114.285 MHz  
0.09  
RES  
3rd Overtone Crystal  
Internal Oscillator Frequency  
Unfreeze to NewFreq Delay  
f
4850  
5670  
10  
MHz  
ms  
OSC  
Rev. 0.31  
11  
Si570/Si571  
3.2.2. Calculating the Reference Frequency Multi-  
plier (RFREQ)  
3. Functional Description  
The Si570 XO and the Si571 VCXO are low-jitter,  
programmable oscillators ideally suited for applications  
requiring multiple frequencies. The Si57x can be  
programmed to generate any output clock rate between  
10 and 1.4 GHz with <1 ppb resolution. Output jitter  
performance exceeds the strict requirements of high-  
speed communication systems including OC-48/OC-  
192 and 10 Gigabit Ethernet.  
RFREQ is a binary representation of the reference  
frequency multiplier and is 38 bits in length. To convert  
from a decimal number to the binary number RFREQ  
must be broken into two parts: the integer portion and  
the fractional portion. The first 10 most-significant-bits  
(MSBs) of RFREQ represent the integer portion, and  
the lower 28 least-significant-bits (LSB's) represent the  
fractional portion. The integer portion can be converted  
The Si57x employs Silicon Laboratories’ third- directly from decimal to binary (e.g. decimal  
generation digital signal processing based phase- 43 = hexadecimal 02Bh--the leading nibble only  
®
locked loop (DSPLL ) technology providing excellent occupies two bits of RFREQ). The fractional portion  
28  
jitter performance, digital programmability, and stability should be made into an integer by multiplying by 2  
while requiring minimal external components. At the and truncating (or rounding) the result as follows:  
core of the Si57x is a digitally-controlled oscillator (e.g. 0.54587216*2^28 = 146531442.18730496; then,  
(DCO) based on DSPLL technology that is driven by a truncate to 146531442). The truncated value can then  
digital frequency control word and produces a low-jitter be  
converted  
to  
binary  
(e.g.  
decimal  
output clock. (See "1. Detailed Block Diagrams" on 146531442 = hexadecimal 8BBE472h). The resulting  
page 4.)  
binary RFREQ for 43.54587216 is 02B8BBE472h  
(02Bh concatenated with 8BBE472h).  
3.1. Frequency Programming Summary  
3.2.3. Programming Procedure  
The output frequency is determined by programming  
the output dividers (HS_DIV and N1) and the fine  
frequency control value (RFREQ). The value  
programmed into RFREQ is a high-resolution 38-bit  
value that adjusts the DCO frequency in a range from  
The following steps must be followed to set a new  
output frequency:  
1. Read the frequency configuration (RFREQ, HS_DIV,  
and N1) from the device after power-up or reset.  
4.85 to 5.67 GHz. The output of the DCO is divided 2. Calculate the actual nominal crystal frequency  
down by HS_DIV and N1 to produce the desired output  
frequency. The 38-bit length of RFREQ provides an  
output frequency resolution of better than 1 ppb.  
(f  
) as: (f  
= f x HS_DIV x N1)/RFREQ  
XTAL  
XTAL 0  
where f is the nominal output frequency.  
0
3. Choose new output frequency (f ).  
1
4. Choose the output dividers (HS_DIV and N1) for the  
new output frequency by ensuring the DCO  
3.2. Frequency Programming Details  
Programming consists of the following basic steps:  
deriving the actual crystal frequency, choosing new  
output dividers (HS_DIV & N1), calculating a new  
frequency multiplier (RFREQ), and writing the new  
frequency set into the device (HS_DIV, N1, and  
RFREQ).  
oscillation frequency (f ) is within the allowed  
osc  
internal oscillator frequency (See Table 12) where:  
f
= f x HS_DIV x N1.  
osc  
1
5. Calculate the new crystal frequency multiplication  
ratio (RFREQ ) as: f = f x RFREQ.  
1
osc  
XTAL  
6. Freeze the DCO (bit 4 of Register 137).  
3.2.1. Selecting the Correct Output Dividers  
7. Write the frequency configuration (RFREQ, HS_DIV,  
and N1).  
By listing all of the combinations of HS_DIV and N1,  
one can choose the output divider set with the lowest  
power within the allowed internal oscillator frequency 8. Unfreeze the DCO and assert the NewFreq bit (bit 6  
range as specified in Table 12. The sets of dividers  
should be sorted to minimize f for power dissipation  
of Register 135) within the maximum delay specified  
in Table 12, “Programming Constraints,” on page 11.  
osc  
and to minimize N1 divider's power consumption.  
Silicon Laboratories’ Si57x software automatically  
provides this optimization and returns the smallest  
HS_DIV x N1 combination with the highest HS_DIV  
value.  
3.2.4. Programming Procedure Example  
The Si57x-EVB software can be used to generate  
examples as needed.  
12  
Rev. 0.31  
Si570/Si571  
2
3.3. I C Interface  
2
The control interface to the Si570 is an I C-compatible  
2-wire bus for bidirectional communication. The bus  
consists of a bidirectional serial data line (SDA) and a  
serial clock input (SCL). Both lines must be connected  
to the positive supply via an external pullup. Fast mode  
operation is supported for transfer rates up to 400 kbps  
2
as specified in the I C-Bus Specification standard.  
Figure 3 shows the command format for both read and  
write access. Data is always sent MSB first. The timing  
2
specifications and timing diagram for the I C bus can be  
2
found in the I C-Bus Specification standard (fast mode  
2
operation). The device I C address is specified in the  
part number.  
S
S
Slave Address  
0
A
Byte Address  
A
Data  
A
Data  
A
P
Write Command  
Slave Address  
0
A
Byte Address  
A
S
Slave Address  
1
A
Data  
A
Data  
A
P
Read Command  
Address auto incremented after each data read or write  
A – Acknowledge (SDA LOW)  
S – START condition  
From master to slave  
From slave to master  
P – STOP condition  
Figure 3. I2C Command Format  
Rev. 0.31  
13  
Si570/Si571  
4. Serial Port Registers  
Note: Any register not listed here is reserved and must not be written. All bits are R/W unless otherwise noted.  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
7
High Speed/  
N1 Dividers  
HS_DIV[2:0]  
N1[6:2]  
8
9
Reference  
Frequency  
N1[1:0]  
RFREQ[37:32]  
Reference  
Frequency  
RFREQ[31:24]  
RFREQ[23:16]  
RFREQ[15:8]  
RFREQ[7:0]  
10  
11  
Reference  
Frequency  
Reference  
Frequency  
12  
135  
137  
Reference  
Frequency  
Reset/Memory RST_REG NewFreq  
Control  
RECALL  
Freeze DCO  
Freeze  
DCO  
14  
Rev. 0.31  
Si570/Si571  
Register 7. High Speed/N1 Dividers  
Bit  
D7  
D6  
HS_DIV[2:0]  
R/W  
D5  
D4  
D3  
D2  
N1[6:2]  
R/W  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:5  
HS_DIV[2:0] DCO High Speed Divider.  
Sets value for high speed divider that takes the DCO output f  
as its clock input.  
OSC  
000 = 4  
001 = 5  
010 = 6  
011 = 7  
100 = Not used.  
101 = 9  
110 = Not used.  
111 = 11  
4:0  
N1[6:2]  
CLKOUT Output Divider.  
7
Sets value for CLKOUT output divider. Allowed values are [1] and [2, 4, 6, ..., 2 ]. Illegal  
odd divider values will be rounded up to the nearest even value. The value for the N1 reg-  
ister can be calculated by taking the divider ratio minus one. For example, to divide by 10,  
write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
7
1111111 = 2  
Register 8. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N1[1:0]  
R/W  
RFREQ[37:32]  
R/W  
Bit  
Name  
Function  
7:6  
N1[1:0]  
CLKOUT Output Divider.  
7
Sets value for CLKOUT output divider. Allowed values are [1, 2, 4, 6, ..., 2 ]. Illegal odd  
divider values will be rounded up to the nearest even value. The value for the N1 regis-  
ter can be calculated by taking the divider ratio minus one. For example, to divide by  
10, write 0001001 (9 decimal) to the N1 registers.  
0000000 = 1  
7
1111111 = 2  
5:0  
RFREQ[37:32] Reference Frequency.  
Frequency control input to DCO.  
Rev. 0.31  
15  
Si570/Si571  
Register 9. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
RFREQ[31:24]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[31:24]  
Reference Frequency.  
Frequency control input to DCO.  
Register 10. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
D3  
Name  
Type  
RFREQ[23:16]  
R/W  
Bit  
Name  
Function  
7:0  
RFREQ[23:16] Reference Frequency.  
Frequency control input to DCO.  
Register 11. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[15:8]  
R/W  
D3  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[15:8] Reference Frequency.  
Frequency control input to DCO.  
16  
Rev. 0.31  
Si570/Si571  
Register 12. Reference Frequency  
Bit  
D7  
D6  
D5  
D4  
RFREQ[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Bit  
Name  
Function  
7:0  
RFREQ[7:0]  
Reference Frequency.  
Frequency control input to DCO.  
Register 135. Reset/Memory Control  
Bit  
Name RST_REG NewFreq  
Type R/W R/W  
Reset settings = 00xx xx00  
D7  
D6  
D5  
D4  
D3  
N/A  
R/W  
D2  
D1  
D0  
RECALL  
R/W  
Bit  
Name  
Function  
7
RST_REG  
Internal Reset.  
0 = Normal operation.  
1 = Reset of all internal logic. Output tristated during reset.  
Upon completion of internal logic reset, RST_REG is internally reset to zero.  
6
NewFreq  
New frequency applied.  
Alerts the DSPLL that a new frequency configuration has been applied. This bit will  
clear itself when the new frequency is applied.  
5:1  
0
N/A  
Always zero.  
RECALL  
Recall NVM into RAM.  
0 = No operation.  
1 = Write NVM bits into RAM. Bit is internally reset following completion of operation.  
Rev. 0.31  
17  
Si570/Si571  
Register 137. Freeze DCO  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Freeze  
DCO  
Type  
R/W  
Reset settings = 00xx xx00  
Bit  
7:5  
4
Name  
Function  
Reserved  
Freeze DCO Freeze DCO.  
Freezes the DSPLL so the frequency configuration can be modified.  
3:0  
Reserved  
18  
Rev. 0.31  
Si570/Si571  
5. Si570 (XO) Pin Descriptions  
(Top View)  
SDA  
7
NC  
VDD  
1
2
3
6
5
4
OE  
CLK–  
CLK+  
GND  
8
SCL  
Table 13. Si570 Pin Descriptions  
Type  
Pin  
Name  
Function  
1
NC  
N/A  
No Connect.  
Output Enable:  
See "7. Ordering Information" on page 21.  
2
OE  
Input  
3
4
GND  
Ground  
Output  
Output  
Electrical and Case Ground.  
CLK+  
Oscillator Output.  
CLK–  
(N/A for CMOS)  
Complementary Output  
(N/C for CMOS).  
5
6
7
V
Power  
Power Supply Voltage.  
DD  
2
SDA  
Bidirectional  
Open Drain  
I C Serial Data.  
2
8
SCL  
Input  
I C Serial Clock.  
Rev. 0.31  
19  
Si570/Si571  
6. Si571 (VCXO) Pin Descriptions  
(Top View)  
SDA  
7
VC  
VDD  
1
6
5
4
OE  
2
3
CLK–  
CLK+  
GND  
8
SCL  
Table 14. Si571 Pin Descriptions  
Type  
Pin  
Name  
Function  
1
V
Analog Input  
Input  
Control Voltage  
C
Output Enable:  
2
OE  
See "7. Ordering Information" on page 21.  
Electrical and Case Ground  
3
4
GND  
Ground  
Output  
Output  
CLK+  
Oscillator Output  
CLK–  
(N/A for CMOS)  
Complementary Output  
(N/C for CMOS)  
5
6
7
V
Power  
Power Supply Voltage  
DD  
2
SDA  
Bidirectional  
Open Drain  
I C Serial Data  
2
8
SCL  
Input  
I C Serial Clock  
20  
Rev. 0.31  
Si570/Si571  
7. Ordering Information  
The Si570/Si571 supports a wide variety of options including frequency range, start-up frequency, temperature  
stability, tuning slope, output format, and V . Specific device configurations are programmed into the Si570/Si571  
DD  
at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon  
Labs provides a web browser-based part number configuration utility to simplify this process. Refer to  
www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si570/Si571 XO/  
VCXO series is supplied in an industry-standard, RoHS compliant, Pb-free, 8-pad, 5 x 7 mm package. Tape and  
reel packaging is an ordering option.  
X
X
D
G
R
57x  
XXX XXX  
X
R = Tape & Reel  
Blank = Trays  
Operating Temp Range (°C)  
–40 to +85 °C  
570 Programmable  
XO Product Family  
G
Device Revision Letter  
571 Programmable  
VCXO Product Family  
Six-Digit Start-up Frequency/I2C Address Designator  
The Si57x supports a user-defined start-up frequency within the following  
bands of frequencies: 10–945 MHz, 970–1134 MHz, and 1213–1417 MHz.  
The start-up frequency must be in the same frequency range as that  
specified by the Frequency Grade 3rd option code.  
1st Option Code  
The Si57x supports a user-defined I2C 7-bit address. Each unique start-up  
frequency/I2C address combination is assigned a six-digit numerical code.  
This code can be requested during the part number request process. Refer  
to www.silabs.com/VCXOPartNumber to request an Si57x part number.  
VDD Output Format Output Enable Polarity  
A
B
C
D
E
F
G
H
J
K
M
N
P
Q
R
S
T
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
3.3 LVPECL  
3.3 LVDS  
3.3 CMOS  
3.3 CML  
2.5 LVPECL  
2.5 LVDS  
2.5 CMOS  
2.5 CML  
1.8 CMOS  
1.8 CML  
High  
High  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
3rd Option Code  
Frequency Grade  
Code  
Frequency Range Supported (MHz)  
10-945, 970-1134, 1213-1417.5  
10-810  
10-215  
A
B
C
2nd Option Code  
Code Temperature Stability (ppm, max, ±) Total Stablility (ppm, max, ±)  
Si570  
A
B
50  
20  
61.5  
31.5  
U
V
W
2nd Option Code  
Temperature  
Stability  
± ppm (max)  
Tuning Slope  
Minimum APR  
(±ppm) for VDD @  
Note:  
Kv  
ppm/V (typ)  
180  
CMOS available to 160 MHz.  
Code  
A
B
C
3.3 V  
100  
30  
150  
80  
2.5 V  
75  
Note 6  
125  
1.8 V  
25  
Note 6  
75  
100  
100  
50  
90  
180  
90  
D
50  
30  
25  
E
F
G
H
J
K
M
20  
50  
20  
20  
20  
100  
20  
45  
135  
356  
180  
135  
356  
33  
25  
Note 6  
75  
300  
145  
104  
Note 6  
50  
235  
105  
70  
100  
375  
185  
130  
295  
12  
220  
Note 6  
155  
Note 6  
Si571  
Notes:  
1. For best jitter and phase noise performance, always choose the smallest Kv that meets  
the application’s minimum APR requirements. Unlike SAW-based solutions which  
require higher higher Kv values to account for their higher temperature dependence,  
the Si55x series provides lower Kv options to minimize noise coupling and jitter in real-  
world PLL designs. See AN255 and AN266 for more information.  
2. APR is the ability of a VCXO to track a signal over the product lifetime. A VCXO with an  
APR of ±25 ppm is able to lock to a clock with a ±25 ppm stability over 15 years over all  
operating conditions.  
3. Nominal Pull range (±) = 0.5 x VDD x tuning slope.  
4. Nominal Absolute Pull Range (±APR) = Pull range – stability – lifetime aging  
=0.5 x VDD x tuning slope – stability – 10 ppm  
5. Minimum APR values noted above include worst case values for all parameters.  
6. Combination not available.  
Figure 4. Part Number Convention  
Rev. 0.31  
21  
Si570/Si571  
8. Si57x Mark Specification  
Figure 5 illustrates the mark specification for the Si57x. Table 15 lists the line information.  
6
4
5
SiLabs 123  
1 2 3 4 5 6 7 8 9 0  
R T T T T Y W W +  
1
2
3
Figure 5. Mark Specification  
Table 15. Si57x Top Mark Description  
Line  
Position  
1–10  
Description  
1
2
3
“SiLabs”+ Part Family Number, 5xx (First 3 characters in part number)  
Si570, Si571: Option1 + Option2 + Option3 + ConfigNum(6) + Temp  
1–10  
Trace Code  
Position 1  
Pin 1 orientation mark (dot)  
Product Revision (D)  
Position 2  
Tiny Trace Code (4 alphanumeric characters per assembly release instructions)  
Year (least significant year digit), to be assigned by assembly site (ex: 2007 = 7)  
Calendar Work Week number (1–53), to be assigned by assembly site  
“+” to indicate Pb-Free and RoHS-compliant  
Position 3–6  
Position 7  
Position 8–9  
Position 10  
22  
Rev. 0.31  
Si570/Si571  
9. Outline Diagram and Suggested Pad Layout  
Figure 6 illustrates the package details for the Si570/Si571. Table 16 lists the values for the dimensions shown in  
the illustration.  
Figure 6. Si570/Si571 Outline Diagram  
Table 16. Package Diagram Dimensions (mm)  
Dimension  
Min  
1.45  
1.2  
Nom  
1.65  
Max  
1.85  
1.6  
A
b
1.4  
c
0.60 TYP  
1.17  
d
0.97  
6.10  
1.37  
6.30  
D
7.00 BSC  
6.2  
D1  
e
2.54 BSC  
5.00 BSC  
4.40  
E
E1  
L
4.30  
1.07  
0.8  
4.50  
1.47  
1.2  
1.27  
M
1.0  
S
1.815 BSC  
0.7 REF  
R
aaa  
bbb  
ccc  
ddd  
0.15  
0.15  
0.10  
0.10  
Rev. 0.31  
23  
Si570/Si571  
10. 8-Pin PCB Land Pattern  
Figure 7 illustrates the 8-pin PCB land pattern for the Si570/Si571. Table 17 lists the values for the dimensions  
shown in the illustration.  
Figure 7. Si570/Si571 PCB Land Pattern  
Table 17. PCB Land Pattern Dimensions (mm)  
Dimension  
Min  
Max  
D2  
D3  
5.08 REF  
5.705 REF  
2.54 BSC  
4.20 REF  
e
E2  
GD  
GE  
VD  
VE  
0.84  
2.00  
8.20 REF  
7.30 REF  
1.70 TYP  
1.545 TYP  
2.15 REF  
1.3 REF  
X1  
X2  
Y1  
Y2  
ZD  
6.78  
6.30  
ZE  
Note:  
1. Dimensioning and tolerancing per the ANSI Y14.5M-1994  
specification.  
2. Land pattern design follows IPC-7351 guidelines.  
3. All dimensions shown are at maximum material condition  
(MMC).  
4. Controlling dimension is in millimeters (mm).  
24  
Rev. 0.31  
Si570/Si571  
Revision 0.3 to Revision 0.31  
DOCUMENT CHANGE LIST  
Updated "3.2.3. Programming Procedure" on page  
12.  
Revision 0.1 to Revision 0.2  
Updated " Description" on page 1.  
Corrected Step 6 to read “bit 4”.  
Corrected Freeze DCO bit location in Register 137 to  
bit 4 on pages 14 and 18.  
Updated "1. Detailed Block Diagrams" on page 4 for  
both XO and VCXO.  
Updated the Nominal Control Voltage in Table 2, “V  
C
Control Voltage Input,” on page 5.  
Updated tables to reflect slight performance  
differences between Si570 and Si571.  
Added detail to the "3.2. Frequency Programming  
Details" on page 12.  
Revised "3.2.3. Programming Procedure" on page  
12.  
Procedure now requires use of two frequency  
configuration register sets.  
Procedure now recommends disabling output at  
powerup to protect equipment not expecting the  
default output frequency.  
Added second frequency configuration register set  
to the register tables.  
Added frequency configuration select register.  
Updated "7. Ordering Information" on page 21 to be  
consistent with the Si55x series devices.  
Revision 0.2 to Revision 0.3  
Updated Table 1, “Recommended Operating  
Conditions,” on page 5.  
Device maintains stable operation over –40 to +85 ºC  
operating temperature range.  
Supply current specifications updated.  
Updated Table 4, “CLK± Output Levels and  
Symmetry,” on page 7.  
Updated LVDS differential peak-peak swing  
specifications.  
Updated Table 5, “CLK± Output Phase Jitter  
(Si570),” on page 7.  
Updated Table 6, “CLK± Output Phase Jitter  
(Si571),” on page 8.  
Updated Table 7, “CLK± Output Period Jitter,” on  
page 9.  
Revised period jitter specifications.  
Updated Table 10, “Absolute Maximum Ratings,” on  
page 10 to reflect the soldering temperature time at  
260 ºC is 20–40 sec per JEDEC J-STD-020C.  
Updated device programming procedure in Section  
"3.2.3. Programming Procedure" on page 12.  
Updated "7. Ordering Information" on page 21.  
Changed ordering instructions to revision D.  
Added "8. Si57x Mark Specification" on page 22.  
Rev. 0.31  
25  
Si570/Si571  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: VCXOinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Rev. 0.31  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY