EFM32WG360F64G-A-CSP81 [SILICON]

Operation from backup battery when main power drains out;
EFM32WG360F64G-A-CSP81
型号: EFM32WG360F64G-A-CSP81
厂家: SILICON    SILICON
描述:

Operation from backup battery when main power drains out

时钟 外围集成电路
文件: 总75页 (文件大小:1768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32WG360 DATASHEET  
F256/F128/F64  
ARM Cortex-M4 CPU platform  
Communication interfaces  
• High Performance 32-bit processor @ up to 48 MHz  
• DSP instruction support and floating-point unit  
• Memory Protection Unit  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 3× Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• 2× Universal Asynchronous Receiver/Transmitter  
• 2× Low Energy UART  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• 0.4 µA @ 3 V Shutoff Mode with RTC  
• 0.65 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 0.95 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• 2× I2C Interface with SMBus support  
• Address recognition in Stop Mode  
• Universal Serial Bus (USB) with Host & OTG support  
• Fully USB 2.0 compliant  
• 63 µA/MHz @ 3 V Sleep Mode  
• 225 µA/MHz @ 3 V Run Mode, with code executed from flash  
256/128/64 KB Flash  
32 KB RAM  
65 General Purpose I/O pins  
• On-chip PHY and embedded 5V to 3.3V regulator  
Ultra low power precision analog peripherals  
• 12-bit 1 Msamples/s Analog to Digital Converter  
• 8 single ended channels/4 differential channels  
• On-chip temperature sensor  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• 12-bit 500 ksamples/s Digital to Analog Converter  
• 2× Analog Comparator  
• Configurable peripheral I/O locations  
• 16 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
12 Channel DMA Controller  
• Capacitive sensing with up to 16 inputs  
• 3× Operational Amplifier  
• 6.1 MHz GBW, Rail-to-rail, Programmable Gain  
• Supply Voltage Comparator  
12 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Hardware AES with 128/256-bit keys in 54/75 cycles  
Timers/Counters  
Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
• Wide range of sensors supported, including LC sen-  
sors and capacitive buttons  
• 4× 16-bit Timer/Counter  
• 4×3 Compare/Capture/PWM channels  
• Dead-Time Insertion on TIMER0  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
Debug Interface  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter  
• 3× 16/8-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
Backup Power Domain  
• RTC and retention registers in a separate power domain, avail-  
able in all energy modes  
• 2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
• Embedded Trace Module v3.5 (ETM)  
Pre-Programmed USB/UART Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.98 to 3.8 V  
CSP81 package  
• Operation from backup battery when main power drains out  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32WG360 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
EFM32WG360F64G-A-CSP81  
EFM32WG360F128G-A-CSP81  
EFM32WG360F256G-A-CSP81  
64  
32  
32  
32  
48  
48  
48  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
CSP81  
CSP81  
CSP81  
128  
256  
Visit www.silabs.com for information on global distributors and representatives.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
2
 
 
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M4, with DSP instruction support and floating-point unit, innovative low  
energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals,  
the EFM32WG microcontroller is well suited for any battery operated application as well as other systems  
requiring high performance and low-energy consumption. This section gives a short introduction to each  
of the modules in general terms and also shows a summary of the configuration for the EFM32WG360  
devices. For a complete feature set and in-depth information on the modules, the reader is referred to  
the EFM32WG Reference Manual.  
A block diagram of the EFM32WG360 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
WG360F64/ 128/ 256  
Core and Memory  
Clock Management  
Energy Management  
Aux High Freq.  
RC  
Oscillator  
High Freq.  
RC  
Oscillator  
Voltage  
Comparator  
Voltage  
Regulator  
Memory  
Protection  
Unit  
ARM Cortex™M4 processor  
with DSP extensions and FPU  
Low Freq.  
RC  
Oscillator  
High Freq.  
Crystal  
Oscillator  
Brown- out  
Detector  
Power- on  
Reset  
Flash  
Debug  
Interface  
w/ ETM  
DMA  
Controller  
RAM  
Back- up  
Power  
Domain  
Program  
Memory  
Memory  
Low Freq.  
Crystal  
Oscillator  
Ultra Low Freq.  
RC  
Oscillator  
32- bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/ O Ports  
Timers and Triggers  
Analog Interfaces  
Security  
Timer/  
Counter  
LESENSE  
Hardware  
AES  
USART  
UART  
ADC  
Low Energy  
Timer  
Real Time  
Counter  
Low  
Energy  
UART™  
General  
Purpose  
I/ O  
External  
Interrupts  
Operational  
Amplifier  
I2C  
DAC  
Pulse  
Counter  
Watchdog  
Timer  
Pin  
Reset  
Pin  
Wakeup  
Analog  
Comparator  
Back- up  
RTC  
USB  
2.1.1 ARM Cortex-M4 Core  
The ARM Cortex-M4 includes a 32-bit RISC processor, with DSP instruction support and floating-point  
unit, which can achieve as much as 1.25 Dhrystone MIPS/MHz. A Memory Protection Unit with support  
for up to 8 memory segments is included, as well as a Wake-up Interrupt Controller handling interrupts  
triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M4 is described in detail  
in ARM Cortex-M4 Devices Generic User Guide.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface and an Embed-  
ded Trace Module (ETM) for data/instruction tracing. In addition there is also a 1-wire Serial Wire Viewer  
pin which can be used to output profiling information, data trace and software-generated messages.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
3
 
 
 
...the world's most energy friendly microcontrollers  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32WG microcontroller.  
The flash memory is readable and writable from both the Cortex-M4 and DMA. The flash memory is  
divided into two blocks; the main block and the information block. Program code is normally written to  
the main block. Additionally, the information block is available for special user data and flash lock bits.  
There is also a read-only page in the information block containing system and device calibration data.  
Read and write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32WG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32WG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the  
EFM32WG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 Universal Serial Bus Controller (USB)  
The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device,  
On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both  
Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-  
speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated  
Descriptor-Based Scatter/Garther DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in  
addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for  
supplying 5V to VBUS when operating as host.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
4
...the world's most energy friendly microcontrollers  
2.1.11 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.  
2.1.13 Pre-Programmed USB/UART Bootloader  
The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The  
bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART  
without the need for a debugger. The autobaud feature, interface and commands are described further  
in the application note.  
2.1.14 Universal Asynchronous Receiver/Transmitter (UART)  
The Universal Asynchronous serial Receiver and Transmitter (UART) is a very flexible serial I/O module.  
It supports full- and half-duplex asynchronous UART communication.  
2.1.15 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.16 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor  
control applications.  
2.1.17 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.18 Backup Real Time Counter (BURTC)  
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz  
crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy  
Modes and it can also run in backup mode, making it operational even if the main power should drain out.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
5
...the world's most energy friendly microcontrollers  
2.1.19 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
2.1.20 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 - EM3.  
2.1.21 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
2.1.22 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.23 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits  
at up to one million samples per second. The integrated input mux can select inputs from 8 external  
pins and 6 internal signals.  
2.1.24 Digital to Analog Converter (DAC)  
The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC  
is fully differential rail-to-rail, with 12-bit resolution. It has two single ended output buffers which can be  
combined into one differential output. The DAC may be used for a number of different applications such  
as sensor interfaces or sound output.  
2.1.25 Operational Amplifier (OPAMP)  
The EFM32WG360 features 3 Operational Amplifiers. The Operational Amplifier is a versatile general  
purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. The input can be set  
to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable  
and the OPAMP has various internal configurations such as unity gain, programmable gain using internal  
resistors etc.  
2.1.26 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support  
for up to 16 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE  
is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea-  
sure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable  
FSM which enables simple processing of measurement results without CPU intervention. LESENSE is  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
6
...the world's most energy friendly microcontrollers  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in  
applications with a strict energy budget.  
2.1.27 Backup Power Domain  
The backup power domain is a separate power domain containing a Backup Real Time Counter, BURTC,  
and a set of retention registers, available in all energy modes. This power domain can be configured to  
automatically change power source to a backup battery when the main power drains out. The backup  
power domain enables the EFM32WG360 to keep track of time and retain data, even if the main power  
source should drain out.  
2.1.28 Advanced Encryption Standard Accelerator (AES)  
The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or  
decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK  
cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data  
and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit  
operations are not supported.  
2.1.29 General Purpose Input/Output (GPIO)  
In the EFM32WG360, there are 65 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32WG360 is a subset of the feature set described in the EFM32WG Reference  
Manual. Table 2.1 (p. 7) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Cortex-M4  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
DMA  
RMU  
EMU  
CMU  
WDOG  
PRS  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
NA  
NA  
NA  
CMU_OUT0, CMU_OUT1  
NA  
NA  
USB  
USB_VBUS, USB_VBUSEN,  
USB_VREGI, USB_VREGO, USB_DM,  
USB_DMPU, USB_DP, USB_ID  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
7
 
 
...the world's most energy friendly microcontrollers  
Module  
I2C0  
Configuration  
Pin Connections  
Full configuration  
I2C0_SDA, I2C0_SCL  
I2C1_SDA, I2C1_SCL  
US0_TX, US0_RX. US0_CLK, US0_CS  
US1_TX, US1_RX, US1_CLK, US1_CS  
US2_TX, US2_RX, US2_CLK, US2_CS  
U0_TX, U0_RX  
I2C1  
Full configuration  
USART0  
USART1  
USART2  
UART0  
UART1  
LEUART0  
LEUART1  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
RTC  
Full configuration with IrDA  
Full configuration with I2S  
Full configuration with I2S  
Full configuration  
Full configuration  
U1_TX, U1_RX  
Full configuration  
LEU0_TX, LEU0_RX  
LEU1_TX, LEU1_RX  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[2:0]  
Full configuration  
Full configuration with DTI  
Full configuration  
Full configuration  
TIM2_CC[2:0]  
Full configuration  
TIM3_CC[2:0]  
Full configuration  
NA  
BURTC  
LETIMER0  
PCNT0  
PCNT1  
PCNT2  
ACMP0  
ACMP1  
VCMP  
Full configuration  
NA  
Full configuration  
LET0_O[1:0]  
Full configuration, 16-bit count register PCNT0_S[1:0]  
Full configuration, 8-bit count register  
Full configuration, 8-bit count register  
Full configuration  
PCNT1_S[1:0]  
PCNT2_S[1:0]  
ACMP0_CH[7:0], ACMP0_O  
ACMP1_CH[7:0], ACMP1_O  
NA  
Full configuration  
Full configuration  
ADC0  
Full configuration  
ADC0_CH[7:0]  
DAC0  
Full configuration  
DAC0_OUT[1:0], DAC0_OUTxALT  
OPAMP  
Full configuration  
Outputs: OPAMP_OUTx,  
OPAMP_OUTxALT, Inputs:  
OPAMP_Px, OPAMP_Nx  
AES  
Full configuration  
65 pins  
NA  
GPIO  
Available pins are shown in  
Table 4.3 (p. 62)  
2.3 Memory Map  
The EFM32WG360 memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the  
largest memory configuration.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
8
 
...the world's most energy friendly microcontrollers  
Figure 2.2. EFM32WG360 Memory Map with largest RAM and Flash sizes  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
9
 
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 10), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 10), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 10) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
10) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
TSTG  
Storage tempera-  
ture range  
-40  
TS  
Maximum soldering Latest IPC/JEDEC J-STD-020  
260 °C  
temperature  
Standard  
VDDMAX  
External main sup-  
ply voltage  
0
3.8  
V
V
VIOPIN  
Voltage on any I/O  
pin  
-0.3  
VDD+0.3  
1Based on programmed devices tested for 10000 hours at 150ºC. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.98  
V
48 MHz  
48 MHz  
fAHB  
3.3.2 Environmental  
WLCSP devices can be handled and soldered using industry standard surface mount assembly tech-  
niques. However, because WLCSP devices are essentially a piece of silicon and are not encapsulated  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
10  
 
 
 
 
 
 
...the world's most energy friendly microcontrollers  
in plastic, they are susceptible to mechanical damage and may be sensitive to light. When WLCSPs  
must be used in an environment exposed to light, it may be necessary to cover the top and sides with  
an opaque material.  
3.4 Current Consumption  
Table 3.3. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
225  
225  
226  
227  
228  
229  
230  
231  
232  
233  
238  
238  
271  
275  
63  
236 µA/  
MHz  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
238 µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
240 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
EM0 current. No  
prescaling. Running  
prime number cal-  
culation code from  
Flash. (Production  
test condition = 14  
MHz)  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
243 µA/  
MHz  
IEM0  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
245 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
250 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
286 µA/  
MHz  
1.2 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
µA/  
MHz  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
75 µA/  
MHz  
EM1 current (Pro-  
duction test condi-  
tion = 14 MHz)  
IEM1  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
11  
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
48 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
65  
64  
76 µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
75 µA/  
MHz  
28 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
65  
77 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
65  
76 µA/  
MHz  
21 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
66  
78 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
67  
79 µA/  
MHz  
14 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
68  
82 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
68  
81 µA/  
MHz  
11 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
70  
83 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
74  
87 µA/  
MHz  
6.6 MHz HFRCO, all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
76  
89 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=25°C  
106  
112  
0.951  
120 µA/  
MHz  
1.2 MHz HFRCO. all peripher-  
al clocks disabled, VDD= 3.0 V,  
TAMB=85°C  
129 µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
1.71 µA  
IEM2  
EM2 current  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
3.01  
4.01 µA  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.65  
2.65  
0.02  
0.44  
1.3 µA  
4.0 µA  
IEM3  
EM3 current  
EM4 current  
0.055 µA  
0.9 µA  
IEM4  
1Using backup RTC.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
12  
...the world's most energy friendly microcontrollers  
3.4.1 EM1 Current Consumption  
Figure 3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at  
48 MHz  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 28 MHz  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
13  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 21 MHz  
1.42  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.42  
1.40  
1.38  
1.36  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 14 MHz  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
0.98  
0.96  
0.94  
0.92  
0.90  
0.88  
0.86  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
14  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 11 MHz  
0.78  
0.76  
0.74  
0.72  
0.70  
0.78  
0.76  
0.74  
0.72  
0.70  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 6.6 MHz  
0.52  
0.51  
0.50  
0.49  
0.48  
0.47  
0.46  
0.45  
0.52  
0.51  
0.50  
0.49  
0.48  
0.47  
0.46  
0.45  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
- 40°C  
- 15°C  
5°C  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
15  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running  
at 1.2 MHz  
0.138  
0.136  
0.134  
0.132  
0.130  
0.128  
0.126  
0.124  
0.122  
0.160  
0.155  
0.150  
0.145  
0.140  
0.135  
0.130  
0.125  
0.120  
0.115  
- 40°C  
- 15°C  
5°C  
2.0V  
2.2V  
2.4V  
2.6V  
2.8V  
3.0V  
3.2V  
3.4V  
3.6V  
3.8V  
25°C  
45°C  
65°C  
85°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.4.2 EM2 Current Consumption  
Figure 3.8. EM2 current consumption. RTC1 prescaled to 1kHz, 32.768 kHz LFRCO.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
- 40.0°C  
- 15.0°C  
5.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
1Using backup RTC.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
16  
 
 
...the world's most energy friendly microcontrollers  
3.4.3 EM3 Current Consumption  
Figure 3.9. EM3 current consumption.  
3.0  
3.0  
- 40.0°C  
Vdd= 2.0V  
- 15.0°C  
5.0°C  
Vdd= 2.2V  
Vdd= 2.4V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
2.0  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
1.5  
1.0  
0.5  
0.0  
Vdd= 3.8V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
3.4.4 EM4 Current Consumption  
Figure 3.10. EM4 current consumption.  
0.7  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
- 40.0°C  
Vdd= 2.0V  
Vdd= 2.2V  
Vdd= 2.4V  
Vdd= 2.6V  
Vdd= 2.8V  
Vdd= 3.0V  
Vdd= 3.2V  
Vdd= 3.4V  
Vdd= 3.6V  
Vdd= 3.8V  
- 15.0°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
5.0°C  
25.0°C  
45.0°C  
65.0°C  
85.0°C  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
20  
0
20  
40  
60  
80  
Vdd [V]  
Temperature [°C]  
3.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 3.4. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
0
HF-  
CORE-  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
17  
 
 
 
 
...the world's most energy friendly microcontrollers  
3.6 Power Management  
The EFM32WG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with  
optional filter) at the PCB level. For practical schematic recommendations, please see the application  
note, "AN0002 EFM32 Hardware Design Considerations".  
Table 3.5. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on  
falling external sup-  
ply voltage  
1.74  
1.96  
1.98  
1.98  
V
VBODextthr+  
BOD threshold on  
rising external sup-  
ply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset  
(POR) threshold on  
rising external sup-  
ply voltage  
tRESET  
Delay from reset  
is released until  
program execution  
starts  
Applies to Power-on Reset,  
Brown-out Reset and pin reset.  
163  
µs  
CDECOUPLE  
CUSB_VREGO  
CUSB_VREGI  
Voltage regulator  
decoupling capaci-  
tor.  
X5R capacitor recommended.  
Apply between DECOUPLE pin  
and GROUND  
1
1
µF  
µF  
µF  
USB voltage regu-  
lator out decoupling Apply between USB_VREGO  
capacitor. pin and GROUND  
X5R capacitor recommended.  
USB voltage regula- X5R capacitor recommended.  
tor in decoupling ca- Apply between USB_VREGI  
4.7  
pacitor.  
pin and GROUND  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
18  
 
 
...the world's most energy friendly microcontrollers  
3.7 Flash  
Table 3.6. Flash  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
Flash erase cycles  
before failure  
20000  
cycles  
TAMB<150°C  
10000  
10  
h
RETFLASH  
Flash data retention TAMB<85°C  
TAMB<70°C  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) pro-  
gramming time  
20  
tPERASE  
tDERASE  
IERASE  
IWRITE  
Page erase time  
Device erase time  
Erase current  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
71 mA  
71 mA  
Write current  
VFLASH  
Supply voltage dur-  
ing flash erase and  
write  
1.98  
3.8  
V
1Measured at 25°C  
3.8 General Purpose Input Output  
Table 3.7. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.30VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.70VDD  
V
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.80VDD  
0.90VDD  
0.85VDD  
0.90VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
V
V
V
V
V
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output high volt-  
age (Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.75VDD  
0.85VDD  
0.60VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
19  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
0.80VDD  
Typ  
Max  
Unit  
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
V
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.20VDD  
0.10VDD  
0.10VDD  
0.05VDD  
V
V
V
V
V
V
V
V
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output low voltage  
(Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.30VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.20VDD  
0.35VDD  
0.25VDD  
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
IIOLEAK  
Input leakage cur-  
rent  
High Impedance IO connected  
to GROUND or Vdd  
±0.1  
40  
±100 nA  
RPU  
I/O pin pull-up resis-  
tor  
kOhm  
kOhm  
Ohm  
RPD  
I/O pin pull-down re-  
sistor  
40  
RIOESD  
Internal ESD series  
resistor  
200  
tIOGLITCH  
Pulse width of puls-  
es to be removed  
by the glitch sup-  
pression filter  
10  
50 ns  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST and load capaci-  
tance CL=12.5-25pF.  
20+0.1CL  
20+0.1CL  
0.10VDD  
250 ns  
250 ns  
V
tIOOF  
Output fall time  
GPIO_Px_CTRL DRIVEMODE  
= LOW and load capacitance  
CL=350-600pF  
VIOHYST  
I/O pin hysteresis  
VDD = 1.98 - 3.8 V  
(VIOTHR+ - VIOTHR-  
)
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
20  
...the world's most energy friendly microcontrollers  
Figure 3.11. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
21  
 
...the world's most energy friendly microcontrollers  
Figure 3.12. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
22  
 
...the world's most energy friendly microcontrollers  
Figure 3.13. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
23  
 
...the world's most energy friendly microcontrollers  
Figure 3.14. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
24  
 
...the world's most energy friendly microcontrollers  
Figure 3.15. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
25  
 
...the world's most energy friendly microcontrollers  
Figure 3.16. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
26  
 
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.8. LFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFXO  
Supported nominal  
crystal frequency  
32.768  
30  
kHz  
ESRLFXO  
Supported crystal  
equivalent series re-  
sistance (ESR)  
120 kOhm  
CLFXOL  
Supported crystal  
external load range  
X1  
25 pF  
nA  
ILFXO  
Current consump-  
tion for core and  
buffer after startup.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL is  
1
190  
400  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST in  
CMU_CTRL is 1  
ms  
1See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio  
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
3.9.2 HFXO  
Table 3.9. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal  
crystal Frequency  
4
48 MHz  
Crystal frequency 48 MHz  
50 Ohm  
60 Ohm  
1500 Ohm  
mS  
Supported crystal  
ESRHFXO  
equivalent series re- Crystal frequency 32 MHz  
30  
sistance (ESR)  
Crystal frequency 4 MHz  
400  
gmHFXO  
The transconduc-  
tance of the HFXO  
input transistor at  
crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
5
CHFXOL  
Supported crystal  
external load range  
25 pF  
µA  
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
85  
165  
400  
Current consump-  
tion for HFXO after  
startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
µs  
tHFXO  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
27  
 
 
 
...the world's most energy friendly microcontrollers  
3.9.3 LFRCO  
Table 3.10. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequen-  
cy , VDD= 3.0 V,  
TAMB=25°C  
31.29  
32.768  
150  
34.28 kHz  
tLFRCO  
Startup time not in-  
cluding software  
calibration  
µs  
ILFRCO  
Current consump-  
tion  
300  
1.5  
nA  
%
TUNESTEPL- Frequency step  
for LSB change in  
FRCO  
TUNING value  
Figure 3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
28  
 
 
...the world's most energy friendly microcontrollers  
3.9.4 HFRCO  
Table 3.11. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
28.0  
21.0  
14.0  
11.0  
6.60  
1.20  
0.6  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Cycles  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fHFRCO  
tHFRCO_settling Settling time after  
start-up  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
165  
134  
106  
94  
215 µA  
175 µA  
140 µA  
125 µA  
105 µA  
40 µA  
%
Current consump-  
tion  
IHFRCO  
77  
25  
TUNESTEPH- Frequency step  
0.31  
for LSB change in  
FRCO  
TUNING value  
1The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By  
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the  
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.  
Figure 3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
29  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
30  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
28.4  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
31  
 
 
...the world's most energy friendly microcontrollers  
3.9.5 AUXHFRCO  
Table 3.12. AUXHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fAUXHFRCO = 14 MHz  
28.0  
21.0  
14.0  
11.0  
6.60  
1.20  
0.6  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Cycles  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fAUXHFRCO  
tAUXHFRCO_settlingSettling time after  
start-up  
TUNESTEPAUX-Frequency step  
0.31  
%
for LSB change in  
HFRCO  
TUNING value  
1The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough  
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and  
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the  
TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz  
across operating conditions.  
3.9.6 ULFRCO  
Table 3.13. ULFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fULFRCO  
Oscillation frequen- 25°C, 3V  
cy  
0.7  
1.75 kHz  
TCULFRCO  
Temperature coeffi-  
cient  
0.05  
%/°C  
%/V  
VCULFRCO  
Supply voltage co-  
efficient  
-18.2  
3.10 Analog Digital Converter (ADC)  
Table 3.14. ADC  
Symbol  
Parameter  
Condition  
Single ended  
Differential  
Min  
Typ  
Max  
Unit  
0
-VREF/2  
1.25  
VREF  
VREF/2  
VDD  
V
V
V
VADCIN  
Input voltage range  
VADCREFIN  
Input range of exter-  
nal reference volt-  
age, single ended  
and differential  
VADCREFIN_CH7 Input range of ex-  
ternal negative ref-  
erence voltage on  
See VADCREFIN  
0
VDD - 1.1  
V
V
channel 7  
VADCREFIN_CH6 Input range of ex-  
ternal positive ref-  
See VADCREFIN  
0.625  
VDD  
erence voltage on  
channel 6  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
32  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VADCCMIN  
Common mode in-  
put range  
0
VDD  
V
IADCIN  
Input current  
2pF sampling capacitors  
<100  
65  
nA  
dB  
CMRRADC  
Analog input com-  
mon mode rejection  
ratio  
1 MSamples/s, 12 bit, external  
reference  
351  
67  
µA  
µA  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b00  
Average active cur-  
rent  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b01  
63  
64  
µA  
µA  
µA  
IADC  
10 kSamples/s 12 bit, internal  
1.25 V reference, WARMUP-  
MODE in ADCn_CTRL set to  
0b10  
IADCREF  
Current consump-  
tion of internal volt-  
age reference  
Internal voltage reference  
65  
2
CADCIN  
RADCIN  
RADCFILT  
Input capacitance  
pF  
Input ON resistance  
1
MOhm  
kOhm  
Input RC filter resis-  
tance  
10  
CADCFILT  
Input RC filter/de-  
coupling capaci-  
tance  
250  
fF  
fADCCLK  
ADC Clock Fre-  
quency  
13 MHz  
6 bit  
7
11  
13  
1
ADC-  
CLK  
Cycles  
8 bit  
ADC-  
CLK  
Cycles  
tADCCONV  
Conversion time  
Acquisition time  
12 bit  
ADC-  
CLK  
Cycles  
tADCACQ  
Programmable  
256 ADC-  
CLK  
Cycles  
tADCACQVDD3  
Required acquisi-  
tion time for VDD/3  
reference  
2
µs  
Startup time of ref-  
erence generator  
and ADC core in  
NORMAL mode  
5
µs  
tADCSTART  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
33  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Startup time of ref-  
erence generator  
and ADC core in  
KEEPADCWARM  
mode  
1
µs  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
59  
dB  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
65  
60  
65  
54  
67  
69  
62  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
Signal to Noise Ra-  
tio (SNR)  
SNRADC  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
63  
67  
63  
66  
66  
66  
70  
58  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
63  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
62  
64  
60  
dB  
dB  
dB  
SIgnal-to-Noise  
And Distortion-ratio  
(SINAD)  
SINADADC  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
34  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
64  
54  
66  
68  
61  
dB  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
dB  
dB  
dB  
dB  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
65  
66  
63  
66  
66  
66  
69  
64  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
62  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
1 MSamples/s, 12 bit, single  
ended, internal 1.25V refer-  
ence  
1 MSamples/s, 12 bit, single  
ended, internal 2.5V reference  
76  
73  
66  
77  
76  
75  
69  
75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
1 MSamples/s, 12 bit, single  
ended, VDD reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 1.25V reference  
1 MSamples/s, 12 bit, differen-  
tial, internal 2.5V reference  
Spurious-Free Dy-  
namic Range (SF-  
DR)  
1 MSamples/s, 12 bit, differen-  
tial, VDD reference  
SFDRADC  
1 MSamples/s, 12 bit, differen-  
tial, 2xVDD reference  
1 MSamples/s, 12 bit, differen-  
tial, 5V reference  
200 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
200 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
75  
76  
dBc  
dBc  
200 kSamples/s, 12 bit, single  
ended, VDD reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
35  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
200 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
79  
79  
78  
79  
79  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
dBc  
dBc  
dBc  
dBc  
200 kSamples/s, 12 bit, differ-  
ential, 5V reference  
200 kSamples/s, 12 bit, differ-  
ential, VDD reference  
68  
200 kSamples/s, 12 bit, differ-  
ential, 2xVDD reference  
After calibration, single ended  
After calibration, differential  
-3.5  
0.3  
0.3  
3
mV  
VADCOFFSET  
Offset voltage  
mV  
-1.92  
-6.3  
mV/°C  
Thermometer out-  
put gradient  
ADC  
Codes/  
°C  
TGRADADCTH  
DNLADC  
INLADC  
Differential non-lin-  
earity (DNL)  
-1  
±0.7  
±1.2  
4
LSB  
Integral non-linear-  
ity (INL), End point  
method  
±3 LSB  
MCADC  
No missing codes  
11.9991  
12  
0.012  
0.012  
0.22  
bits  
1.25V reference  
2.5V reference  
1.25V reference  
2.5V reference  
0.0333 %/°C  
0.033 %/°C  
0.73 LSB/°C  
0.623 LSB/°C  
GAINED  
Gain error drift  
OFFSETED  
Offset error drift  
0.22  
1On the average every ADC will have one missing code, most likely to appear around 2048 +/- n*512 where n can be a value in  
the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic  
at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is  
missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale  
input for chips that have the missing code issue.  
2Typical numbers given by abs(Mean) / (85 - 25).  
3Max number given by (abs(Mean) + 3x stddev) / (85 - 25).  
The integral non-linearity (INL) and differential non-linearity parameters are explained in Figure 3.24 (p.  
37) and Figure 3.25 (p. 37) , respectively.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
36  
...the world's most energy friendly microcontrollers  
Figure 3.24. Integral Non-Linearity (INL)  
Digital ouput code  
INL= |[(VD- VSS)/ VLSBIDEAL] - D| where 0 < D < 2N - 1  
4095  
4094  
4093  
4092  
Actual ADC  
tranfer function  
before offset and  
gain correction  
Actual ADC  
tranfer function  
after offset and  
gain correction  
INL Error  
(End Point INL)  
Ideal transfer  
curve  
3
2
1
0
VOFFSET  
Analog Input  
Figure 3.25. Differential Non-Linearity (DNL)  
Digital  
ouput  
DNL= |[(VD+ 1 - VD)/ VLSBIDEAL] - 1| where 0 < D < 2N - 2  
code  
4095  
4094  
4093  
4092  
Full Scale Range  
Example: Adjacent  
input value VD+ 1  
corrresponds to digital  
output code D+ 1  
Actual transfer  
function with one  
missing code.  
Example: Input value  
VD corrresponds to  
digital output code D  
Code width = 2 LSB  
DNL= 1 LSB  
Ideal transfer  
curve  
0.5  
LSB  
Ideal spacing  
between two  
adjacent codes  
VLSBIDEAL= 1 LSB  
5
4
3
2
1
0
Ideal 50%  
Transition Point  
Ideal Code Center  
Analog Input  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
37  
 
 
...the world's most energy friendly microcontrollers  
3.10.1 Typical performance  
Figure 3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2XVDDVSS Reference  
VDD Reference  
2.5V Reference  
5VDIFF Reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
38  
 
...the world's most energy friendly microcontrollers  
Figure 3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
39  
 
...the world's most energy friendly microcontrollers  
Figure 3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C  
1.25V Reference  
2.5V Reference  
2XVDDVSS Reference  
5VDIFF Reference  
VDD Reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
40  
 
...the world's most energy friendly microcontrollers  
Figure 3.29. ADC Absolute Offset, Common Mode = Vdd /2  
5
4
3
2
1
0
2.0  
1.5  
Vref= 1V25  
VRef= 1V25  
Vref= 2V5  
VRef= 2V5  
Vref= 2XVDDVSS  
Vref= 5VDIFF  
Vref= VDD  
VRef= 2XVDDVSS  
VRef= 5VDIFF  
VRef= VDD  
1.0  
0.5  
–1  
0.0  
–2  
–3  
–4  
0.5  
1.0  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd (V)  
Temp (C)  
Offset vs Supply Voltage, Temp = 25°C  
Offset vs Temperature, Vdd = 3V  
Figure 3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V  
71  
70  
69  
68  
67  
66  
65  
64  
63  
79.4  
79.2  
79.0  
78.8  
78.6  
78.4  
78.2  
78.0  
2XVDDV  
Vdd  
1V25  
Vdd  
2V5  
5VDIFF  
2V5  
2XVDDV  
5VDIFF  
1V25  
40  
15  
5
25  
45  
65  
85  
40  
15  
5
25  
45  
65  
85  
Temperature [°C]  
Temperature [°C]  
Signal to Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
41  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.31. ADC Temperature sensor readout  
2600  
2500  
2400  
2300  
2200  
2100  
Vdd= 2.0  
Vdd= 3.0  
Vdd= 3.8  
40  
25 15 5  
5
15 25 35 45 55 65 75 85  
Temperature [°C]  
3.11 Digital Analog Converter (DAC)  
Table 3.15. DAC  
Symbol  
VDACOUT  
VDACCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VDD voltage reference, single  
ended  
0
-VDD  
0
VDD  
VDD  
VDD  
V
Output voltage  
range  
VDD voltage reference, differ-  
ential  
V
V
Output common  
mode voltage range  
500 kSamples/s, 12 bit  
4001  
2001  
171  
µA  
µA  
µA  
Active current in-  
cluding references  
for 2 channels  
IDAC  
100 kSamples/s, 12 bit  
1 kSamples/s 12 bit NORMAL  
SRDAC  
Sample rate  
500 ksam-  
ples/s  
Continuous Mode  
Sample/Hold Mode  
Sample/Off Mode  
1000 kHz  
250 kHz  
250 kHz  
DAC clock frequen-  
cy  
fDAC  
CYCDACCONV Clock cyckles per  
conversion  
2
tDACCONV  
Conversion time  
Settling time  
2
µs  
µs  
dB  
tDACSETTLE  
5
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
58  
Signal to Noise Ra-  
tio (SNR)  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
59  
58  
dB  
dB  
SNRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
42  
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
58  
59  
57  
dB  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
dB  
dB  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
54  
56  
53  
55  
62  
dB  
dB  
dB  
dB  
dBc  
Signal to Noise-  
SNDRDAC  
pulse Distortion Ra- 500 kSamples/s, 12 bit, differ-  
tio (SNDR)  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
500 kSamples/s, 12 bit, sin-  
gle ended, internal 1.25V refer-  
ence  
500 kSamples/s, 12 bit, single  
ended, internal 2.5V reference  
56  
61  
55  
60  
dBc  
dBc  
dBc  
dBc  
Spurious-Free  
Dynamic  
Range(SFDR)  
SFDRDAC  
500 kSamples/s, 12 bit, differ-  
ential, internal 1.25V reference  
500 kSamples/s, 12 bit, differ-  
ential, internal 2.5V reference  
500 kSamples/s, 12 bit, differ-  
ential, VDD reference  
After calibration, single ended  
After calibration, differential  
2
2
mV  
mV  
LSB  
VDACOFFSET  
DNLDAC  
INLDAC  
Offset voltage  
Differential non-lin-  
earity  
±1  
Integral non-lineari-  
ty  
±5  
12  
LSB  
bits  
MCDAC  
No missing codes  
1Measured with a static input code and no loading on the output.  
3.12 Operational Amplifier (OPAMP)  
The electrical characteristics for the Operational Amplifiers are based on simulations.  
Table 3.16. OPAMP  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, Unity  
Gain  
370  
95  
460 µA  
IOPAMP  
Active Current  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
135 µA  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
43  
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
25 µA  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, Unity  
Gain  
13  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
101  
98  
dB  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
dB  
GOL  
Open Loop Gain  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
91  
dB  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
6.1  
1.8  
0.25  
64  
MHz  
MHz  
MHz  
°
Gain Bandwidth  
Product  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
GBWOPAMP  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0, CL=75  
pF  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1, CL=75  
pF  
58  
58  
°
°
PMOPAMP  
Phase Margin  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1, CL=75  
pF  
RINPUT  
RLOAD  
Input Resistance  
Load Resistance  
DC Load Current  
100  
Mohm  
Ohm  
200  
ILOAD_DC  
11 mA  
OPAxHCMDIS=0  
OPAxHCMDIS=1  
VSS  
VSS  
VSS  
VDD  
V
VINPUT  
Input Voltage  
VDD-1.2  
VDD  
V
VOUTPUT  
Output Voltage  
V
Unity Gain, VSS<Vin<VDD  
OPAxHCMDIS=0  
,
0
1
mV  
VOFFSET  
Input Offset Voltage  
Unity Gain, VSS<Vin<DD-1.2,  
OPAxHCMDIS=1  
mV  
VOFFSET_DRIFT Input Offset Voltage  
Drift  
0.02 mV/°C  
V/µs  
(OPA2)BIASPROG=0xF,  
(OPA2)HALFBIAS=0x0  
3.2  
0.8  
0.1  
101  
(OPA2)BIASPROG=0x7,  
(OPA2)HALFBIAS=0x1  
V/µs  
SROPAMP  
Slew Rate  
(OPA2)BIASPROG=0x0,  
(OPA2)HALFBIAS=0x1  
V/µs  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=0  
µVRMS  
NOPAMP  
Voltage Noise  
Vout=1V, RESSEL=0,  
0.1 Hz<f<10 kHz, OPAx-  
HCMDIS=1  
141  
µVRMS  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
44  
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Vout=1V, RESSEL=0, 0.1  
Hz<f<1 MHz, OPAxHCMDIS=0  
196  
229  
µVRMS  
Vout=1V, RESSEL=0, 0.1  
Hz<f<1 MHz, OPAxHCMDIS=1  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
µVRMS  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=0  
1230  
2130  
1630  
2590  
RESSEL=7, 0.1 Hz<f<10 kHz,  
OPAxHCMDIS=1  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=0  
RESSEL=7, 0.1 Hz<f<1 MHz,  
OPAxHCMDIS=1  
Figure 3.32. OPAMP Common Mode Rejection Ratio  
Figure 3.33. OPAMP Positive Power Supply Rejection Ratio  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
45  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.34. OPAMP Negative Power Supply Rejection Ratio  
Figure 3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V  
Figure 3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
46  
 
 
 
...the world's most energy friendly microcontrollers  
3.13 Analog Comparator (ACMP)  
Table 3.17. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common  
V
Mode voltage range  
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0
0.4 µA  
15 µA  
520 µA  
µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consump-  
tion of internal volt-  
age reference  
IACMPREF  
Internal voltage reference  
5
0
µA  
VACMPOFFSET Offset voltage  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
12 mV  
VACMPHYST  
ACMP hysteresis  
Programmable  
17  
39  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense  
Internal Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
tACMPSTART  
Startup time  
10 µs  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 47) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
47  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
HYSTSEL= 0.0  
HYSTSEL= 2.0  
HYSTSEL= 4.0  
HYSTSEL= 6.0  
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption, HYSTSEL = 4  
Response time  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
48  
 
...the world's most energy friendly microcontrollers  
3.14 Voltage Comparator (VCMP)  
Table 3.18. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common  
V
Mode voltage range  
BIASPROG=0b0000 and  
HALFBIAS=1 in VCMPn_CTRL  
register  
0.3  
22  
10  
0.6 µA  
IVCMP  
Active current  
BIASPROG=0b1111 and  
HALFBIAS=0 in VCMPn_CTRL  
register. LPREF=0.  
35 µA  
µs  
tVCMPREF  
Startup time refer-  
ence generator  
NORMAL  
Single ended  
Differential  
10  
10  
61  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
tVCMPSTART  
VCMP hysteresis  
Startup time  
210 mV  
10 µs  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.15 I2C  
Table 3.19. I2C Standard-mode (Sm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
4.7  
4.0  
250  
8
1001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
34502,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
4.7  
4.0  
4.0  
4.7  
µs  
µs  
µs  
µs  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32WG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 4).  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
49  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.20. I2C Fast-mode (Fm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
1.3  
0.6  
100  
8
4001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
9002,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
0.6  
0.6  
0.6  
1.3  
µs  
µs  
µs  
µs  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32WG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 4).  
Table 3.21. I2C Fast-mode Plus (Fm+)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
0.5  
10001 kHz  
tLOW  
SCL clock low time  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
tHIGH  
SCL clock high time  
0.26  
50  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
0.26  
0.26  
0.26  
0.5  
Bus free time between a STOP and a START condi-  
tion  
1For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32WG Reference Manual.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
50  
 
 
...the world's most energy friendly microcontrollers  
3.16 USART SPI  
Figure 3.38. SPI Master Timing  
tCS_MO  
CS  
tSCKL_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Table 3.22. SPI Master Timing  
Symbol  
Parameter  
Condition  
Min  
2 * tHFPER-  
Typ  
Max  
Unit  
1 2  
tSCLK  
SCLK period  
ns  
CLK  
1 2  
tCS_MO  
CS to MOSI  
-2.00  
2.00 ns  
1 2  
tSCLK_MO  
SCLK to MOSI  
MISO setup time  
MISO hold time  
-1.00  
36.00  
-6.00  
3.00 ns  
1 2  
tSU_MI  
IOVDD = 3.0 V  
ns  
ns  
1 2  
tH_MI  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
Table 3.23. SPI Master Timing with SSSEARLY and SMSDELAY  
Symbol  
Parameter  
Condition  
Min  
2 * tHFPER-  
Typ  
Max  
Unit  
1 2  
tSCLK  
SCLK period  
ns  
CLK  
12  
tCS_MO  
CS to MOSI  
-2.00  
2.00 ns  
3.00 ns  
ns  
12  
tSCLK_MO  
SCLK to MOSI  
MISO setup time  
MISO hold time  
-1.00  
-32.00  
63.00  
12  
tSU_MI  
IOVDD = 3.0 V  
12  
tH_MI  
ns  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
51  
 
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.39. SPI Slave Timing  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Table 3.24. SPI Slave Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
1 2  
tSCLK_sl  
tSCLK_hi  
tSCLK_lo  
SCKL period  
6 * tHFPER-  
ns  
CLK  
1 2  
1 2  
SCLK high period  
SCLK low period  
3 * tHFPER-  
ns  
ns  
CLK  
3 * tHFPER-  
CLK  
1 2  
tCS_ACT_MI  
CS active to MISO  
CS disable to MISO  
MOSI setup time  
MOSI hold time  
5.00  
5.00  
5.00  
35.00 ns  
1 2  
tCS_DIS_MI  
35.00 ns  
1 2  
tSU_MO  
ns  
ns  
1 2  
tH_MO  
2 + 2 * tHF-  
PERCLK  
1 2  
tSCLK_MI  
SCLK to MISO  
7 + tHFPER-  
42 + 2 * ns  
tHFPERCLK  
CLK  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
Table 3.25. SPI Slave Timing with SSSEARLY and SMSDELAY  
Symbol  
Parameter  
Min  
6 * tHFPER-  
Typ  
Max  
Unit  
12  
tSCLK_sl  
tSCLK_hi  
tSCLK_lo  
SCKL period  
ns  
ns  
ns  
CLK  
12  
12  
SCLK high period  
SCLK low period  
3 * tHFPER-  
CLK  
3 * tHFPER-  
CLK  
12  
tCS_ACT_MI  
CS active to MISO  
CS disable to MISO  
MOSI setup time  
MOSI hold time  
5.00  
5.00  
5.00  
35.00 ns  
35.00 ns  
ns  
12  
tCS_DIS_MI  
12  
tSU_MO  
12  
tH_MO  
2 + 2 * tHF-  
ns  
PERCLK  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
52  
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Min  
-264 + tHF-  
Typ  
Max  
Unit  
12  
tSCLK_MI  
SCLK to MISO  
-234 + 2 * ns  
tHFPERCLK  
PERCLK  
1Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0)  
2Measurement done at 10% and 90% of VDD (figure shows 50% of VDD  
)
3.17 Digital Peripherals  
Table 3.26. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
4.0  
3.8  
µA/  
MHz  
IUART  
UART current  
LEUART current  
I2C current  
UART idle current, clock en-  
abled  
µA/  
MHz  
ILEUART  
LEUART idle current, clock en-  
abled  
194.0  
7.6  
nA  
II2C  
I2C idle current, clock enabled  
µA/  
MHz  
ITIMER  
ILETIMER  
IPCNT  
TIMER current  
LETIMER current  
PCNT current  
TIMER_0 idle current, clock  
enabled  
6.5  
µA/  
MHz  
LETIMER idle current, clock  
enabled  
85.8  
91.4  
nA  
nA  
nA  
PCNT idle current, clock en-  
abled  
IRTC  
IAES  
RTC current  
AES current  
RTC idle current, clock enabled  
AES idle current, clock enabled  
54.6  
1.8  
µA/  
MHz  
IGPIO  
IPRS  
IDMA  
GPIO current  
PRS current  
DMA current  
GPIO idle current, clock en-  
abled  
3.4  
3.9  
µA/  
MHz  
PRS idle current  
µA/  
MHz  
Clock enable  
10.9  
µA/  
MHz  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
53  
 
 
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32WG360.  
4.1 Pinout  
The EFM32WG360 pinout is shown in Figure 4.1 (p. 54) and Table 4.1 (p. 54). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32WG360 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
CSP81 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
U1_TX #1  
USB_DM  
A1  
PF10  
U1_RX #1  
USB_DP  
A2  
A3  
PF11  
PF2  
TIM0_CC2 #5  
54  
LEU0_TX #4  
ACMP1_O #0  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
 
 
 
 
...the world's most energy friendly microcontrollers  
CSP81 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
DBG_SWO #0  
GPIO_EM4WU4  
A4  
A5  
A6  
VSS  
IOVDD_5  
PE9  
Ground  
Digital IO power supply 5.  
PCNT2_S1IN #1  
TIM1_CC1 #1  
LES_ALTEX5 #0  
BOOT_RX  
A7  
A8  
PE11  
PE12  
US0_RX #0  
US0_RX #3  
US0_CLK #0  
I2C0_SDA #6  
CMU_CLK1 #2  
LES_ALTEX6 #0  
TIM1_CC2 #1  
TIM3_CC2 #0  
A9  
B1  
B2  
PA15  
USB_VREGI  
USB_VBUS  
USB 5.0 V VBUS input.  
ACMP1_CH7  
DAC0_OUT1ALT #3/  
OPAMP_OUT1ALT  
TIM0_CDTI2 #1/3  
TIM1_CC2 #0  
US0_CLK #3  
U0_RX #3  
LES_CH15 #0  
DBG_SWO #1  
B3  
B4  
PC15  
PF1  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
TIM0_CC1 #5  
LETIM0_OUT1 #2  
DBG_SWDIO #0/1/2/3  
GPIO_EM4WU3  
B5  
B6  
PF5  
PE8  
TIM0_CDTI2 #2/5  
PCNT2_S0IN #1  
USB_VBUSEN #0  
PRS_CH2 #1  
PRS_CH3 #1  
US0_TX #3  
US0_CS #0  
I2C0_SCL #6  
LES_ALTEX7 #0  
ACMP0_O #0  
GPIO_EM4WU5  
B7  
B8  
PE13  
PA0  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
TIM0_CC0 #0/1/4  
TIM0_CC2 #0/1  
CMU_CLK0 #0  
ETM_TD0 #3  
B9  
C1  
PA2  
USB_VREGO  
TIM0_CDTI0 #1/3  
TIM1_CC0 #0  
TIM1_CC2 #4  
ACMP1_CH5  
DAC0_OUT1ALT #1/  
OPAMP_OUT1ALT  
C2  
PC13  
U1_RX #0  
LES_CH13 #0  
PCNT0_S0IN #0  
ACMP1_CH6  
DAC0_OUT1ALT #2/  
OPAMP_OUT1ALT  
TIM0_CDTI1 #1/3  
TIM1_CC1 #0  
PCNT0_S1IN #0  
US0_CS #3  
U0_TX #3  
C3  
C4  
PC14  
PF0  
LES_CH14 #0  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
TIM0_CC0 #5  
LETIM0_OUT0 #2  
DBG_SWCLK #0/1/2/3  
C5  
C6  
C7  
PF12  
PE10  
PE14  
USB_ID  
TIM1_CC0 #1  
TIM3_CC0 #0  
US0_TX #0  
LEU0_TX #2  
BOOT_TX  
CMU_CLK1 #0  
PRS_CH1 #0  
C8  
C9  
PA1  
PA3  
TIM0_CC1 #0/1  
I2C0_SCL #0  
U0_TX #2  
LES_ALTEX2 #0  
ETM_TD1 #3  
TIM0_CDTI0 #0  
TIM2_CC2 #2  
D1  
D2  
PC10  
PC11  
ACMP1_CH2  
ACMP1_CH3  
US0_RX #2  
US0_TX #2  
LES_CH10 #0  
LES_CH11 #0  
ACMP1_CH4  
DAC0_OUT1ALT #0/  
OPAMP_OUT1ALT  
CMU_CLK0 #1  
LES_CH12 #0  
D3  
PC12  
U1_TX #0  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
55  
...the world's most energy friendly microcontrollers  
CSP81 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
LES_CH9 #0  
GPIO_EM4WU2  
D4  
D5  
D6  
PC9  
PC8  
PA4  
ACMP1_CH1  
ACMP1_CH0  
TIM2_CC1 #2  
TIM2_CC0 #2  
TIM0_CDTI1 #0  
US0_CLK #2  
US0_CS #2  
U0_RX #2  
LES_CH8 #0  
LES_ALTEX3 #0  
ETM_TD2 #3  
LES_ALTEX4 #0  
ETM_TD3 #3  
D7  
D8  
PA5  
PA6  
TIM0_CDTI2 #0  
LEU1_TX #1  
LEU1_RX #1  
ETM_TCLK #3  
GPIO_EM4WU1  
D9  
E1  
E2  
E3  
IOVDD_0  
PE4  
Digital IO power supply 0.  
US0_CS #1  
US0_CLK #1  
U1_RX #3  
PE5  
PE3  
BU_STAT  
ACMP1_O #1  
LEU1_RX #0  
I2C0_SCL #2  
LES_CH7 #0  
ETM_TD0 #2  
E4  
PC7  
ACMP0_CH7  
E5  
E6  
E7  
E8  
E9  
F1  
F2  
PE15  
PB5  
TIM3_CC1 #0  
LEU0_RX #2  
US2_CLK #1  
US2_TX #1  
US2_RX #1  
PB3  
PCNT1_S0IN #1  
PCNT1_S1IN #1  
PB4  
VSS  
Ground  
DEC_0  
PE2  
Decouple output for on-chip voltage regulator.  
BU_VOUT  
TIM3_CC2 #1  
U1_TX #3  
ACMP0_O #1  
LEU1_TX #0  
I2C0_SDA #2  
LES_CH6 #0  
ETM_TCLK #2  
F3  
F4  
PC6  
PD7  
ACMP0_CH6  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
ADC0_CH7  
DAC0_N1 /  
OPAMP_N1  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
US1_TX #2  
I2C0_SCL #1  
ETM_TCLK #0  
ADC0_CH0  
DAC0_OUT0ALT #4/  
OPAMP_OUT0ALT  
OPAMP_OUT2 #1  
F5  
PD0  
PCNT2_S0IN #0  
US1_TX #1  
F6  
F7  
PA8  
PC2  
TIM2_CC0 #0  
ACMP0_CH2  
DAC0_OUT0ALT #2/  
OPAMP_OUT0ALT  
TIM0_CDTI0 #4  
US2_TX #0  
LES_CH2 #0  
ACMP0_CH0  
DAC0_OUT0ALT #0/  
OPAMP_OUT0ALT  
US0_TX #5  
US1_TX #0  
I2C0_SDA #4  
TIM0_CC1 #4  
PCNT0_S0IN #2  
LES_CH0 #0  
PRS_CH2 #0  
F8  
PC0  
F9  
G1  
G2  
PB6  
US2_CS #1  
VDD_DREG  
VSS_DREG  
Power supply for on-chip voltage regulator.  
Ground for on-chip voltage regulator.  
ADC0_CH4  
OPAMP_P2  
G3  
G4  
PD4  
PD3  
LEU0_TX #0  
US1_CS #1  
ETM_TD2 #0/2  
ETM_TD1 #0/2  
ADC0_CH3  
OPAMP_N2  
TIM0_CC2 #3  
DAC0_OUT1 /  
OPAMP_OUT1  
G5  
G6  
PB12  
PB11  
LETIM0_OUT1 #1  
TIM1_CC2 #3  
I2C1_SCL #1  
I2C1_SDA #1  
DAC0_OUT0 /  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
56  
...the world's most energy friendly microcontrollers  
CSP81 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
OPAMP_OUT0  
LETIM0_OUT0 #1  
TIM2_CC1 #0  
G7  
G8  
PA9  
PC4  
ACMP0_CH4  
DAC0_P0 /  
OPAMP_P0  
TIM0_CDTI2 #4  
LETIM0_OUT0 #3  
PCNT1_S0IN #0  
US2_CLK #0  
I2C1_SDA #0  
LES_CH4 #0  
ACMP0_CH1  
DAC0_OUT0ALT #1/  
OPAMP_OUT0ALT  
US0_RX #5  
US1_RX #0  
I2C0_SCL #4  
TIM0_CC2 #4  
PCNT0_S1IN #2  
LES_CH1 #0  
PRS_CH3 #0  
G9  
H1  
H2  
PC1  
PD8  
PD6  
BU_VIN  
CMU_CLK1 #1  
ADC0_CH6  
DAC0_P1 /  
OPAMP_P1  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
LES_ALTEX0 #0  
ACMP0_O #2  
ETM_TD0 #0  
US1_RX #2  
I2C0_SDA #1  
USB_DMPU #0  
US1_CLK #1  
H3  
PD2  
ADC0_CH2  
TIM0_CC1 #3  
DBG_SWO #3  
H4  
H5  
H6  
H7  
VSS  
Ground  
AVSS_0  
AVDD_0  
PA10  
Analog ground 0.  
Analog power supply 0.  
TIM2_CC2 #0  
ACMP0_CH5  
DAC0_N0 /  
OPAMP_N0  
LETIM0_OUT1 #3  
PCNT1_S1IN #0  
US2_CS #0  
I2C1_SCL #0  
H8  
PC5  
LES_CH5 #0  
ACMP0_CH3  
H9  
J1  
J2  
PC3  
PD5  
PD1  
DAC0_OUT0ALT #3/  
OPAMP_OUT0ALT  
TIM0_CDTI1 #4  
US2_RX #0  
LEU0_RX #0  
US1_RX #1  
LES_CH3 #0  
ETM_TD3 #0/2  
DBG_SWO #2  
ADC0_CH5  
OPAMP_OUT2 #0  
ADC0_CH1  
DAC0_OUT1ALT #4/  
OPAMP_OUT1ALT  
TIM0_CC0 #3  
PCNT2_S1IN #0  
J3  
J4  
IOVDD_3  
PB14  
Digital IO power supply 3.  
HFXTAL_N  
US0_CS #4/5  
LEU0_RX #1  
US0_CLK #4/5  
LEU0_TX #1  
J5  
J6  
PB13  
HFXTAL_P  
AVDD_1  
Analog power supply 1.  
Reset input, active low.  
J7  
RESETn  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up  
ensure that reset is released.  
US0_RX #4  
US1_CS #0  
J8  
J9  
PB8  
PB7  
LFXTAL_N  
LFXTAL_P  
TIM1_CC1 #3  
TIM1_CC0 #3  
US0_TX #4  
US1_CLK #0  
4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 58). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
57  
 
...the world's most energy friendly microcontrollers  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_CH2  
ACMP0_CH3  
ACMP0_CH4  
ACMP0_CH5  
ACMP0_CH6  
ACMP0_CH7  
ACMP0_O  
0
1
2
PD6  
PD7  
3
4
5
6
Description  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
PE13  
PC8  
PC9  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PF2  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, channel 2.  
Analog comparator ACMP0, channel 3.  
Analog comparator ACMP0, channel 4.  
Analog comparator ACMP0, channel 5.  
Analog comparator ACMP0, channel 6.  
Analog comparator ACMP0, channel 7.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 0.  
Analog comparator ACMP1, channel 1.  
Analog comparator ACMP1, channel 2.  
Analog comparator ACMP1, channel 3.  
Analog comparator ACMP1, channel 4.  
Analog comparator ACMP1, channel 5.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
Analog to digital converter ADC0, input channel number 0.  
Analog to digital converter ADC0, input channel number 1.  
Analog to digital converter ADC0, input channel number 2.  
Analog to digital converter ADC0, input channel number 3.  
Analog to digital converter ADC0, input channel number 4.  
Analog to digital converter ADC0, input channel number 5.  
Analog to digital converter ADC0, input channel number 6.  
Analog to digital converter ADC0, input channel number 7.  
Bootloader RX  
PE2  
ACMP1_CH0  
ACMP1_CH1  
ACMP1_CH2  
ACMP1_CH3  
ACMP1_CH4  
ACMP1_CH5  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
PE3  
ADC0_CH0  
ADC0_CH1  
ADC0_CH2  
ADC0_CH3  
ADC0_CH4  
ADC0_CH5  
ADC0_CH6  
ADC0_CH7  
BOOT_RX  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PE11  
PE10  
BOOT_TX  
Bootloader TX  
Backup Power Domain status, whether or not the system  
is in backup mode  
BU_STAT  
PE3  
BU_VIN  
PD8  
PE2  
PA2  
PA1  
Battery input for Backup Power Domain  
BU_VOUT  
CMU_CLK0  
CMU_CLK1  
Power output for Backup Power Domain  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
PC12  
PD8  
PD7  
PE12  
DAC0_N0 /  
OPAMP_N0  
PC5  
PD7  
Operational Amplifier 0 external negative input.  
Operational Amplifier 1 external negative input.  
DAC0_N1 /  
OPAMP_N1  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
58  
 
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
0
1
2
3
4
5
6
Description  
OPAMP_N2  
PD3  
Operational Amplifier 2 external negative input.  
DAC0_OUT0 /  
OPAMP_OUT0  
Digital to Analog Converter DAC0_OUT0 /  
OPAMP output channel number 0.  
PB11  
DAC0_OUT0ALT /  
OPAMP_OUT0ALT  
Digital to Analog Converter DAC0_OUT0ALT /  
OPAMP alternative output for channel 0.  
PC0  
PC1  
PC2  
PC3  
PD0  
DAC0_OUT1 /  
OPAMP_OUT1  
Digital to Analog Converter DAC0_OUT1 /  
OPAMP output channel number 1.  
PB12  
DAC0_OUT1ALT /  
OPAMP_OUT1ALT  
Digital to Analog Converter DAC0_OUT1ALT /  
OPAMP alternative output for channel 1.  
PC12  
PD5  
PC4  
PC13  
PD0  
PC14  
PC15  
PD1  
OPAMP_OUT2  
Operational Amplifier 2 output.  
DAC0_P0 /  
OPAMP_P0  
Operational Amplifier 0 external positive input.  
DAC0_P1 /  
OPAMP_P1  
PD6  
PD4  
Operational Amplifier 1 external positive input.  
OPAMP_P2  
Operational Amplifier 2 external positive input.  
Debug-interface Serial Wire clock input.  
DBG_SWCLK  
PF0  
PF1  
PF2  
PF0  
PF0  
PF1  
PD1  
PF0  
PF1  
PD2  
Note that this function is enabled to pin out of reset, and  
has a built-in pull down.  
Debug-interface Serial Wire data input / output.  
DBG_SWDIO  
DBG_SWO  
PF1  
Note that this function is enabled to pin out of reset, and  
has a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and must  
be enabled by software to be used.  
ETM_TCLK  
PD7  
PD6  
PD3  
PD4  
PD5  
PA0  
PA6  
PC9  
PF1  
PF2  
PE13  
PC6  
PC7  
PD3  
PD4  
PD5  
PA6  
PA2  
PA3  
PA4  
PA5  
Embedded Trace Module ETM clock .  
ETM_TD0  
Embedded Trace Module ETM data 0.  
ETM_TD1  
Embedded Trace Module ETM data 1.  
ETM_TD2  
Embedded Trace Module ETM data 2.  
ETM_TD3  
Embedded Trace Module ETM data 3.  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU2  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as exter-  
nal optional clock input pin.  
HFXTAL_N  
PB14  
HFXTAL_P  
I2C0_SCL  
PB13  
PA1  
PA0  
PC5  
PC4  
PD6  
PD7  
PA3  
PA4  
PA5  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
PD7  
PC7  
PC6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PD6  
I2C1_SCL  
PB12  
PB11  
I2C1 Serial Clock Line input / output.  
I2C1 Serial Data input / output.  
I2C1_SDA  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX2  
LES_ALTEX3  
LES_ALTEX4  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 2.  
LESENSE alternate exite output 3.  
LESENSE alternate exite output 4.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
59  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
LES_ALTEX5  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
0
1
2
3
4
5
6
Description  
LESENSE alternate exite output 5.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PE11  
PE12  
PE13  
PC0  
LES_CH1  
PC1  
LESENSE channel 1.  
LES_CH2  
PC2  
LESENSE channel 2.  
LES_CH3  
PC3  
LESENSE channel 3.  
LES_CH4  
PC4  
LESENSE channel 4.  
LES_CH5  
PC5  
LESENSE channel 5.  
LES_CH6  
PC6  
LESENSE channel 6.  
LES_CH7  
PC7  
LESENSE channel 7.  
LES_CH8  
PC8  
LESENSE channel 8.  
LES_CH9  
PC9  
LESENSE channel 9.  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
LES_CH14  
LES_CH15  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
PC10  
PC11  
PC12  
PC13  
PC14  
PC15  
PD6  
LESENSE channel 10.  
LESENSE channel 11.  
LESENSE channel 12.  
LESENSE channel 13.  
LESENSE channel 14.  
LESENSE channel 15.  
PB11  
PB12  
PB14  
PF0  
PC4  
PC5  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PD7  
PF1  
PD5  
PE15  
PA0  
LEUART0 Transmit output. Also used as receive input in  
half duplex communication.  
LEU0_TX  
LEU1_RX  
LEU1_TX  
PD4  
PC7  
PC6  
PB13  
PA6  
PA5  
PE14  
PF0  
PF2  
LEUART1 Receive input.  
LEUART1 Transmit output. Also used as receive input in  
half duplex communication.  
Low Frequency Crystal (typically 32.768 kHz) negative  
pin. Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
LFXTAL_P  
PCNT0_S0IN  
PCNT0_S1IN  
PCNT1_S0IN  
PCNT1_S1IN  
PCNT2_S0IN  
PCNT2_S1IN  
PRS_CH0  
PB7  
PC13  
PC14  
PC4  
PC5  
PD0  
PD1  
PA0  
PA1  
PC0  
PC1  
PA0  
PA1  
PA2  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PC0  
PC1  
PD6  
PD7  
Pulse Counter PCNT0 input number 1.  
PB3  
PB4  
PE8  
PE9  
Pulse Counter PCNT1 input number 0.  
Pulse Counter PCNT1 input number 1.  
Pulse Counter PCNT2 input number 0.  
Pulse Counter PCNT2 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 1.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
PRS_CH1  
PRS_CH2  
PF5  
PE8  
PA0  
PA1  
PA2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
PD1  
PD2  
PD3  
PA0  
PC0  
PC1  
PF0  
PF1  
PF2  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
60  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM2_CC0  
TIM2_CC1  
TIM2_CC2  
TIM3_CC0  
TIM3_CC1  
TIM3_CC2  
U0_RX  
0
1
PC13  
PC14  
PC15  
PE10  
PE11  
PE12  
2
3
4
5
6
Description  
PA3  
PC13  
PC14  
PC15  
PB7  
PC2  
Timer 0 Complimentary Deat Time Insertion channel 0.  
Timer 0 Complimentary Deat Time Insertion channel 1.  
Timer 0 Complimentary Deat Time Insertion channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
Timer 2 Capture Compare input / output channel 0.  
Timer 2 Capture Compare input / output channel 1.  
Timer 2 Capture Compare input / output channel 2.  
Timer 3 Capture Compare input / output channel 0.  
Timer 3 Capture Compare input / output channel 1.  
Timer 3 Capture Compare input / output channel 2.  
UART0 Receive input.  
PA4  
PC3  
PC4  
PD6  
PD7  
PC13  
PA5  
PF5  
PF5  
PC13  
PC14  
PC15  
PA8  
PB8  
PB11  
PC8  
PC9  
PC10  
PA9  
PA10  
PE14  
PE15  
PA15  
PE2  
PA4  
PA3  
PC15  
PC14  
PE3  
UART0 Transmit output. Also used as receive input in half  
duplex communication.  
U0_TX  
U1_RX  
U1_TX  
PC13  
PC12  
PF11  
PF10  
UART1 Receive input.  
UART1 Transmit output. Also used as receive input in half  
duplex communication.  
PE2  
US0_CLK  
US0_CS  
PE12  
PE13  
PE5  
PE4  
PC9  
PC8  
PC15  
PC14  
PB13  
PB14  
PB13  
PB14  
USART0 clock input / output.  
USART0 chip select input / output.  
USART0 Asynchronous Receive.  
US0_RX  
US0_TX  
PE11  
PE10  
PC10  
PC11  
PE12  
PE13  
PB8  
PB7  
PC1  
PC0  
USART0 Synchronous mode Master Input / Slave Output  
(MISO).  
USART0 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART0 Synchronous mode Master Output / Slave Input  
(MOSI).  
US1_CLK  
US1_CS  
PB7  
PB8  
PD2  
PD3  
PF0  
PF1  
USART1 clock input / output.  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD1  
PD0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
US2_CLK  
US2_CS  
PC4  
PC5  
PB5  
PB6  
USART2 clock input / output.  
USART2 chip select input / output.  
USART2 Asynchronous Receive.  
US2_RX  
US2_TX  
PC3  
PC2  
PB4  
PB3  
USART2 Synchronous mode Master Input / Slave Output  
(MISO).  
USART2 Asynchronous Transmit.Also used as receive in-  
put in half duplex communication.  
USART2 Synchronous mode Master Output / Slave Input  
(MOSI).  
USB_DM  
PF10  
PD2  
USB D- pin.  
USB_DMPU  
USB D- Pullup control.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
61  
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
Functionality  
USB_DP  
0
1
2
3
4
5
6
Description  
PF11  
PF12  
USB D+ pin.  
USB_ID  
USB ID pin. Used in OTG mode.  
USB 5 V VBUS input.  
USB_VBUS  
USB_VBUSEN  
USB_VREGI  
USB_VBUS  
PF5  
USB 5 V VBUS enable.  
USB_VREGI  
USB Input to internal 3.3 V regulator  
USB Decoupling for internal 3.3 V USB regulator and reg-  
ulator output  
USB_VREGO  
USB_VREGO  
4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32WG360 is shown in Table 4.3 (p. 62). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated  
by a number from 15 down to 0.  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
PA15  
-
14  
13  
12  
11  
10  
PA10  
-
9
PA9  
-
8
7
6
PA6  
PB6  
PC6  
PD6  
-
5
4
3
2
1
PA1  
-
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
PA8  
PB8  
PC8  
PD8  
PE8  
-
-
PA5  
PB5  
PC5  
PD5  
PE5  
PF5  
PA4  
PB4  
PC4  
PD4  
PE4  
-
PA3  
PB3  
PC3  
PD3  
PE3  
-
PA2  
-
PA0  
-
PB14 PB13 PB12 PB11  
PB7  
PC7  
PD7  
-
PC15 PC14 PC13 PC12 PC11 PC10  
PC9  
-
PC2  
PD2  
PE2  
PF2  
PC1  
PD1  
-
PC0  
PD0  
-
-
-
-
-
-
-
PE15 PE14 PE13 PE12 PE11 PE10  
PF12 PF11 PF10  
PE9  
-
-
-
-
-
-
PF1  
PF0  
4.4 Opamp Pinout Overview  
The specific opamp terminals available in EFM32WG360 is shown in Figure 4.2 (p. 62) .  
Figure 4.2. Opamp Pinout  
PB11  
PB12  
PC0  
OUT0ALT  
OUT0  
PC4  
PC5  
+
OPA0  
-
PC1  
PC2  
PC3  
+
PD4  
PD3  
PC12  
PC13  
PC14  
PC15  
PD0  
OPA2  
-
OUT2  
PD6  
PD7  
OUT1ALT  
OUT1  
+
OPA1  
-
PD1  
PD5  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
62  
 
 
 
 
...the world's most energy friendly microcontrollers  
4.5 CSP81 Package  
Figure 4.3. CSP81  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Primary datum “C” and seating plane are defined by the spherical crowns of the solder balls.  
4. Dimension “b” is measured at the maximum solder bump diameter, parallel to primary datum “C”.  
5. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body  
Components.  
Table 4.4. CSP81 (Dimensions in mm)  
Symbol  
Min  
A
A1  
A2  
b
S
D
E
e
D1  
E1  
n
aaa bbb ccc ddd  
eee  
0.491 0.17 0.036 0.23 0.3075  
4.355 4.275 0.40 3.20 3.20  
BSC. BSC. BSC. BSC. BSC.  
Nom  
Max  
0.55  
-
-
-
0.31  
81  
0.05 0.10 0.075 0.15 0.05  
0.609 0.23 0.044 0.29 0.3125  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see:  
http://www.silabs.com/support/quality/pages/default.aspx  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
63  
 
 
 
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. CSP81 PCB Land Pattern  
Table 5.1. CSP81 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
X
Dim. (mm)  
0.20  
3.20  
3.20  
0.40  
0.40  
C1  
C2  
E1  
E2  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
64  
 
 
 
 
...the world's most energy friendly microcontrollers  
Figure 5.2. CSP81 PCB Solder Mask  
Table 5.2. CSP81 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
X
Dim. (mm)  
0.26  
3.20  
3.20  
0.40  
0.40  
C1  
C2  
E1  
E2  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
65  
 
 
...the world's most energy friendly microcontrollers  
Figure 5.3. CSP81 PCB Stencil Design  
Table 5.3. CSP81 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
X
Dim. (mm)  
0.20  
3.20  
3.20  
0.40  
0.40  
C1  
C2  
E1  
E2  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.3 (p. 63) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033  
standard for MSL description and level 3 bake conditions.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
66  
 
 
 
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking (top view)  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 67) .  
6.3 Errata  
Please see the errata document for EFM32WG360 for description and resolution of device erratas. This  
document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
67  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.00  
October 15th, 2014  
Initial release.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
68  
 
 
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation  
of all peripherals and modules available for system and software implementers using or intending to use  
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory  
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and  
do vary in different applications. Application examples described herein are for illustrative purposes only.  
Silicon Laboratories reserves the right to make changes without further notice and limitation to product  
information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the conse-  
quences of use of the information supplied herein. This document does not imply or express copyright  
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be  
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life  
Support System" is any product or system intended to support or sustain life and/or health, which, if it  
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories  
products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological  
or chemical weapons, or missiles capable of delivering such weapons.  
A.2 Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,  
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most ener-  
gy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-  
modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered  
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or reg-  
istered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products  
or brand names mentioned herein are trademarks of their respective holders.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
69  
 
 
 
...the world's most energy friendly microcontrollers  
B Contact Information  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
70  
 
 
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 7  
2.3. Memory Map ................................................................................................................................. 8  
3. Electrical Characteristics ........................................................................................................................... 10  
3.1. Test Conditions ............................................................................................................................. 10  
3.2. Absolute Maximum Ratings ............................................................................................................. 10  
3.3. General Operating Conditions .......................................................................................................... 10  
3.4. Current Consumption ..................................................................................................................... 11  
3.5. Transition between Energy Modes .................................................................................................... 17  
3.6. Power Management ....................................................................................................................... 18  
3.7. Flash .......................................................................................................................................... 19  
3.8. General Purpose Input Output ......................................................................................................... 19  
3.9. Oscillators .................................................................................................................................... 27  
3.10. Analog Digital Converter (ADC) ...................................................................................................... 32  
3.11. Digital Analog Converter (DAC) ...................................................................................................... 42  
3.12. Operational Amplifier (OPAMP) ...................................................................................................... 43  
3.13. Analog Comparator (ACMP) .......................................................................................................... 47  
3.14. Voltage Comparator (VCMP) ......................................................................................................... 49  
3.15. I2C ........................................................................................................................................... 49  
3.16. USART SPI ................................................................................................................................ 51  
3.17. Digital Peripherals ....................................................................................................................... 53  
4. Pinout and Package ................................................................................................................................. 54  
4.1. Pinout ......................................................................................................................................... 54  
4.2. Alternate Functionality Pinout .......................................................................................................... 57  
4.3. GPIO Pinout Overview ................................................................................................................... 62  
4.4. Opamp Pinout Overview ................................................................................................................. 62  
4.5. CSP81 Package ........................................................................................................................... 63  
5. PCB Layout and Soldering ........................................................................................................................ 64  
5.1. Recommended PCB Layout ............................................................................................................ 64  
5.2. Soldering Information ..................................................................................................................... 66  
6. Chip Marking, Revision and Errata .............................................................................................................. 67  
6.1. Chip Marking ................................................................................................................................ 67  
6.2. Revision ...................................................................................................................................... 67  
6.3. Errata ......................................................................................................................................... 67  
7. Revision History ...................................................................................................................................... 68  
7.1. Revision 1.00 ............................................................................................................................... 68  
A. Disclaimer and Trademarks ....................................................................................................................... 69  
A.1. Disclaimer ................................................................................................................................... 69  
A.2. Trademark Information ................................................................................................................... 69  
B. Contact Information ................................................................................................................................. 70  
B.1. ................................................................................................................................................. 70  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
71  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32WG360 Memory Map with largest RAM and Flash sizes ....................................................................... 9  
3.1. EM1 Current consumption with all peripheral clocks disabled and HFXO running at 48 MHz ................................ 13  
3.2. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 28 MHz .............................. 13  
3.3. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 21 MHz .............................. 14  
3.4. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 14 MHz .............................. 14  
3.5. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 11 MHz .............................. 15  
3.6. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 6.6 MHz ............................. 15  
3.7. EM1 Current consumption with all peripheral clocks disabled and HFRCO running at 1.2 MHz ............................. 16  
3.8. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 16  
3.9. EM3 current consumption. ..................................................................................................................... 17  
3.10. EM4 current consumption. ................................................................................................................... 17  
3.11. Typical Low-Level Output Current, 2V Supply Voltage ................................................................................ 21  
3.12. Typical High-Level Output Current, 2V Supply Voltage ................................................................................ 22  
3.13. Typical Low-Level Output Current, 3V Supply Voltage ................................................................................ 23  
3.14. Typical High-Level Output Current, 3V Supply Voltage ................................................................................ 24  
3.15. Typical Low-Level Output Current, 3.8V Supply Voltage .............................................................................. 25  
3.16. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................. 26  
3.17. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 28  
3.18. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 29  
3.19. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 30  
3.20. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.21. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 30  
3.22. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.23. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 31  
3.24. Integral Non-Linearity (INL) ................................................................................................................... 37  
3.25. Differential Non-Linearity (DNL) .............................................................................................................. 37  
3.26. ADC Frequency Spectrum, Vdd = 3V, Temp = 25°C ................................................................................. 38  
3.27. ADC Integral Linearity Error vs Code, Vdd = 3V, Temp = 25°C ................................................................... 39  
3.28. ADC Differential Linearity Error vs Code, Vdd = 3V, Temp = 25°C ............................................................... 40  
3.29. ADC Absolute Offset, Common Mode = Vdd /2 ........................................................................................ 41  
3.30. ADC Dynamic Performance vs Temperature for all ADC References, Vdd = 3V .............................................. 41  
3.31. ADC Temperature sensor readout ......................................................................................................... 42  
3.32. OPAMP Common Mode Rejection Ratio ................................................................................................. 45  
3.33. OPAMP Positive Power Supply Rejection Ratio ........................................................................................ 45  
3.34. OPAMP Negative Power Supply Rejection Ratio ...................................................................................... 46  
3.35. OPAMP Voltage Noise Spectral Density (Unity Gain) Vout=1V ..................................................................... 46  
3.36. OPAMP Voltage Noise Spectral Density (Non-Unity Gain) .......................................................................... 46  
3.37. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 48  
3.38. SPI Master Timing ............................................................................................................................... 51  
3.39. SPI Slave Timing ................................................................................................................................ 52  
4.1. EFM32WG360 Pinout (top view, not to scale) ............................................................................................. 54  
4.2. Opamp Pinout ...................................................................................................................................... 62  
4.3. CSP81 ................................................................................................................................................ 63  
5.1. CSP81 PCB Land Pattern ...................................................................................................................... 64  
5.2. CSP81 PCB Solder Mask ....................................................................................................................... 65  
5.3. CSP81 PCB Stencil Design .................................................................................................................... 66  
6.1. Example Chip Marking (top view) ............................................................................................................. 67  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
72  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 7  
3.1. Absolute Maximum Ratings ..................................................................................................................... 10  
3.2. General Operating Conditions .................................................................................................................. 10  
3.3. Current Consumption ............................................................................................................................. 11  
3.4. Energy Modes Transitions ...................................................................................................................... 17  
3.5. Power Management ............................................................................................................................... 18  
3.6. Flash .................................................................................................................................................. 19  
3.7. GPIO .................................................................................................................................................. 19  
3.8. LFXO .................................................................................................................................................. 27  
3.9. HFXO ................................................................................................................................................. 27  
3.10. LFRCO .............................................................................................................................................. 28  
3.11. HFRCO ............................................................................................................................................. 29  
3.12. AUXHFRCO ....................................................................................................................................... 32  
3.13. ULFRCO ............................................................................................................................................ 32  
3.14. ADC .................................................................................................................................................. 32  
3.15. DAC .................................................................................................................................................. 42  
3.16. OPAMP ............................................................................................................................................. 43  
3.17. ACMP ............................................................................................................................................... 47  
3.18. VCMP ............................................................................................................................................... 49  
3.19. I2C Standard-mode (Sm) ...................................................................................................................... 49  
3.20. I2C Fast-mode (Fm) ............................................................................................................................ 50  
3.21. I2C Fast-mode Plus (Fm+) .................................................................................................................... 50  
3.22. SPI Master Timing ............................................................................................................................... 51  
3.23. SPI Master Timing with SSSEARLY and SMSDELAY ................................................................................. 51  
3.24. SPI Slave Timing ................................................................................................................................ 52  
3.25. SPI Slave Timing with SSSEARLY and SMSDELAY .................................................................................. 52  
3.26. Digital Peripherals ............................................................................................................................... 53  
4.1. Device Pinout ....................................................................................................................................... 54  
4.2. Alternate functionality overview ................................................................................................................ 58  
4.3. GPIO Pinout ........................................................................................................................................ 62  
4.4. CSP81 (Dimensions in mm) .................................................................................................................... 63  
5.1. CSP81 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 64  
5.2. CSP81 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 65  
5.3. CSP81 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 66  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
73  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 47  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 49  
www.silabs.com  
2014-10-15 - EFM32WG360FXX - d0283_Rev1.00  
74  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY