EFM32HG321F32G-A-QFP48 [SILICON]

Output state retention and wake-up from Shutoff Mode;
EFM32HG321F32G-A-QFP48
型号: EFM32HG321F32G-A-QFP48
厂家: SILICON    SILICON
描述:

Output state retention and wake-up from Shutoff Mode

文件: 总70页 (文件大小:1850K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32HG321 DATASHEET  
F64/F32  
Preliminary  
ARM Cortex-M0+ CPU platform  
• High Performance 32-bit processor @ up to 25 MHz  
• Wake-up Interrupt Controller  
Communication interfaces  
• 2× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• Triple buffered full/half-duplex operation  
• Low Energy UART  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 0.9 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• 53 µA/MHz @ 3 V Sleep Mode  
• 132 µA/MHz @ 3 V Run Mode, with code executed from flash  
64/32 KB Flash  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Low Energy Universal Serial Bus (USB) Device  
• Fully USB 2.0 compliant  
• On-chip PHY and embedded 5V to 3.3V regulator  
• Crystal-free operation  
8/8 KB RAM  
35 General Purpose I/O pins  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
6 Channel DMA Controller  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 4 single ended channels/2 differential channels  
• On-chip temperature sensor  
• Current Digital to Analog Converter  
• Selectable current range between 0.05 and 64 uA  
• 1× Analog Comparator  
6 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Timers/Counters  
• Capacitive sensing with up to 5 inputs  
• Supply Voltage Comparator  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
• 3× 16-bit Timer/Counter  
• 3×3 Compare/Capture/PWM channels  
• Dead-Time Insertion on TIMER0  
• 1× 24-bit Real-Time Counter  
Debug Interface  
• 2-pin Serial Wire Debug interface  
• Micro Trace Buffer (MTB)  
• 1× 16-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
Pre-Programmed USB/UART Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.98 to 3.8 V  
TQFP48 package  
• Preliminary - This datasheet revision applies to a product  
under development  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
Preliminary  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32HG321 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
EFM32HG321F32G-A-QFP48  
EFM32HG321F64G-A-QFP48  
32  
64  
8
8
25  
25  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
TQFP48  
TQFP48  
Adding the suffix 'R' to the part number (e.g. EFM32HG321F32G-A-QFP48R) denotes tape and reel.  
Visit www.silabs.com for information on global distributors and representatives.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
2
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination  
of the powerful 32-bit ARM Cortex-M0+, innovative low energy techniques, short wake-up time from  
energy saving modes, and a wide selection of peripherals, the EFM32HG microcontroller is well suited  
for any battery operated application as well as other systems requiring high performance and low-energy  
consumption. This section gives a short introduction to each of the modules in general terms and also  
shows a summary of the configuration for the EFM32HG321 devices. For a complete feature set and  
in-depth information on the modules, the reader is referred to the EFM32HG Reference Manual.  
A block diagram of the EFM32HG321 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
HG321F64/ F32  
Energy Management  
Core and Memory  
Clock Management  
High Freq  
RC  
48/ 24 MHz  
Comm. RC  
Oscillator  
Voltage  
Voltage  
Oscillator  
Regulator  
Comparator  
ARM Cortex™M0+ processor  
Aux High  
Freq RC  
High Freq  
Crystal  
Power- on  
Reset  
Oscillator  
Oscillator  
Brown- out  
Detector  
Low Freq  
RC  
Low Freq  
Crystal  
Flash  
Program  
Memory  
Debug  
Interface  
w/ MTB  
Oscillator  
Oscillator  
RAM  
Memory  
DMA  
Controller  
Ultra Low Freq  
RC  
Oscillator  
32- bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/ O Ports  
Timers and Triggers  
Analog Interfaces  
Security  
General  
External  
Analog  
Comparator  
USART  
I2C  
Purpose  
ADC  
Timer/  
Counter  
Real Time  
Counter  
Interrupts  
I/ O  
Low  
Energy  
USB  
Low  
Energy  
UART™  
Pin  
Pin  
Pulse  
Counter  
Watchdog  
Timer  
Current  
DAC  
Reset  
Wakeup  
2.1.1 ARM Cortex-M0+ Core  
The ARM Cortex-M0+ includes a 32-bit RISC processor which can achieve as much as 0.9 Dhrystone  
MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is in-  
cluded as well. The EFM32 implementation of the Cortex-M0+ is described in detail in ARM Cortex-M0+  
Devices Generic User Guide.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface and a Micro  
Trace Buffer (MTB) for data/instruction tracing.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32HG microcontroller.  
The flash memory is readable and writable from both the Cortex-M0+ and DMA. The flash memory is  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
3
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
divided into two blocks; the main block and the information block. Program code is normally written to  
the main block. Additionally, the information block is available for special user data and flash lock bits.  
There is also a read-only page in the information block containing system and device calibration data.  
Read and write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32HG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32HG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the  
EFM32HG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 Low Energy USB  
The unique Low Energy USB peripheral provides a full-speed USB 2.0 compliant device controller and  
PHY with ultra-low current consumption. The device supports both full-speed (12MBit/s) and low speed  
(1.5MBit/s) operation, and includes a dedicated USB oscillator with clock recovery mechanism for crys-  
tal-free operation. No external components are required. The Low Energy Mode ensures the current  
consumption is optimized and enables USB communication on a strict power budget. The USB device  
includes an internal dedicated descriptor-based Scatter/Gather DMA and supports up to 3 OUT end-  
points and 3 IN endpoints, in addition to endpoint 0. The on-chip PHY includes software controllable  
pull-up and pull-down resistors.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
4
Preliminary  
...the world's most energy friendly microcontrollers  
2.1.11 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.  
2.1.13 Pre-Programmed USB/UART Bootloader  
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The  
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART  
without the need for a debugger. The autobaud feature, interface and commands are described further  
in the application note.  
2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.15 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
2.1.16 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.17 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 - EM3.  
2.1.18 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
5
Preliminary  
...the world's most energy friendly microcontrollers  
2.1.19 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.20 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 4 external  
pins and 6 internal signals.  
2.1.21 Current Digital to Analog Converter (IDAC)  
The current digital to analog converter can source or sink a configurable constant current, which can  
be output on, or sinked from pin or ADC. The current is configurable with several ranges of various  
step sizes.  
2.1.22 General Purpose Input/Output (GPIO)  
In the EFM32HG321, there are 35 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32HG321 is a subset of the feature set described in the EFM32HG Reference  
Manual. Table 2.1 (p. 6) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Cortex-M0+  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO,  
MSC  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
WDOG  
PRS  
NA  
NA  
USB  
USB_VREGI, USB_VREGO, USB_DM,  
USB_DMPU, USB_DP  
I2C0  
Full configuration  
I2C0_SDA, I2C0_SCL  
USART0  
USART1  
Full configuration with IrDA and I2S  
Full configuration with I2S and IrDA  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
6
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Module  
LEUART0  
TIMER0  
TIMER1  
TIMER2  
RTC  
Configuration  
Pin Connections  
Full configuration  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
Full configuration with DTI  
Full configuration  
Full configuration  
TIM2_CC[2:0]  
Full configuration  
NA  
PCNT0  
ACMP0  
VCMP  
Full configuration, 16-bit count register PCNT0_S[1:0]  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
35 pins  
ACMP0_CH[4:0], ACMP0_O  
NA  
ADC0  
ADC0_CH[7:4]  
IDAC0_OUT  
IDAC0  
GPIO  
Available pins are shown in  
Table 4.3 (p. 57)  
2.3 Memory Map  
The EFM32HG321 memory map is shown in Figure 2.2 (p. 7), with RAM and Flash sizes for the  
largest memory configuration.  
Figure 2.2. EFM32HG321 Memory Map with largest RAM and Flash sizes  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
7
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 8), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
8) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
TSTG  
Storage tempera-  
ture range  
-40  
TS  
Maximum soldering Latest IPC/JEDEC J-STD-020  
260 °C  
temperature  
Standard  
VDDMAX  
External main sup-  
ply voltage  
0
3.8  
V
V
VIOPIN  
Voltage on any I/O  
pin  
-0.3  
VDD+0.3  
1Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.98  
V
25 MHz  
25 MHz  
fAHB  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
8
 
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.4 Current Consumption  
Table 3.3. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
24 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
148  
153  
132  
134  
134  
137  
136  
139  
142  
146  
184  
194  
64  
158 µA/  
MHz  
24 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
163 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
140 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
143 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
143 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
145 µA/  
MHz  
EM0 current. No  
prescaling. Running  
prime number cal-  
culation code from  
Flash.  
IEM0  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
144 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
148 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
150 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
154 µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
196 µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
208 µA/  
MHz  
24 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
68 µA/  
MHz  
24 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
67  
71 µA/  
MHz  
IEM1  
EM1 current  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
53  
57 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
54  
58 µA/  
MHz  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
9
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
56  
57  
59 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
61 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
58  
61 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
59  
63 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
64  
68 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
67  
71 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
106  
114  
0.9  
114 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
126 µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
1.35 µA  
IEM2  
EM2 current  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
1.6  
3.50 µA  
EM3 current (ULFRCO en-  
abled, LFRCO/LFXO disabled),  
VDD= 3.0 V, TAMB=25°C  
0.6  
1.2  
0.90 µA  
2.65 µA  
IEM3  
EM3 current  
EM4 current  
EM3 current (ULFRCO en-  
abled, LFRCO/LFXO disabled),  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.02  
0.18  
0.035 µA  
0.480 µA  
IEM4  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
10  
Preliminary  
...the world's most energy friendly microcontrollers  
3.4.1 EM0 Current Consumption  
Figure 3.1. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 24 MHz  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
2.84  
2.82  
2.80  
2.78  
2.76  
2.74  
2.72  
2.70  
2.68  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.2. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 21 MHz  
2.45  
2.40  
2.35  
2.30  
2.45  
2.40  
2.35  
2.30  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
11  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.3. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 14 MHz  
1.68  
1.66  
1.64  
1.62  
1.60  
1.58  
1.56  
1.54  
1.68  
1.66  
1.64  
1.62  
1.60  
1.58  
1.56  
1.54  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.4. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 11 MHz  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
12  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.5. EM0 Current consumption while executing prime number calculation code from flash  
with HFRCO running at 6.6 MHz  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.2 EM1 Current Consumption  
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 24 MHz  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
13  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 21 MHz  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 14 MHz  
0.73  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
0.73  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
14  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 11 MHz  
0.59  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.59  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 6.6 MHz  
0.395  
0.390  
0.385  
0.380  
0.375  
0.370  
0.365  
0.360  
0.355  
0.350  
0.395  
0.390  
0.385  
0.380  
0.375  
0.370  
0.365  
0.360  
0.355  
0.350  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 40.0°C  
- 15.0°C  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
15  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.4.3 EM2 Current Consumption  
Figure 3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.4 EM3 Current Consumption  
Figure 3.12. EM3 current consumption.  
1.6  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
- 40.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 15.0°C  
5.0°C  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
16  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.4.5 EM4 Current Consumption  
Figure 3.13. EM4 current consumption.  
0.5  
0.5  
- 40.0°C  
Vdd= 2.0V  
- 15.0°C  
Vdd= 2.2V  
5.0°C  
Vdd= 2.4V  
0.4  
0.4  
25.0°C  
45.0°C  
65.0°C  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
0.3  
0.3  
85.0°C  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
0.2  
0.1  
0.2  
0.1  
Vdd= 3.8V  
0.0  
0.0  
0.1  
0.1  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 3.4. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
0
HF-  
CORE-  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
3.6 Power Management  
The EFM32HG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with  
optional filter) at the PCB level. For practical schematic recommendations, please see the application  
note, "AN0002 EFM32 Hardware Design Considerations".  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
17  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table 3.5. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on  
falling external sup-  
ply voltage  
1.74  
1.96  
V
VBODextthr+  
BOD threshold on  
rising external sup-  
ply voltage  
1.89  
163  
V
tRESET  
Delay from reset  
is released until  
program execution  
starts  
Applies to Power-on Reset,  
Brown-out Reset and pin reset.  
µs  
CDECOUPLE  
CUSB_VREGO  
CUSB_VREGI  
Voltage regulator  
decoupling capaci-  
tor.  
X5R capacitor recommended.  
Apply between DECOUPLE pin  
and GROUND  
1
1
µF  
µF  
µF  
USB voltage regu-  
lator out decoupling Apply between USB_VREGO  
capacitor. pin and GROUND  
X5R capacitor recommended.  
USB voltage regula- X5R capacitor recommended.  
tor in decoupling ca- Apply between USB_VREGI  
4.7  
pacitor.  
pin and GROUND  
3.7 Flash  
Table 3.6. Flash  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
Flash erase cycles  
before failure  
20000  
cycles  
TAMB<150°C  
10000  
10  
h
RETFLASH  
Flash data retention TAMB<85°C  
TAMB<70°C  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) pro-  
gramming time  
20  
tP_ERASE  
tD_ERASE  
IERASE  
Page erase time  
Device erase time  
Erase current  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
71 mA  
IWRITE  
Write current  
71 mA  
VFLASH  
Supply voltage dur-  
ing flash erase and  
write  
1.98  
3.8  
V
1Measured at 25°C  
3.8 General Purpose Input Output  
Table 3.7. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.30VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.70VDD  
V
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
18  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.80VDD  
0.90VDD  
0.85VDD  
0.90VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output high volt-  
age (Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.75VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.85VDD  
0.60VDD  
0.80VDD  
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.20VDD  
0.10VDD  
0.10VDD  
0.05VDD  
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output low voltage  
(Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.30VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.20VDD  
0.35VDD  
0.25VDD  
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
IIOLEAK  
Input leakage cur-  
rent  
High Impedance IO connected  
to GROUND or Vdd  
±0.1  
40  
±40 nA  
RPU  
I/O pin pull-up resis-  
tor  
kOhm  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
19  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RPD  
I/O pin pull-down re-  
sistor  
40  
kOhm  
RIOESD  
Internal ESD series  
resistor  
200  
Ohm  
tIOGLITCH  
Pulse width of puls-  
es to be removed  
by the glitch sup-  
pression filter  
10  
50 ns  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST and load capaci-  
tance CL=12.5-25pF.  
20+0.1CL  
20+0.1CL  
0.1VDD  
250 ns  
250 ns  
V
tIOOF  
Output fall time  
GPIO_Px_CTRL DRIVEMODE  
= LOW and load capacitance  
CL=350-600pF  
VIOHYST  
I/O pin hysteresis  
VDD = 1.98 - 3.8 V  
(VIOTHR+ - VIOTHR-  
)
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
20  
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.14. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
21  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.15. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
22  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.16. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
23  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.17. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
24  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.18. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
25  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.19. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
26  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.8. LFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFXO  
Supported nominal  
crystal frequency  
32.768  
30  
kHz  
ESRLFXO  
Supported crystal  
equivalent series re-  
sistance (ESR)  
120 kOhm  
CLFXOL  
Supported crystal  
external load range  
5
25 pF  
nA  
ILFXO  
Current consump-  
tion for core and  
buffer after startup.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL is  
1
190  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST in  
CMU_CTRL is 1  
1100  
ms  
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
3.9.2 HFXO  
Table 3.9. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal  
crystal Frequency  
4
25 MHz  
Supported crystal  
equivalent series re-  
sistance (ESR)  
Crystal frequency 25 MHz  
Crystal frequency 4 MHz  
30  
100 Ohm  
ESRHFXO  
400  
1500 Ohm  
gmHFXO  
The transconduc-  
tance of the HFXO  
input transistor at  
crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
5
mS  
CHFXOL  
Supported crystal  
external load range  
25 pF  
µA  
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
85  
165  
785  
Current consump-  
tion for HFXO after  
startup  
IHFXO  
25 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
µs  
tHFXO  
Startup time  
25 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
27  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.3 LFRCO  
Table 3.10. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequen-  
cy , VDD= 3.0 V,  
TAMB=25°C  
31.3  
32.768  
150  
34.3 kHz  
tLFRCO  
Startup time not in-  
cluding software  
calibration  
µs  
ILFRCO  
Current consump-  
tion  
361  
1.5  
nA  
%
TUNESTEPL- Frequency step  
for LSB change in  
FRCO  
TUNING value  
Figure 3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
28  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.4 HFRCO  
Table 3.11. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
24.72 MHz  
21.63 MHz  
14.42 MHz  
11.33 MHz  
6.80 MHz  
1.25 MHz  
24 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
23.28  
20.37  
13.58  
10.67  
6.40  
24.0  
21.0  
14.0  
11.0  
6.60  
1.20  
0.6  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fHFRCO  
1.15  
tHFRCO_settling Settling time after  
start-up  
Cycles  
fHFRCO = 24 MHz  
fHFRCO = 21 MHz  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
158  
143  
113  
101  
84  
184 µA  
175 µA  
140 µA  
125 µA  
105 µA  
40 µA  
%
Current consump-  
tion  
IHFRCO  
27  
TUNESTEPH- Frequency step  
0.31  
for LSB change in  
FRCO  
TUNING value  
1The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By  
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the  
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 21 MHz across operating conditions.  
Figure 3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
29  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
30  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.5 AUXHFRCO  
Table 3.12. AUXHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fAUXHFRCO = 14 MHz  
20.37  
13.58  
10.67  
6.40  
21.0  
14.0  
11.0  
6.60  
1.20  
0.6  
21.63 MHz  
14.42 MHz  
11.33 MHz  
6.80 MHz  
1.25 MHz  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fAUXHFRCO  
1.15  
tAUXHFRCO_settlingSettling time after  
start-up  
Cycles  
TUNESTEPAUX-Frequency step  
0.3  
%
for LSB change in  
HFRCO  
TUNING value  
3.9.6 USHFRCO  
Table 3.13. USHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
No Clock Recovery, Full Tem-  
perature and Supply Range  
47.10  
48.00  
48.90 MHz  
Oscillation frequen- No Clock Recovery, 25°C, 3.3V  
47.50  
47.88  
48.00  
48.00  
48.50 MHz  
48.12 MHz  
fUSHFRCO  
cy  
USB Active with Clock Recov-  
ery, Full Temperature and Sup-  
ply Range  
TCUSHFRCO  
Temperature coeffi- 3.3V  
cient  
0.0175  
0.0045  
%/°C  
%/V  
VCUSHFRCO  
Supply voltage co-  
efficient  
25°C  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
31  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.7 ULFRCO  
Table 3.14. ULFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fULFRCO  
Oscillation frequen- 25°C, 3V  
cy  
0.70  
1.75 kHz  
TCULFRCO  
Temperature coeffi-  
cient  
0.05  
%/°C  
%/V  
VCULFRCO  
Supply voltage co-  
efficient  
-18.2  
3.10 Analog Digital Converter (ADC)  
Table 3.15. ADC  
Symbol  
VADCIN  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
-VREF/2  
1.25  
VREF  
VREF/2  
VDD  
V
V
V
Input voltage range  
VADCREFIN  
Input range of exter-  
nal reference volt-  
age, single ended  
and differential  
VADCREFIN_CH7 Input range of ex-  
ternal negative ref-  
erence voltage on  
See VADCREFIN  
0
0.625  
0
VDD - 1.1  
V
V
V
channel 7  
VADCREFIN_CH6 Input range of ex-  
ternal positive ref-  
See VADCREFIN  
VDD  
erence voltage on  
channel 6  
VADCCMIN  
Common mode in-  
put range  
VDD  
IADCIN  
Input current  
2pF sampling capacitors  
<100  
65  
nA  
dB  
CMRRADC  
Analog input com-  
mon mode rejection  
ratio  
1 MSamples/s, 12 bit, external  
reference  
392  
67  
510 µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00  
10 kSamples/s 12 bit, internal  
Average active cur- 1.25 V reference, WARMUP-  
63  
64  
µA  
µA  
IADC  
rent  
MODE in ADCn_CTRL set to  
0b01  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
244  
µA  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
32  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
MODE in ADCn_CTRL set to  
0b11  
IADCREF  
Current consump-  
tion of internal volt-  
age reference  
Internal voltage reference  
65  
2
µA  
CADCIN  
RADCIN  
RADCFILT  
Input capacitance  
pF  
Input ON resistance  
1
MOhm  
kOhm  
Input RC filter resis-  
tance  
10  
CADCFILT  
Input RC filter/de-  
coupling capaci-  
tance  
250  
fF  
fADCCLK  
ADC Clock Fre-  
quency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
8 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
Acquisition time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisi-  
tion time for VDD/3  
reference  
2
µs  
Startup time of ref-  
erence generator  
and ADC core in  
NORMAL mode  
5
1
µs  
tADCSTART  
Startup time of ref-  
erence generator  
and ADC core in  
KEEPADCWARM  
mode  
µs  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
65  
60  
65  
54  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
Signal to Noise Ra-  
tio (SNR)  
SNRADC  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
33  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
67  
69  
62  
dB  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
dB  
dB  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
67  
63  
66  
66  
66  
70  
58  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
62  
64  
60  
64  
54  
66  
68  
61  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
SIgnal-to-Noise  
And Distortion-ratio  
(SINAD)  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
SINADADC  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
65  
66  
63  
66  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
34  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
66  
66  
69  
64  
dB  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
dBc  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
76  
73  
66  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
Spurious-Free Dy-  
namic Range (SF-  
DR)  
SFDRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
75  
76  
79  
79  
78  
79  
79  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
-4  
0.3  
0.3  
4
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer out-  
put gradient  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
Differential non-lin-  
earity (DNL)  
VDD= 3.0 V, external 2.5V ref-  
erence  
-1  
±0.7  
4
LSB  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
35  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
INLADC  
Integral non-linear-  
ity (INL), End point  
method  
±1.2  
LSB  
MCADC  
No missing codes  
11.9991  
12  
bits  
1On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.26 (p.  
36) and Figure 3.27 (p. 37) , respectively.  
Figure 3.26. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
Actual ADC  
tranfer function  
before offset and  
4093  
Actual ADC  
gain correction  
4092  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
36  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.27. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
37  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
38  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
39  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
40  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.31. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°C  
Offset vs Temperature, Vdd = 3V  
Figure 3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
85  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
41  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.33. ADC Temperature sensor readout  
2800  
Vdd = 2.0  
Vdd = 3.0  
Vdd = 3.8  
2700  
2600  
2500  
2400  
2300  
2200  
2100  
2000  
1900  
40  
15  
5
25  
45  
65  
85  
Temperature [°C]  
3.11 Current Digital Analog Converter (IDAC)  
Table 3.16. IDAC Range 0 Source  
Symbol  
IIDAC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µA  
EM0, default settings  
Duty-cycled  
13.0  
10  
Active current with  
STEPSEL=0x10  
nA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
0.85  
µA  
ISTEP  
ID  
Step size  
0.05  
0.79  
µA  
%
Current drop at high VIDAC_OUT = VDD - 100mV  
impedance load  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0V, STEPSEL=0x10  
cient  
0.3  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
11.7  
Table 3.17. IDAC Range 0 Sink  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IIDAC  
Active current with  
STEPSEL=0x10  
EM0, default settings  
15.1  
0.85  
µA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
µA  
ISTEP  
ID  
Step size  
0.05  
0.30  
µA  
%
Current drop at high VIDAC_OUT = 200 mV  
impedance load  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
0.2  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
12.5  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
42  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table 3.18. IDAC Range 1 Source  
Symbol  
IIDAC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µA  
EM0, default settings  
Duty-cycled  
14.4  
10  
Active current with  
STEPSEL=0x10  
nA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
3.2  
µA  
ISTEP  
ID  
Step size  
0.1  
µA  
%
Current drop at high VIDAC_OUT = VDD - 100mV  
impedance load  
0.75  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
0.7  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
38.4  
Table 3.19. IDAC Range 1 Sink  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IIDAC  
Active current with  
STEPSEL=0x10  
EM0, default settings  
19.4  
3.2  
µA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
µA  
ISTEP  
ID  
Step size  
0.1  
µA  
%
Current drop at high VIDAC_OUT = 200 mV  
impedance load  
0.32  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
0.7  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
40.9  
Table 3.20. IDAC Range 2 Source  
Symbol  
IIDAC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µA  
EM0, default settings  
Duty-cycled  
17.3  
10  
Active current with  
STEPSEL=0x10  
nA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
8.5  
µA  
ISTEP  
ID  
Step size  
0.5  
µA  
%
Current drop at high VIDAC_OUT = VDD - 100mV  
impedance load  
1.22  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
2.8  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
96.6  
Table 3.21. IDAC Range 2 Sink  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IIDAC  
Active current with  
STEPSEL=0x10  
EM0, default settings  
29.3  
µA  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
43  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
8.5  
µA  
ISTEP  
ID  
Step size  
0.5  
µA  
%
Current drop at high VIDAC_OUT = 200 mV  
impedance load  
0.62  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
2.8  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
94.4  
Table 3.22. IDAC Range 3 Source  
Symbol  
IIDAC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
µA  
EM0, default settings  
Duty-cycled  
18.7  
10  
Active current with  
STEPSEL=0x10  
nA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
33.9  
µA  
ISTEP  
ID  
Step size  
2.0  
µA  
%
Current drop at high VIDAC_OUT = VDD - 100 mV  
impedance load  
3.54  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
10.9  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
159.5  
Table 3.23. IDAC Range 3 Sink  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IIDAC  
Active current with  
STEPSEL=0x10  
EM0, default settings  
62.5  
34.1  
µA  
I0x10  
Nominal IDAC out-  
put current with  
STEPSEL=0x10  
µA  
ISTEP  
ID  
Step size  
2.0  
µA  
%
Current drop at high VIDAC_OUT = 200 mV  
impedance load  
1.75  
TCIDAC  
VCIDAC  
Temperature coeffi- VDD = 3.0 V, STEPSEL=0x10  
cient  
10.9  
nA/°C  
nA/V  
Voltage coefficient  
T = 25 °C, STEPSEL=0x10  
148.6  
Table 3.24. IDAC  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tIDACSTART  
Start-up time, from enabled to output settled  
40  
µs  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
44  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.34. IDAC Source Current as a function of voltage on IDAC_OUT  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
V(IDAC_OUT) - Vdd [V]  
V(IDAC_OUT) - Vdd [V]  
Range 0  
Range 1  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
V(IDAC_OUT) - Vdd [V]  
V(IDAC_OUT) - Vdd [V]  
Range 2  
Range 3  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
45  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.35. IDAC Sink Current as a function of voltage from IDAC_OUT  
101  
100  
99  
101  
100  
99  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
98  
98  
97  
97  
96  
96  
95  
95  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
V(IDAC_OUT) [V]  
V(IDAC_OUT) [V]  
Range 0  
Range 1  
101  
100  
99  
101  
100  
99  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
- 40°C, 2.0V  
25°C, 3.0V  
85°C, 3.8V  
98  
98  
97  
97  
96  
96  
95  
95  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
V(IDAC_OUT) [V]  
V(IDAC_OUT) [V]  
Range 2  
Range 3  
Figure 3.36. IDAC linearity  
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
0
Range 0  
Range 1  
Range 2  
Range 3  
0
5
10  
15  
Step  
20  
25  
30  
0
5
10  
15  
Step  
20  
25  
30  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
46  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.12 Analog Comparator (ACMP)  
Table 3.25. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common  
V
Mode voltage range  
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0
0.4 µA  
15 µA  
520 µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consump-  
tion of internal volt-  
age reference  
IACMPREF  
Internal voltage reference  
5
0
µA  
VACMPOFFSET Offset voltage  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
12 mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
17  
40  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
70  
101  
132  
kOhm  
kOhm  
kOhm  
Capacitive Sense  
Internal Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
tACMPSTART  
Startup time  
10 µs  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
47  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
HYSTSEL= 0  
HYSTSEL= 2  
HYSTSEL= 4  
HYSTSEL= 6  
0
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption, HYSTSEL = 4  
Response time , Vcm  
=
1.25V, CP+ to CP- = 100mV  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
48  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.13 Voltage Comparator (VCMP)  
Table 3.26. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common  
V
Mode voltage range  
BIASPROG=0b0000 and  
HALFBIAS=1 in VCMPn_CTRL  
register  
0.2  
22  
10  
µA  
IVCMP  
Active current  
BIASPROG=0b1111 and  
HALFBIAS=0 in VCMPn_CTRL  
register. LPREF=0.  
35 µA  
tVCMPREF  
Startup time refer-  
ence generator  
NORMAL  
µs  
Single ended  
Differential  
10  
10  
17  
mV  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
tVCMPSTART  
VCMP hysteresis  
Startup time  
10 µs  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.14 I2C  
Table 3.27. I2C Standard-mode (Sm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
4.7  
4.0  
250  
8
1001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
34502,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
4.7  
4.0  
4.0  
4.7  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32HG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 5).  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
49  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table 3.28. I2C Fast-mode (Fm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
1.3  
0.6  
100  
8
4001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
9002,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.6  
0.6  
0.6  
1.3  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32HG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 5).  
Table 3.29. I2C Fast-mode Plus (Fm+)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
0.5  
10001 kHz  
tLOW  
SCL clock low time  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
tHIGH  
SCL clock high time  
0.26  
50  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.26  
0.26  
0.26  
0.5  
1For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32HG Reference Manual.  
3.15 USB  
The USB hardware in the EFM32HG321 passes all tests for USB 2.0 Full Speed certification. The test  
report will be distributed with application note "AN0046 - USB Hardware Design Guide" when ready.  
3.16 Digital Peripherals  
Table 3.30. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
7.5  
150  
µA/  
MHz  
ILEUART  
LEUART current  
I2C current  
LEUART idle current, clock en-  
abled  
nA  
II2C  
I2C idle current, clock enabled  
6.25  
8.75  
µA/  
MHz  
ITIMER  
TIMER current  
TIMER_0 idle current, clock  
enabled  
µA/  
MHz  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
50  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IPCNT  
PCNT current  
PCNT idle current, clock en-  
abled  
100  
nA  
IRTC  
RTC current  
GPIO current  
RTC idle current, clock enabled  
100  
nA  
IGPIO  
GPIO idle current, clock en-  
abled  
5.31  
µA/  
MHz  
IPRS  
PRS current  
DMA current  
PRS idle current  
2.81  
8.12  
µA/  
MHz  
IDMA  
Clock enable  
µA/  
MHz  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
51  
Preliminary  
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32HG321.  
4.1 Pinout  
The EFM32HG321 pinout is shown in Figure 4.1 (p. 52) and Table 4.1 (p. 52). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32HG321 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
QFP48 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
USB_DMPU #0  
US1_RX #4  
LEU0_RX #4  
I2C0_SDA #0  
TIM0_CC1 #6  
TIM0_CC0 #0/1/4  
PCNT0_S0IN #4  
PRS_CH0 #0  
PRS_CH3 #3  
GPIO_EM4WU0  
1
2
PA0  
PA1  
TIM0_CC0 #6  
TIM0_CC1 #0/1  
CMU_CLK1 #0  
PRS_CH1 #0  
I2C0_SCL #0  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
52  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
QFP48 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
3
4
5
PA2  
IOVDD_0  
VSS  
TIM0_CC2 #0/1  
CMU_CLK0 #0  
Digital IO power supply 0.  
Ground.  
US0_TX #5/6  
US1_TX #0  
US1_CS #5  
I2C0_SDA #4  
TIM0_CC1 #4  
PCNT0_S0IN #2  
6
7
PC0  
PC1  
ACMP0_CH0  
ACMP0_CH1  
PRS_CH2 #0  
PRS_CH3 #0  
US0_RX #5/6  
US1_TX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
PCNT0_S1IN #2  
8
9
PC2  
PC3  
PC4  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
TIM0_CDTI0 #4  
TIM0_CDTI1 #4  
TIM0_CDTI2 #4  
US1_RX #5  
US1_CLK #5  
10  
GPIO_EM4WU6  
US0_TX #4  
US1_CLK #0  
11  
12  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
US0_RX #4  
US1_CS #0  
13  
14  
15  
PA8  
PA9  
TIM2_CC0 #0  
TIM2_CC1 #0  
TIM2_CC2 #0  
PA10  
Reset input, active low.  
16  
17  
RESETn  
PB11  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up  
ensure that reset is released.  
TIM1_CC2 #3  
CMU_CLK1 #3  
ACMP0_O #3  
IDAC0_OUT  
US1_CLK #4  
PCNT0_S1IN #4  
18  
19  
VSS  
Ground.  
AVDD_1  
Analog power supply 1.  
HFXTAL_P  
US0_CLK #4/5  
LEU0_TX #1  
20  
21  
PB13  
PB14  
US0_CS #4/5  
LEU0_RX #1  
HFXTAL_N  
22  
23  
24  
25  
IOVDD_3  
AVDD_0  
PD4  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH4  
LEU0_TX #0  
LEU0_RX #0  
PD5  
ADC0_CH5  
TIM1_CC0 #4  
PCNT0_S0IN #3  
US1_RX #2/3  
I2C0_SDA #1  
26  
27  
PD6  
PD7  
ADC0_CH6  
ADC0_CH7  
ACMP0_O #2  
CMU_CLK0 #2  
TIM1_CC1 #4  
PCNT0_S1IN #3  
US1_TX #2/3  
I2C0_SCL #1  
28  
29  
30  
31  
32  
33  
VDD_DREG  
DECOUPLE  
PC8  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
TIM2_CC0 #2  
TIM2_CC1 #2  
TIM2_CC2 #2  
US0_CS #2  
US0_CLK #2  
US0_RX #2  
PC9  
GPIO_EM4WU2  
PC10  
USB_VREGI  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
53  
Preliminary  
...the world's most energy friendly microcontrollers  
QFP48 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
34  
35  
USB_VREGO  
PC14  
US0_CS #3  
US1_CS #3/4  
LEU0_TX #5  
USB_DM  
TIM0_CDTI1 #1/6  
TIM1_CC1 #0  
PCNT0_S1IN #0  
PRS_CH0 #2  
PRS_CH1 #2  
US0_CLK #3  
US1_CLK #3  
LEU0_RX #5  
USB_DP  
TIM0_CDTI2 #1/6  
TIM1_CC2 #0  
36  
PC15  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
DBG_SWCLK #0  
BOOT_TX  
37  
38  
39  
PF0  
PF1  
PF2  
TIM0_CC0 #5  
TIM0_CC1 #5  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
DBG_SWDIO #0  
GPIO_EM4WU3  
BOOT_RX  
CMU_CLK0 #3  
PRS_CH0 #3  
GPIO_EM4WU4  
TIM0_CC2 #5/6  
TIM2_CC0 #3  
US1_TX #4  
LEU0_TX #4  
40  
41  
42  
43  
44  
45  
46  
PF3  
PF4  
TIM0_CDTI0 #5  
TIM0_CDTI1 #5  
TIM0_CDTI2 #5  
PRS_CH0 #1  
PRS_CH1 #1  
PRS_CH2 #1  
PF5  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground.  
PE10  
PE11  
TIM1_CC0 #1  
TIM1_CC1 #1  
US0_TX #0  
US0_RX #0  
PRS_CH2 #2  
PRS_CH3 #2  
US0_RX #3  
US0_CLK #0/6  
I2C0_SDA #6  
TIM1_CC2 #1  
TIM2_CC1 #3  
CMU_CLK1 #2  
PRS_CH1 #3  
47  
48  
PE12  
PE13  
ADC0_CH0  
ADC0_CH1  
US0_TX #3  
US0_CS #0/6  
I2C0_SCL #6  
ACMP0_O #0  
PRS_CH2 #3  
GPIO_EM4WU5  
TIM2_CC2 #3  
4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 54). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
0
1
2
3
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
PC0  
PC1  
PC2  
PC3  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
54  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ACMP0_CH4  
ACMP0_O  
0
1
2
3
4
5
6
Description  
PC4  
PE13  
PE12  
PE13  
PD4  
PD5  
PD6  
PD7  
PF1  
Analog comparator ACMP0, channel 4.  
PD6  
PB11  
Analog comparator ACMP0, digital output.  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX.  
ADC0_CH0  
ADC0_CH1  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
BOOT_RX  
BOOT_TX  
PF0  
Bootloader TX.  
CMU_CLK0  
CMU_CLK1  
PA2  
PA1  
PD7  
PF2  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
Debug-interface Serial Wire clock input.  
PE12  
PB11  
DBG_SWCLK  
DBG_SWDIO  
PF0  
PF1  
Note that this function is enabled to pin out of reset, and  
has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
Note that this function is enabled to pin out of reset, and  
has a built-in pull up.  
GPIO_EM4WU0  
GPIO_EM4WU2  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
GPIO_EM4WU6  
PA0  
PC9  
PF1  
PF2  
PE13  
PC4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as exter-  
nal optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
I2C0_SDA  
IDAC0_OUT  
LEU0_RX  
PB13  
PA1  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
IDAC0 output.  
PD7  
PC1  
PF1  
PF0  
PE13  
PE12  
PA0  
PD6  
PC0  
PB11  
PD5  
PB14  
PB13  
PF1  
PF0  
PA0  
PF2  
PC15  
PC14  
LEUART0 Receive input.  
LEUART0 Transmit output. Also used as receive input in  
half duplex communication.  
LEU0_TX  
PD4  
Low Frequency Crystal (typically 32.768 kHz) negative  
pin. Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
PB7  
LFXTAL_P  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PC0  
PD6  
PD7  
PF2  
PA0  
PC14  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PC1  
PB11  
Pulse Counter PCNT0 input number 1.  
PF3  
PF4  
PF5  
PC14  
PC15  
PE10  
PE11  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
PE12  
PE13  
PA0  
PA0  
PA1  
PA0  
PC0  
PF0  
PF1  
PA1  
PA0  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
55  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
US0_CLK  
0
1
2
3
4
5
PF2  
PF3  
PF4  
PF5  
6
Description  
PA2  
PA2  
PC1  
PF2  
Timer 0 Capture Compare input / output channel 2.  
Timer 0 Complimentary Deat Time Insertion channel 0.  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PC2  
PC3  
PC4  
PD6  
PD7  
PC14  
PC15  
PE10  
PE11  
PE12  
PC14  
PC15  
PB7  
PC14  
PC15  
PA8  
PB8  
PB11  
PF2  
PC8  
PC9  
PC10  
PC9  
PC8  
PA9  
PE12  
PE13  
PC15  
PC14  
PA10  
PE12  
PE13  
PB13  
PB14  
PB13  
PB14  
PE12  
PE13  
US0_CS  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PC10  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave Output  
(MISO).  
USART0 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART0 Synchronous mode Master Output / Slave Input  
(MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PF0  
PF1  
PC15  
PC14  
PB11  
PC14  
PC3  
PC0  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
PD6  
PD7  
PA0  
PF2  
PC2  
PC1  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
USB_DM  
PC14  
PA0  
USB D- pin.  
USB_DMPU  
USB_DP  
USB D- Pullup control.  
USB D+ pin.  
PC15  
USB_VREGI  
USB_VREGI  
USB_VREGO  
USB Input to internal 3.3 V regulator  
USB Decoupling for internal 3.3 V USB regulator and reg-  
ulator output  
USB_VREGO  
4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32HG321 is shown in Table 4.3 (p. 57) . Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated  
by a number from 15 down to 0.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
56  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
PA10  
-
9
8
PA8  
PB8  
PC8  
-
7
6
5
4
3
2
PA2  
-
1
PA1  
-
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
PA9  
-
-
-
-
-
PA0  
PB14 PB13  
PB11  
-
PB7  
-
-
-
-
-
PC3  
-
-
PC0  
-
PC15 PC14  
-
-
-
-
PC10  
-
PC9  
-
-
PC4  
PD4  
-
PC2  
-
PC1  
-
-
-
-
-
-
-
-
-
-
PD7  
PD6  
PD5  
-
PE13 PE12 PE11 PE10  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
4.4 TQFP48 Package  
Figure 4.2. TQFP48  
Note:  
1. Dimensions and tolerance per ASME Y14.5M-1994  
2. Control dimension: Millimeter.  
3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists  
from the plastic body at the bottom of the parting line.  
4. Datums T, U and Z to be determined at datum plane AB.  
5. Dimensions S and V to be determined at seating plane AC.  
6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimen-  
sions A and B do include mold mismatch and are determined at datum AB.  
7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension  
to exceed 0.350.  
8. Minimum solder plate thickness shall be 0.0076.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
57  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
9. Exact shape of each corner is optional.  
Table 4.4. QFP48 (Dimensions in mm)  
DIM  
A
MIN  
-
NOM  
MAX  
-
DIM  
M
MIN  
NOM  
12DEG REF  
-
MAX  
7.000 BSC  
-
-
A1  
B
-
3.500 BSC  
-
N
0.090  
0.160  
-
7.000 BSC  
-
P
-
0.250 BSC  
-
-
B1  
C
-
3.500 BSC  
-
R
0.150  
0.250  
1.000  
0.170  
0.950  
0.170  
-
-
1.200  
0.270  
1.050  
0.230  
-
S
-
-
-
-
-
-
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 BSC  
1.000 BSC  
-
-
-
-
-
-
D
-
S1  
V
E
-
F
-
V1  
W
AA  
G
H
0.500 BSC  
0.050  
0.090  
0.500  
0DEG  
-
-
-
-
0.150  
0.200  
0.700  
7DEG  
J
K
L
The TQFP48 Package is 7 by 7 mm in size and has a 0.5 mm pin pitch.  
The TQFP48 package uses matte-Sn post plated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see:  
http://www.silabs.com/support/quality/pages/default.aspx  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
58  
 
Preliminary  
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. TQFP48 PCB Land Pattern  
a
p8  
p7  
p6  
p1  
b
e
c
p2  
p5  
p3  
p4  
d
Table 5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.60  
Symbol  
P1  
Pin number  
Symbol  
Pin number  
a
b
c
d
e
1
P6  
P7  
P8  
-
36  
37  
48  
-
0.30  
P2  
12  
13  
24  
25  
0.50  
P3  
8.50  
P4  
8.50  
P5  
-
-
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
59  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.2. TQFP48 PCB Solder Mask  
a
b
c
e
d
Table 5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.72  
0.42  
0.50  
8.50  
8.50  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
60  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.3. TQFP48 PCB Stencil Design  
a
b
c
e
d
Table 5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.50  
0.20  
0.50  
8.50  
8.50  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.2 (p. 57) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
61  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking (top view)  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 62) .  
6.3 Errata  
Please see the errata document for EFM32HG321 for description and resolution of device erratas. This  
document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
62  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 0.91  
May 6th, 2015  
Updated current consumption table for energy modes.  
Updated GPIO max leakage current.  
Updated startup time for HFXO and LFXO.  
Updated current consumption for HFRCO and LFRCO.  
Updated ADC current consumption.  
Updated IDAC characteristics tables.  
Updated ACMP internal resistance.  
Updated VCMP current consumption.  
7.2 Revision 0.90  
March 16th, 2015  
Note  
This datasheet revision applies to a product under development. It’s characteristics and  
specifications are subject to change without notice.  
Corrected EM2 current consumption condition in Electrical Characteristics section.  
Updated GPIO electrical characteristics.  
Updated Max ESRHFXO value for Crystal Frequency of 25 MHz.  
Updated LFRCO plots.  
Updated HFRCO table and plots.  
Updated ADC table and temp sensor plot.  
Added DMA current in Digital Peripherals section.  
Updated block diagram.  
Corrected leadframe type to matte-Sn.  
7.3 Revision 0.20  
December 11th, 2014  
Preliminary Release.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
63  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation  
of all peripherals and modules available for system and software implementers using or intending to use  
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory  
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and  
do vary in different applications. Application examples described herein are for illustrative purposes only.  
Silicon Laboratories reserves the right to make changes without further notice and limitation to product  
information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the conse-  
quences of use of the information supplied herein. This document does not imply or express copyright  
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be  
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life  
Support System" is any product or system intended to support or sustain life and/or health, which, if it  
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories  
products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological  
or chemical weapons, or missiles capable of delivering such weapons.  
A.2 Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,  
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most ener-  
gy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-  
modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered  
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or reg-  
istered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products  
or brand names mentioned herein are trademarks of their respective holders.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
64  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
B Contact Information  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
65  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 6  
2.3. Memory Map ................................................................................................................................. 7  
3. Electrical Characteristics ............................................................................................................................. 8  
3.1. Test Conditions .............................................................................................................................. 8  
3.2. Absolute Maximum Ratings .............................................................................................................. 8  
3.3. General Operating Conditions ........................................................................................................... 8  
3.4. Current Consumption ....................................................................................................................... 9  
3.5. Transition between Energy Modes .................................................................................................... 17  
3.6. Power Management ....................................................................................................................... 17  
3.7. Flash .......................................................................................................................................... 18  
3.8. General Purpose Input Output ......................................................................................................... 18  
3.9. Oscillators .................................................................................................................................... 27  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32  
3.11. Current Digital Analog Converter (IDAC) .......................................................................................... 42  
3.12. Analog Comparator (ACMP) .......................................................................................................... 47  
3.13. Voltage Comparator (VCMP) ......................................................................................................... 49  
3.14. I2C ........................................................................................................................................... 49  
3.15. USB .......................................................................................................................................... 50  
3.16. Digital Peripherals ....................................................................................................................... 50  
4. Pinout and Package ................................................................................................................................. 52  
4.1. Pinout ......................................................................................................................................... 52  
4.2. Alternate Functionality Pinout .......................................................................................................... 54  
4.3. GPIO Pinout Overview ................................................................................................................... 56  
4.4. TQFP48 Package .......................................................................................................................... 57  
5. PCB Layout and Soldering ........................................................................................................................ 59  
5.1. Recommended PCB Layout ............................................................................................................ 59  
5.2. Soldering Information ..................................................................................................................... 61  
6. Chip Marking, Revision and Errata .............................................................................................................. 62  
6.1. Chip Marking ................................................................................................................................ 62  
6.2. Revision ...................................................................................................................................... 62  
6.3. Errata ......................................................................................................................................... 62  
7. Revision History ...................................................................................................................................... 63  
7.1. Revision 0.91 ............................................................................................................................... 63  
7.2. Revision 0.90 ............................................................................................................................... 63  
7.3. Revision 0.20 ............................................................................................................................... 63  
A. Disclaimer and Trademarks ....................................................................................................................... 64  
A.1. Disclaimer ................................................................................................................................... 64  
A.2. Trademark Information ................................................................................................................... 64  
B. Contact Information ................................................................................................................................. 65  
B.1. ................................................................................................................................................. 65  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
66  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32HG321 Memory Map with largest RAM and Flash sizes ........................................................................ 7  
3.1. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 24  
MHz ........................................................................................................................................................ 11  
3.2. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 21  
MHz ........................................................................................................................................................ 11  
3.3. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 14  
MHz ........................................................................................................................................................ 12  
3.4. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 11  
MHz ........................................................................................................................................................ 12  
3.5. EM0 Current consumption while executing prime number calculation code from flash with HFRCO running at 6.6  
MHz ........................................................................................................................................................ 13  
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 24 MHz .............................. 13  
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14  
3.8. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14  
3.9. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15  
3.10. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ........................... 15  
3.11. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ....................................................... 16  
3.12. EM3 current consumption. ................................................................................................................... 16  
3.13. EM4 current consumption. ................................................................................................................... 17  
3.14. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21  
3.15. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22  
3.16. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23  
3.17. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24  
3.18. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25  
3.19. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26  
3.20. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28  
3.21. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29  
3.22. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30  
3.23. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.24. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.25. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.26. Integral Non-Linearity (INL) ................................................................................................................... 36  
3.27. Differential Non-Linearity (DNL) .............................................................................................................. 37  
3.28. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38  
3.29. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39  
3.30. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40  
3.31. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41  
3.32. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41  
3.33. ADC Temperature sensor readout ......................................................................................................... 42  
3.34. IDAC Source Current as a function of voltage on IDAC_OUT ....................................................................... 45  
3.35. IDAC Sink Current as a function of voltage from IDAC_OUT ........................................................................ 46  
3.36. IDAC linearity .................................................................................................................................... 46  
3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48  
4.1. EFM32HG321 Pinout (top view, not to scale) ............................................................................................. 52  
4.2. TQFP48 .............................................................................................................................................. 57  
5.1. TQFP48 PCB Land Pattern ..................................................................................................................... 59  
5.2. TQFP48 PCB Solder Mask ..................................................................................................................... 60  
5.3. TQFP48 PCB Stencil Design ................................................................................................................... 61  
6.1. Example Chip Marking (top view) ............................................................................................................. 62  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
67  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 6  
3.1. Absolute Maximum Ratings ...................................................................................................................... 8  
3.2. General Operating Conditions ................................................................................................................... 8  
3.3. Current Consumption ............................................................................................................................... 9  
3.4. Energy Modes Transitions ...................................................................................................................... 17  
3.5. Power Management ............................................................................................................................... 18  
3.6. Flash .................................................................................................................................................. 18  
3.7. GPIO .................................................................................................................................................. 18  
3.8. LFXO .................................................................................................................................................. 27  
3.9. HFXO ................................................................................................................................................. 27  
3.10. LFRCO .............................................................................................................................................. 28  
3.11. HFRCO ............................................................................................................................................. 29  
3.12. AUXHFRCO ....................................................................................................................................... 31  
3.13. USHFRCO ......................................................................................................................................... 31  
3.14. ULFRCO ............................................................................................................................................ 32  
3.15. ADC .................................................................................................................................................. 32  
3.16. IDAC Range 0 Source ......................................................................................................................... 42  
3.17. IDAC Range 0 Sink ............................................................................................................................. 42  
3.18. IDAC Range 1 Source ......................................................................................................................... 43  
3.19. IDAC Range 1 Sink ............................................................................................................................. 43  
3.20. IDAC Range 2 Source ......................................................................................................................... 43  
3.21. IDAC Range 2 Sink ............................................................................................................................. 43  
3.22. IDAC Range 3 Source ......................................................................................................................... 44  
3.23. IDAC Range 3 Sink ............................................................................................................................. 44  
3.24. IDAC ................................................................................................................................................. 44  
3.25. ACMP ............................................................................................................................................... 47  
3.26. VCMP ............................................................................................................................................... 49  
3.27. I2C Standard-mode (Sm) ...................................................................................................................... 49  
3.28. I2C Fast-mode (Fm) ............................................................................................................................ 50  
3.29. I2C Fast-mode Plus (Fm+) .................................................................................................................... 50  
3.30. Digital Peripherals ............................................................................................................................... 50  
4.1. Device Pinout ....................................................................................................................................... 52  
4.2. Alternate functionality overview ................................................................................................................ 54  
4.3. GPIO Pinout ........................................................................................................................................ 57  
4.4. QFP48 (Dimensions in mm) .................................................................................................................... 58  
5.1. QFP48 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 59  
5.2. QFP48 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 60  
5.3. QFP48 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 61  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
68  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 47  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49  
www.silabs.com  
2015-05-06 - EFM32HG321FXX - _Rev0.91  
69  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY