EFM32LG380F128G-E-QFP100 [SILICON]

Output state retention and wake-up from Shutoff Mode;
EFM32LG380F128G-E-QFP100
型号: EFM32LG380F128G-E-QFP100
厂家: SILICON    SILICON
描述:

Output state retention and wake-up from Shutoff Mode

时钟 外围集成电路
文件: 总82页 (文件大小:2166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32LG380 DATASHEET  
F256/F128/F64  
ARM Cortex-M3 CPU platform  
• High Performance 32-bit processor @ up to 48 MHz  
• Memory Protection Unit  
External Bus Interface for up to 4×256 MB of external  
memory mapped space  
• TFT Controller with Direct Drive  
Communication interfaces  
• 3× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• 2× Universal Asynchronous Receiver/Transmitter  
• 2× Low Energy UART  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.4 µA @ 3 V Shutoff Mode with RTC  
• 0.65 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 0.95 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• 63 µA/MHz @ 3 V Sleep Mode  
• 211 µA/MHz @ 3 V Run Mode, with code executed from flash  
256/128/64 KB Flash  
• 2× I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Universal Serial Bus (USB) with Host & OTG support  
• Fully USB 2.0 compliant  
32 KB RAM  
83 General Purpose I/O pins  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
12 Channel DMA Controller  
• On-chip PHY and embedded 5V to 3.3V regulator  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• 2× Analog Comparator  
12 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
• Capacitive sensing with up to 16 inputs  
• 3× Operational Amplifier  
Hardware AES with 128/256-bit keys in 54/75 cycles  
Timers/Counters  
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain  
• Supply Voltage Comparator  
• 4× 16-bit Timer/Counter  
• 4×3 Compare/Capture/PWM channels  
• Dead-Time Insertion on TIMER0  
Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
• Wide range of sensors supported, including LC sen-  
sors and capacitive buttons  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter  
• 3× 16/8-bit Pulse Counter  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
Backup Power Domain  
• RTC and retention registers in a separate power domain, avail-  
able in all energy modes  
Debug Interface  
• 2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• Embedded Trace Module v3.5 (ETM)  
Pre-Programmed USB/UART Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.98 to 3.8 V  
LQFP100 package  
• Operation from backup battery when main power drains out  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32LG380 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
EFM32LG380F64G-E-QFP100  
EFM32LG380F128G-E-QFP100  
EFM32LG380F256G-E-QFP100  
64  
32  
32  
32  
48  
48  
48  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
LQFP100  
LQFP100  
LQFP100  
128  
256  
Visit www.silabs.com for information on global distributors and representatives.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
2
 
 
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from ener-  
gy saving modes, and a wide selection of peripherals, the EFM32LG microcontroller is well suited for  
any battery operated application as well as other systems requiring high performance and low-energy  
consumption. This section gives a short introduction to each of the modules in general terms and also  
shows a summary of the configuration for the EFM32LG380 devices. For a complete feature set and in-  
depth information on the modules, the reader is referred to the EFM32LG Reference Manual.  
A block diagram of the EFM32LG380 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
LG380F64/ 128/ 256  
Core and Memory  
Clock Management  
Energy Management  
High Freq  
RC  
Oscillator  
Aux High Freq.  
RC  
Oscillator  
Voltage  
Regulator  
Voltage  
Comparator  
Memory  
Protection  
Unit  
ARM Cortex- M3 processor  
Low Freq.  
RC  
Oscillator  
High Freq.  
Crystal  
Oscillator  
Brown- out  
Detector  
Power- on  
Reset  
Flash  
Program  
Memory  
Debug  
RAM  
Memory  
DMA  
Controller  
Ultra Low Freq.  
RC  
Oscillator  
Low Freq.  
Crystal  
Oscillator  
Back- up  
Power  
Domain  
Interface  
w/ ETM  
32- bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/ O Ports  
Analog Interfaces  
Security  
Timers and Triggers  
Timer/  
Counter  
Ext. Bus  
Interface  
TFT  
Driver  
LESENSE  
ADC  
USART  
UART  
Hardware  
AES  
Low Energy Real Time  
General  
Purpose  
I/ O  
Low  
Energy  
UART  
Timer  
Counter  
Operational  
Amplifier  
External  
Interrupts  
I 2C  
DAC  
Watchdog  
Timer  
Pulse  
Counter  
Pin  
Reset  
Pin  
Wakeup  
Analog  
Back- up  
RTC  
USB  
Comparator  
2.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone  
MIPS/MHz. A Memory Protection Unit with support for up to 8 memory segments is included, as well  
as a Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32  
implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3 Reference Manual.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embed-  
ded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer  
pin which can be used to output profiling information, data trace and software-generated messages.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32LG microcontroller. The  
flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
3
 
 
 
...the world's most energy friendly microcontrollers  
into two blocks; the main block and the information block. Program code is normally written to the main  
block. Additionally, the information block is available for special user data and flash lock bits. There is  
also a read-only page in the information block containing system and device calibration data. Read and  
write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32LG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32LG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board  
the EFM32LG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 External Bus Interface (EBI)  
The External Bus Interface provides access to external parallel interface devices such as SRAM, FLASH,  
ADCs and LCDs. The interface is memory mapped into the address bus of the Cortex-M3. This enables  
seamless access from software without manually manipulating the IO settings each time a read or write  
is performed. The data and address lines are multiplexed in order to reduce the number of pins required  
to interface the external devices. The timing is adjustable to meet specifications of the external devices.  
The interface is limited to asynchronous devices.  
2.1.11 TFT Direct Drive  
The EBI contains a TFT controller which can drive a TFT via a 565 RGB interface. The TFT controller  
supports programmable display and port sizes and offers accurate control of frequency and setup and  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
4
...the world's most energy friendly microcontrollers  
hold timing. Direct Drive is supported for TFT displays which do not have their own frame buffer. In  
that case TFT Direct Drive can transfer data from either on-chip memory or from an external memory  
device to the TFT at low CPU load. Automatic alpha-blending and masking is also supported for transfers  
through the EBI interface.  
2.1.12 Universal Serial Bus Controller (USB)  
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,  
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both  
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-  
speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated  
Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in  
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for  
supplying 5V to VBUS when operating as host.  
2.1.13 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.14 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.  
2.1.15 Pre-Programmed USB/UART Bootloader  
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The  
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART  
without the need for a debugger. The autobaud feature, interface and commands are described further  
in the application note.  
2.1.16 Universal Asynchronous Receiver/Transmitter (UART)  
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module.  
It supports full- and half-duplex asynchronous UART communication.  
2.1.17 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.18 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
5
...the world's most energy friendly microcontrollers  
2.1.19 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.20 Backup Real Time Counter (BURTC)  
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz  
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy  
Modes and it can also run in backup mode, making it operational even if the main power should drain out.  
2.1.21 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
2.1.22 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 – EM3.  
2.1.23 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
2.1.24 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.25 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 8 external  
pins and 6 internal signals.  
2.1.26 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC  
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be  
combined into one differential output. The DAC may be used for a number of different applications such  
as sensor interfaces or sound output.  
2.1.27 Operational Amplifier (OPAMP)  
The EFM32LG380 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general  
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set  
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
6
...the world's most energy friendly microcontrollers  
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal  
resistors etc.  
2.1.28 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support  
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE  
is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea-  
sure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable  
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in  
applications with a strict energy budget.  
2.1.29 Backup Power Domain  
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,  
and a set of retention registers, available in all energy modes. This power domain can be configured to  
automatically change power source to a backup battery when the main power drains out. The backup  
power domain enables the EFM32LG380 to keep track of time and retain data, even if the main power  
source should drain out.  
2.1.30 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or  
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK  
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data  
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit  
operations are not supported.  
2.1.31 General Purpose Input/Output (GPIO)  
In the EFM32LG380, there are 83 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32LG380 is a subset of the feature set described in the EFM32LG Reference  
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
DMA  
RMU  
EMU  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
NA  
NA  
NA  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
7
 
 
...the world's most energy friendly microcontrollers  
Module  
CMU  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
CMU_OUT0, CMU_OUT1  
WDOG  
PRS  
NA  
NA  
USB  
USB_VBUS, USB_VBUSEN,  
USB_VREGI, USB_VREGO, USB_DM,  
USB_DMPU, USB_DP, USB_ID  
EBI  
Full configuration  
EBI_A[27:0], EBI_AD[15:0], EBI_ARDY,  
EBI_ALE, EBI_BL[1:0], EBI_CS[3:0],  
EBI_CSTFT, EBI_DCLK, EBI_DTEN,  
EBI_HSNC, EBI_NANDREn,  
EBI_NANDWEn, EBI_REn, EBI_VSNC,  
EBI_WEn  
I2C0  
Full configuration  
I2C0_SDA, I2C0_SCL  
I2C1_SDA, I2C1_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
US2_TX, US2_RX, US2_CLK, US2_CS  
U0_TX, U0_RX  
I2C1  
Full configuration  
USART0  
USART1  
USART2  
UART0  
UART1  
LEUART0  
LEUART1  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
RTC  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration with I2S  
Full configuration  
Full configuration  
U1_TX, U1_RX  
Full configuration  
LEU0_TX, LEU0_RX  
LEU1_TX, LEU1_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
Full configuration  
Full configuration with DTI  
Full configuration  
Full configuration  
TIM2_CC[2:0]  
Full configuration  
TIM3_CC[2:0]  
Full configuration  
NA  
BURTC  
LETIMER0  
PCNT0  
PCNT1  
PCNT2  
ACMP0  
ACMP1  
VCMP  
Full configuration  
NA  
Full configuration  
LET0_O[1:0]  
Full configuration, 16-bit count register PCNT0_S[1:0]  
Full configuration, 8-bit count register  
Full configuration, 8-bit count register  
Full configuration  
PCNT1_S[1:0]  
PCNT2_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
Full configuration  
Full configuration  
ADC0  
Full configuration  
ADC0_CH[7:0]  
DAC0  
Full configuration  
DAC0_OUT[1:0], DAC0_OUTxALT  
OPAMP  
Full configuration  
Outputs: OPAMP_OUTx,  
OPAMP_OUTxALT, Inputs:  
OPAMP_Px, OPAMP_Nx  
AES  
Full configuration  
83 pins  
NA  
GPIO  
Available pins are shown in  
Table 4.3 (p. 67)  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
8
...the world's most energy friendly microcontrollers  
2.3 Memory Map  
The EFM32LG380 memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the  
largest memory configuration.  
Figure 2.2. EFM32LG380 Memory Map with largest RAM and Flash sizes  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
9
 
 
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
10) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
TSTG  
Storage tempera-  
ture range  
-40  
TS  
Maximum soldering Latest IPC/JEDEC J-STD-020  
260 °C  
temperature  
Standard  
VDDMAX  
External main sup-  
ply voltage  
0
3.8  
V
V
VIOPIN  
Voltage on any I/O  
pin  
-0.3  
VDD+0.3  
1Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.98  
V
48 MHz  
48 MHz  
fAHB  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
10  
 
 
 
 
 
 
...the world's most energy friendly microcontrollers  
3.3.2 Environmental  
Table 3.3. Environmental  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VESDHBM  
ESD (Human Body  
Model HBM)  
TAMB=25°C  
2000  
750  
V
VESDCDM  
ESD (Charged De-  
vice Model, CDM)  
TAMB=25°C  
V
Latch-up sensitivity passed: ±100 mA/1.5 × VSUPPLY(max) according to JEDEC JESD 78 method Class  
II, 85°C.  
3.4 Current Consumption  
Table 3.4. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
211  
211  
212  
213  
214  
215  
216  
217  
218  
219  
224  
224  
µA/  
MHz  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
EM0 current. No  
prescaling. Running  
prime number cal-  
culation code from  
Flash. (Production  
test condition = 14  
MHz)  
IEM0  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
11  
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
257  
261  
63  
µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
75 µA/  
MHz  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
65  
76 µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
64  
75 µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
65  
77 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
65  
76 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
66  
78 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
67  
79 µA/  
MHz  
EM1 current (Pro-  
duction test condi-  
tion = 14 MHz)  
IEM1  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
68  
82 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
68  
81 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
70  
83 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
74  
87 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
76  
89 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
106  
112  
0.951  
120 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
129 µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
1.71 µA  
IEM2  
EM2 current  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
12  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
4.01 µA  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
3.01  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.65  
2.65  
0.02  
0.44  
1.3 µA  
4.0 µA  
IEM3  
EM3 current  
EM4 current  
0.055 µA  
0.9 µA  
IEM4  
1Using backup RTC.  
3.4.1 EM1 Current Consumption  
Figure 3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at  
48MHz  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 28MHz  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
13  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 21MHz  
1.42  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.42  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 14MHz  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
14  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 11MHz  
0.78  
0.76  
0.74  
0.72  
0.70  
0.78  
0.76  
0.74  
0.72  
0.70  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 6.6MHz  
0.52  
0.51  
0.50  
0.49  
0.48  
0.47  
0.46  
0.45  
0.52  
0.51  
0.50  
0.49  
0.48  
0.47  
0.46  
0.45  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
15  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 1.2MHz  
0.138  
0.136  
0.134  
0.132  
0.130  
0.128  
0.126  
0.124  
0.122  
0.160  
0.155  
0.150  
0.145  
0.140  
0.135  
0.130  
0.125  
0.120  
0.115  
- 40°C  
- 15°C  
5°C  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.2 EM2 Current Consumption  
Figure 3.8. EM2 current consumption. RTC1 prescaled to 1kHz, 32.768 kHz LFRCO.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
1Using backup RTC.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
16  
 
 
...the world's most energy friendly microcontrollers  
3.4.3 EM3 Current Consumption  
Figure 3.9. EM3 current consumption.  
3.0  
3.0  
- 40.0°C  
Vdd= 2.0V  
- 15.0°C  
5.0°C  
Vdd= 2.2V  
Vdd= 2.4V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
2.0  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
1.5  
1.0  
0.5  
0.0  
Vdd= 3.8V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
3.4.4 EM4 Current Consumption  
Figure 3.10. EM4 current consumption.  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
- 40.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 15.0°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
3.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 3.5. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
0
HF-  
CORE-  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
17  
 
 
 
 
...the world's most energy friendly microcontrollers  
3.6 Power Management  
The EFM32LG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with  
optional filter) at the PCB level. For practical schematic recommendations, please see the application  
note, "AN0002 EFM32 Hardware Design Considerations".  
Table 3.6. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on  
falling external sup-  
ply voltage  
1.74  
1.96  
1.98  
1.98  
V
VBODextthr+  
BOD threshold on  
rising external sup-  
ply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset  
(POR) threshold on  
rising external sup-  
ply voltage  
tRESET  
Delay from reset  
is released until  
program execution  
starts  
Applies to Power-on Reset,  
Brown-out Reset and pin reset.  
163  
µs  
CDECOUPLE  
CUSB_VREGO  
CUSB_VREGI  
Voltage regulator  
decoupling capaci-  
tor.  
X5R capacitor recommended.  
Apply between DECOUPLE pin  
and GROUND  
1
1
µF  
µF  
µF  
USB voltage regu-  
lator out decoupling Apply between USB_VREGO  
capacitor. pin and GROUND  
X5R capacitor recommended.  
USB voltage regula- X5R capacitor recommended.  
tor in decoupling ca- Apply between USB_VREGI  
4.7  
pacitor.  
pin and GROUND  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
18  
 
 
...the world's most energy friendly microcontrollers  
3.7 Flash  
Table 3.7. Flash  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
Flash erase cycles  
before failure  
20000  
cycles  
TAMB<150°C  
10000  
10  
h
RETFLASH  
Flash data retention TAMB<85°C  
TAMB<70°C  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) pro-  
gramming time  
20  
tPERASE  
tDERASE  
IERASE  
IWRITE  
Page erase time  
Device erase time  
Erase current  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
71 mA  
71 mA  
Write current  
VFLASH  
Supply voltage dur-  
ing flash erase and  
write  
1.98  
3.8  
V
1Measured at 25°C  
3.8 General Purpose Input Output  
Table 3.8. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.30VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.70VDD  
V
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.80VDD  
0.90VDD  
0.85VDD  
0.90VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
V
V
V
V
V
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output high volt-  
age (Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.75VDD  
0.85VDD  
0.60VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
19  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
0.80VDD  
Typ  
Max  
Unit  
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
V
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.20VDD  
0.10VDD  
0.10VDD  
0.05VDD  
V
V
V
V
V
V
V
V
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output low voltage  
(Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.30VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.20VDD  
0.35VDD  
0.25VDD  
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
IIOLEAK  
Input leakage cur-  
rent  
High Impedance IO connected  
to GROUND or Vdd  
±0.1  
40  
±100 nA  
RPU  
I/O pin pull-up resis-  
tor  
kOhm  
kOhm  
Ohm  
RPD  
I/O pin pull-down re-  
sistor  
40  
RIOESD  
Internal ESD series  
resistor  
200  
tIOGLITCH  
Pulse width of puls-  
es to be removed  
by the glitch sup-  
pression filter  
10  
50 ns  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST and load capaci-  
tance CL=12.5-25pF.  
20+0.1CL  
20+0.1CL  
0.10VDD  
250 ns  
250 ns  
V
tIOOF  
Output fall time  
GPIO_Px_CTRL DRIVEMODE  
= LOW and load capacitance  
CL=350-600pF  
VIOHYST  
I/O pin hysteresis  
VDD = 1.98 - 3.8 V  
(VIOTHR+ - VIOTHR-  
)
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
20  
...the world's most energy friendly microcontrollers  
Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
21  
 
...the world's most energy friendly microcontrollers  
Figure 3.12. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
22  
 
...the world's most energy friendly microcontrollers  
Figure 3.13. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
23  
 
...the world's most energy friendly microcontrollers  
Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
24  
 
...the world's most energy friendly microcontrollers  
Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
25  
 
...the world's most energy friendly microcontrollers  
Figure 3.16. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
26  
 
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.9. LFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFXO  
Supported nominal  
crystal frequency  
32.768  
30  
kHz  
ESRLFXO  
Supported crystal  
equivalent series re-  
sistance (ESR)  
120 kOhm  
CLFXOL  
Supported crystal  
external load range  
X1  
25 pF  
nA  
ILFXO  
Current consump-  
tion for core and  
buffer after startup.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL is  
1
190  
400  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST in  
CMU_CTRL is 1  
ms  
1See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio  
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
3.9.2 HFXO  
Table 3.10. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal  
crystal Frequency  
4
48 MHz  
Crystal frequency 48 MHz  
50 Ohm  
60 Ohm  
1500 Ohm  
mS  
Supported crystal  
ESRHFXO  
equivalent series re- Crystal frequency 32 MHz  
30  
sistance (ESR)  
Crystal frequency 4 MHz  
400  
gmHFXO  
The transconduc-  
tance of the HFXO  
input transistor at  
crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
5
CHFXOL  
Supported crystal  
external load range  
25 pF  
µA  
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
85  
165  
400  
Current consump-  
tion for HFXO after  
startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
µs  
tHFXO  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
27  
 
 
 
...the world's most energy friendly microcontrollers  
3.9.3 LFRCO  
Table 3.11. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequen-  
cy , VDD= 3.0 V,  
TAMB=25°C  
31.29  
32.768  
150  
34.28 kHz  
tLFRCO  
Startup time not in-  
cluding software  
calibration  
µs  
ILFRCO  
Current consump-  
tion  
300  
1.5  
nA  
%
TUNESTEPL- Frequency step  
for LSB change in  
FRCO  
TUNING value  
Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
28  
 
 
...the world's most energy friendly microcontrollers  
3.9.4 HFRCO  
Table 3.12. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28.5 MHz  
21.4 MHz  
14.3 MHz  
11.2 MHz  
6.721 MHz  
1.252 MHz  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
27.5  
20.6  
28.0  
21.0  
14.0  
11.0  
6.601  
1.202  
0.6  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
13.7  
fHFRCO  
10.8  
6.481  
1.152  
tHFRCO_settling Settling time after  
start-up  
Cycles  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
fHFRCO = 14 MHz  
165  
134  
106  
94  
215 µA  
175 µA  
140 µA  
125 µA  
105 µA  
40 µA  
Current consump-  
tion  
IHFRCO  
77  
25  
DCHFRCO  
Duty cycle  
48.5  
50  
51  
%
%
TUNESTEPH- Frequency step  
0.33  
for LSB change in  
FRCO  
TUNING value  
1For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By  
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the  
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.  
Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
29  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
30  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
28.4  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
31  
 
 
...the world's most energy friendly microcontrollers  
3.9.5 AUXHFRCO  
Table 3.13. AUXHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28.5 MHz  
21.4 MHz  
14.3 MHz  
11.2 MHz  
6.721 MHz  
1.252 MHz  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fAUXHFRCO = 14 MHz  
27.5  
20.6  
28.0  
21.0  
14.0  
11.0  
6.601  
1.202  
0.6  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
13.7  
fAUXHFRCO  
10.8  
6.481  
1.152  
tAUXHFRCO_settlingSettling time after  
start-up  
Cycles  
DCAUXHFRCO  
Duty cycle  
fAUXHFRCO = 14 MHz  
48.5  
50  
51 %  
TUNESTEPAUX-Frequency step  
0.33  
%
for LSB change in  
HFRCO  
TUNING value  
1For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough  
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and  
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the  
TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz  
across operating conditions.  
3.9.6 ULFRCO  
Table 3.14. ULFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fULFRCO  
Oscillation frequen- 25°C, 3V  
cy  
0.7  
1.75 kHz  
TCULFRCO  
Temperature coeffi-  
cient  
0.05  
%/°C  
%/V  
VCULFRCO  
Supply voltage co-  
efficient  
-18.2  
3.10 Analog Digital Converter (ADC)  
Table 3.15. ADC  
Symbol  
VADCIN  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
-VREF/2  
1.25  
VREF  
VREF/2  
VDD  
V
V
V
Input voltage range  
VADCREFIN  
Input range of exter-  
nal reference volt-  
age, single ended  
and differential  
VADCREFIN_CH7 Input range of ex-  
ternal negative ref-  
erence voltage on  
See VADCREFIN  
0
VDD - 1.1  
V
channel 7  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
32  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VADCREFIN_CH6 Input range of ex-  
ternal positive ref-  
See VADCREFIN  
0.625  
VDD  
V
erence voltage on  
channel 6  
VADCCMIN  
Common mode in-  
put range  
0
VDD  
V
IADCIN  
Input current  
2pF sampling capacitors  
<100  
65  
nA  
dB  
CMRRADC  
Analog input com-  
mon mode rejection  
ratio  
1 MSamples/s, 12 bit, external  
reference  
351  
67  
µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00  
Average active cur-  
rent  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01  
63  
64  
µA  
µA  
µA  
IADC  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
IADCREF  
Current consump-  
tion of internal volt-  
age reference  
Internal voltage reference  
65  
2
CADCIN  
RADCIN  
RADCFILT  
Input capacitance  
pF  
Input ON resistance  
1
MOhm  
kOhm  
Input RC filter resis-  
tance  
10  
CADCFILT  
Input RC filter/de-  
coupling capaci-  
tance  
250  
fF  
fADCCLK  
ADC Clock Fre-  
quency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
8 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
Acquisition time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisi-  
tion time for VDD/3  
reference  
2
µs  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
33  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Startup time of ref-  
erence generator  
and ADC core in  
NORMAL mode  
5
1
µs  
tADCSTART  
Startup time of ref-  
erence generator  
and ADC core in  
KEEPADCWARM  
mode  
µs  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
65  
60  
65  
54  
67  
69  
62  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
Signal to Noise Ra-  
tio (SNR)  
SNRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
67  
63  
66  
66  
66  
70  
58  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
63  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
SIgnal-to-Noise  
And Distortion-ratio  
(SINAD)  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
62  
64  
dB  
dB  
SINADADC  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
34  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
60  
64  
54  
66  
68  
61  
dB  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
65  
66  
63  
66  
66  
66  
69  
64  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
62  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
76  
73  
66  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
Spurious-Free Dy-  
namic Range (SF-  
DR)  
SFDRADC  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
75  
dBc  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
35  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
76  
79  
79  
78  
79  
79  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
dBc  
dBc  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
68  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
-3.5  
0.3  
0.3  
3
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer out-  
put gradient  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
INLADC  
Differential non-lin-  
earity (DNL)  
-1  
±0.7  
±1.2  
4
LSB  
Integral non-linear-  
ity (INL), End point  
method  
±3 LSB  
MCADC  
No missing codes  
11.9991  
12  
0.012  
0.012  
0.22  
bits  
1.25V reference  
2.5V reference  
1.25V reference  
2.5V reference  
0.0333 %/°C  
0.033 %/°C  
0.73 LSB/°C  
0.623 LSB/°C  
GAINED  
Gain error drift  
OFFSETED  
Offset error drift  
0.22  
1On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
2Typical numbers given by abs(Mean) / (85 - 25).  
3Max number given by (abs(Mean) + 3x stddev) / (85 - 25).  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.24 (p.  
37) and Figure 3.25 (p. 37) , respectively.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
36  
...the world's most energy friendly microcontrollers  
Figure 3.24. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
4093  
4092  
Actual ADC  
tranfer function  
before offset and  
gain correction  
Actual ADC  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
Figure 3.25. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
37  
 
 
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
38  
 
...the world's most energy friendly microcontrollers  
Figure 3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
39  
 
...the world's most energy friendly microcontrollers  
Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
40  
 
...the world's most energy friendly microcontrollers  
Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°C  
Offset vs Temperature, Vdd = 3V  
Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
85  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
41  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.31. ADC Temperature sensor readout  
2600  
2500  
2400  
2300  
2200  
2100  
Vdd= 2.0  
Vdd= 3.0  
Vdd= 3.8  
40  
25 15 5  
5
15 25 35 45 55 65 75 85  
Temperature [°C]  
3.11 Digital Analog Converter (DAC)  
Table 3.16. DAC  
Symbol  
VDACOUT  
VDACCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD voltage reference, single  
ended  
0
-VDD  
0
VDD  
VDD  
VDD  
V
Output voltage  
range  
VDD voltage reference, differ-  
ential  
V
V
Output common  
mode voltage range  
500 kSamples/s, 12 bit  
4001  
2001  
171  
µA  
µA  
µA  
Active current in-  
cluding references  
for 2 channels  
IDAC  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit NORMAL  
SRDAC  
Sample rate  
500 ksam-  
ples/s  
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
1000 kHz  
250 kHz  
250 kHz  
DAC clock frequen-  
cy  
fDAC  
CYCDACCONV Clock cyckles per  
conversion  
2
tDACCONV  
Conversion time  
Settling time  
2
µs  
µs  
dB  
tDACSETTLE  
5
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
58  
Signal to Noise Ra-  
tio (SNR)  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
59  
58  
dB  
dB  
SNRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
42  
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
58  
59  
57  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
54  
56  
53  
55  
62  
dB  
dB  
dB  
dB  
dBc  
Signal to Noise-  
SNDRDAC  
pulse Distortion Ra- 500 kSamples/s, 12 bit, differ-  
tio (SNDR)  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
56  
61  
55  
60  
dBc  
dBc  
dBc  
dBc  
Spurious-Free  
Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
After calibration, single ended  
After calibration, differential  
2
2
9
mV  
mV  
LSB  
VDACOFFSET  
DNLDAC  
INLDAC  
Offset voltage  
Differential non-lin-  
earity  
±1  
Integral non-lineari-  
ty  
±5  
12  
LSB  
bits  
MCDAC  
No missing codes  
1Measured with a static input code and no loading on the output.  
3.12 Operational Amplifier (OPAMP)  
The electrical characteristics for the Operational Amplifiers are based on simulations.  
Table 3.17. OPAMP  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, Unity  
Gain  
370  
95  
460 µA  
IOPAMP  
Active Current  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
135 µA  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
43  
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
25 µA  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
13  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
101  
98  
dB  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
dB  
GOL  
Open Loop Gain  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
91  
dB  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
6.1  
1.8  
0.25  
64  
MHz  
MHz  
MHz  
°
Gain Bandwidth  
Product  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
GBWOPAMP  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, CL=75  
pF  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, CL=75  
pF  
58  
58  
°
°
PMOPAMP  
Phase Margin  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, CL=75  
pF  
RINPUT  
RLOAD  
Input Resistance  
Load Resistance  
DC Load Current  
100  
Mohm  
Ohm  
200  
ILOAD_DC  
11 mA  
OPAxHCMDIS=0  
OPAxHCMDIS=1  
VSS  
VSS  
VSS  
-13  
VDD  
V
V
V
VINPUT  
Input Voltage  
VDD-1.2  
VDD  
VOUTPUT  
Output Voltage  
Unity Gain, VSS<Vin<VDD  
OPAxHCMDIS=0  
,
0
1
11 mV  
VOFFSET  
Input Offset Voltage  
Unity Gain, VSS<Vin<VDD-1.2,  
OPAxHCMDIS=1  
mV  
VOFFSET_DRIFT Input Offset Voltage  
Drift  
0.02 mV/°C  
V/µs  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
3.2  
0.8  
0.1  
101  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
V/µs  
SROPAMP  
Slew Rate  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
V/µs  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=0  
µVRMS  
NOPAMP  
Voltage Noise  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=1  
141  
µVRMS  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
44  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vout=1V, RESSEL=0, 0.1  
Hz<f<1 MHz, OPAxHCMDIS=0  
196  
229  
µVRMS  
Vout=1V, RESSEL=0, 0.1  
Hz<f<1 MHz, OPAxHCMDIS=1  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=0  
1230  
2130  
1630  
2590  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=1  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=0  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=1  
Figure 3.32. OPAMP Common Mode Rejection Ratio  
Figure 3.33. OPAMP Positive Power Supply Rejection Ratio  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
45  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.34. OPAMP Negative Power Supply Rejection Ratio  
Figure 3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V  
Figure 3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
46  
 
 
 
...the world's most energy friendly microcontrollers  
3.13 Analog Comparator (ACMP)  
Table 3.18. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common  
V
Mode voltage range  
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0
0.4 µA  
15 µA  
520 µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consump-  
tion of internal volt-  
age reference  
IACMPREF  
Internal voltage reference  
5
0
µA  
VACMPOFFSET Offset voltage  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
12 mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
17  
39  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense  
Internal Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
tACMPSTART  
Startup time  
10 µs  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
47  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
HYSTSEL= 0.0  
HYSTSEL= 2.0  
HYSTSEL= 4.0  
HYSTSEL= 6.0  
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption, HYSTSEL = 4  
Response time  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
48  
 
...the world's most energy friendly microcontrollers  
3.14 Voltage Comparator (VCMP)  
Table 3.19. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common  
V
Mode voltage range  
BIASPROG=0b0000 and  
HALFBIAS=1 in VCMPn_CTRL  
register  
0.3  
22  
10  
0.6 µA  
IVCMP  
Active current  
BIASPROG=0b1111 and  
HALFBIAS=0 in VCMPn_CTRL  
register. LPREF=0.  
35 µA  
µs  
tVCMPREF  
Startup time refer-  
ence generator  
NORMAL  
Single ended  
Differential  
10  
10  
61  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
tVCMPSTART  
VCMP hysteresis  
Startup time  
210 mV  
10 µs  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.15 EBI  
Figure 3.38. EBI Write Enable Timing  
WRSETUP  
WRSTRB  
WRHOLD  
(0, 1, 2, ...)  
(1, 2, 3, ...)  
(0, 1, 2, ...)  
EBI_BL[N- 1:0]  
EBI_A[N- 1:0]  
EBI_AD[15:0]  
EBI_CSn  
Z
Z
Z
EBI_BL  
tOSU_WEn  
tOH_WEn  
tOH_WEn  
tOH_WEn  
tOH_WEn  
EBI_A  
tOSU_WEn  
DATA[15:0]  
tOSU_WEn  
tOSU_WEn  
tWIDTH_WEn  
EBI_WEn  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
49  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.20. EBI Write Enable Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2 3 4  
tOH_WEn  
Output hold time, from trailing EBI_WEn/  
EBI_NANDWEn edge to EBI_AD, EBI_A,  
EBI_CSn, EBI_BLn invalid  
-6.00 + (WRHOLD *  
tHFCORECLK  
ns  
)
1 2 3 4 5  
tOSU_WEn  
Output setup time, from EBI_AD, EBI_A,  
EBI_CSn, EBI_BLn valid to leading EBI_WEn/  
EBI_NANDWEn edge  
-14.00 + (WRSETUP  
* tHFCORECLK  
ns  
ns  
)
1 2 3 4 5  
tWIDTH_WEn  
EBI_WEn/EBI_NANDWEn pulse width  
-7.00 + ((WRSTRB  
+1) * tHFCORECLK  
)
1Applies for all addressing modes (figure only shows D16 addressing mode)  
2Applies for both EBI_WEn and EBI_NANWEn (figure only shows EBI_WEn)  
3Applies for all polarities (figure only shows active low signals)  
4Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
5 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFWE=0. The leading edge  
of EBI_WEn can be moved to the right by setting HALFWE=1. This decreases the length of tWIDTH_WEn and increases the length  
of tOSU_WEn by 1/2 * tHFCLKNODIV  
.
Figure 3.39. EBI Address Latch Enable Related Output Timing  
ADDRSETUP  
(1, 2, 3, ...)  
ADDRHOLD  
(0, 1, 2, ...)  
WRSETUP  
(0, 1, 2, ...)  
WRSTRB  
(1, 2, 3, ...)  
WRHOLD  
(0, 1, 2, ...)  
EBI_AD[15:0]  
EBI_ALE  
ADDR[16:1]  
tWIDTH_ALEn  
DATA[15:0]  
Z
tWIDTH_ALEn  
tOSU_ALEn  
EBI_CSn  
EBI_WEn  
Table 3.21. EBI Address Latch Enable Related Output Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2 3 4  
tOH_ALEn  
Output hold time, from trailing EBI_ALE edge to  
EBI_AD invalid  
-6.00 + (AD-  
ns  
DRHOLD5 * tHFCORE-  
)
CLK  
1 2 4  
tOSU_ALEn  
Output setup time, from EBI_AD valid to leading  
EBI_ALE edge  
-13.00 + (0 * tHFCORE-  
ns  
ns  
)
CLK  
1 2 3 4  
tWIDTH_ALEn  
EBI_ALEn pulse width  
-7.00 + (ADDRSET-  
UP+1) * tHFCORECLK  
)
1Applies to addressing modes D8A24ALE and D16A16ALE (figure only shows D16A16ALE)  
2Applies for all polarities (figure only shows active low signals)  
3 The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFALE=0. The trailing edge  
of EBI_ALE can be moved to the left by setting HALFALE=1. This decreases the length of tWIDTH_ALEn and increases the length  
of tOH_ALEn by tHFCORECLK - 1/2 * tHFCLKNODIV  
.
4Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
5Figure only shows a write operation. For a multiplexed read operation the address hold time is controlled via the RDSETUP state  
instead of via the ADDRHOLD state.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
50  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.40. EBI Read Enable Related Output Timing  
RDSETUP  
RDSTRB  
RDHOLD  
(0, 1, 2, ...)  
(1, 2, 3, ...)  
(0, 1, 2, ...)  
EBI_BL[1:0]  
EBI_A[27:0]  
EBI_AD[15:8]  
EBI_CSn  
EBI_BL  
tSU_REn  
Z
Z
Z
tH_REn  
tH_REn  
tH_REn  
EBI_A  
tSU_REn  
ADDR[7:0]  
tSU_REn  
tH_REn  
tSU_REn  
Z
EBI_AD[7:0]  
EBI_REn  
DATA[7:0]  
Z
tWIDTH_REn  
Table 3.22. EBI Read Enable Related Output Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2 3 4  
tOH_REn  
Output hold time, from trailing EBI_REn/  
EBI_NANDREn edge to EBI_AD, EBI_A, EBI_CSn,  
EBI_BLn invalid  
-10.00 + (RDHOLD *  
tHFCORECLK  
ns  
)
1 2 3 4 5  
tOSU_REn  
Output setup time, from EBI_AD, EBI_A, EBI_CSn,  
EBI_BLn valid to leading EBI_REn/EBI_NANDREn  
edge  
-10.00 + (RDSETUP  
* tHFCORECLK  
ns  
ns  
)
1 2 3 4 5 6  
tWIDTH_REn  
EBI_REn pulse width  
-9.00 + ((RD-  
STRB+1) * tHFCORE-  
)
CLK  
1Applies for all addressing modes (figure only shows D8A8. Output timing for EBI_AD only applies to multiplexed addressing  
modes D8A24ALE and D16A16ALE)  
2Applies for both EBI_REn and EBI_NANDREn (figure only shows EBI_REn)  
3Applies for all polarities (figure only shows active low signals)  
4Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
5The figure shows the timing for the case that the half strobe length functionality is not used, i.e. HALFRE=0. The leading edge  
of EBI_REn can be moved to the right by setting HALFRE=1. This decreases the length of tWIDTH_REn and increases the length  
of tOSU_REn by 1/2 * tHFCLKNODIV  
.
6When page mode is used, RDSTRB is replaced by RDPA for page hits.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
51  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.41. EBI Read Enable Related Timing Requirements  
RDSETUP  
RDSTRB  
RDHOLD  
(0, 1, 2, ...)  
(1, 2, 3, ...)  
(0, 1, 2, ...)  
ADDR[N:1]  
Z
Z
EBI_A[N- 1:0]  
EBI_AD[15:0]  
EBI_CSn  
DATA[15:0]  
Z
tSU_REn  
EBI_REn  
tH_REn  
Table 3.23. EBI Read Enable Related Timing Requirements  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2 3 4  
tSU_REn  
Setup time, from EBI_AD valid to trailing EBI_REn  
edge  
37  
-1  
ns  
1 2 3 4  
tH_Ren  
Hold time, from trailing EBI_REn edge to EBI_AD  
invalid  
ns  
1Applies for all addressing modes (figure only shows D16A8).  
2Applies for both EBI_REn and EBI_NANDREn (figure only shows EBI_REn)  
3Applies for all polarities (figure only shows active low signals)  
4Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
Figure 3.42. EBI Ready/Wait Related Timing Requirements  
RDSETUP  
RDSTRB  
SYNC  
RDHOLD  
(0, 1, 2, ...)  
(1, 2, 3, ...)  
(3)  
(0, 1, 2, ...)  
EBI_RDY  
EBI_AD[15:0]  
EBI_CSn  
Z
DATA[15:0]  
tSU_ARDY  
EBI_REn  
tH_ARDY  
Table 3.24. EBI Ready/Wait Related Timing Requirements  
Symbol  
Parameter  
Min  
37 + (3 * tHFCORECLK  
Typ  
Max  
Unit  
1 2 3 4  
tSU_ARDY  
Setup time, from EBI_ARDY valid to trailing  
EBI_REn, EBI_WEn edge  
)
ns  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
52  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Min  
-1 + (3 * tHFCORECLK  
Typ  
Max  
Unit  
1 2 3 4  
tH_ARDY  
Hold time, from trailing EBI_REn, EBI_WEn edge  
to EBI_ARDY invalid  
)
ns  
1Applies for all addressing modes (figure only shows D16A8.)  
2Applies for EBI_REn, EBI_WEn (figure only shows EBI_REn)  
3Applies for all polarities (figure only shows active low signals)  
4Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
3.16 I2C  
Table 3.25. I2C Standard-mode (Sm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
4.7  
4.0  
250  
8
1001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
34502,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
4.7  
4.0  
4.0  
4.7  
µs  
µs  
µs  
µs  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32LG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 4).  
Table 3.26. I2C Fast-mode (Fm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
1.3  
0.6  
100  
8
4001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
9002,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
0.6  
0.6  
0.6  
1.3  
µs  
µs  
µs  
µs  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32LG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 4).  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
53  
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.27. I2C Fast-mode Plus (Fm+)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
0.5  
10001 kHz  
tLOW  
SCL clock low time  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
tHIGH  
SCL clock high time  
0.26  
50  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
0.26  
0.26  
0.26  
0.5  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32LG Reference Manual.  
3.17 USART SPI  
Figure 3.43. SPI Master Timing  
tCS_MO  
CS  
tSCKL_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Table 3.28. SPI Master Timing  
Symbol  
Parameter  
Condition  
Min  
2 * tHFPER-  
Typ  
Max  
Unit  
1 2  
tSCLK  
SCLK period  
ns  
CLK  
1 2  
tCS_MO  
CS to MOSI  
-2.00  
2.00 ns  
1 2  
tSCLK_MO  
SCLK to MOSI  
MISO setup time  
MISO hold time  
-1.00  
36.00  
-6.00  
3.00 ns  
1 2  
tSU_MI  
IOVDD = 3.0 V  
ns  
ns  
1 2  
tH_MI  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
54  
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.29. SPI Master Timing with SSSEARLY and SMSDELAY  
Symbol  
Parameter  
Condition  
Min  
2 * tHFPER-  
Typ  
Max  
Unit  
1 2  
tSCLK  
SCLK period  
ns  
CLK  
12  
tCS_MO  
CS to MOSI  
-2.00  
2.00 ns  
12  
tSCLK_MO  
SCLK to MOSI  
MISO setup time  
MISO hold time  
-1.00  
-32.00  
63.00  
3.00 ns  
12  
tSU_MI  
IOVDD = 3.0 V  
ns  
ns  
12  
tH_MI  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
Figure 3.44. SPI Slave Timing  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Table 3.30. SPI Slave Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2  
tSCLK_sl  
tSCLK_hi  
tSCLK_lo  
SCKL period  
6 * tHFPER-  
ns  
ns  
ns  
CLK  
1 2  
1 2  
SCLK high period  
SCLK low period  
3 * tHFPER-  
CLK  
3 * tHFPER-  
CLK  
1 2  
tCS_ACT_MI  
CS active to MISO  
CS disable to MISO  
MOSI setup time  
MOSI hold time  
5.00  
5.00  
5.00  
35.00 ns  
35.00 ns  
ns  
1 2  
tCS_DIS_MI  
1 2  
tSU_MO  
1 2  
tH_MO  
2 + 2 * tHF-  
ns  
PERCLK  
1 2  
tSCLK_MI  
SCLK to MISO  
7 + tHFPER-  
42 + 2 * ns  
tHFPERCLK  
CLK  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
Table 3.31. SPI Slave Timing with SSSEARLY and SMSDELAY  
Symbol  
Parameter  
Min  
6 * tHFPER-  
Typ  
Max  
Unit  
12  
tSCLK_sl  
SCKL period  
ns  
CLK  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
55  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Min  
3 * tHFPER-  
Typ  
Max  
Unit  
12  
tSCLK_hi  
SCLK high period  
ns  
CLK  
12  
tSCLK_lo  
SCLK low period  
3 * tHFPER-  
ns  
CLK  
12  
tCS_ACT_MI  
CS active to MISO  
CS disable to MISO  
MOSI setup time  
MOSI hold time  
5.00  
5.00  
5.00  
35.00 ns  
12  
tCS_DIS_MI  
35.00 ns  
12  
tSU_MO  
ns  
ns  
12  
tH_MO  
2 + 2 * tHF-  
PERCLK  
12  
tSCLK_MI  
SCLK to MISO  
-264 + tHF-  
-234 + 2 * ns  
tHFPERCLK  
PERCLK  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
3.18 Digital Peripherals  
Table 3.32. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
4.0  
3.8  
µA/  
MHz  
IUART  
UART current  
LEUART current  
I2C current  
UART idle current, clock en-  
abled  
µA/  
MHz  
ILEUART  
LEUART idle current, clock en-  
abled  
194.0  
7.6  
nA  
II2C  
I2C idle current, clock enabled  
µA/  
MHz  
ITIMER  
ILETIMER  
IPCNT  
TIMER current  
LETIMER current  
PCNT current  
TIMER_0 idle current, clock  
enabled  
6.5  
µA/  
MHz  
LETIMER idle current, clock  
enabled  
85.8  
91.4  
nA  
nA  
nA  
PCNT idle current, clock en-  
abled  
IRTC  
IAES  
RTC current  
AES current  
RTC idle current, clock enabled  
AES idle current, clock enabled  
54.6  
1.8  
µA/  
MHz  
IGPIO  
GPIO current  
EBI current  
PRS current  
DMA current  
GPIO idle current, clock en-  
abled  
3.4  
6.5  
µA/  
MHz  
IEBI  
EBI idle current, clock enabled  
µA/  
MHz  
IPRS  
PRS idle current  
3.9  
µA/  
MHz  
IDMA  
Clock enable  
10.9  
µA/  
MHz  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
56  
 
 
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32LG380.  
4.1 Pinout  
The EFM32LG380 pinout is shown in Figure 4.1 (p. 57) and Table 4.1 (p. 57). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32LG380 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
1
PA0  
EBI_AD09 #0/1/2  
TIM0_CC0 #0/1/4  
CMU_CLK1 #0  
PRS_CH1 #0  
2
3
PA1  
PA2  
EBI_AD10 #0/1/2  
EBI_AD11 #0/1/2  
TIM0_CC1 #0/1  
TIM0_CC2 #0/1  
I2C0_SCL #0  
CMU_CLK0 #0  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
57  
 
 
 
 
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
ETM_TD0 #3  
LES_ALTEX2 #0  
ETM_TD1 #3  
4
5
6
7
PA3  
PA4  
PA5  
PA6  
EBI_AD12 #0/1/2  
EBI_AD13 #0/1/2  
EBI_AD14 #0/1/2  
EBI_AD15 #0/1/2  
TIM0_CDTI0 #0  
TIM0_CDTI1 #0  
TIM0_CDTI2 #0  
U0_TX #2  
U0_RX #2  
LES_ALTEX3 #0  
ETM_TD2 #3  
LES_ALTEX4 #0  
ETM_TD3 #3  
LEU1_TX #1  
LEU1_RX #1  
ETM_TCLK #3  
GPIO_EM4WU1  
8
9
IOVDD_0  
PB0  
Digital IO power supply 0.  
EBI_A16 #0/1/2  
EBI_A17 #0/1/2  
EBI_A18 #0/1/2  
EBI_A19 #0/1/2  
EBI_A20 #0/1/2  
EBI_A21 #0/1/2  
EBI_A22 #0/1/2  
TIM1_CC0 #2  
TIM1_CC1 #2  
TIM1_CC2 #2  
PCNT1_S0IN #1  
PCNT1_S1IN #1  
10  
11  
12  
13  
14  
15  
16  
17  
PB1  
PB2  
PB3  
US2_TX #1  
US2_RX #1  
US2_CLK #1  
US2_CS #1  
PB4  
PB5  
PB6  
VSS  
Ground  
IOVDD_1  
Digital IO power supply 1.  
ACMP0_CH0  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
TIM0_CC1 #4  
PCNT0_S0IN #2  
LES_CH0 #0  
PRS_CH2 #0  
18  
19  
20  
21  
22  
23  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
EBI_A23 #0/1/2  
EBI_A24 #0/1/2  
ACMP0_CH1  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
PCNT0_S1IN #2  
LES_CH1 #0  
PRS_CH3 #0  
ACMP0_CH2  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
EBI_A25 #0/1/2  
TIM0_CDTI0 #4  
TIM0_CDTI1 #4  
US2_TX #0  
US2_RX #0  
LES_CH2 #0  
LES_CH3 #0  
LES_CH4 #0  
LES_CH5 #0  
ACMP0_CH3  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
EBI_NANDREn #0/1/2  
EBI_A26 #0/1/2  
ACMP0_CH4  
DAC0_P0 /  
OPAMP_P0  
TIM0_CDTI2 #4  
LETIM0_OUT0 #3  
PCNT1_S0IN #0  
US2_CLK #0  
I2C1_SDA #0  
ACMP0_CH5  
DAC0_N0 /  
OPAMP_N0  
LETIM0_OUT1 #3  
PCNT1_S1IN #0  
US2_CS #0  
I2C1_SCL #0  
EBI_NANDWEn #0/1/2  
US0_TX #4  
US1_CLK #0  
24  
25  
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
US0_RX #4  
US1_CS #0  
26  
27  
28  
29  
30  
31  
32  
PA7  
PA8  
EBI_CSTFT #0/1/2  
EBI_DCLK #0/1/2  
EBI_DTEN #0/1/2  
EBI_VSNC #0/1/2  
EBI_HSNC #0/1/2  
TIM2_CC0 #0  
TIM2_CC1 #0  
TIM2_CC2 #0  
PA9  
PA10  
PA11  
IOVDD_2  
VSS  
Digital IO power supply 2.  
Ground  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
58  
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
33  
PA12  
PA13  
PA14  
EBI_A00 #0/1/2  
EBI_A01 #0/1/2  
EBI_A02 #0/1/2  
TIM2_CC0 #1  
TIM2_CC1 #1  
TIM2_CC2 #1  
34  
35  
Reset input, active low.  
36  
RESETn  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure  
that reset is released.  
37  
38  
PB9  
EBI_A03 #0/1/2  
EBI_A04 #0/1/2  
U1_TX #2  
U1_RX #2  
PB10  
DAC0_OUT0 /  
OPAMP_OUT0  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
39  
PB11  
I2C1_SDA #1  
I2C1_SCL #1  
DAC0_OUT1 /  
OPAMP_OUT1  
40  
41  
42  
PB12  
AVDD_1  
PB13  
LETIM0_OUT1 #1  
Analog power supply 1.  
HFXTAL_P  
US0_CLK #4/5  
LEU0_TX #1  
US0_CS #4/5  
LEU0_RX #1  
43  
PB14  
HFXTAL_N  
44  
45  
IOVDD_3  
AVDD_0  
Digital IO power supply 3.  
Analog power supply 0.  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
46  
47  
PD0  
PD1  
PCNT2_S0IN #0  
US1_TX #1  
US1_RX #1  
ADC0_CH1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
TIM0_CC0 #3  
PCNT2_S1IN #0  
DBG_SWO #2  
USB_DMPU #0  
US1_CLK #1  
48  
49  
50  
51  
PD2  
PD3  
PD4  
PD5  
ADC0_CH2  
EBI_A27 #0/1/2  
TIM0_CC1 #3  
TIM0_CC2 #3  
DBG_SWO #3  
ETM_TD1 #0/2  
ETM_TD2 #0/2  
ETM_TD3 #0/2  
ADC0_CH3  
OPAMP_N2  
US1_CS #1  
LEU0_TX #0  
LEU0_RX #0  
ADC0_CH4  
OPAMP_P2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH6  
DAC0_P1 /  
OPAMP_P1  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
LES_ALTEX0 #0  
ACMP0_O #2  
ETM_TD0 #0  
US1_RX #2  
I2C0_SDA #1  
52  
53  
PD6  
PD7  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
ADC0_CH7  
DAC0_N1 /  
OPAMP_N1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
US1_TX #2  
I2C0_SCL #1  
ETM_TCLK #0  
54  
55  
PD8  
PC6  
BU_VIN  
CMU_CLK1 #1  
LEU1_TX #0  
I2C0_SDA #2  
LES_CH6 #0  
ETM_TCLK #2  
ACMP0_CH6  
EBI_A05 #0/1/2  
EBI_A06 #0/1/2  
LEU1_RX #0  
I2C0_SCL #2  
LES_CH7 #0  
ETM_TD0 #2  
56  
PC7  
ACMP0_CH7  
57  
58  
59  
VDD_DREG  
VSS  
Power supply for on-chip voltage regulator.  
Ground  
DECOUPLE  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
TIM3_CC0 #1  
PCNT0_S0IN #1  
U0_TX #1  
I2C1_SDA #2  
60  
PE0  
EBI_A07 #0/1/2  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
59  
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
TIM3_CC1 #1  
PCNT0_S1IN #1  
U0_RX #1  
I2C1_SCL #2  
61  
PE1  
EBI_A08 #0/1/2  
62  
63  
64  
65  
66  
67  
68  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PC8  
BU_VOUT  
BU_STAT  
EBI_A09 #0  
EBI_A10 #0  
TIM3_CC2 #1  
U1_TX #3  
U1_RX #3  
ACMP0_O #1  
ACMP1_O #1  
EBI_A11 #0/1/2  
EBI_A12 #0/1/2  
EBI_A13 #0/1/2  
EBI_A14 #0/1/2  
EBI_A15 #0/1/2  
US0_CS #1  
US0_CLK #1  
US0_RX #1  
US0_TX #1  
US0_CS #2  
ACMP1_CH0  
ACMP1_CH1  
TIM2_CC0 #2  
TIM2_CC1 #2  
TIM2_CC2 #2  
LES_CH8 #0  
LES_CH9 #0  
GPIO_EM4WU2  
69  
PC9  
EBI_A09 #1/2  
US0_CLK #2  
70  
71  
72  
73  
PC10  
PC11  
ACMP1_CH2  
ACMP1_CH3  
EBI_A10 #1/2  
EBI_ALE #1/2  
US0_RX #2  
US0_TX #2  
LES_CH10 #0  
LES_CH11 #0  
USB_VREGI  
USB_VREGO  
USB Input to internal 3.3 V regulator.  
USB Decoupling for internal 3.3 V USB regulator and regulator output.  
U1_TX #1  
USB_DM  
74  
75  
PF10  
PF11  
U1_RX #1  
USB_DP  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
TIM0_CC0 #5  
LETIM0_OUT0 #2  
76  
77  
78  
PF0  
PF1  
PF2  
DBG_SWCLK #0/1/2/3  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
TIM0_CC1 #5  
LETIM0_OUT1 #2  
DBG_SWDIO #0/1/2/3  
GPIO_EM4WU3  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
EBI_ARDY #0/1/2  
EBI_REn #0/2  
TIM0_CC2 #5  
LEU0_TX #4  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
USB_VBUS  
PF12  
PF5  
USB 5.0 V VBUS input.  
USB_ID  
TIM0_CDTI2 #2/5  
USB_VBUSEN #0  
PRS_CH2 #1  
IOVDD_5  
VSS  
Digital IO power supply 5.  
Ground  
PF6  
EBI_BL0 #0/1/2  
EBI_BL1 #0/1/2  
EBI_WEn #1  
TIM0_CC0 #2  
TIM0_CC1 #2  
TIM0_CC2 #2  
U0_TX #0  
U0_RX #0  
PF7  
PF8  
ETM_TCLK #1  
ETM_TD0 #1  
PF9  
EBI_REn #1  
PD9  
EBI_CS0 #0/1/2  
EBI_CS1 #0/1/2  
EBI_CS2 #0/1/2  
EBI_CS3 #0/1/2  
EBI_AD00 #0/1/2  
EBI_AD01 #0/1/2  
EBI_AD02 #0/1/2  
PD10  
PD11  
PD12  
PE8  
PCNT2_S0IN #1  
PCNT2_S1IN #1  
TIM1_CC0 #1  
PRS_CH3 #1  
BOOT_TX  
PE9  
PE10  
US0_TX #0  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
60  
...the world's most energy friendly microcontrollers  
LQFP100 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
EBI  
Timers  
Communication  
Other  
LES_ALTEX5 #0  
BOOT_RX  
95  
PE11  
PE12  
EBI_AD03 #0/1/2  
EBI_AD04 #0/1/2  
TIM1_CC1 #1  
TIM1_CC2 #1  
US0_RX #0  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
CMU_CLK1 #2  
LES_ALTEX6 #0  
96  
97  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
PE13  
EBI_AD05 #0/1/2  
98  
99  
PE14  
PE15  
PA15  
EBI_AD06 #0/1/2  
EBI_AD07 #0/1/2  
EBI_AD08 #0/1/2  
TIM3_CC0 #0  
TIM3_CC1 #0  
TIM3_CC2 #0  
LEU0_TX #2  
LEU0_RX #2  
100  
4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 61). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
3
4
5
6
Description  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
PC9  
PC10  
PC11  
PF2  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
PE2  
PD6  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_O  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
PE3  
PD7  
Analog comparator ACMP1, digital output.  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 2.  
Analog to digital converter ADC0, input channel number 3.  
ADC0_CH0  
PD0  
PD1  
PD2  
PD3  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
61  
 
 
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
BOOT_RX  
0
1
2
3
4
5
6
Description  
PD4  
PD5  
PD6  
PD7  
PE11  
PE10  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX  
BOOT_TX  
Bootloader TX  
Backup Power Domain status, whether or not the system  
is in backup mode  
BU_STAT  
PE3  
BU_VIN  
PD8  
PE2  
PA2  
PA1  
Battery input for Backup Power Domain  
BU_VOUT  
CMU_CLK0  
CMU_CLK1  
Power output for Backup Power Domain  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PD7  
PD8  
PE12  
DAC0_N0 /  
OPAMP_N0  
PC5  
Operational Amplifier 0 external negative input.  
DAC0_N1 /  
OPAMP_N1  
PD7  
PD3  
PB11  
Operational Amplifier 1 external negative input.  
Operational Amplifier 2 external negative input.  
OPAMP_N2  
DAC0_OUT0 /  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /  
OPAMP output channel number 0.  
DAC0_OUT0ALT /  
OPAMP_OUT0ALT  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
PD0  
DAC0_OUT1 /  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /  
OPAMP output channel number 1.  
PB12  
DAC0_OUT1ALT /  
OPAMP_OUT1ALT  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PD1  
OPAMP_OUT2  
PD5  
PC4  
PD0  
Operational Amplifier 2 output.  
DAC0_P0 /  
OPAMP_P0  
Operational Amplifier 0 external positive input.  
DAC0_P1 /  
OPAMP_P1  
PD6  
PD4  
Operational Amplifier 1 external positive input.  
OPAMP_P2  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
PF1  
PF2  
PF0  
PF1  
PF0  
PF1  
PD1  
PF0  
PF1  
PD2  
Note that this function is enabled to pin out of reset, and  
has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
Note that this function is enabled to pin out of reset, and  
has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
Note that this function is not enabled after reset, and must  
be enabled by software to be used.  
EBI_A00  
EBI_A01  
EBI_A02  
EBI_A03  
EBI_A04  
EBI_A05  
EBI_A06  
EBI_A07  
PA12  
PA13  
PA14  
PB9  
PA12  
PA13  
PA14  
PB9  
PA12  
PA13  
PA14  
PB9  
External Bus Interface (EBI) address output pin 00.  
External Bus Interface (EBI) address output pin 01.  
External Bus Interface (EBI) address output pin 02.  
External Bus Interface (EBI) address output pin 03.  
External Bus Interface (EBI) address output pin 04.  
External Bus Interface (EBI) address output pin 05.  
External Bus Interface (EBI) address output pin 06.  
External Bus Interface (EBI) address output pin 07.  
PB10  
PC6  
PB10  
PC6  
PB10  
PC6  
PC7  
PC7  
PC7  
PE0  
PE0  
PE0  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
62  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
EBI_A08  
EBI_A09  
EBI_A10  
EBI_A11  
EBI_A12  
EBI_A13  
EBI_A14  
EBI_A15  
EBI_A16  
EBI_A17  
EBI_A18  
EBI_A19  
EBI_A20  
EBI_A21  
EBI_A22  
EBI_A23  
EBI_A24  
EBI_A25  
EBI_A26  
EBI_A27  
0
1
2
PE1  
PC9  
PC10  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
3
4
5
6
Description  
PE1  
PE2  
PE3  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
PE1  
External Bus Interface (EBI) address output pin 08.  
External Bus Interface (EBI) address output pin 09.  
External Bus Interface (EBI) address output pin 10.  
External Bus Interface (EBI) address output pin 11.  
External Bus Interface (EBI) address output pin 12.  
External Bus Interface (EBI) address output pin 13.  
External Bus Interface (EBI) address output pin 14.  
External Bus Interface (EBI) address output pin 15.  
External Bus Interface (EBI) address output pin 16.  
External Bus Interface (EBI) address output pin 17.  
External Bus Interface (EBI) address output pin 18.  
External Bus Interface (EBI) address output pin 19.  
External Bus Interface (EBI) address output pin 20.  
External Bus Interface (EBI) address output pin 21.  
External Bus Interface (EBI) address output pin 22.  
External Bus Interface (EBI) address output pin 23.  
External Bus Interface (EBI) address output pin 24.  
External Bus Interface (EBI) address output pin 25.  
External Bus Interface (EBI) address output pin 26.  
External Bus Interface (EBI) address output pin 27.  
PC9  
PC10  
PE4  
PE5  
PE6  
PE7  
PC8  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PC0  
PC1  
PC2  
PC4  
PD2  
External Bus Interface (EBI) address and data input / out-  
put pin 00.  
EBI_AD00  
EBI_AD01  
EBI_AD02  
EBI_AD03  
EBI_AD04  
EBI_AD05  
EBI_AD06  
EBI_AD07  
EBI_AD08  
EBI_AD09  
EBI_AD10  
EBI_AD11  
EBI_AD12  
EBI_AD13  
PE8  
PE8  
PE8  
External Bus Interface (EBI) address and data input / out-  
put pin 01.  
PE9  
PE9  
PE9  
External Bus Interface (EBI) address and data input / out-  
put pin 02.  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PA15  
PA0  
External Bus Interface (EBI) address and data input / out-  
put pin 03.  
External Bus Interface (EBI) address and data input / out-  
put pin 04.  
External Bus Interface (EBI) address and data input / out-  
put pin 05.  
External Bus Interface (EBI) address and data input / out-  
put pin 06.  
External Bus Interface (EBI) address and data input / out-  
put pin 07.  
External Bus Interface (EBI) address and data input / out-  
put pin 08.  
External Bus Interface (EBI) address and data input / out-  
put pin 09.  
External Bus Interface (EBI) address and data input / out-  
put pin 10.  
PA1  
PA1  
PA1  
External Bus Interface (EBI) address and data input / out-  
put pin 11.  
PA2  
PA2  
PA2  
External Bus Interface (EBI) address and data input / out-  
put pin 12.  
PA3  
PA3  
PA3  
External Bus Interface (EBI) address and data input / out-  
put pin 13.  
PA4  
PA4  
PA4  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
63  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
External Bus Interface (EBI) address and data input / out-  
put pin 14.  
EBI_AD14  
PA5  
PA6  
PA5  
PA5  
External Bus Interface (EBI) address and data input / out-  
put pin 15.  
EBI_AD15  
EBI_ALE  
PA6  
PC11  
PF2  
PA6  
PC11  
PF2  
External Bus Interface (EBI) Address Latch Enable output.  
External Bus Interface (EBI) Hardware Ready Control in-  
put.  
EBI_ARDY  
PF2  
EBI_BL0  
PF6  
PF6  
PF6  
External Bus Interface (EBI) Byte Lane/Enable pin 0.  
External Bus Interface (EBI) Byte Lane/Enable pin 1.  
External Bus Interface (EBI) Chip Select output 0.  
External Bus Interface (EBI) Chip Select output 1.  
External Bus Interface (EBI) Chip Select output 2.  
External Bus Interface (EBI) Chip Select output 3.  
External Bus Interface (EBI) Chip Select output TFT.  
External Bus Interface (EBI) TFT Dot Clock pin.  
External Bus Interface (EBI) TFT Data Enable pin.  
EBI_BL1  
PF7  
PF7  
PF7  
EBI_CS0  
EBI_CS1  
EBI_CS2  
EBI_CS3  
EBI_CSTFT  
EBI_DCLK  
EBI_DTEN  
PD9  
PD10  
PD11  
PD12  
PA7  
PD9  
PD10  
PD11  
PD12  
PA7  
PD9  
PD10  
PD11  
PD12  
PA7  
PA8  
PA8  
PA8  
PA9  
PA9  
PA9  
External Bus Interface (EBI) TFT Horizontal Synchroniza-  
tion pin.  
EBI_HSNC  
PA11  
PA11  
PA11  
EBI_NANDREn  
EBI_NANDWEn  
EBI_REn  
PC3  
PC5  
PF5  
PC3  
PC5  
PF9  
PC3  
PC5  
PF5  
External Bus Interface (EBI) NAND Read Enable output.  
External Bus Interface (EBI) NAND Write Enable output.  
External Bus Interface (EBI) Read Enable output.  
External Bus Interface (EBI) TFT Vertical Synchronization  
pin.  
EBI_VSNC  
PA10  
PA10  
PA10  
EBI_WEn  
PF8  
PF8  
PF9  
External Bus Interface (EBI) Write Enable output.  
Embedded Trace Module ETM clock .  
ETM_TCLK  
PD7  
PD6  
PD3  
PD4  
PD5  
PA0  
PA6  
PC9  
PF1  
PF2  
PE13  
PC6  
PC7  
PD3  
PD4  
PD5  
PA6  
PA2  
PA3  
PA4  
PA5  
ETM_TD0  
Embedded Trace Module ETM data 0.  
ETM_TD1  
Embedded Trace Module ETM data 1.  
ETM_TD2  
Embedded Trace Module ETM data 2.  
ETM_TD3  
Embedded Trace Module ETM data 3.  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU2  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as exter-  
nal optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
PA0  
PC5  
PC4  
PD6  
PD7  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PC7  
PC6  
PE1  
PE0  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
I2C1_SCL  
PD6  
PB12  
PB11  
I2C1 Serial Clock Line input / output.  
I2C1 Serial Data input / output.  
I2C1_SDA  
LES_ALTEX0  
LES_ALTEX1  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
64  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
0
1
2
3
4
5
6
Description  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PA3  
PA4  
PA5  
PE11  
PE12  
PE13  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
PC10  
PC11  
PD6  
PD7  
PD5  
LES_CH1  
LESENSE channel 1.  
LES_CH2  
LESENSE channel 2.  
LES_CH3  
LESENSE channel 3.  
LES_CH4  
LESENSE channel 4.  
LES_CH5  
LESENSE channel 5.  
LES_CH6  
LESENSE channel 6.  
LES_CH7  
LESENSE channel 7.  
LES_CH8  
LESENSE channel 8.  
LES_CH9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
LESENSE channel 10.  
LESENSE channel 11.  
PB11  
PB12  
PB14  
PF0  
PC4  
PC5  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
PE15  
PA0  
LEUART0 Transmit output. Also used as receive input in  
half duplex communication.  
LEU0_TX  
LEU1_RX  
LEU1_TX  
PD4  
PC7  
PC6  
PB13  
PA6  
PA5  
PE14  
PF0  
PF2  
LEUART1 Receive input.  
LEUART1 Transmit output. Also used as receive input in  
half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) negative  
pin. Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
PB7  
LFXTAL_P  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
PRS_CH0  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PE0  
PE1  
PB3  
PB4  
PE8  
PE9  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 1.  
PC4  
PC5  
PD0  
PD1  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
PA3  
Pulse Counter PCNT1 input number 0.  
Pulse Counter PCNT1 input number 1.  
Pulse Counter PCNT2 input number 0.  
Pulse Counter PCNT2 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 0 Complimentary Deat Time Insertion channel 0.  
PRS_CH1  
PRS_CH2  
PF5  
PE8  
PA0  
PA1  
PA2  
PRS_CH3  
TIM0_CC0  
PF6  
PF7  
PF8  
PD1  
PD2  
PD3  
PA0  
PC0  
PC1  
PC2  
PF0  
PF1  
PF2  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
65  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
TIM3_CC0  
TIM3_CC1  
TIM3_CC2  
U0_RX  
0
1
2
3
4
5
6
Description  
PA4  
PA5  
PC3  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
Timer 3 Capture Compare input / output channel 0.  
Timer 3 Capture Compare input / output channel 1.  
Timer 3 Capture Compare input / output channel 2.  
UART0 Receive input.  
PF5  
PB0  
PB1  
PB2  
PC8  
PC9  
PC10  
PC4  
PD6  
PD7  
PF5  
PE10  
PE11  
PE12  
PA12  
PA13  
PA14  
PE0  
PB7  
PB8  
PB11  
PA8  
PA9  
PA10  
PE14  
PE15  
PA15  
PF7  
PE1  
PE2  
PE1  
PA4  
PA3  
PB10  
PB9  
UART0 Transmit output. Also used as receive input in half  
duplex communication.  
U0_TX  
U1_RX  
U1_TX  
PF6  
PE0  
PF11  
PF10  
PE3  
PE2  
UART1 Receive input.  
UART1 Transmit output. Also used as receive input in half  
duplex communication.  
US0_CLK  
US0_CS  
PE12  
PE13  
PE5  
PE4  
PC9  
PC8  
PB13  
PB14  
PB13  
PB14  
USART0 clock input / output.  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PE6  
PE7  
PC10  
PC11  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave Output  
(MISO).  
USART0 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART0 Synchronous mode Master Output / Slave Input  
(MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
US2_CLK  
US2_CS  
PC4  
PC5  
PB5  
PB6  
USART2 clock input / output.  
USART2 chip select input / output.  
USART2 Asynchronous Receive.  
US2_RX  
US2_TX  
PC3  
PC2  
PB4  
PB3  
USART2 Synchronous mode Master Input / Slave Output  
(MISO).  
USART2 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART2 Synchronous mode Master Output / Slave Input  
(MOSI).  
USB_DM  
USB_DMPU  
USB_DP  
PF10  
PD2  
USB D- pin.  
USB D- Pullup control.  
USB D+ pin.  
PF11  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
66  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
USB_ID  
0
1
2
3
4
5
6
Description  
PF12  
USB ID pin. Used in OTG mode.  
USB_VBUS  
USB_VBUS  
PF5  
USB 5 V VBUS input.  
USB_VBUSEN  
USB_VREGI  
USB 5 V VBUS enable.  
USB_VREGI  
USB Input to internal 3.3 V regulator  
USB Decoupling for internal 3.3 V USB regulator and reg-  
ulator output  
USB_VREGO  
USB_VREGO  
4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32LG380 is shown in Table 4.3 (p. 67). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port in indicated  
by a number from 15 down to 0.  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
PA15 PA14 PA13 PA12 PA11 PA10  
PA9  
PB9  
PC9  
PD9  
PE9  
PF9  
PA8  
PB8  
PC8  
PD8  
PE8  
PF8  
PA7  
PB7  
PC7  
PD7  
PE7  
PF7  
PA6  
PB6  
PC6  
PD6  
PE6  
PF6  
PA5  
PB5  
PC5  
PD5  
PE5  
PF5  
PA4  
PB4  
PC4  
PD4  
PE4  
-
PA3  
PB3  
PC3  
PD3  
PE3  
-
PA2  
PB2  
PC2  
PD2  
PE2  
PF2  
PA1  
PB1  
PC1  
PD1  
PE1  
PF1  
PA0  
PB0  
PC0  
PD0  
PE0  
PF0  
-
-
-
PB14 PB13 PB12 PB11 PB10  
-
-
-
-
-
PC11 PC10  
PD12 PD11 PD10  
PE15 PE14 PE13 PE12 PE11 PE10  
PF12 PF11 PF10  
-
-
-
4.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32LG380 is shown in Figure 4.2 (p. 67) .  
Figure 4.2. Opamp Pinout  
PB11  
PB12  
PC0  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
PC1  
PC2  
PC3  
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
67  
 
 
 
 
...the world's most energy friendly microcontrollers  
4.5 LQFP100 Package  
Figure 4.3. LQFP100  
Note:  
1. Datum 'T', 'U' and 'Z' to be determined at datum plane 'H'.  
2. Datum 'D' and 'E' to be determined at seating plane datum 'Y'.  
3. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25 per side. Di-  
mensions 'D1' and 'E1' do include mold mismatch and are determined at datum plane datum 'H'.  
4. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the  
lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located  
on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm  
5. Exact shape of each corner is optional.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
68  
 
 
...the world's most energy friendly microcontrollers  
Table 4.4. LQFP100 (Dimensions in mm)  
SYMBOL  
MIN  
--  
NOM  
--  
MAX  
1.6  
total thickness  
stand off  
A
A1  
A2  
b
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
--  
0.15  
1.45  
0.27  
0.23  
0.2  
mold thickness  
lead width (plating)  
lead width  
1.4  
0.2  
b1  
c
--  
L/F thickness (plating)  
lead thickness  
x
--  
c1  
D
--  
0.16  
16 BSC  
16 BSC  
14 BSC  
14 BSC  
0.5 BSC  
0.6  
y
E
x
D1  
E1  
e
body size  
y
lead pitch  
footprint  
L
0.45  
0.75  
L1  
1 REF  
3.5°  
0°  
0°  
7°  
--  
θ
--  
θ1  
θ2  
11°  
11°  
12°  
12°  
13°  
13°  
θ3  
R1  
0.08  
0.08  
0.2  
--  
--  
0.2  
--  
R1  
--  
S
--  
package edge tolerance  
lead edge tolerance  
coplanarity  
aaa  
bbb  
ccc  
ddd  
eee  
0.2  
0.2  
0.08  
0.08  
0.05  
lead offset  
mold flatness  
The LQFP100 Package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see:  
http://www.silabs.com/support/quality/pages/default.aspx  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
69  
 
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. LQFP100 PCB Land Pattern  
a
p8  
p7  
p6  
p1  
b
e
c
p2  
p5  
p3  
p4  
d
Table 5.1. QFP100 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
1.45  
Symbol  
P1  
Pin number  
Symbol  
Pin number  
a
b
c
d
e
1
P6  
P7  
P8  
-
75  
76  
100  
-
0.30  
P2  
25  
26  
50  
51  
0.50  
P3  
15.40  
15.40  
P4  
P5  
-
-
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
70  
 
 
 
 
...the world's most energy friendly microcontrollers  
Figure 5.2. LQFP100 PCB Solder Mask  
a
b
c
e
d
Table 5.2. QFP100 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.57  
0.42  
0.50  
15.40  
15.40  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
71  
 
 
...the world's most energy friendly microcontrollers  
Figure 5.3. LQFP100 PCB Stencil Design  
a
b
c
e
d
Table 5.3. QFP100 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
a
b
c
d
e
1.35  
0.20  
0.50  
15.40  
15.40  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.3 (p. 68) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033  
standard for MSL description and level 3 bake conditions.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
72  
 
 
 
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking (top view)  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 73) .  
6.3 Errata  
Please see the errata document for EFM32LG380 for description and resolution of device erratas. This  
document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
73  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.30  
June 13th, 2014  
Removed "Preliminary" markings.  
Updated electrical characteristics and updated/added plots.  
Updated orderable part numbers.  
Added AUXHFRCO to block diagram and electrical characteristics.  
Added EBI timing chapter.  
7.2 Revision 1.21  
November 21st, 2013  
Updated figures.  
Updated errata-link.  
Updated chip marking.  
Added link to Environmental and Quality information.  
Re-added missing DAC-data.  
7.3 Revision 1.20  
September 30th, 2013  
Added I2C characterization data.  
Added SPI characterization data.  
Corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.  
Corrected GPIO operating voltage from 1.8 V to 1.85 V.  
Added the USB bootloader information.  
Corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.  
Updated Environmental information.  
Updated trademark, disclaimer and contact information.  
Other minor corrections.  
7.4 Revision 1.10  
June 28th, 2013  
Updated power requirements in the Power Management section.  
Removed minimum load capacitance figure and table. Added reference to application note.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
74  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Other minor corrections.  
7.5 Revision 1.00  
September 11th, 2012  
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
Other minor corrections.  
7.6 Revision 0.92  
May 25th, 2012  
Corrected EM3 current consumption in the Electrical Characteristics section.  
7.7 Revision 0.90  
April 27th, 2012  
Initial preliminary release.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
75  
 
 
 
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation  
of all peripherals and modules available for system and software implementers using or intending to use  
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory  
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and  
do vary in different applications. Application examples described herein are for illustrative purposes only.  
Silicon Laboratories reserves the right to make changes without further notice and limitation to product  
information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the conse-  
quences of use of the information supplied herein. This document does not imply or express copyright  
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be  
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life  
Support System" is any product or system intended to support or sustain life and/or health, which, if it  
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories  
products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological  
or chemical weapons, or missiles capable of delivering such weapons.  
A.2 Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,  
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most ener-  
gy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-  
modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered  
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or reg-  
istered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products  
or brand names mentioned herein are trademarks of their respective holders.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
76  
 
 
 
...the world's most energy friendly microcontrollers  
B Contact Information  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
77  
 
 
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 7  
2.3. Memory Map ................................................................................................................................. 9  
3. Electrical Characteristics ........................................................................................................................... 10  
3.1. Test Conditions ............................................................................................................................. 10  
3.2. Absolute Maximum Ratings ............................................................................................................. 10  
3.3. General Operating Conditions .......................................................................................................... 10  
3.4. Current Consumption ..................................................................................................................... 11  
3.5. Transition between Energy Modes .................................................................................................... 17  
3.6. Power Management ....................................................................................................................... 18  
3.7. Flash .......................................................................................................................................... 19  
3.8. General Purpose Input Output ......................................................................................................... 19  
3.9. Oscillators .................................................................................................................................... 27  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32  
3.11. Digital Analog Converter (DAC) ...................................................................................................... 42  
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 43  
3.13. Analog Comparator (ACMP) .......................................................................................................... 47  
3.14. Voltage Comparator (VCMP) ......................................................................................................... 49  
3.15. EBI ........................................................................................................................................... 49  
3.16. I2C ........................................................................................................................................... 53  
3.17. USART SPI ................................................................................................................................ 54  
3.18. Digital Peripherals ....................................................................................................................... 56  
4. Pinout and Package ................................................................................................................................. 57  
4.1. Pinout ......................................................................................................................................... 57  
4.2. Alternate Functionality Pinout .......................................................................................................... 61  
4.3. GPIO Pinout Overview ................................................................................................................... 67  
4.4. Opamp Pinout Overview ................................................................................................................. 67  
4.5. LQFP100 Package ........................................................................................................................ 68  
5. PCB Layout and Soldering ........................................................................................................................ 70  
5.1. Recommended PCB Layout ............................................................................................................ 70  
5.2. Soldering Information ..................................................................................................................... 72  
6. Chip Marking, Revision and Errata .............................................................................................................. 73  
6.1. Chip Marking ................................................................................................................................ 73  
6.2. Revision ...................................................................................................................................... 73  
6.3. Errata ......................................................................................................................................... 73  
7. Revision History ...................................................................................................................................... 74  
7.1. Revision 1.30 ............................................................................................................................... 74  
7.2. Revision 1.21 ............................................................................................................................... 74  
7.3. Revision 1.20 ............................................................................................................................... 74  
7.4. Revision 1.10 ............................................................................................................................... 74  
7.5. Revision 1.00 ............................................................................................................................... 75  
7.6. Revision 0.92 ............................................................................................................................... 75  
7.7. Revision 0.90 ............................................................................................................................... 75  
A. Disclaimer and Trademarks ....................................................................................................................... 76  
A.1. Disclaimer ................................................................................................................................... 76  
A.2. Trademark Information ................................................................................................................... 76  
B. Contact Information ................................................................................................................................. 77  
B.1. ................................................................................................................................................. 77  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
78  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32LG380 Memory Map with largest RAM and Flash sizes ........................................................................ 9  
3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at 48MHz ................................. 13  
3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28MHz ............................... 13  
3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21MHz ............................... 14  
3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14MHz ............................... 14  
3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11MHz ............................... 15  
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6MHz .............................. 15  
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 1.2MHz .............................. 16  
3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 16  
3.9. EM3 current consumption. ..................................................................................................................... 17  
3.10. EM4 current consumption. ................................................................................................................... 17  
3.11. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21  
3.12. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22  
3.13. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23  
3.14. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24  
3.15. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25  
3.16. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26  
3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28  
3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29  
3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30  
3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.24. Integral Non-Linearity (INL) ................................................................................................................... 37  
3.25. Differential Non-Linearity (DNL) .............................................................................................................. 37  
3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38  
3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39  
3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40  
3.29. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41  
3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41  
3.31. ADC Temperature sensor readout ......................................................................................................... 42  
3.32. OPAMP Common Mode Rejection Ratio ................................................................................................. 45  
3.33. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 45  
3.34. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 46  
3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 46  
3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 46  
3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48  
3.38. EBI Write Enable Timing ....................................................................................................................... 49  
3.39. EBI Address Latch Enable Related Output Timing ..................................................................................... 50  
3.40. EBI Read Enable Related Output Timing ................................................................................................. 51  
3.41. EBI Read Enable Related Timing Requirements ........................................................................................ 52  
3.42. EBI Ready/Wait Related Timing Requirements .......................................................................................... 52  
3.43. SPI Master Timing ............................................................................................................................... 54  
3.44. SPI Slave Timing ................................................................................................................................ 55  
4.1. EFM32LG380 Pinout (top view, not to scale) .............................................................................................. 57  
4.2. Opamp Pinout ...................................................................................................................................... 67  
4.3. LQFP100 ............................................................................................................................................. 68  
5.1. LQFP100 PCB Land Pattern ................................................................................................................... 70  
5.2. LQFP100 PCB Solder Mask .................................................................................................................... 71  
5.3. LQFP100 PCB Stencil Design ................................................................................................................. 72  
6.1. Example Chip Marking (top view) ............................................................................................................. 73  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
79  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 7  
3.1. Absolute Maximum Ratings ..................................................................................................................... 10  
3.2. General Operating Conditions .................................................................................................................. 10  
3.3. Environmental ....................................................................................................................................... 11  
3.4. Current Consumption ............................................................................................................................. 11  
3.5. Energy Modes Transitions ...................................................................................................................... 17  
3.6. Power Management ............................................................................................................................... 18  
3.7. Flash .................................................................................................................................................. 19  
3.8. GPIO .................................................................................................................................................. 19  
3.9. LFXO .................................................................................................................................................. 27  
3.10. HFXO ................................................................................................................................................ 27  
3.11. LFRCO .............................................................................................................................................. 28  
3.12. HFRCO ............................................................................................................................................. 29  
3.13. AUXHFRCO ....................................................................................................................................... 32  
3.14. ULFRCO ............................................................................................................................................ 32  
3.15. ADC .................................................................................................................................................. 32  
3.16. DAC .................................................................................................................................................. 42  
3.17. OPAMP ............................................................................................................................................. 43  
3.18. ACMP ............................................................................................................................................... 47  
3.19. VCMP ............................................................................................................................................... 49  
3.20. EBI Write Enable Timing ....................................................................................................................... 50  
3.21. EBI Address Latch Enable Related Output Timing ..................................................................................... 50  
3.22. EBI Read Enable Related Output Timing ................................................................................................. 51  
3.23. EBI Read Enable Related Timing Requirements ........................................................................................ 52  
3.24. EBI Ready/Wait Related Timing Requirements .......................................................................................... 52  
3.25. I2C Standard-mode (Sm) ...................................................................................................................... 53  
3.26. I2C Fast-mode (Fm) ............................................................................................................................ 53  
3.27. I2C Fast-mode Plus (Fm+) .................................................................................................................... 54  
3.28. SPI Master Timing ............................................................................................................................... 54  
3.29. SPI Master Timing with SSSEARLY and SMSDELAY ................................................................................. 55  
3.30. SPI Slave Timing ................................................................................................................................ 55  
3.31. SPI Slave Timing with SSSEARLY and SMSDELAY .................................................................................. 55  
3.32. Digital Peripherals ............................................................................................................................... 56  
4.1. Device Pinout ....................................................................................................................................... 57  
4.2. Alternate functionality overview ................................................................................................................ 61  
4.3. GPIO Pinout ........................................................................................................................................ 67  
4.4. LQFP100 (Dimensions in mm) ................................................................................................................. 69  
5.1. QFP100 PCB Land Pattern Dimensions (Dimensions in mm) ......................................................................... 70  
5.2. QFP100 PCB Solder Mask Dimensions (Dimensions in mm) ......................................................................... 71  
5.3. QFP100 PCB Stencil Design Dimensions (Dimensions in mm) ....................................................................... 72  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
80  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 47  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49  
www.silabs.com  
2014-06-13 - EFM32LG380FXX - d0112_Rev1.30  
81  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY