EFM32LG330F64-QFN64 [SILICON]

High Performance 32-bit processor up to 48 MHz memory Protection Unit; 高性能32位处理器高达48 MHz的内存保护单元
EFM32LG330F64-QFN64
型号: EFM32LG330F64-QFN64
厂家: SILICON    SILICON
描述:

High Performance 32-bit processor up to 48 MHz memory Protection Unit
高性能32位处理器高达48 MHz的内存保护单元

文件: 总66页 (文件大小:1713K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32LG330 DATASHEET  
F256/F128/F64  
Preliminary  
ARM Cortex-M3 CPU platform  
Communication interfaces  
• High Performance 32-bit processor @ up to 48 MHz  
• Memory Protection Unit  
• 3× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• 2× Low Energy UART  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• 0.4µA @ 3 V Shutoff Mode with RTC  
• 0.9 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• 2× I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Universal Serial Bus (USB) with Host & OTG support  
• Fully USB 2.0 compliant  
• 50 µA/MHz @ 3 V Sleep Mode  
• 200 µA/MHz @ 3 V Run Mode, with code executed from flash  
256/128/64 KB Flash  
32/32/32 KB RAM  
52 General Purpose I/O pins  
• On-chip PHY and embedded 5V to 3.3V regulator  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• 2× Analog Comparator  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
12 Channel DMA Controller  
• Capacitive sensing with up to 16 inputs  
• 3× Operational Amplifier  
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain  
• Supply Voltage Comparator  
12 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Hardware AES with 128/256-bit keys in 54/75 cycles  
Timers/Counters  
Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
• Wide range of sensors supported, including LC sen-  
sors and capacitive buttons  
• 4× 16-bit Timer/Counter  
• 4×3 Compare/Capture/PWM channels  
• Dead-Time Insertion on TIMER0  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
Debug Interface  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter  
• 3× 16/8-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
Backup Power Domain  
• RTC and retention registers in a separate power domain, avail-  
able in all energy modes  
• 2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• Embedded Trace Module v3.5 (ETM)  
Pre-Programmed Serial Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.85 to 3.8 V  
QFN64 package  
• Operation from backup battery when main power drains out  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
• www.energymicro.com/gecko  
Preliminary  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32LG330 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB) Max  
Speed  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
(MHz)  
EFM32LG330F64-QFN64  
EFM32LG330F128-QFN64  
EFM32LG330F256-QFN64  
64  
32  
32  
32  
48  
1.85 - 3.8 -40 - 85  
1.85 - 3.8 -40 - 85  
1.85 - 3.8 -40 - 85  
QFN64  
QFN64  
QFN64  
128  
256  
48  
48  
Visit www.energymicro.com for information on global distributors and representatives or contact  
sales@energymicro.com for additional information.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
2
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from ener-  
gy saving modes, and a wide selection of peripherals, the EFM32LG microcontroller is well suited for  
any battery operated application as well as other systems requiring high performance and low-energy  
consumption. This section gives a short introduction to each of the modules in general terms and also  
shows a summary of the configuration for the EFM32LG330 devices. For a complete feature set and in-  
depth information on the modules, the reader is referred to the EFM32LG Reference Manual.  
A block diagram of the EFM32LG330 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
LG330F64/128/256  
Core and Memory  
Clock Management  
Energy Management  
High Freq.  
Crystal  
Oscillator  
High Freq  
RC  
Oscillator  
Voltage  
Regulator  
Voltage  
Comparator  
Memory  
Protection  
Unit  
ARM Cortex-M3 processor  
Low Freq.  
Crystal  
Oscillator  
Low Freq.  
RC  
Oscillator  
Brown-out  
Detector  
Power-on  
Reset  
Flash  
Program  
Memory  
Debug  
Interface  
w/ ETM  
DMA  
Controller  
RAM  
Memory  
Ultra Low Freq.  
RC  
Oscillator  
Back-up  
Power  
Domain  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Analog Interfaces  
Security  
Timers and Triggers  
Timer/  
Counter  
LESENSE  
ADC  
USART  
UART  
Hardware  
AES  
Low Energy Real Time  
General  
Purpose  
I/O  
Low  
Energy  
UART  
Timer  
Counter  
Operational  
Amplifier  
External  
Interrupts  
I 2C  
DAC  
Watchdog  
Timer  
Pulse  
Counter  
Pin  
Reset  
Pin  
Wakeup  
Pulse  
Counter  
USB  
Back-up  
RTC  
2.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone  
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well  
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32  
implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embed-  
ded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer  
pin which can be used to output profiling information, data trace and software-generated messages.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32LG microcontroller. The  
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
3
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
into two blocks; the main block and the information block. Program code is normally written to the main  
block. Additionally, the information block is available for special user data and flash lock bits. There is  
also a read-only page in the information block containing system and device calibration data. Read and  
write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32LG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32LG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board  
the EFM32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 Universal Serial Bus Controller (USB)  
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,  
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both  
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-  
speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated  
Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in  
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for  
supplying 5V to VBUS when operating as host.  
2.1.11 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
4
Preliminary  
...the world's most energy friendly microcontrollers  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.  
2.1.13 Pre-Programmed Serial Bootloader  
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Auto-  
baud and destructive write are supported. The autobaud feature, interface and commands are described  
further in the application note.  
2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.15 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
2.1.16 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.17 Backup Real Time Counter (BURTC)  
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz  
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy  
Modes and it can also run in backup mode, making it operational even if the main power should drain out.  
2.1.18 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
5
Preliminary  
...the world's most energy friendly microcontrollers  
2.1.19 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 – EM3.  
2.1.20 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
2.1.21 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.22 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 8 external  
pins and 6 internal signals.  
2.1.23 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC  
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be  
combined into one differential output. The DAC may be used for a number of different applications such  
as sensor interfaces or sound output.  
2.1.24 Operational Amplifier (OPAMP)  
The EFM32LG330 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general  
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set  
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable  
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal  
resistors etc.  
2.1.25 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support  
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE  
is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea-  
sure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable  
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in  
applications with a strict energy budget.  
2.1.26 Backup Power Domain  
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,  
and a set of retention registers, available in all energy modes. This power domain can be configured to  
automatically change power source to a backup battery when the main power drains out. The backup  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
6
Preliminary  
...the world's most energy friendly microcontrollers  
power domain enables the EFM32LG330 to keep track of time and retain data, even if the main power  
source should drain out.  
2.1.27 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or  
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK  
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data  
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit  
operations are not supported.  
2.1.28 General Purpose Input/Output (GPIO)  
In the EFM32LG330, there are 52 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32LG330 is a subset of the feature set described in the EFM32LG Reference  
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
DMA  
RMU  
EMU  
CMU  
WDOG  
PRS  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
NA  
NA  
NA  
CMU_OUT0, CMU_OUT1  
NA  
NA  
USB  
USB_VBUS, USB_VBUSEN,  
USB_VREGI, USB_VREGO, USB_DM,  
USB_DMPU, USB_DP, USB_ID  
I2C0  
Full configuration  
Full configuration  
IrDA  
I2C0_SDA, I2C0_SCL  
I2C1  
I2C1_SDA, I2C1_SCL  
USART0  
USART1  
USART2  
LEUART0  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
US2_TX, US2_RX, US2_CLK, US2_CS  
LEU0_TX, LEU0_RX  
I2S  
I2S  
Full configuration  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
7
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Module  
LEUART1  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
RTC  
Configuration  
Pin Connections  
Full configuration  
Full configuration with DTI  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
LEU1_TX, LEU1_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
TIM2_CC[2:0]  
TIM3_CC[2:0]  
NA  
BURTC  
LETIMER0  
PCNT0  
PCNT1  
PCNT2  
ACMP0  
ACMP1  
VCMP  
NA  
LET0_O[1:0]  
PCNT0_S[1:0]  
8-bit count register  
8-bit count register  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
PCNT1_S[1:0]  
PCNT2_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
ADC0  
ADC0_CH[7:0]  
DAC0  
DAC0_OUT[1:0], DAC0_OUTxALT  
OPAMP  
Outputs: OPAMP_OUTx,  
OPAMP_OUTxALT, Inputs:  
OPAMP_Px, OPAMP_Nx  
AES  
Full configuration  
52 pins  
NA  
GPIO  
Available pins are shown in  
Table 4.3 (p. 52)  
2.3 Memory Map  
The EFM32LG330 memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the  
largest memory configuration.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
8
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 2.2. EFM32LG330 Memory Map with largest RAM and Flash sizes  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
9
 
Preliminary  
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
10) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
TSTG  
TS  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
Storage temperature range  
-40  
Maximum soldering tem-  
perature  
Latest IPC/JEDEC J-STD-020  
Standard  
260 °C  
VDDMAX  
External main supply volt-  
age  
0
3.8  
V
VIOPIN  
Voltage on any I/O pin  
-0.3  
VDD+0.3  
V
1Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.85  
V
48 MHz  
48 MHz  
fAHB  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
10  
 
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.3.2 Environmental  
Table 3.3. Environmental  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VESDHBM  
ESD (Human Body Model  
HBM)  
TAMB=25°C  
2
1
kV  
VESDCDM  
ESD (Charged Device  
Model, CDM)  
TAMB=25°C  
kV  
Latch-up sensitivity test passed level A according to JEDEC JESD 78B method Class II, 85°C.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
11  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.4 Current Consumption  
Table 3.4. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
200  
201  
203  
204  
207  
212  
244  
50  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
261 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
263 µA/  
MHz  
EM0 current. No prescal-  
ing. Running prime num-  
ber calculation code from  
Flash.  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
270 µA/  
MHz  
IEM0  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
273 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
282 µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
µA/  
MHz  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
52  
69 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
53  
71 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
56  
77 µA/  
MHz  
IEM1  
EM1 current  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
57  
80 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V  
62  
92 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V  
114  
1.1  
µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
µA  
IEM2  
EM2 current  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
4.0  
8.0 µA  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.9  
3.8  
µA  
7.8 µA  
µA  
IEM3  
EM3 current  
EM4 current  
0.02  
0.25  
IEM4  
0.7 µA  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
12  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.5 Transition between Energy Modes  
Table 3.5. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
01  
HF  
core  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
1Core wakeup time only.  
3.6 Power Management  
The EFM32LG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together at the  
PCB level. For practical schematic recommendations, please see the application note, "AN0002 EFM32  
Hardware Design Considerations".  
Table 3.6. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on falling  
external supply voltage  
1.82  
1.62  
1.85  
1.68  
V
VBODintthr-  
BOD threshold on falling  
internally regulated supply  
voltage  
V
VBODextthr+  
BOD threshold on rising ex-  
ternal supply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset (POR)  
threshold on rising external  
supply voltage  
1.98  
tRESET  
Delay from reset is re-  
leased until program execu- Brown-out Reset and pin re-  
tion starts  
Applies to Power-on Reset,  
163  
1
µs  
µF  
µF  
µF  
set.  
CDECOUPLE  
CUSB_VREGO  
CUSB_VREGI  
Voltage regulator decou-  
pling capacitor.  
X5R capacitor recommended.  
Apply between DECOUPLE  
pin and GROUND  
USB voltage regulator out  
decoupling capacitor.  
X5R capacitor recommended.  
Apply between USB_VREGO  
pin and GROUND  
1
USB voltage regulator in  
decoupling capacitor.  
X5R capacitor recommended.  
Apply between USB_VREGI  
pin and GROUND  
4.7  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
13  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.7 Flash  
Table 3.7. Flash  
Symbol  
Parameter  
Flash erase cycles before  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
20000  
cycles  
failure  
TAMB<150°C  
TAMB<85°C  
TAMB<70°C  
10000  
10  
h
RETFLASH  
Flash data retention  
years  
years  
µs  
20  
tW_PROG  
tPERASE  
tDERASE  
Word (32-bit) programming  
time  
20  
Page erase time  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
161.6 ms  
71 mA  
Device erase time  
IERASE  
IWRITE  
VFLASH  
Erase current  
Write current  
71 mA  
Supply voltage during flash  
erase and write  
1.8  
3.8 V  
1Measured at 25°C  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
14  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.8 General Purpose Input Output  
Table 3.8. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.3VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.7VDD  
V
Sourcing 6 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
0.75VDD  
0.95VDD  
0.7VDD  
0.9VDD  
V
Sourcing 6 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
V
V
V
V
V
V
V
VIOOH  
Output high voltage  
Sourcing 20 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sourcing 20 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sinking 6 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
0.25VDD  
0.05VDD  
0.3VDD  
0.1VDD  
Sinking 6 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = STANDARD  
VIOOL  
Output low voltage  
Sinking 20 mA, VDD=1.8V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
Sinking 20 mA, VDD=3.0V,  
GPIO_Px_CTRL DRIVE-  
MODE = HIGH  
IIOLEAK  
Input leakage current  
High Impedance IO connect-  
ed to GROUND or Vdd  
+/-25 nA  
RPU  
I/O pin pull-up resistor  
40  
40  
kOhm  
kOhm  
Ohm  
RPD  
I/O pin pull-down resistor  
Internal ESD series resistor  
RIOESD  
tIOGLITCH  
200  
Pulse width of pulses to be  
removed by the glitch sup-  
pression filter  
10  
50 ns  
0.5 mA drive strength  
and load capacitance  
CL=12.5-25pF.  
20+0.1CL  
250 ns  
tIOOF  
Output fall time  
2mA drive strength and load  
capacitance CL=350-600pF  
20+0.1CL  
0.1VDD  
250 ns  
V
VIOHYST  
I/O pin hysteresis (VIOTHR+  
VDD = 1.8 - 3.8 V  
- VIOTHR-  
)
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
15  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.1. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
16  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.2. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
17  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.3. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
18  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.4. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
19  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.5. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
-40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low-Level Output Voltage [V]  
Low-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
20  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.6. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
-40°C  
25°C  
85°C  
-40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
-40°C  
-40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High-Level Output Voltage [V]  
High-Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
21  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.9. LFXO  
Symbol  
Parameter  
Supported nominal crystal  
Condition  
Min  
Typ  
32.768  
Max  
Unit  
fLFXO  
kHz  
frequency  
ESRLFXO  
Supported crystal equiv-  
alent series resistance  
(ESR)  
30  
120 kOhm  
25 pF  
CLFXOL  
Supported crystal external  
load range  
X1  
48  
DCLFXO  
ILFXO  
Duty cycle  
50  
53.5  
%
Current consumption for  
core and buffer after start-  
up.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL  
is 1  
190  
nA  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST  
in CMU_CTRL is 1  
400  
ms  
1See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio  
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
3.9.2 HFXO  
Table 3.10. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal crystal  
Frequency  
4
48 MHz  
Supported crystal equiv-  
alent series resistance  
(ESR)  
Crystal frequency 32 MHz  
Crystal frequency 4 MHz  
30  
60 Ohm  
ESRHFXO  
400  
1500 Ohm  
gmHFXO  
The transconductance of  
the HFXO input transistor  
at crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
mS  
CHFXOL  
Supported crystal external  
load range  
5
25 pF  
DCHFXO  
Duty cycle  
46  
50  
85  
54  
%
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
Current consumption for  
HFXO after startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
165  
400  
µA  
µs  
tHFXO  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
22  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.3 LFRCO  
Table 3.11. LFRCO  
Symbol  
Parameter  
Oscillation frequency ,  
Condition  
Min  
Typ  
32.768  
Max  
Unit  
fLFRCO  
kHz  
VDD= 3.0 V, TAMB=25°C  
tLFRCO  
Startup time not including  
software calibration  
150  
µs  
ILFRCO  
Current consumption  
190  
1.5  
nA  
%
TUNESTEPL- Frequency step for LSB  
change in TUNING value  
FRCO  
Figure 3.7. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
23  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.4 HFRCO  
Table 3.12. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Cycles  
µA  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
28  
21  
14  
Oscillation frequency, VDD  
3.0 V, TAMB=25°C  
=
fHFRCO  
11  
6.61  
1.22  
0.6  
106  
93  
tHFRCO_settling Settling time after start-up  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
µA  
fHFRCO = 14 MHz  
77  
µA  
IHFRCO  
Current consumption  
fHFRCO = 11 MHz  
72  
µA  
fHFRCO = 6.6 MHz  
63  
µA  
fHFRCO = 1.2 MHz  
22  
µA  
DCHFRCO  
Duty cycle  
fHFRCO = 14 MHz  
48.5  
50  
51  
%
TUNESTEPH- Frequency step for LSB  
0.3  
%
change in TUNING value  
FRCO  
17 MHz for devices with prod. rev. < 19.  
21 MHz for devices with prod. rev. < 19.  
Figure 3.8. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage  
11.15  
11.10  
11.05  
11.00  
10.95  
10.90  
10.85  
10.80  
11.20  
11.15  
11.10  
11.05  
11.00  
10.95  
10.90  
10.85  
10.80  
1.8 V  
3 V  
3.8 V  
-40°C  
25°C  
85°C  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
24  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.9. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
13.85  
14.15  
14.10  
14.05  
14.00  
13.95  
13.90  
13.85  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.10. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage  
21.2  
21.1  
21.0  
20.9  
20.8  
20.7  
20.6  
21.2  
21.1  
21.0  
20.9  
20.8  
20.7  
20.6  
-40°C  
25°C  
85°C  
1.8 V  
3 V  
3.8 V  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.11. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage  
28.1  
28.0  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
28.1  
28.0  
27.9  
27.8  
27.7  
27.6  
27.5  
27.4  
1.8 V  
3 V  
3.8 V  
-40°C  
25°C  
85°C  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
25  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.9.5 ULFRCO  
Table 3.13. ULFRCO  
Symbol  
fULFRCO  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1.5 kHz  
%/°C  
Oscillation frequency  
25°C, 3V  
0.8  
TCULFRCO  
VCULFRCO  
Temperature coefficient  
Supply voltage coefficient  
0.05  
-18.2  
%/V  
3.10 Analog Digital Converter (ADC)  
Table 3.14. ADC  
Symbol  
VADCIN  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
VREF  
VREF/2  
V
V
V
Input voltage range  
-VREF/2  
1.25  
VADCREFIN  
Input range of external ref-  
erence voltage, single end-  
ed and differential  
VDD  
VDD - 1.1  
VDD  
VADCREFIN_CH7 Input range of external neg- See VADCREFIN  
0
0.625  
0
V
V
ative reference voltage on  
channel 7  
VADCREFIN_CH6 Input range of external pos- See VADCREFIN  
itive reference voltage on  
channel 6  
VADCCMIN  
IADCIN  
Common mode input range  
Input current  
VDD  
V
2pF sampling capacitors  
<100  
65  
nA  
dB  
CMRRADC  
Analog input common  
mode rejection ratio  
1 MSamples/s, 12 bit, exter-  
nal reference  
351  
67  
µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01  
63  
64  
µA  
µA  
µA  
IADC  
Average active current  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
IADCREF  
Current consumption of in-  
ternal voltage reference  
Internal voltage reference  
65  
2
CADCIN  
Input capacitance  
pF  
RADCIN  
Input ON resistance  
Input RC filter resistance  
1
MOhm  
kOhm  
fF  
RADCFILT  
CADCFILT  
10  
Input RC filter/decoupling  
capacitance  
250  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
26  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fADCCLK  
ADC Clock Frequency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
10 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Acquisition time  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisition time  
for VDD/3 reference  
2
µs  
µs  
Startup time of reference  
generator and ADC core in  
NORMAL mode  
5
1
tADCSTART  
Startup time of reference  
generator and ADC core in  
KEEPADCWARM mode  
µs  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
63  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
65  
60  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
65  
54  
67  
69  
62  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
Signal to Noise Ratio  
(SNR)  
SNRADC  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
63  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
67  
63  
dB  
dB  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
27  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
66  
66  
69  
70  
58  
dB  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
62  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
64  
60  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
64  
54  
66  
68  
61  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
Signal to Noise-puls-Distor-  
tion Ratio (SNDR)  
SNDRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
65  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
66  
63  
dB  
dB  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
66  
66  
68  
69  
64  
dB  
dB  
dB  
dB  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
Spurious-Free Dynamic  
Range (SFDR)  
SFDRADC  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
28  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V refer-  
ence  
76  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
73  
66  
dBc  
dBc  
1 MSamples/s, 12 bit, differ-  
ential, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, differ-  
ential, VDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
75  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
76  
79  
dBc  
dBc  
200 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
79  
78  
79  
79  
dBc  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
0.3  
0.3  
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer output gradi-  
ent  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
INLADC  
MCADC  
GAINED  
Differential non-linearity  
(DNL)  
±0.7  
±1.2  
12  
LSB  
LSB  
bits  
Integral non-linearity (INL),  
End point method  
No missing codes  
11.9991  
1.25V reference  
2.5V reference  
0.012  
0.012  
0.0333 %/°C  
0.033 %/°C  
Gain error drift  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
29  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1.25V reference  
2.5V reference  
0.22  
0.22  
0.73 LSB/°C  
0.623 LSB/°C  
OFFSETED  
Offset error drift  
1On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
2Typical numbers given by abs(Mean) / (85 - 25).  
3Max number given by (abs(Mean) + 3x stddev) / (85 - 25).  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.12 (p.  
30) and Figure 3.13 (p. 31) , respectively.  
Figure 3.12. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD-VSS)/VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
Actual ADC  
tranfer function  
before offset and  
4093  
Actual ADC  
gain correction  
4092  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
30  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.13. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
31  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.14. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
32  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.15. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
33  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.16. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
34  
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.17. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°  
Offset vs Temperature, Vdd = 3V  
Figure 3.18. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
85  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
35  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.19. ADC Temperature sensor readout  
2600  
Vdd= 1.8  
Vdd= 3  
Vdd= 3.8  
2500  
2400  
2300  
2200  
2100  
40  
25 15 5  
5
15 25 35 45 55 65 75 85  
Temperature [°C]  
3.11 Digital Analog Converter (DAC)  
Table 3.15. DAC  
Symbol  
VDACOUT  
VDACCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD voltage reference, single  
ended  
0
-VDD  
0
VDD  
VDD  
VDD  
V
Output voltage range  
VDD voltage reference, differ-  
ential  
V
V
Output common mode volt-  
age range  
500 kSamples/s, 12bit  
400  
200  
38  
µA  
µA  
µA  
Active current including ref-  
erences for 2 channels  
IDAC  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit NORMAL  
SRDAC  
Sample rate  
500 ksam-  
ples/s  
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
1000 kHz  
250 kHz  
250 kHz  
fDAC  
DAC clock frequency  
CYCDACCONV Clock cyckles per conver-  
sion  
2
tDACCONV  
Conversion time  
Settling time  
2
µs  
µs  
dB  
tDACSETTLE  
5
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
58  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
59  
58  
dB  
dB  
Signal to Noise Ratio  
(SNR)  
SNRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
36  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
58  
59  
57  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
54  
56  
dB  
dB  
Signal to Noise-pulse Dis-  
tortion Ratio (SNDR)  
SNDRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
53  
55  
62  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V ref-  
erence  
dBc  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 2.5V refer-  
ence  
56  
61  
dBc  
dBc  
Spurious-Free Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, dif-  
ferential, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
55  
60  
dBc  
dBc  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
After calibration, single ended  
After calibration, differential  
2
2
mV  
VDACOFFSET  
Offset voltage  
mV  
DNLDAC  
INLDAC  
MCDAC  
Differential non-linearity  
Integral non-linearity  
No missing codes  
±1  
±5  
12  
LSB  
LSB  
bits  
3.12 Operational Amplifier (OPAMP)  
The electrical characteristics for the Operational Amplifiers are based on simulations.  
Table 3.16. OPAMP  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, Unity  
Gain  
400  
100  
µA  
IOPAMP  
Active Current  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
µA  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
37  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
13  
µA  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
101  
98  
dB  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
dB  
GOL  
Open Loop Gain  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
91  
dB  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
6.1  
1.8  
0.25  
64  
MHz  
MHz  
MHz  
°
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
GBWOPAMP  
Gain Bandwidth Product  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0,  
CL=75 pF  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1,  
CL=75 pF  
58  
58  
°
°
PMOPAMP  
Phase Margin  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1,  
CL=75 pF  
RINPUT  
RLOAD  
Input Resistance  
Load Resistance  
DC Load Current  
100  
Mohm  
Ohm  
200  
ILOAD_DC  
11 mA  
OPAxHCMDIS=0  
OPAxHCMDIS=1  
VSS  
VSS  
VSS  
VDD  
V
VINPUT  
Input Voltage  
VDD-1.2  
VDD  
V
VOUTPUT  
Output Voltage  
V
Unity Gain, VSS<Vin<DD  
OPAxHCMDIS=0  
,
6
1
mV  
VOFFSET  
Input Offset Voltage  
Unity Gain, VSS<Vin<DD-1.2,  
OPAxHCMDIS=1  
mV  
VOFFSET_DRIFT Input Offset Voltage Drift  
0.02 mV/°C  
V/µs  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
3.2  
0.8  
0.1  
101  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
V/µs  
SROPAMP  
Slew Rate  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
V/µs  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=0  
µVRMS  
NOPAMP  
Voltage Noise  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=1  
141  
µVRMS  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
38  
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vout=1V, RESSEL=0,  
0.1 Hz<f<1 MHz, OPAx-  
HCMDIS=0  
196  
229  
µVRMS  
Vout=1V, RESSEL=0,  
0.1 Hz<f<1 MHz, OPAx-  
HCMDIS=1  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=0  
1230  
2130  
1630  
2590  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=1  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=0  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=1  
Figure 3.20. OPAMP Common Mode Rejection Ratio  
Figure 3.21. OPAMP Positive Power Supply Rejection Ratio  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
39  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.22. OPAMP Negative Power Supply Rejection Ratio  
Figure 3.23. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V  
Figure 3.24. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
40  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.13 Analog Comparator (ACMP)  
Table 3.17. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common Mode volt-  
age range  
V
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0
µA  
µA  
µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consumption of in-  
ternal voltage reference  
IACMPREF  
Internal voltage reference  
Single ended  
5
10  
10  
17  
39  
µA  
mV  
VACMPOFFSET Offset voltage  
Differential  
mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense Internal  
Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 41) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
41  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 3.25. Typical ACMP Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
HYSTSEL= 0.0  
HYSTSEL= 2.0  
4.0  
HYSTSEL= 4.0  
HYSTSEL= 6.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption  
Response time  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
42  
 
Preliminary  
...the world's most energy friendly microcontrollers  
3.14 Voltage Comparator (VCMP)  
Table 3.18. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common Mode volt-  
age range  
V
BIASPROG=0b0000  
and HALFBIAS=1 in  
VCMPn_CTRL register  
0.1  
µA  
µA  
IVCMP  
Active current  
BIASPROG=0b1111  
and HALFBIAS=0 in  
VCMPn_CTRL register.  
LPREF=0.  
14.7  
tVCMPREF  
Startup time reference gen- NORMAL  
erator  
10  
µs  
Single ended  
Differential  
10  
10  
17  
mV  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
VCMP hysteresis  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.15 Digital Peripherals  
Table 3.19. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
7.5  
5.63  
150  
6.25  
8.75  
150  
100  
100  
2.5  
µA/  
MHz  
IUART  
ILEUART  
II2C  
UART current  
LEUART current  
I2C current  
UART idle current, clock en-  
abled  
µA/  
MHz  
LEUART idle current, clock  
enabled  
nA  
I2C idle current, clock en-  
abled  
µA/  
MHz  
ITIMER  
ILETIMER  
IPCNT  
IRTC  
TIMER current  
LETIMER current  
PCNT current  
RTC current  
TIMER_0 idle current, clock  
enabled  
µA/  
MHz  
LETIMER idle current, clock  
enabled  
nA  
nA  
nA  
PCNT idle current, clock en-  
abled  
RTC idle current, clock en-  
abled  
IAES  
AES current  
AES idle current, clock en-  
abled  
µA/  
MHz  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
43  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IGPIO  
GPIO current  
GPIO idle current, clock en-  
abled  
5.31  
2,81  
8.12  
µA/  
MHz  
IPRS  
PRS current  
DMA current  
PRS idle current  
µA/  
MHz  
IDMA  
Clock enable  
µA/  
MHz  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
44  
Preliminary  
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32LG330.  
4.1 Pinout  
The EFM32LG330 pinout is shown in Figure 4.1 (p. 45) and Table 4.1 (p. 45). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32LG330 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
QFN64 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
1
VSS  
PA0  
Ground  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
TIM0_CC0 #0/1/4  
TIM0_CC1 #0/1  
CMU_CLK1 #0  
PRS_CH1 #0  
2
PA1  
I2C0_SCL #0  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
45  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
QFN64 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
CMU_CLK0 #0  
ETM_TD0 #3  
3
4
5
6
PA2  
PA3  
PA4  
PA5  
TIM0_CC2 #0/1  
TIM0_CDTI0 #0  
TIM0_CDTI1 #0  
TIM0_CDTI2 #0  
LES_ALTEX2 #0  
ETM_TD1 #3  
LES_ALTEX3 #0  
ETM_TD2 #3  
LES_ALTEX4 #0  
ETM_TD3 #3  
LEU1_TX #1  
LEU1_RX #1  
ETM_TCLK #3  
GPIO_EM4WU1  
7
8
PA6  
IOVDD_0  
Digital IO power supply 0.  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
ACMP0_CH0  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
TIM0_CC1 #4  
PCNT0_S0IN #2  
LES_CH0 #0  
PRS_CH2 #0  
9
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
ACMP0_CH1  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
PCNT0_S1IN #2  
LES_CH1 #0  
PRS_CH3 #0  
10  
11  
12  
13  
14  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
ACMP0_CH2  
TIM0_CDTI0 #4  
TIM0_CDTI1 #4  
US2_TX #0  
US2_RX #0  
LES_CH2 #0  
LES_CH3 #0  
LES_CH4 #0  
LES_CH5 #0  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
ACMP0_CH3  
DAC0_P0 /  
OPAMP_P0  
ACMP0_CH4  
TIM0_CDTI2 #4  
LETIM0_OUT0 #3  
PCNT1_S0IN #0  
US2_CLK #0  
I2C1_SDA #0  
DAC0_N0 /  
OPAMP_N0  
ACMP0_CH5  
LETIM0_OUT1 #3  
PCNT1_S1IN #0  
US2_CS #0  
I2C1_SCL #0  
US0_TX #4  
US1_CLK #0  
15  
16  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
US0_RX #4  
US1_CS #0  
17  
18  
19  
PA8  
PA9  
TIM2_CC0 #0  
TIM2_CC1 #0  
TIM2_CC2 #0  
PA10  
Reset input, active low.  
20  
21  
RESETn  
PB11  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up en-  
sure that reset is released.  
DAC0_OUT0 /  
OPAMP_OUT0  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
I2C1_SDA #1  
I2C1_SCL #1  
DAC0_OUT1 /  
OPAMP_OUT1  
22  
23  
24  
PB12  
AVDD_1  
PB13  
LETIM0_OUT1 #1  
Analog power supply 1.  
HFXTAL_P  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
25  
PB14  
HFXTAL_N  
26  
27  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
28  
PD0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
PCNT2_S0IN #0  
US1_TX #1  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
46  
Preliminary  
...the world's most energy friendly microcontrollers  
QFN64 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
DAC0_OUT2 #1/  
OPAMP_OUT2  
ADC0_CH1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
TIM0_CC0 #3  
PCNT2_S1IN #0  
29  
30  
31  
PD1  
PD2  
PD3  
US1_RX #1  
DBG_SWO #2  
DBG_SWO #3  
ETM_TD1 #0/2  
US1_CLK #1  
USB_DMPU #0  
ADC0_CH2  
TIM0_CC1 #3  
TIM0_CC2 #3  
ADC0_CH3  
DAC0_N2 /  
OPAMP_N2  
US1_CS #1  
LEU0_TX #0  
LEU0_RX #0  
ADC0_CH4  
DAC0_P2 /  
OPAMP_P2  
32  
33  
34  
PD4  
PD5  
PD6  
ETM_TD2 #0/2  
ETM_TD3 #0/2  
ADC0_CH5  
DAC0_OUT2 #0/  
OPAMP_OUT2  
ADC0_CH6  
DAC0_P1 /  
OPAMP_P1  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
LES_ALTEX0 #0  
ACMP0_O #2  
ETM_TD0 #0  
US1_RX #2  
I2C0_SDA #1  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
ADC0_CH7  
DAC0_N1 /  
OPAMP_N1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
US1_TX #2  
I2C0_SCL #1  
35  
PD7  
ETM_TCLK #0  
36  
37  
PD8  
PC6  
BU_VIN  
CMU_CLK1 #1  
LEU1_TX #0  
I2C0_SDA #2  
LES_CH6 #0  
ETM_TCLK #2  
ACMP0_CH6  
LEU1_RX #0  
I2C0_SCL #2  
LES_CH7 #0  
ETM_TD0 #2  
38  
PC7  
ACMP0_CH7  
39  
40  
41  
VDD_DREG  
DECOUPLE  
PC8  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
ACMP1_CH0  
ACMP1_CH1  
TIM2_CC0 #2  
TIM2_CC1 #2  
TIM2_CC2 #2  
US0_CS #2  
LES_CH8 #0  
LES_CH9 #0  
GPIO_EM4WU2  
42  
PC9  
US0_CLK #2  
43  
44  
45  
46  
47  
48  
PC10  
PC11  
ACMP1_CH2  
US0_RX #2  
US0_TX #2  
LES_CH10 #0  
LES_CH11 #0  
ACMP1_CH3  
USB_VREGI  
USB_VREGO  
PF10  
USB Input to internal 3.3 V regulator.  
USB Decoupling for internal 3.3 V USB regulator and regulator output.  
USB_DM  
USB_DP  
PF11  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
TIM0_CC0 #5  
LETIM0_OUT0 #2  
49  
50  
51  
PF0  
PF1  
PF2  
DBG_SWCLK #0/1/2/3  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
TIM0_CC1 #5  
LETIM0_OUT1 #2  
DBG_SWDIO #0/1/2/3  
GPIO_EM4WU3  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
TIM0_CC2 #5  
LEU0_TX #4  
52  
53  
54  
USB_VBUS  
PF12  
USB 5.0 V VBUS input.  
USB_ID  
PF5  
TIM0_CDTI2 #2/5  
USB_VBUSEN #0  
PRS_CH2 #1  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
47  
Preliminary  
...the world's most energy friendly microcontrollers  
QFN64 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
55  
56  
57  
58  
IOVDD_5  
PE8  
Digital IO power supply 5.  
PCNT2_S0IN #1  
PCNT2_S1IN #1  
TIM1_CC0 #1  
PRS_CH3 #1  
BOOT_TX  
PE9  
PE10  
US0_TX #0  
US0_RX #0  
LES_ALTEX5 #0  
BOOT_RX  
59  
60  
PE11  
PE12  
TIM1_CC1 #1  
TIM1_CC2 #1  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
CMU_CLK1 #2  
LES_ALTEX6 #0  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
61  
PE13  
62  
63  
64  
PE14  
PE15  
PA15  
TIM3_CC0 #0  
TIM3_CC1 #0  
TIM3_CC2 #0  
LEU0_TX #2  
LEU0_RX #2  
4.2 Alternate functionality pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 48). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
3
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, digital output.  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
PC9  
PC10  
PC11  
PF2  
PD6  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_O  
PD7  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
48  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
BOOT_RX  
BOOT_TX  
0
1
2
3
4
5
6
Description  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE11  
PE10  
PD8  
PA2  
PA1  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 2.  
Analog to digital converter ADC0, input channel number 3.  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX  
Bootloader TX  
BU_VIN  
Battery input for Backup Power Domain  
CMU_CLK0  
CMU_CLK1  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PD8  
PE12  
DAC0_N0 /  
OPAMP_N0  
PC5  
PD7  
PD3  
PB11  
PC0  
PB12  
Operational Amplifier 0 external negative input.  
Operational Amplifier 1 external negative input.  
Operational Amplifier 2 external negative input.  
DAC0_N1 /  
OPAMP_N1  
DAC0_N2 /  
OPAMP_N2  
DAC0_OUT0 /  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /  
OPAMP output channel number 0.  
DAC0_OUT0ALT /  
OPAMP_OUT0ALT  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC1  
PC2  
PC3  
PD0  
DAC0_OUT1 /  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /  
OPAMP output channel number 1.  
DAC0_OUT1ALT /  
OPAMP_OUT1ALT  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PD1  
DAC0_OUT2 /  
OPAMP_OUT2  
Digital to Analog Converter DAC0_OUT2 /  
OPAMP output channel number 2.  
PD5  
PC4  
PD6  
PD4  
PD0  
DAC0_P0 /  
OPAMP_P0  
Operational Amplifier 0 external positive input.  
Operational Amplifier 1 external positive input.  
DAC0_P1 /  
OPAMP_P1  
DAC0_P2 /  
OPAMP_P2  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF1  
PF2  
PF0  
PF1  
PF0  
PF1  
PD1  
PF0  
PF1  
PD2  
Note that this function is enabled to pin out of reset, and  
has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
Note that this function is enabled to pin out of reset, and  
has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
Note that this function is not enabled after reset, and must  
be enabled by software to be used.  
ETM_TCLK  
ETM_TD0  
ETM_TD1  
ETM_TD2  
ETM_TD3  
PD7  
PD6  
PD3  
PD4  
PD5  
PC6  
PC7  
PD3  
PD4  
PD5  
PA6  
PA2  
PA3  
PA4  
PA5  
Embedded Trace Module ETM clock .  
Embedded Trace Module ETM data 0.  
Embedded Trace Module ETM data 1.  
Embedded Trace Module ETM data 2.  
Embedded Trace Module ETM data 3.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
49  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU2  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
0
1
2
3
4
5
6
Description  
PA0  
PA6  
PC9  
PF1  
PF2  
PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as exter-  
nal optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
PA0  
PC5  
PC4  
PD6  
PD7  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PD6  
PD7  
PD5  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
I2C1 Serial Clock Line input / output.  
I2C1 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PC7  
PC6  
PC1  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
I2C1_SCL  
PD6  
PC0  
PB12  
PB11  
I2C1_SDA  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
LES_CH3  
LESENSE channel 3.  
LES_CH4  
LESENSE channel 4.  
LES_CH5  
LESENSE channel 5.  
LES_CH6  
LESENSE channel 6.  
LES_CH7  
LESENSE channel 7.  
LES_CH8  
LESENSE channel 8.  
LES_CH9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
LESENSE channel 10.  
LESENSE channel 11.  
PB11  
PB12  
PB14  
PF0  
PC4  
PC5  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
PE15  
PA0  
PF2  
LEUART0 Transmit output. Also used as receive input in  
half duplex communication.  
LEU0_TX  
LEU1_RX  
LEU1_TX  
PD4  
PC7  
PC6  
PB13  
PA6  
PA5  
PE14  
PF0  
LEUART1 Receive input.  
LEUART1 Transmit output. Also used as receive input in  
half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) negative  
pin. Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
50  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
LFXTAL_P  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
PRS_CH0  
0
1
2
3
4
5
6
Description  
PB7  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 1.  
PC4  
PC5  
PD0  
PD1  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
Pulse Counter PCNT1 input number 0.  
Pulse Counter PCNT1 input number 1.  
PE8  
Pulse Counter PCNT2 input number 0.  
PE9  
Pulse Counter PCNT2 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 0 Complimentary Deat Time Insertion channel 0.  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
Timer 3 Capture Compare input / output channel 0.  
Timer 3 Capture Compare input / output channel 1.  
Timer 3 Capture Compare input / output channel 2.  
USART0 clock input / output.  
PRS_CH1  
PRS_CH2  
PF5  
PE8  
PA0  
PA1  
PA2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
TIM3_CC0  
TIM3_CC1  
TIM3_CC2  
US0_CLK  
PD1  
PD2  
PD3  
PA0  
PF0  
PF1  
PF2  
PC0  
PC1  
PC2  
PC3  
PC4  
PD6  
PD7  
PF5  
PF5  
PE10  
PE11  
PE12  
PB7  
PB8  
PB11  
PA8  
PC8  
PC9  
PC10  
PA9  
PA10  
PE14  
PE15  
PA15  
PE12  
PE13  
PC9  
PC8  
PB13  
PB14  
PB13  
PB14  
US0_CS  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PC10  
PC11  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave Output  
(MISO).  
USART0 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART0 Synchronous mode Master Output / Slave Input  
(MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
PC1  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
US1_TX  
PC0  
PC4  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
US2_CLK  
USART2 clock input / output.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
51  
Preliminary  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
USART2 chip select input / output.  
USART2 Asynchronous Receive.  
US2_CS  
PC5  
PC3  
US2_RX  
US2_TX  
USART2 Synchronous mode Master Input / Slave Output  
(MISO).  
USART2 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
PC2  
USART2 Synchronous mode Master Output / Slave Input  
(MOSI).  
USB_DM  
PF10  
PD2  
USB D- pin.  
USB_DMPU  
USB_DP  
USB D- Pullup control.  
USB D+ pin.  
PF11  
PF12  
USB_ID  
USB ID pin. Used in OTG mode.  
USB 5 V VBUS input.  
USB 5 V VBUS enable.  
USB Input to internal 3.3 V regulator  
USB_VBUS  
USB_VBUSEN  
USB_VREGI  
USB_VBUS  
PF5  
USB_VREGI  
USB Decoupling for internal 3.3 V USB regulator and reg-  
ulator output  
USB_VREGO  
USB_VREGO  
4.3 GPIO pinout overview  
The specific GPIO pins available in EFM32LG330 is shown in Table 4.3 (p. 52). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated  
by a number from 15 down to 0.  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
PA10  
-
9
PA9  
-
8
7
6
PA6  
-
5
PA5  
-
4
PA4  
-
3
PA3  
-
2
PA2  
-
1
PA1  
-
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15  
-
-
-
-
PA8  
PB8  
PC8  
PD8  
PE8  
-
-
PA0  
-
-
-
-
PB14 PB13 PB12 PB11  
PB7  
PC7  
PD7  
-
-
-
-
-
-
-
PC11 PC10  
PC9  
-
PC6  
PD6  
-
PC5  
PD5  
-
PC4  
PD4  
-
PC3  
PD3  
-
PC2  
PD2  
-
PC1  
PD1  
-
PC0  
PD0  
-
-
-
PE15 PE14 PE13 PE12 PE11 PE10  
PF12 PF11 PF10  
PE9  
-
-
-
-
-
-
PF5  
-
-
PF2  
PF1  
PF0  
4.4 Opamp pinout overview  
The specific opamp terminals available in EFM32LG330 is shown in Figure 4.2 (p. 53) .  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
52  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 4.2. Opamp Pinout  
PB11  
PB12  
OUT0ALT  
PC4  
PC5  
+
PC0  
OPA0  
-
OUT0  
PC1  
PC2  
PC3  
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
4.5 QFN64 Package  
Figure 4.3. QFN64  
Note:  
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
53  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from  
the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is  
acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional  
Table 4.4. QFN64 (Dimensions in mm)  
Symbol  
Min  
A
A1  
A3  
b
D
E
D2  
E2  
e
L
L1  
aaa bbb ccc ddd  
eee  
0.80 0.00  
0.20  
0.25  
0.30  
7.10 7.10  
7.20 7.20  
7.30 7.30  
0.40 0.00  
0.45  
0.203  
REF  
9.00 9.00  
BSC BSC  
0.50  
BSC  
Nom  
Max  
0.85  
-
0.10 0.10 0.10 0.05 0.08  
0.90 0.05  
0.50 0.10  
The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
54  
 
Preliminary  
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. QFN64 PCB Land Pattern  
a
p8  
p7  
p1  
p6  
b
p9  
e
g
c
p2  
p5  
p3  
p4  
f
d
Table 5.1. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.85  
Symbol  
P1  
Pin number  
Symbol  
Pin number  
a
b
c
d
e
f
1
P8  
64  
65  
-
0.30  
P2  
16  
17  
32  
33  
48  
49  
P9  
0.50  
P3  
-
-
-
-
-
8.90  
P4  
-
8.90  
P5  
-
7.20  
P6  
-
g
7.20  
P7  
-
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
55  
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.2. QFN64 PCB Solder Mask  
a
b
c
e
g
f
d
Table 5.2. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.97  
Symbol  
Dim. (mm)  
a
b
c
d
e
f
8.90  
7.32  
7.32  
-
0.42  
0.50  
g
-
8.90  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
56  
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Figure 5.3. QFN64 PCB Stencil Design  
a
b
c
x
y
e
z
d
Table 5.3. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.75  
Symbol  
Dim. (mm)  
8.90  
a
b
c
d
e
x
y
z
0.22  
2.70  
0.50  
2.70  
8.90  
0.80  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.3 (p. 53) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033  
standard for MSL description and level 3 bake conditions.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
57  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 58). If the revision  
says "ES" (Engineering Sample), the revision must be read out electronically as specified in the reference  
manual.  
6.3 Errata  
Please see the errata document for EFM32LG330 for description and resolution of device erratas.  
This document is available in Simplicity Studio and online at http://www.energymicro.com/down-  
loads/datasheets.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
58  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.10  
June 28th, 2013  
Updated power requirements in the Power Management section.  
Removed minimum load capacitance figure and table. Added reference to application note.  
Other minor corrections.  
7.2 Revision 1.00  
September 11th, 2012  
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
Other minor corrections.  
7.3 Revision 0.92  
May 25th, 2012  
Corrected EM3 current consumption in the Electrical Characteristics section.  
7.4 Revision 0.90  
April 27th, 2012  
Initial preliminary release.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
59  
 
 
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Energy Micro AS intends to provide customers with the latest, accurate, and in-depth documentation of  
all peripherals and modules available for system and software implementers using or intending to use  
the Energy Micro products. Characterization data, available modules and peripherals, memory sizes and  
memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in  
different applications. Application examples described herein are for illustrative purposes only. Energy  
Micro reserves the right to make changes without further notice and limitation to product information,  
specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness  
of the included information. Energy Micro shall have no liability for the consequences of use of the infor-  
mation supplied herein. This document does not imply or express copyright licenses granted hereunder  
to design or fabricate any integrated circuits. The products must not be used within any Life Support  
System without the specific written consent of Energy Micro. A "Life Support System" is any product or  
system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Energy Micro products are generally not intended for  
military applications. Energy Micro products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable  
of delivering such weapons.  
A.2 Trademark Information  
Energy Micro, EFM32, EFR, logo and combinations thereof, and others are the registered trademarks or  
trademarks of Energy Micro AS. ARM, CORTEX, THUMB are the registered trademarks of ARM Limited.  
Other terms and product names may be trademarks of others.  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
60  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
B Contact Information  
B.1 Energy Micro Corporate Headquarters  
Postal Address  
Visitor Address  
Technical Support  
Energy Micro AS  
P.O. Box 4633 Nydalen  
N-0405 Oslo  
Energy Micro AS  
Sandakerveien 118  
N-0484 Oslo  
support.energymicro.com  
Phone: +47 40 10 03 01  
NORWAY  
NORWAY  
www.energymicro.com  
Phone: +47 23 00 98 00  
Fax: + 47 23 00 98 01  
B.2 Global Contacts  
Visit www.energymicro.com for information on global distributors and representatives or contact  
sales@energymicro.com for additional information.  
Americas  
Europe, Middle East and Africa Asia and Pacific  
www.energymicro.com/americas www.energymicro.com/emea  
www.energymicro.com/asia  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
61  
 
 
 
Preliminary  
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 7  
2.3. Memory Map ................................................................................................................................. 8  
3. Electrical Characteristics ........................................................................................................................... 10  
3.1. Test Conditions ............................................................................................................................. 10  
3.2. Absolute Maximum Ratings ............................................................................................................. 10  
3.3. General Operating Conditions .......................................................................................................... 10  
3.4. Current Consumption ..................................................................................................................... 12  
3.5. Transition between Energy Modes .................................................................................................... 13  
3.6. Power Management ....................................................................................................................... 13  
3.7. Flash .......................................................................................................................................... 14  
3.8. General Purpose Input Output ......................................................................................................... 15  
3.9. Oscillators .................................................................................................................................... 22  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 26  
3.11. Digital Analog Converter (DAC) ...................................................................................................... 36  
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 37  
3.13. Analog Comparator (ACMP) .......................................................................................................... 41  
3.14. Voltage Comparator (VCMP) ......................................................................................................... 43  
3.15. Digital Peripherals ....................................................................................................................... 43  
4. Pinout and Package ................................................................................................................................. 45  
4.1. Pinout ......................................................................................................................................... 45  
4.2. Alternate functionality pinout ............................................................................................................ 48  
4.3. GPIO pinout overview .................................................................................................................... 52  
4.4. Opamp pinout overview .................................................................................................................. 52  
4.5. QFN64 Package ........................................................................................................................... 53  
5. PCB Layout and Soldering ........................................................................................................................ 55  
5.1. Recommended PCB Layout ............................................................................................................ 55  
5.2. Soldering Information ..................................................................................................................... 57  
6. Chip Marking, Revision and Errata .............................................................................................................. 58  
6.1. Chip Marking ................................................................................................................................ 58  
6.2. Revision ...................................................................................................................................... 58  
6.3. Errata ......................................................................................................................................... 58  
7. Revision History ...................................................................................................................................... 59  
7.1. Revision 1.10 ............................................................................................................................... 59  
7.2. Revision 1.00 ............................................................................................................................... 59  
7.3. Revision 0.92 ............................................................................................................................... 59  
7.4. Revision 0.90 ............................................................................................................................... 59  
A. Disclaimer and Trademarks ....................................................................................................................... 60  
A.1. Disclaimer ................................................................................................................................... 60  
A.2. Trademark Information ................................................................................................................... 60  
B. Contact Information ................................................................................................................................. 61  
B.1. Energy Micro Corporate Headquarters .............................................................................................. 61  
B.2. Global Contacts ............................................................................................................................ 61  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
62  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32LG330 Memory Map with largest RAM and Flash sizes ........................................................................ 9  
3.1. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 16  
3.2. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 17  
3.3. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 18  
3.4. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 19  
3.5. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 20  
3.6. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 21  
3.7. Calibrated LFRCO Frequency vs Temperature and Supply Voltage ................................................................ 23  
3.8. Calibrated HFRCO 11 MHz Band Frequency vs Temperature and Supply Voltage ............................................ 24  
3.9. Calibrated HFRCO 14 MHz Band Frequency vs Temperature and Supply Voltage ............................................ 25  
3.10. Calibrated HFRCO 21 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25  
3.11. Calibrated HFRCO 28 MHz Band Frequency vs Temperature and Supply Voltage ........................................... 25  
3.12. Integral Non-Linearity (INL) ................................................................................................................... 30  
3.13. Differential Non-Linearity (DNL) .............................................................................................................. 31  
3.14. ADC Frequency Spectrum, Vdd = 3V, Temp = 25° ................................................................................... 32  
3.15. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25° ..................................................................... 33  
3.16. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25° ................................................................. 34  
3.17. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 35  
3.18. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 35  
3.19. ADC Temperature sensor readout ......................................................................................................... 36  
3.20. OPAMP Common Mode Rejection Ratio ................................................................................................. 39  
3.21. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 39  
3.22. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 40  
3.23. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 40  
3.24. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 40  
3.25. Typical ACMP Characteristics ............................................................................................................... 42  
4.1. EFM32LG330 Pinout (top view, not to scale) .............................................................................................. 45  
4.2. Opamp Pinout ...................................................................................................................................... 53  
4.3. QFN64 ................................................................................................................................................ 53  
5.1. QFN64 PCB Land Pattern ...................................................................................................................... 55  
5.2. QFN64 PCB Solder Mask ....................................................................................................................... 56  
5.3. QFN64 PCB Stencil Design .................................................................................................................... 57  
6.1. Example Chip Marking ........................................................................................................................... 58  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
63  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 7  
3.1. Absolute Maximum Ratings ..................................................................................................................... 10  
3.2. General Operating Conditions .................................................................................................................. 10  
3.3. Environmental ....................................................................................................................................... 11  
3.4. Current Consumption ............................................................................................................................. 12  
3.5. Energy Modes Transitions ...................................................................................................................... 13  
3.6. Power Management ............................................................................................................................... 13  
3.7. Flash .................................................................................................................................................. 14  
3.8. GPIO .................................................................................................................................................. 15  
3.9. LFXO .................................................................................................................................................. 22  
3.10. HFXO ................................................................................................................................................ 22  
3.11. LFRCO .............................................................................................................................................. 23  
3.12. HFRCO ............................................................................................................................................. 24  
3.13. ULFRCO ............................................................................................................................................ 26  
3.14. ADC .................................................................................................................................................. 26  
3.15. DAC .................................................................................................................................................. 36  
3.16. OPAMP ............................................................................................................................................. 37  
3.17. ACMP ............................................................................................................................................... 41  
3.18. VCMP ............................................................................................................................................... 43  
3.19. Digital Peripherals ............................................................................................................................... 43  
4.1. Device Pinout ....................................................................................................................................... 45  
4.2. Alternate functionality overview ................................................................................................................ 48  
4.3. GPIO Pinout ........................................................................................................................................ 52  
4.4. QFN64 (Dimensions in mm) .................................................................................................................... 54  
5.1. QFN64 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 55  
5.2. QFN64 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 56  
5.3. QFN64 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 57  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
64  
Preliminary  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 41  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 43  
www.energymicro.com  
2013-06-28 - EFM32LG330FXX - d0110_Rev1.10  
65  

相关型号:

EFM32LG332

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG332F128G-E-QFP64

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG332F256G-E-QFP64

RISC Microcontroller, 32-Bit, FLASH, 48MHz, CMOS, PQFP64, TQFP-64
SILICON

EFM32LG332F64G-E-QFP64

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG360

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG360F128G-E-CSP81

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG360F256G-E-CSP81

RISC Microcontroller, 32-Bit, FLASH, 48MHz, CMOS, PBGA81, CSP-81
SILICON

EFM32LG360F64G-E-CSP81

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG380

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG380F128G-E-QFP100

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32LG380F256G-E-QFP100

RISC Microcontroller, 32-Bit, FLASH, 48MHz, CMOS, PQFP100, LQFP-100
SILICON

EFM32LG380F64G-E-QFP100

Output state retention and wake-up from Shutoff Mode
SILICON