CY28548ZXC [SILICON]

Clock Generator for Intel®Crestline Chipset;
CY28548ZXC
型号: CY28548ZXC
厂家: SILICON    SILICON
描述:

Clock Generator for Intel®Crestline Chipset

文件: 总31页 (文件大小:1245K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28548  
Clock Generator for Intel®Crestline Chipset  
• 33 MHz PCI clock  
Features  
• 27 MHz Video clocks  
• Compliant to Intel® CK505  
• Buffered Reference Clock 14.318 MHz  
• Low power push-pull type differential output buffers  
• Integrated voltage regulator  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Integrated resistors on differential clocks  
• Scalable low voltage VDD_IO (3.3V to 1.25V)  
• Differential CPU clocks with selectable frequency  
• 100 MHz Differential SRC clocks  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V Power supply  
64-pin QFN/TSSOP packages  
• 100 MHz Differential LCD clock  
CPU SRC PCI REF DOT96 USB_48 LCD 27M  
• 96 MHz Differential DOT clock  
x2 / x3 x7/11 x6  
x 1  
x 1  
x 1  
x1  
x2  
• 48 MHz USB clocks  
Block Diagram  
........................Document #: 001-08400 Rev ** Page 1 of 30  
400 West Cesar Chavez, Austin, TX 78701  
1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
CY28548  
Pin Configuration  
64-Pin TSSOP  
64-Pin QFN  
1
2
3
4
5
6
7
8
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PCI0/CR#_A  
VDD_PCI  
PCI1/CR#_B  
PCI2/TME  
SCLK  
SDATA  
REF0/FSC/TEST_SEL  
VDD_REF  
XIN  
XOUT  
VSS_REF  
FSB/TEST_MODE  
CKPWRGD/PWRDWN#  
VDD_CPU  
CPUT0  
CPUC0  
VSS_CPU  
CPUT1  
CPUC1  
VDD_CPU_IO  
NC  
SRCT8/CPU2_ITPT  
SRCC8/CPU2_ITPC  
VDD_SRC_IO  
SRCT7/CR#_F  
SRCC7/CR#_E  
VSS_SRC  
PCI3  
PCI4/GCLK_SEL  
PCIF0/ITP_EN  
VSS_PCI  
VDD_48  
USB_48/FSA  
VSS_48  
VDD_IO  
SRCT0/DOT96T  
SRCC0/DOT96C  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VSS_IO  
VDD_PLL3  
SRCT1/LCDT_100/27M_NSS  
SRCC1/LCDC_100/27M_SS  
VSS_PLL3  
VDD_PLL3_IO  
SRCT2/SATAT  
SRCC2/SATAC  
VSS_SRC  
SRCT3/CR#_C  
SRCT6  
SRCC6  
VDD_SRC  
PCI_STOP#  
CPU_STOP#  
VDD_SRC_IO  
SRCC10  
SRCC3/CR#_D  
VDD_SRC  
SRCT4  
SRCC4  
VSS_SRC_IO  
SRCT9  
SRCT10  
SRCT11/CR#_H  
SRCC9  
SRCC11/CR#_G  
QFN Pin Definitions  
Pin No.  
Name  
VSS_REF  
Type  
Description  
1
2
3
4
GND Ground for outputs.  
Xout  
O, SE 14.318 MHz Crystal output.  
Xin  
I
14.318 MHz Crystal input.  
VDD_REF  
PWR 3.3V Power supply for outputs and maintains SMBUS registers during power  
down.  
5
REF0 / FSC / TEST_SEL  
I/O  
Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency selection/  
Selects test mode if pulled to VIHFS_C when CK_PWRGD is asserted HIGH.  
Refer to DC Electrical Specifications table for VILFS_C, VIMFS_C, VIHFS_C specifica-  
tions.  
6
7
SDATA  
SCLK  
I/O  
I
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
........................Document #: 001-08400 Rev ** Page 2 of 30  
CY28548  
QFN Pin Definitions (continued)  
Pin No.  
Name  
PCI0 / CR#_A  
Type  
Description  
8
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 0 or SRC 2. Default PCI0.  
To configure this pin to serve as a Clock Request pin for either SRC pair 2 or pair  
0 using the CR#_A_EN bit located in byte 5 bit 7, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI0 enabled (default)  
1= CR#_A enabled.  
Byte 5, bit 6 controls whether CR#_A controls SRC0 or SRC2 pair  
Byte 5, bit 6:  
0 = CR#_A controls SRC0 pair (default)  
1= CR#_A controls SRC2 pair  
9
VDD_PCI  
PWR 3.3V power supply for PCI PLL  
10  
PCI1 / CR#_B  
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 1 or SRC 4. Default PCI1.  
To configure this pin to serve as a Clock Request pin for either SRC pair 1 or pair  
4 using the CR#_B_EN bit located in byte 5, bit 5, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI1 enabled (default)  
1= CR#_B enabled.  
Byte 5, bit 4 controls whether CR#_B controls SRC1 or SRC4 pair  
Byte 5, bit 4:  
0 = CR#_B controls SRC1 pair (default)  
1= CR#_B controls SRC4 pair  
11  
PCI2 / TME  
I/O, SE 33 MHz Clock output/3.3V-tolerance input for enabling Trusted Mode  
Sampled at CKPWRGD assertion:  
0 = Normal mode, 1 = Trusted mode (no overclocking)  
12  
13  
PCI3  
O, SE 33 MHz Clock output  
PCI4 / GCLK_SEL  
I/O, SE 33 MHz Clock output/3.3V-tolerant input for selecting graphic clock source  
on pin 20, 21, 24 and 25  
Sampled on CKPWRGD assertion;  
GCLK_SEL Pin 20  
Pin 21  
DOT96T DOT96C SRC1T/LCD_100T SRC1C/LCD_100C  
SRCT0 SRCC0 27M_NSS 27M_SS  
Pin 24  
Pin 25  
0
1
14  
PCIF0 / ITP_EN  
I/O, SE 33 MHz free running clock output/3.3V LVTTL input to enable SRC8 or  
CPU2_ITP (sampled on the CKPWRGD assertion)  
1 = CPU2_ITP, 0 = SRC8  
15  
16  
17  
VSS_PCI  
GND Ground for outputs.  
VDD_48  
PWR 3.3V power supply for outputs and PLL.  
USB_48 / FSA  
I/O  
Fixed 48 MHz clock output/3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
18  
19  
20  
VSS_48  
GND Ground for outputs.  
VDD_IO  
PWR 3.3V-1.25V power supply for outputs  
SRCT0 / DOT96T  
O, DIF True 100 MHz Differential serial reference clocks/Fixed True 96 MHz clock  
output. Selected via GCLK_SEL at CKPWRGD assertion  
21  
SRCC0 / DOT96C  
O, DIF Complementary 100 MHz Differential serial reference clocks/Fixed  
complement 96 MHz clock output.  
Selected via GCLK_SEL at CKPWRGD assertion  
22  
23  
24  
VSS_IO  
GND Ground for outputs.  
VDD_PLL3  
PWR 3.3V Power supply for PLL3.  
SRCT1 /  
LCDT_100/27M_NSS  
O, DIF, True 100 MHz differential serial reference clock output/True 100 MHz LCD  
SE  
video clock output / Non spread 27-MHz video clock output.  
Selected via GCLK_SEL at CKPWRGD assertion.  
........................Document #: 001-08400 Rev ** Page 3 of 30  
CY28548  
QFN Pin Definitions (continued)  
Pin No.  
Name  
Type  
Description  
25  
SRCC1 /  
LCDC_100/27M_SS  
O, DIF, Complementary 100 MHz differential serial reference clock output/Comple-  
SE  
mentary 100 MHz LCD video clock output /Spread 27 MHz video clock output.  
Selected via GCLK_SEL at CKPWRGD assertion.  
26  
27  
28  
29  
30  
31  
VSS_PLL3  
GND Ground for PLL3.  
VDD_PLL3_IO  
SRCT2 / SATAT  
SRCC2 / SATAC  
VSS_SRC  
PWR 3.3V-1.25V power supply for outputs.  
O, DIF True 100 MHz differential serial reference clock output.  
O, DIF Complementary 100 MHz differential serial reference clock output.  
GND Ground for outputs.  
SRCT3 / CR#_C  
I/O, True 100 MHz differential serial reference clock output /3.3V Clock Request  
DIF #_C/D input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
32  
SRCC3 / CR#_D  
I/O, Complementary 100 MHz differential serial reference clock output/3.3V Clock  
DIF Request #_C/D input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
33  
34  
35  
36  
37  
38  
39  
VDD_SRC_IO  
SRCT4  
PWR 3.3V-1.25V Power supply for outputs.  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
GND Ground for outputs.  
SRCC4  
VSS_SRC  
SRCT9  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
SRCC9  
SRCC11/ CR#_G  
I/O, True 100 MHz differential serial reference clocks/3.3V CR#_G Input.  
DIF Selected via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
40  
SRCT11/ CR#_H  
I/O, Complementary 100 MHz Differential serial reference clocks/3.3V CR#_H  
DIF Input.  
Selected via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
41  
42  
43  
44  
SRCT10  
O, DIF True 100 MHz Differential serial reference clocks.  
O, DIF Complementary 100 MHz Differential serial reference clocks.  
PWR 3.3V-1.25V power supply for outputs.  
SRCC10  
VDD_SRC_IO  
CPU_STOP#  
I
3.3V-tolerant input for stopping CPU outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 13  
for more information.  
45  
PCI_STOP#  
I
3.3V-tolerant input for stopping PCI and SRC outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 13  
for more information.  
46  
47  
48  
49  
50  
VDD_SRC  
SRCC6  
PWR 3.3V power supply for SRC PLL.  
O, DIF Complementary 100 MHz Differential serial reference clocks.  
O, DIF True 100 MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRCT6  
VSS_SRC  
SRCC7/ CR#_E  
I/O, Complementary 100 MHz differential serial reference clocks/3.3V CR#_E  
DIF Input.  
Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
........................Document #: 001-08400 Rev ** Page 4 of 30  
CY28548  
QFN Pin Definitions (continued)  
Pin No.  
Name  
Type  
Description  
51  
SRCT7/ CR#_F  
I/O, True 100 MHz differential serial reference clocks/3.3V CR#_F Input.  
DIF Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
52  
53  
VDD_SRC_IO  
PWR 3.3V-1.25V Power supply for outputs.  
SRCC8 / CPUC2_ITP  
O, DIF Selectable complementary differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
54  
SRCT8 / CPUT2_ITP,  
O, DIF Selectable True differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
55  
56  
57  
NC  
NC  
No connect.  
VDD_CPU_IO  
CPUC1  
PWR 3.3V-1.25V Power supply for outputs.  
O, DIF Complementary differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
58  
CPUT1  
O, DIF True differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
59  
60  
61  
62  
63  
VSS_CPU  
GND Ground for outputs.  
CPUC0  
O, DIF Complement differential CPU clock outputs.  
O, DIF True differential CPU clock outputs.  
PWR 3.3V Power supply for CPU PLL.  
CPUT0  
VDD_CPU  
CKPWRGD / PWRDWN#  
I
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C, GLCK_SEL and ITP_EN.  
After CKPWRGD (active HIGH) assertion, this pin becomes a real-time input for  
asserting power down (active LOW).  
64  
FSB / TEST_MODE  
I
3.3V-tolerant input for CPU frequency selection / Selects Ref/N or Tri-state  
when in test mode.  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
TSSOP Pin Definitions  
Pin No.  
Name  
PCI0 / CR#_A  
Type  
Description  
1
I/O, SE 33 MHz clock/3.3V Clock Request # Input.  
Selected via CR#_A_EN bit located in byte 5 bit 7.  
The CR#_A_SEL bit in byte 5 bit 6 will select to control SRC0 or SRC2 when  
asserted.  
2
3
VDD_PCI  
PWR 3.3V Power supply for PCI PLL.  
PCI1 / CR#_B  
I/O, SE 33 MHz Clock/3.3V Clock Request # Input.Selected via CR#_B_EN bit located  
in byte 5 bit 5.  
The CR#_B_SEL bit in byte 5 bit 4 will select to control SRC1 or SRC4 when  
asserted.  
4
5
PCI2 / TME  
PCI3  
I/O, SE 33 MHz clock output / 3.3V-tolerance input for enabling trusted mode  
Sampled at CKPWRGD assertion:  
0 = Normal mode, 1 = Trusted mode (no overclocking)  
O, SE 33 MHz clock output  
........................Document #: 001-08400 Rev ** Page 5 of 30  
CY28548  
TSSOP Pin Definitions (continued)  
Pin No.  
Name  
Type  
Description  
6
PCI4 / GCLK_SEL  
I/O, SE 33 MHz clock output/3.3V-tolerant input for selecting graphic clock source  
on pin 13, 14, 17and 18  
Sampled on CKPWRGD assertion  
GCLK_SEL  
Pin13  
DOT96T DOT96C SRC1T/LCD_100T SRC1C/LCD_100C  
SRCT0 SRCC0 27M_NSS 27M_SS  
Pin14  
Pin17  
Pin 18  
0
1
7
PCIF0 / ITP_EN  
I/O, SE 33 MHz free running clock output / 3.3V LVTTL input to enable SRC8 or  
CPU2_ITP (sampled on the CKPWRGD assertion)  
1 = CPU2_ITP, 0 = SRC8  
8
VSS_PCI  
GND Ground for outputs.  
9
VDD_48  
PWR 3.3V power supply for outputs and PLL.  
10  
USB_48 / FSA  
I/O  
Fixed 48 MHz clock output / 3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
11  
12  
13  
VSS_48  
GND Ground for outputs.  
VDD_IO  
PWR 3.3V-1.25V power supply for outputs  
SRCT0 / DOT96T  
O, DIF True 100 MHz differential serial reference clocks / Fixed True 96 MHz clock  
output. Selected via GCLK_SEL at CKPWRGD assertion  
14  
SRCC0 / DOT96C  
O, DIF Complementary 100 MHz differential serial reference clocks / Fixed Comple-  
mentary 96 MHz clock output. Selected via GCLK_SEL at CKPWRGD assertion  
15  
16  
17  
VSS_IO  
GND Ground for outputs  
VDD_PLL3  
PWR 3.3V Power supply for PLL3  
SRCT1 /  
LCDT_100/27M_NSS  
O, DIF, True 100 MHz differential serial reference clock output / True 100 MHz LCD  
SE  
video clock output / Non spread 27 MHz video clock output.  
Selected via GCLK_SEL at CKPWRGD assertion  
18  
SRCC1 /  
LCDC_100/27M_SS  
O, DIF, Complementary100 MHz differential serial reference clock output / Comple-  
SE  
mentary 100 MHz LCD video clock output / Spread 27 MHz video clock output.  
Selected via GCLK_SEL at CKPWRGD assertion  
19  
20  
21  
22  
23  
24  
VSS_PLL3  
GND Ground for PLL3.  
VDD_PLL3_IO  
SRCT2 / SATAT  
SRCC2 / SATAC  
VSS_SRC  
PWR 3.3V-1.25V power supply for outputs.  
O, DIF True 100 MHz differential serial reference clock output.  
O, DIF Complementary 100 MHz differential serial reference clock output.  
GND Ground for outputs.  
SRCT3 / CR#_C  
I/O, True 100 MHz differential serial reference clock output / 3.3V CR #_C/D input  
DIF Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
25  
SRCC3 / CR#_D  
I/O, Complementary 100 MHz differential serial reference clock output / 3.3V CR  
DIF #_C/D input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
26  
27  
28  
29  
30  
31  
VDD_SRC_IO  
SRCT4  
PWR 3.3V-1.25V power supply for outputs.  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
GND Ground for outputs.  
SRCC4  
VSS_SRC  
SRCT9  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
SRCC9  
........................Document #: 001-08400 Rev ** Page 6 of 30  
CY28548  
TSSOP Pin Definitions (continued)  
Pin No.  
Name  
Type  
Description  
32  
SRCC11/ CR#_G  
I/O, Complementary 100 MHz differential serial reference clocks/3.3V CR#_G  
DIF Input Selected via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
33  
SRCT11/ CR#_H  
I/O, True 100 MHz differential serial reference clocks/3.3V CR#_H Input Selected  
DIF via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
34  
35  
36  
37  
SRCT10  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
PWR 3.3V-1.25V Power supply for outputs.  
SRCC10  
VDD_SRC_IO  
CPU_STOP#  
I
3.3V-tolerant input for stopping CPU outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 13  
for more information.  
38  
PCI_STOP#  
I
3.3V-tolerant input for stopping PCI and SRC outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 13  
for more information.  
39  
40  
41  
42  
43  
VDD_SRC  
SRCC6  
PWR 3.3V Power supply for SRC PLL.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
O, DIF True 100 MHz differential serial reference clocks.  
GND Ground for outputs.  
SRCT6  
VSS_SRC  
SRCC7/ CR#_E  
I/O, Complementary 100 MHz differential serial reference clocks/3.3V CR#_E  
DIF Input. Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
44  
SRCT7/ CR#_F  
I/O, True 100 MHz differential serial reference clocks/3.3V CR#_FInput.  
DIF Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
45  
46  
VDD_SRC_IO  
PWR 3.3V-1.25V power supply for outputs.  
SRCC8 / CPUC2_ITP  
O, DIF Selectable Complementary differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
47  
SRCC8 / CPUC2_ITP  
O, DIF Selectable True differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
48  
49  
50  
NC  
NC No connect.  
VDD_CPU_IO  
CPUC1  
PWR 3.3V-1.25V Power supply for outputs.  
O, DIF Complementary differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
51  
CPUT1  
O, DIF True differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
52  
53  
54  
55  
56  
VSS_CPU  
GND Ground for outputs.  
CPUC0  
O, DIF Complementary differential CPU clock outputs.  
O, DIF True differential CPU clock outputs.  
PWR 3.3V Power supply for CPU PLL.  
CPUT0  
VDD_CPU  
CKPWRGD / PWRDWN#  
I
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C, GLCK_SEL and ITP_EN.  
After CKPWRGD (active HIGH) assertion, this pin becomes a real-time input for  
asserting power down (active LOW).  
........................Document #: 001-08400 Rev ** Page 7 of 30  
CY28548  
TSSOP Pin Definitions (continued)  
PinNo.  
Name  
Type  
Description  
57  
FSB / TEST_MODE  
I
3.3V-tolerant input for CPU frequency selection / Selects Ref/N or Tri-state  
when in test mode:  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
58  
59  
60  
61  
VSS_REF  
Xout  
GND Ground for outputs.  
O, SE 14.318 MHz Crystal output.  
Xin  
I
14.318 MHz Crystal input.  
VDD_REF  
PWR 3.3V Power supply for outputs and also maintains SMBUS registers during  
power down.  
62  
REF0 / FSC / TEST_SEL  
I/O  
Fixed 14.318 clock output / 3.3V-tolerant input for CPU frequency selection /  
Selects test mode if pulled to VIHFS_C when CK_PWRGD is asserted HIGH.  
Refer to DC Electrical Specifications table for VILFS_C, VIMFS_C, VIHFS_C specifica-  
tions.  
63  
64  
SDATA  
SCLK  
I/O  
I
SMBus-compatible SDATA.  
SMBus-compatible SCLOCK.  
Table 1. Frequency Select Pin (FSA, FSB and FSC)  
FSC  
0
FSB  
0
FSA  
0
CPU  
SRC  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
27MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
REF  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
USB  
266 MHz  
133 MHz  
200 MHz  
166 MHz  
333 MHz  
100 MHz  
400 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
Reserved  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
Reserved Reserved Reserved Reserved  
Reserved Reserved  
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
Frequency Select Pin (FSA, FSB and FSC)  
Apply the appropriate logic levels to FSA, FSB, and FSC  
inputs before CK-PWRGD assertion to achieve host clock  
frequency selection. When the clock chip sampled HIGH on  
CK-PWRGD and indicates that VTT voltage is stable then  
FSA, FSB, and FSC input values are sampled. This process  
employs a one-shot functionality and once the CK-PWRGD  
sampled a valid HIGH, all other FSA, FSB, FSC, and  
CK-PWRGD transitions are ignored except in test mode  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, Access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 2.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h)  
their default setting at power-up. The use of this interface is  
.
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
........................Document #: 001-08400 Rev ** Page 8 of 30  
CY28548  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
Byte Count–8 bits  
20  
(Skip this step if I2C_EN bit set)  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
........................Document #: 001-08400 Rev ** Page 9 of 30  
CY28548  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
HW  
HW  
HW  
0
Name  
FS_C  
Description  
CPU Frequency Select Bit, set by HW  
6
FS_B  
CPU Frequency Select Bit, set by HW  
CPU Frequency Select Bit, set by HW  
5
FS_A  
4
iAMT_EN  
Set via SMBus or by combination of PWRDWN, CPU_STP, and PCI_STP  
0 = Legacy Mode, 1 = iAMT Enabled  
3
2
0
0
Reserved  
Reserved  
SRC_Main_SEL  
Select source for SRC clock  
0 = SRC_MAIN = PLL1, PLL3_CFG Table applies  
1 = SRC_MAIN = PLL3, PLL3_CFG Table does not apply  
1
0
0
1
SATA_SEL  
Select source of SATA clock  
0 = SATA = SRC_MAIN, 1= SATA = PLL2  
PD_Restore  
Save Config. In powerdown  
0 = Config. Cleared, 1 = Config. Saved  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
0
SRC0_SEL  
Select for SRC0 or DOT96  
0 = SRC0, 1 = DOT96  
When GCLK_SEL=0, this bit is 1. When GCLK_SEL=1, this bit is 0  
6
5
0
0
PLL1_SS_DC  
PLL3_SS_DC  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
4
3
2
1
0
0
0
0
1
1
PLL3_CFB3  
PLL3_CFB2  
PLL3_CFB1  
PLL3_CFB0  
Reserved  
Bit 4:1 only applies when SRC_Main_SEL = 0  
SeeTable 8: PLL3 / SE configuration table  
Reserved  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
REF  
Output enable for REF  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
USB  
PCIF0  
PCI4  
PCI3  
PCI2  
PCI1  
PCI0  
Output enable for USB  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCIF0  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI4  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI3  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI0  
0 = Output Disabled, 1 = Output Enabled  
......................Document #: 001-08400 Rev ** Page 10 of 30  
CY28548  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
SRC[T/C]11  
Output enable for SRC11  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
1
1
1
1
SRC[T/C]10  
SRC[T/C]9  
Output enable for SRC10  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC9  
0 = Output Disabled, 1 = Output Enabled  
SRC[T/C]8/CPU2_ITP  
SRC[T/C]7  
Output enable for SRC8 or CPU2_ITP  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC7  
0 = Output Disabled, 1 = Output Enabled  
SRC[T/C]6  
Output enable for SRC6  
0 = Output Disabled, 1 = Output Enabled  
1
0
1
1
Reserved  
Reserved  
SRC[T/C]4  
Output enable for SRC4  
0 = Output Disabled, 1 = Output Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
1
SRC[T/C]3  
Output enable for SRC3  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC[T/C]2/SATA  
Output enable for SRC2/SATA  
0 = Output Disabled, 1 = Output Enabled  
SRC[T/C]1/LCD_100M[T/C] Output enable for SRC1/LCD_100M  
0 = Output Disabled, 1 = Output Enabled  
SRC[T/C]0/DOT96[T/C]  
Output enable for SRC0/DOT96  
0 = Output Disabled, 1 = Output Enabled  
CPU[T/C]1  
Output enable for CPU1  
0 = Output Disabled, 1 = Output Enabled  
CPU[T/C]0  
Output enable for CPU0  
0 = Output Disabled, 1 = Output Enabled  
PLL1_SS_EN  
PLL3_SS_EN  
Enable PLL1s spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
Enable PLL3s spread modulation  
0 = Spread Disabled, 1 = Spread Enabled  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
CR#_A_EN  
Enable CR#_A (clk req)  
0 = Disabled, 1 = Enabled,  
6
5
4
3
2
0
0
0
0
0
CR#_A_SEL  
CR#_B_EN  
CR#_B_SEL  
CR#_C_EN  
CR#_C_SEL  
Set CR#_A SRC0 or SRC2  
0 = CR#_ASRC0, 1 = CR#_ASRC2  
Enable CR#_B(clk req)  
0 = Disabled, 1 = Enabled,  
Set CR#_B SRC1 or SRC4  
0 = CR#_BSRC1, 1 = CR#_BSRC4  
Enable CR#_C (clk req)  
0 = Disabled, 1 = Enabled  
Set CR#_C SRC0 or SRC2  
0 = CR#_CSRC0, 1 = CR#_CSRC2  
......................Document #: 001-08400 Rev ** Page 11 of 30  
CY28548  
Byte 5: Control Register 5 (continued)  
Bit  
@Pup  
Name  
Description  
1
0
CR#_D_EN  
Enable CR#_D (clk req)  
0 = Disabled, 1 = Enabled  
0
0
CR#_D_SEL  
Set CR#_D SRC1 or SRC4  
0 = CR#_DSRC1, 1 = CR#_DSRC4  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
CR#_E_EN  
Enable CR#_E (clk req) SRC6  
0 = Disabled, 1 = Enabled  
6
5
4
0
0
0
CR#_F_EN  
CR#_G_EN  
CR#_H_EN  
Enable CR#_F (clk req) SRC8  
0 = Disabled, 1 = Enabled  
Enable CR#_G (clk req) SRC9  
0 = Disabled, 1 = Enabled  
Enable CR#_H (clk req) SRC10  
0 = Disabled, 1 = Enabled  
3
2
1
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
LCD_100_STP_CTRL  
If set, LCD_100 stop with PCI_STOP#  
0 = Free running, 1 = PCI_STOP# stoppable  
0
0
SRC_STP_CTRL  
If set, SRCs stop with PCI_STOP#  
0 = Free running, 1 = PCI_STOP# stoppable  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
1
1
0
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
......................Document #: 001-08400 Rev ** Page 12 of 30  
CY28548  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
1
0
0
1
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
0000 = CK505 Yellow Cover Device, 56-pin TSSOP  
0001 = CK505 Yellow Cover Device, 64-pin TSSOP  
6
0010 = CK505 Yellow Cover Device, 48-pin QFN (Reserved)  
0011 = CK505 Yellow Cover Device, 56-pin QFN (Reserved)  
0100 = CK505 Yellow Cover Device, 64-pin QFN  
0101 = CK505 Yellow Cover Device, 72-pin QFN (Reserved)  
0110 = CK505 Yellow Cover Device, 48-pin SSOP (Reserved)  
0111 = CK505 Yellow Cover Device, 48-pin SSOP (Reserved)  
1000 = Reserved  
5
4
1001 = CY28548  
1010 = Reserved  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
3
2
1
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
27M_NSS_OE  
Output enable for 27M_NSS  
0 = Output Disabled, 1 = Output Enabled  
0
1
27M_SS_OE  
Output enable for 27M_SS  
0 = Output Disabled, 1 = Output Enabled  
Byte 9: Control Register 9  
Bit  
@Pup  
Name  
Description  
7
0
PCIF_0_with PCI_STOP# Allows control of PCIF_0 with assertion of PCI_STOP#  
0 = Free running PCIF, 1 = Stopped with PCI_STOP#  
6
5
4
3
HW  
1
TME_STRAP  
REF drive strength  
TEST_MODE_SEL  
TEST_MODE_ENTRY  
Trusted mode enable strap status  
0 = Normal, 1 = No overclocking  
REF drive strength  
0 = Low 1x, 1 = High 2x  
0
Mode select either REF/N or tri-state  
0 = All output tri-state, 1 = All output REF/N  
0
Allow entry into test mode  
0 = Normal operation, 1 = Enter test mode  
2
1
0
1
0
1
12C_VOUT<2>  
12C_VOUT<1>  
12C_VOUT<0>  
I2C_VOUT[2,1,0]  
000 = 0.63V  
001 = 0.71V  
010 = 0.77V  
011 = 082V  
100 = 0.86V  
101 = 0.90V (default)  
110 = 0.93V  
111 = unused  
Byte 10: Control Register 10  
Bit  
@Pup  
Name  
Description  
7
HW  
GCLK_SEL latch  
Readback of GCLK_SEL latch  
0 = DOT96/LCD_100, 1 = SRC0/27 MHz  
6
1
PLL3_EN  
PLL3 power down  
0 = Power down, 1 = Power up  
......................Document #: 001-08400 Rev ** Page 13 of 30  
CY28548  
Byte 10: Control Register 10 (continued)  
Bit  
@Pup  
Name  
Description  
5
1
PLL2_EN  
PLL2 power down  
0 = Power down, 1 = Power up  
4
3
2
1
0
1
1
1
1
1
SRC_DIV_EN  
PCI_DIV_EN  
SRC divider disable  
0 = Disabled, 1 = Enabled  
PCI divider disable  
0 = Disabled, 1 = Enabled  
CPU_DIV_EN  
CPU divider disable  
0 = Disabled, 1 = Enabled  
CPU1 Stop Enable  
CPU0 Stop Enable  
Enable CPU_STOP# control of CPU1  
0 = Free running, 1= Stoppable  
Enable CPU_STOP# control of CPU0  
0 = Free running, 1= Stoppable  
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
5
4
3
2
1
0
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
Reserved  
Reserved  
BC5  
Description  
0
0
0
0
1
1
0
1
Reserved  
Reserved  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
6
5
4
BC4  
3
BC3  
2
BC2  
1
BC1  
0
BC0  
Byte 13: Control Register 13  
Bit  
@Pup  
Name  
Description  
7
1
USB drive strength  
USB drive strength  
0 = Low, 1= High  
6
5
4
3
1
0
1
1
PCI/ PCIF drive strength PCI drive strength  
0 = Low, 1 = High  
PLL1_Spread  
SATA_SS_EN  
CPU[T/C]2  
Select percentage of spread for PLL1  
0 = 0.5%, 1=1%  
Enable SATA spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
Allow control of CPU2 with assertion of CPU_STOP#  
0 = Free running, 1 = Stopped with CPU_STOP#  
......................Document #: 001-08400 Rev ** Page 14 of 30  
CY28548  
Byte 13: Control Register 13 (continued)  
Bit  
@Pup  
Name  
Description  
2
1
SE1/SE2 drive strength SE1 and SE2 Drive Strength Setting 1 of 2 (See Byte  
1 of 2  
0 = Low, 1= High  
Reserved  
1
0
0
1
Reserved  
SW_PCI  
SW PCI_STP# Function  
0 = SW PCI_STP assert, 1 = SW PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs are  
stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs are  
resumed in a synchronous manner with no short pulses.  
Byte 14: Control Register 14  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N7  
CPU_DAF_N6  
CPU_DAF_N5  
CPU_DAF_N4  
CPU_DAF_N3  
CPU_DAF_N2  
CPU_DAF_N1  
CPU_DAF_N0  
If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and  
CPU_DAF_M[6:0] are used to determine the CPU output frequency.  
6
5
4
3
2
1
0
Byte 15: Control Register 15  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N8  
CPU_DAF_M6  
CPU_DAF_M5  
CPU_DAF_M4  
CPU_DAF_M3  
CPU_DAF_M2  
CPU_DAF_M1  
CPU_DAF_M0  
See Byte 14 for description  
6
If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and  
CPU_DAF_M[6:0] are used to determine the CPU output frequency.  
5
4
3
2
1
0
Byte 16: Control Register 16  
Bit  
7
@Pup  
Name  
Description  
PCI-E Dial-A-Frequency® Bit N7  
PCI-E Dial-A-Frequency Bit N6  
PCI-E Dial-A-Frequency Bit N5  
PCI-E Dial-A-Frequency Bit N4  
PCI-E Dial-A-Frequency Bit N3  
PCI-E Dial-A-Frequency Bit N2  
PCI-E Dial-A-Frequency Bit N1  
PCI-E Dial-A-Frequency Bit N0  
0
0
0
0
0
0
0
0
PCI-E_N7  
PCI-E_N6  
PCI-E_N5  
PCI-E_N4  
PCI-E_N3  
PCI-E_N2  
PCI-E_N1  
PCI-E_N0  
6
5
4
3
2
1
0
Byte 17: Control Register 17  
Bit @Pup  
Name  
Description  
......................Document #: 001-08400 Rev ** Page 15 of 30  
CY28548  
Byte 17: Control Register 17 (continued)  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
SMSW_EN  
Enable Smooth Switching  
0 = Disabled, 1= Enabled  
SMSW_SEL  
Smooth switch select  
0 = CPU_PLL, 1 = SRC_PLL  
SE1/SE2 drive strength SE1 and SE2 drive strength Setting 2 of 2  
2 of 2  
Prog_PCI-E_EN  
Programmable PCI-E frequency enable  
0 = Disabled, 1= Enabled  
Prog_CPU_EN  
Programmable CPU frequency enable  
0 = Disabled, 1= Enabled  
REF drive strength  
2 of 2  
REFdrive strength strength Setting 2 of 2  
USB drive strength  
2 of 2  
USB drive strength strength Setting 2 of 2  
PCI/ PCIF drive strength PCI drive strength strength Setting 2 of 2  
2of 2  
Table 5. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The CY28548 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal causes the CY28548 to  
operate at the wrong frequency and violates the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading  
crystal loading correctly. Again, the capacitance on each side  
is in series with the crystal. The total capacitance on both side  
is twice the specified crystal load capacitance (CL). Trim  
capacitors are calculated to provide equal capacitive loading  
on both sides.  
Crystal Loading  
C lo ck C h ip  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, use the total capac-  
itance the crystal sees to calculate the appropriate capacitive  
loading (CL).  
C i2  
C i1  
P in  
3 to 6 p  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. It is important that the trim capacitors are in  
series with the crystal. It is not true that load capacitors are in  
parallel with the crystal and are approximately equal to the  
load capacitance of the crystal.  
X 2  
X 1  
C s2  
C s1  
T ra ce  
2 .8 p F  
X T A L  
C e 1  
C e 2  
T rim  
3 3 p F  
Figure 2. Crystal Loading Example  
,
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Figure 1. Crystal Capacitive Clarification  
Total Capacitance (as seen by the crystal)  
Calculating Load Capacitors  
1
CLe  
=
1
1
(
)
In addition to the standard external trim capacitors, consider  
the trace capacitance and pin capacitance to calculate the  
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
......................Document #: 001-08400 Rev ** Page 16 of 30  
CY28548  
CL ...................................................Crystal load capacitance  
CLe .........................................Actual loading seen by crystal  
using standard value trim capacitors  
Smooth Switching  
The device contains one smooth switch circuit that is shared  
by the CPU PLL and SRC PLL. The smooth switch circuit  
ensures that when the output frequency changes by  
overclocking, the transition from the old frequency to the new  
frequency is a slow, smooth transition containing no glitches.  
The rate of change of output frequency when using the smooth  
switch circuit is less than 1 MHz/0.667 s. The frequency  
overshoot and undershoot is less than 2%.  
Ce .....................................................External trim capacitors  
Cs.............................................. Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires, etc.)  
Dial-A-Frequency® (CPU and PCIEX)  
The Smooth Switch circuit assigns auto or manual. In Auto  
mode, clock generator assigns smooth switch automatically  
when the PLL does overclocking. For manual mode, assign  
the smooth switch circuit to PLL via Smbus. By default the  
smooth switch circuit is set to auto mode. PLL can be  
over-clocked when it does not have control of the smooth  
switch circuit but it is not guaranteed to transition to the new  
frequency without large frequency glitches.  
This feature allows the user to over-clock their system by  
slowly stepping up the CPU or SRC frequency. When the  
programmable output frequency feature is enabled, the CPU  
and SRC frequencies are determined by the following  
equation:  
Fcpu = G * N/M or Fcpu=G2 * N, where G2 = G / M.  
Do not enable over-clocking and change the N values of both  
PLLs in the same SMBUS block write and use smooth switch  
mechanism on spread spectrum on/off.  
• “N” and “M” are the values programmed in Programmable  
Frequency Select N-Value Register and M-Value Register,  
respectively.  
• “G” stands for the PLL Gear Constant, which is determined  
by the programmed value of FS[E:A]. See Table 1,  
Frequency Select Table for the Gear Constant for each  
Frequency selection. The PCI Express only allows user  
control of the N register, the M value is fixed and  
documented in Table 1, Frequency Select Table.  
PD_RESTORE  
If a ‘0’ is set for Byte 0 bit 0 then, upon assertion of PWRDWN#  
LOW, the CY28548 initiates a full reset. The result of this is  
that the clock chip emulates a cold power on start and goes to  
the “Latches Open” state. If the PD_RESTORE bit is set to a  
‘1’ then the configuration is stored upon PWRDWN# asserted  
LOW. Note that if the iAMT bit, Byte 0 bit 3, is set to a ‘1’ then  
the PD_RESTORE bit must be ignored. In other words, in Intel  
iAMT mode, PWRDWN# reset is not allowed.  
In this mode, the user writes the desired N and M values into  
the DAF I2C registers. The user cannot change only the M  
value and must change both the M and the N values at the  
same time, if they require a change to the M value. The user  
may change only the N value.  
PWRDWN# (Power down) Clarification  
The CKPWRGD/PWRDWN# pin is a dual-function pin. During  
initial power up, the pin functions as CKPWRGD. Once  
CKPWRGD has been sampled HIGH by the clock chip, the pin  
assumes PD# functionality. The PD# pin is an asynchronous  
active LOW input used to shut off all clocks cleanly before  
shutting off power to the device. This signal is synchronized  
internally to the device before powering down the clock  
synthesizer. PD# is also an asynchronous input for powering  
up the system. When PD# is asserted LOW, clocks are driven  
to a LOW value and held before turning off the VCOs and the  
crystal oscillator.  
Associated Register Bits  
CPU_DAF Enable – This bit enables CPU DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the CPU_DAF_N  
register. Note that the CPU_DAF_N and M register must  
contain valid values before CPU_DAF is set. Default = 0,  
(No DAF).  
CPU_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table 1, Frequency Select Table.  
PWRDWN# (Power down) Assertion  
CPU DAF M – There are 7 bits (for 128 values) to linearly  
change the CPU frequency (limited by VCO range). Default  
= 0, the allowable values for M are detailed in Table 1,  
Frequency Select Table  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must held  
LOW. When PD mode is desired as the initial power on state,  
PD must be asserted HIGH in less than 10 s after asserting  
CKPWRGD.  
SRC_DAF Enable – This bit enables SRC DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the SRC_DAF_N  
register. Note that the SRC_DAF_N register must contain  
valid values before SRC_DAF is set. Default = 0, (No DAF).  
PWRDWN# Deassertion  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD# pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD# deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
SRC_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table 1, Frequency Select Table.  
......................Document #: 001-08400 Rev ** Page 17 of 30  
CY28548  
each clock. Figure 4 is an example showing the relationship of  
clocks coming up.  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 3. Power down Assertion Timing Waveform  
Ts table  
<1.8 ms  
PD#  
CP UT , 133MHz  
CP UC, 133MHz  
S RCT 100MHz  
S RCC 100MHz  
US B , 48MHz  
DOT 96T  
DOT 96C  
P CI, 33MHz  
REF  
Tdriv e_PW R D N #  
<300 s , >200m V  
Figure 4. Power down Deassertion Timing Waveform  
FS_A, FS_B,FS_C,FS_D  
CK_PWRGD  
PWRGD_VRM  
0.2-0.3 ms  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 5. CK_PWRGD Timing Diagram  
......................Document #: 001-08400 Rev ** Page 18 of 30  
CY28548  
CPU_STP# Assertion  
CPU_STP# Deassertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable are stopped  
within two to six CPU clock periods after sampled by two rising  
edges of the internal CPUC clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
The deassertion of the CPU_STP# signal causes all stopped  
CPU outputs to resume normal operation in a synchronous  
manner. No short or stretched clock pulses are produced when  
the clock resumes. The maximum latency from the  
deassertion to active outputs is no more than two CPU clock  
cycles.  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
1.8 ms  
CPU_STOP#  
PD#  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
......................Document #: 001-08400 Rev ** Page 19 of 30  
CY28548  
1.8 ms  
CPU_STOP#  
PD#  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 9. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
.
PCI_STP# Assertion  
The PCI_STP# signal is an active LOW input used for  
synchronously stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 10.) The PCIF clocks are affected by this pin if their  
corresponding control bit in the SMBus register is set to allow  
them to be free running.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 10. PCI_STP# Assertion Waveform  
PCI_STP# Deassertion  
.
The deassertion of the PCI_STP# signal causes all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods, after PCI_STP# transi-  
tions to a HIGH level.  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
......................Document #: 001-08400 Rev ** Page 20 of 30  
CY28548  
.
Table 6. Output Driver Status during PCI-STOP# and CPU-STOP#  
PCI_STOP# Asserted  
CPU_STOP# Asserted  
Running  
SMBus OE Disabled  
Single-ended Clocks Stoppable  
Non stoppable  
Stoppable  
Driven low  
Driven low  
Running  
Running  
Differential Clocks  
Clock driven high  
Clock# driven low  
Running  
Clock driven high  
Clock# driven low  
Running  
Clock driven Low or 20K  
pulldown  
Non stoppable  
Table 7. Output Driver Status  
All Differential Clocks except  
CPU1  
All Single-ended Clocks  
w/o Strap w/ Strap  
Low Hi-z  
CPU1  
Clock  
Clock#  
Clock  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Running Running  
Clock#  
Latches Open State  
Powerdown  
M1  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low  
Low  
Hi-z  
Hi-z  
.
Table 8. PLL3/SE Configuration Table  
GCLK_SEL  
B1b4  
0
B1b3  
0
B1b2  
0
B1b1  
0
Pin 27 (17) MHz Pin 25 (18) MHz Spread (%)  
Comment  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
PLL3 Disabled  
0
0
0
1
100  
100  
100  
100  
0.5  
0.5  
1
SRC1 from SRC_Main  
0
0
1
0
LCD_100 from PLL3  
0
0
1
1
100  
100  
LCD_100 from PLL3  
0
1
0
0
100  
100  
1.5  
2
LCD_100 from PLL3  
0
1
0
1
100  
100  
LCD_100 from PLL3  
0
1
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
none  
N/A  
N/A  
N/A  
N/A  
0.5  
0.5  
1
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
1
1
N/A  
N/A  
1
0
0
0
N/A  
N/A  
1
0
0
1
N/A  
N/A  
1
0
1
0
N/A  
N/A  
1
0
1
1
N/A  
N/A  
1
1
0
0
N/A  
N/A  
1
1
0
1
N/A  
N/A  
1
1
1
0
N/A  
N/A  
1
1
1
1
N/A  
N/A  
0
0
0
0
N/A  
N/A  
0
0
0
1
27M_NSS  
27M_NSS  
27M_NSS  
27M_NSS  
27M_NSS  
N/A  
27M_NSS  
27M_NSS  
27M_NSS  
27M_NSS  
27M_NSS  
N/A  
27M_NSS from PLL3  
27M_NSS from PLL3  
27M_NSS from PLL3  
27M_NSS from PLL3  
27M_NSS from PLL3  
0
0
1
0
0
0
1
1
0
1
0
0
1.5  
2
0
1
0
1
0
1
1
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
0
1
1
1
N/A  
N/A  
1
0
0
0
N/A  
N/A  
1
0
0
1
N/A  
N/A  
1
0
1
0
N/A  
N/A  
1
0
1
1
N/A  
N/A  
1
1
0
0
N/A  
N/A  
......................Document #: 001-08400 Rev ** Page 21 of 30  
CY28548  
Table 8. PLL3/SE Configuration Table (continued)  
GCLK_SEL  
B1b4  
B1b3  
B1b2  
B1b1  
Pin 27 (17) MHz Pin 25 (18) MHz Spread (%)  
N/A N/A N/A  
Comment  
1
1
1
0
1
Figure 12. Clock Generator Power up/Run State Diagram  
C l o c k O f f t o M1  
3.3V  
Vcc  
2.0V  
T_delay t  
FSC  
FSB  
FSA  
CPU_STOP#  
PCI_STOP#  
CKPWRGD/PWRDWN  
CK505 SMBUS  
CK505 State  
Off  
Latches Open  
Off  
Off  
M1  
BSEL[0..2]  
CK505 Core Logic  
PLL1  
Locked  
CPU1  
PLL2 & PLL3  
All Other Clocks  
REF Oscillator  
T_delay2  
T_delay3  
Figure 13. BSEL Serial Latching  
......................Document #: 001-08400 Rev ** Page 22 of 30  
CY28548  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Analog Supply Voltage  
IO Supply Voltage  
Input Voltage  
Condition  
Min.  
Max.  
4.6  
4.6  
1.5  
4.6  
150  
85  
Unit  
V
VDD_A  
VDD_IO  
VIN  
V
V
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
0
VDC  
°C  
°C  
TS  
Temperature, Storage  
TA  
Temperature, Operating  
Ambient  
TJ  
Temperature, Junction  
Functional  
150  
20  
°C  
ØJC  
Dissipation, Junction to Case Mil-STD-883E Method 1012.1  
°C/  
W
ØJA  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
60  
°C/  
W
ESDHBM  
ESD Protection (Human Body MIL-STD-883, Method 3015  
Model)  
2000  
V
UL-94  
MSL  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
VDD core  
Description  
Condition  
Min.  
Max.  
3.465  
VDD + 0.3  
0.8  
Unit  
V
3.3V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
3.3 ± 5%  
3.135  
VIH  
2.0  
V
VIL  
VSS – 0.3  
V
VIHI2C  
VILI2C  
VIH_FS  
VIL_FS  
VIHFS_C_TEST  
SDATA, SCLK  
SDATA, SCLK  
2.2  
V
Input Low Voltage  
1.0  
V
FS_[A,B] Input High Voltage  
FS_[A,B] Input Low Voltage  
FS_C Input High Voltage  
0.7  
1.5  
V
VSS – 0.3  
0.35  
VDD + 0.3  
1.5  
V
2
0.7  
V
VIMFS_C_NORMAL FS_C Input Middle Voltage  
VILFS_C_NORMAL FS_C Input Low Voltage  
V
VSS – 0.3  
0.35  
5
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Except internal pull-down resistors, 0 < VIN < VDD  
Except internal pull-up resistors, 0 < VIN < VDD  
A  
A  
V
IIL  
–5  
VOH  
VOL  
VDD IO  
VOH  
VOL  
IOZ  
3.3V Output High Voltage (SE) IOH = –1 mA  
3.3V Output Low Voltage (SE) IOL = 1 mA  
Low Voltage IO Supply Voltage  
2.4  
0.4  
V
0.72  
0.70  
0.88  
0.90  
0.40  
10  
3.3V Input High Voltage (DIFF)  
V
V
3.3V Input Low Voltage (DIFF)  
High-impedance Output  
Current  
–10  
1.5  
A  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
6
pF  
pF  
nH  
V
COUT  
LIN  
7
VXIH  
VXIL  
IDD3.3V  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
250  
Xin Low Voltage  
0
V
Dynamic Supply Current  
mA  
......................Document #: 001-08400 Rev ** Page 23 of 30  
CY28548  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
The device operates reliably with input  
duty cycles up to 30/70 but the REFclock  
duty cycle will not be within specification  
47.5  
52.5  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
71.0  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Long-term Accuracy  
Measured between 0.3VDD and 0.7VDD  
10.0  
500  
300  
ns  
ps  
TCCJ  
As an average over 1-s duration  
LACC  
ppm  
CPU at 0.7V  
TDC  
45  
55  
CPUT and CPUC Duty Cycle  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.99900  
7.49925  
5.99940  
4.99950  
3.74963  
2.99970  
2.49975  
10.0100  
7.50075  
6.00060  
5.00050  
3.75038  
3.00030  
2.50025  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
100 MHz CPUT and CPUC Period  
133 MHz CPUT and CPUC Period  
166 MHz CPUT and CPUC Period  
200 MHz CPUT and CPUC Period  
266 MHz CPUT and CPUC Period  
333 MHz CPUT and CPUC Period  
400 MHz CPUT and CPUC Period  
10.02406 10.02607  
100 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
133 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
166 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
200 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
266 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
333 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
400 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
7.51804  
6.01444  
5.01203  
3.75902  
3.00722  
2.50601  
9.91400  
7.51955  
6.01564  
5.01303  
3.75978  
3.00782  
2.50652  
10.0860  
100 MHz CPUT and CPUC Absolute  
period  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
7.41425  
5.91440  
4.91450  
3.66463  
2.91470  
2.41475  
9.91406  
7.41430  
5.91444  
4.91453  
7.58575  
6.08560  
5.08550  
3.83538  
3.08530  
2.58525  
10.1362  
7.62340  
6.11572  
5.11060  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
133 MHz CPUT and CPUC Absolute  
period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
166 MHz CPUT and CPUC Absolute  
period  
200 MHz CPUT and CPUC Absolute  
period  
266 MHz CPUT and CPUC Absolute  
period  
333 MHz CPUT and CPUC Absolute  
period  
400 MHz CPUT and CPUC Absolute  
period  
TPERIODSSAbs 100 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 133 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 166 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 200 MHz CPUT and CPUC Absolute  
period, SSC  
......................Document #: 001-08400 Rev ** Page 24 of 30  
CY28548  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
3.66465  
3.85420  
TPERIODSSAbs 266 MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
ns  
2.91472  
2.41477  
3.10036  
2.59780  
TPERIODSSAbs 333 MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
ns  
ns  
TPERIODSSAbs 400 MHz CPUT and CPUC Absolute  
period, SSC  
TCCJ  
CPU Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at 0V differential  
85  
125  
100  
100  
150  
8
ps  
ps  
TCCJ2  
Measured at 0V differential  
LACC  
Measured at 0V differential  
ppm  
ps  
TSKEW  
TSKEW2  
TR / TF  
TRFM  
CPU0 to CPU1 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
CPU Rising/Falling Slew rate  
Rise/Fall Matching  
Measured at 0V differential  
Measured at 0V differential  
ps  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
V/ns  
%
20  
VHIGH  
Voltage High  
1.15  
V
VLOW  
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.7V  
TDC  
SRC Duty Cycle  
Measured at 0V differential  
45  
55  
%
ns  
ns  
ns  
ns  
ns  
9.99900  
10.0010  
TPERIOD  
TPERIODSS  
TPERIODAbs  
100 MHz SRC Period  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
10.02406 10.02607  
100 MHz SRC Period, SSC  
100 MHz SRC Absolute Period  
9.87400  
9.87406  
10.1260  
10.1762  
3.0  
TPERIODSSAbs 100 MHz SRC Absolute Period, SSC  
TSKEW(window) Any SRC Clock Skew from the earliest Measured at 0V differential  
bank to the latest bank  
TCCJ  
SRC Cycle to Cycle Jitter  
SRC Long Term Accuracy  
SRC Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
125  
100  
8
ps  
ppm  
V/ns  
%
LACC  
Measured at 0V differential  
TR / TF  
TRFM  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.7V  
TDC  
DOT96 Duty Cycle  
Measured at 0V differential  
45  
55  
10.4177  
10.6677  
250  
100  
8
%
ns  
10.4156  
TPERIOD  
TPERIODAbs  
TCCJ  
DOT96 Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
10.1656  
DOT96 Absolute Period  
DOT96 Cycle to Cycle Jitter  
DOT96 Long Term Accuracy  
DOT96 Rising/Falling Slew Rate  
Rise/Fall Matching  
ns  
ps  
LACC  
ppm  
V/ns  
%
TR / TF  
TRFM  
2.5  
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
LCD_100_SSC at 0.7V  
TDC  
LCD_100 Duty Cycle  
100 MHz LCD_100 Period  
Measured at 0V differential  
45  
55  
%
TPERIOD  
Measured at 0V differential at 0.1s  
9.99900  
10.0010  
ns  
......................Document #: 001-08400 Rev ** Page 25 of 30  
CY28548  
AC Electrical Specifications (continued)  
Parameter  
TPERIODSS  
TPERIODAbs  
Description  
Condition  
Min.  
Max.  
Unit  
100 MHz LCD_100 Period, SSC -0.5% Measured at 0V differential at 0.1s  
10.02406 10.02607 ns  
9.74900 10.25100 ns  
100 MHz LCD_100 Absolute Period  
Measured at 0V differential at 1 clock  
Measured at 0V differential @ 1 clock  
TPERIODSSAbs 100 MHz LCD_100 Absolute Period,  
SSC  
9.74906  
10.3012  
ns  
TCCJ  
LCD_100 Cycle to Cycle Jitter  
LCD_100 Long Term Accuracy  
LCD_100 Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
250  
100  
8
ps  
ppm  
V/ns  
%
LACC  
TR / TF  
TRFM  
VHIGH  
VLOW  
VOX  
Measured at 0V differential  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
ns  
ns  
ns  
ns  
29.99700 30.00300  
30.08421 30.23459  
29.49700 30.50300  
29.56617 30.58421  
TPERIOD  
TPERIODSS  
TPERIODAbs  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
Spread Disabled PCIF/PCI Period  
TPERIODSSAbs Spread Enabled PCIF/PCI Period  
THIGH  
TLOW  
THIGH  
Spread Enabled PCIF and PCI high time Measurement at 2V  
Spread Enabled PCIF and PCI low time Measurement at 0.8V  
12.27095 16.27995 ns  
11.87095 16.07995 ns  
12.27365 16.27665 ns  
Spread Disabled PCIF and PCI high  
time  
Measurement at 2.V  
TLOW  
Spread Disabled PCIF and PCI low time Measurement at 0.8V  
11.87365 16.07665 ns  
TR / TF  
TSKEW  
TCCJ  
PCIF/PCI Rising/Falling Slew Rate  
Measured between 0.8V and 2.0V  
1.0  
4.0  
1000  
500  
100  
V/ns  
ps  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
PCIF and PCI Cycle to Cycle Jitter  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
Measurement at 1.5V  
ps  
LACC  
ppm  
48_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
8.216563 11.15198  
7.816563 10.95198  
TPERIOD  
TPERIODAbs  
THIGH  
Period  
Absolute Period  
48_M High time  
ns  
ns  
TLOW  
48_M Low time  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
TR / TF  
TCCJ  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
1.0  
2.0  
350  
100  
V/ns  
ps  
LACC  
ppm  
27M_NSS/27M_SS at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
Spread Disabled 27M Period  
Spread Enabled 27M Period  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
Measurement at 1.5V  
37.03594 37.03813 ns  
37.03594 37.03813 ns  
Measurement at 1.5V  
TR / TF  
TCCJ  
LACC  
REF  
Measured between 0.4V and 2.0V  
Measurement at 1.5V  
1.0  
4.0  
200  
50  
V/ns  
ps  
27_M Long Term Accuracy  
Measured at crossing point VOX  
ppm  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
55  
%
......................Document #: 001-08400 Rev ** Page 26 of 30  
CY28548  
AC Electrical Specifications (continued)  
Parameter  
TPERIOD  
TPERIODAbs  
THIGH  
Description  
Condition  
Measurement at 1.5V  
Min.  
Max.  
Unit  
ns  
69.82033 69.86224  
68.83429 70.84826  
29.97543 38.46654  
29.57543 38.26654  
REF Period  
Measurement at 1.5V  
ns  
REF Absolute Period  
REF High time  
Measurement at 2V  
ns  
Measurement at 0.8V  
ns  
TLOW  
REF Low time  
TR / TF  
TSKEW  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
1.0  
4.0  
500  
V/ns  
ps  
TCCJ  
1000  
100  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the test load configurations for  
the single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
22  
L1  
L2  
50  
4 pF  
4 pF  
L1 = 0.5", L2 = 8"  
22  
PCI/USB  
Measurement  
Point  
50  
L2  
L1  
Figure 14. Single-ended PCI and USB Double Load Configuration  
Measurement  
15  
L2  
L1  
Point  
50  
4 pF  
Measurement  
Point  
4 pF  
15  
15  
L1  
L1  
L2  
REF  
50  
Measurement  
Point  
4 pF  
L2  
50  
Figure 15. Single-ended REF Triple Load Configuration  
......................Document #: 001-08400 Rev ** Page 27 of 30  
CY28548  
Figure 16. Single-ended Output Signals (for AC Parameters Measurement)  
For CPU, SRC, and DOT96 Signals and Reference  
This diagram shows the test load configuration for the differential CPU and SRC outputs  
M e asu rem e nt P oin t  
L
O U T +  
5 0 O h m  
2p F  
L= 8"  
M e asure m e nt P o int  
L
O U T -  
5 0 O h m  
2 p F  
Figure 17. 0.7V Differential Load Configuration  
Clock Period (Differential)  
Positive Duty Cycle (Differential)  
Negative Duty Cycle (Differential)  
0.0V  
0.0V  
Clck-Clck#  
Rise  
Edge  
Rate  
Fall  
Edge  
Rate  
VIH = +150V  
VIH = +150V  
0.0V  
0.0V  
VIL = -150V  
VIL = -150V  
Clock-Clock#  
Figure 18. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
......................Document #: 001-08400 Rev ** Page 28 of 30  
CY28548  
VMAX = 1.15V  
VMAX = 1.15V  
CLK#  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
CLK  
VMIN = 0.30V  
VMIN = 0.30V  
CLK#  
Vcross delta = 140mV  
Vcross delta = 140mV  
CLK#  
CLK#  
Vcross median +75mV  
Vcross median  
Vcross median  
Vcross median -75mV  
CLK  
CLK  
Figure 19. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Package Type  
Product Flow  
Lead-free  
CY28548ZXC  
CY28548ZXCT  
CY28548LFXC  
CY28548LFXCT  
64-pin TSSOP  
Commercial, 0to 85C  
Commercial, 0to 85C  
Commercial, 0to 85C  
Commercial, 0to 85C  
64-pin TSSOP–Tape and Reel  
64-pin QFN  
64-pin QFN–Tape and Reel  
......................Document #: 001-08400 Rev ** Page 29 of 30  
CY28548  
Package Diagrams  
64-Lead Thin Shrunk Small Outline Package (6 mm x 17 mm) Z64  
32  
1
DIMENSIONS IN MM MIN.  
MAX.  
REFERENCE JEDEC MO-153  
PART #  
8.00[0.315]  
8.20[0.322]  
Z6424  
STANDARD PKG.  
6.00[0.236]  
6.20[0.244]  
ZZ6424  
LEAD FREE PKG.  
33  
64  
16.90[0.665]  
17.10[0.673]  
1.10[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.50[0.020]  
0.75[0.027]  
0.50[0.020]  
BSC  
0.85[0.033]  
0.95[0.037]  
0.10[0.004]  
0.20[0.008]  
0.05[0.002]  
0.15[0.006]  
0°-8°  
0.17[0.006]  
0.27[0.010]  
SEATING  
PLANE  
64-Lead QFN 9 x 9 mm (Punch Version) LF64A  
REFERENCE JEDEC MO-220  
WEIGHT: 0.2 GRAMS  
0.08[0.003]  
C
8.90[0.350]  
9.10[0.358]  
A
1.00[0.039] MAX.  
0.80[0.031] MAX.  
0.05[0.002] MAX.  
0.18[0.007]  
0.28[0.011]  
8.70[0.342]  
8.80[0.346]  
PIN1 ID  
0.20[0.008] R.  
0.20[0.008] REF.  
N
N
1
2
1
2
3
0.45[0.018]  
0.80 DIA.  
0.30[0.012]  
0.50[0.020]  
0.24[0.009]  
0.60[0.024]  
(4X)  
0°-12°  
0.50[0.020]  
TOP VIEW  
7.45[0.293]  
7.55[0.297]  
C
SEATING  
PLANE  
BOTTOM VIEW  
SIDE VIEW  
......................Document #: 001-08400 Rev ** Page 30 of 30  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

CY28548ZXCT

Clock Generator for Intel®Crestline Chipset
SILICON

CY28549LFXC

Clock Generator,
SILICON

CY28551

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551LFXC-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC-3T

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXCT

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28800

100-MHz Differential Buffer for PCI Express and SATA
SPECTRALINEAR

CY28800

100-MHz Differential Buffer for PCI Express and SATA
CYPRESS

CY28800OXC

100-MHz Differential Buffer for PCI Express and SATA
SPECTRALINEAR

CY28800OXC

100-MHz Differential Buffer for PCI Express and SATA
CYPRESS