EFR32BG22C222F352GN32-C [SILICON]

EFR32BG22 Wireless Gecko SoC Family;
EFR32BG22C222F352GN32-C
型号: EFR32BG22C222F352GN32-C
厂家: SILICON    SILICON
描述:

EFR32BG22 Wireless Gecko SoC Family

无线
文件: 总101页 (文件大小:1371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFR32BG22 Wireless Gecko SoC Family  
Data Sheet  
The EFR32BG22 Wireless Gecko family of SoCs is part of the  
Wireless Gecko portfolio. EFR32BG22 Wireless Gecko SoCs are  
KEY FEATURES  
ideal for enabling energy-friendly Bluetooth 5.2 networking for IoT  
devices.  
• 32-bit ARM® Cortex®-M33 core with 76.8  
MHz maximum operating frequency  
• Up to 512 kB of flash and 32 kB of RAM  
The single-die solution combines a 76.8 MHz Cortex-M33 with a high performance 2.4  
GHz radio to provide an industry-leading, energy efficient wireless, SoC for IoT connec-  
ted applications.  
• Energy-efficient radio core with low active  
and sleep currents  
• Bluetooth 5.2 Direction Finding  
• Integrated PA with up to 6 dBm (2.4 GHz)  
TX power  
Wireless Gecko applications include:  
• Asset Tags and Beacons  
• Secure Boot with Root of Trust and  
Secure Loader (RTSL)  
• Consumer Electronics Remote Controls  
• Portable Medical  
• Bluetooth Mesh Low Power Nodes  
• Sports, Fitness, and Wellness devices  
• Connected Home  
• Building Automation and Security  
Core / Memory  
Clock Management  
Energy Management  
Security  
HF Crystal  
Oscillator  
HF  
ARM CortexTM M33 processor  
with DSP extensions,  
FPU and TrustZone  
RC Oscillator  
Voltage  
Regulator  
DC-DC  
Converter  
Flash Program  
Memory  
Crypto Acceleration  
Fast Startup  
RC Oscillator  
Precision LF  
RC Oscillator  
Power-On  
Reset  
Brown-Out  
Detector  
True Random  
Number Generator  
LDMA  
Controller  
LF Crystal  
Oscillator  
Ultra LF RC  
Oscillator  
ETM  
Debug Interface  
RAM Memory  
32-bit bus  
Peripheral Reflex System  
Radio Subsystem  
Serial  
I/O Ports  
Timers and Triggers  
Analog I/F  
Interfaces  
ARM CortexTM  
M0+ Radio  
Controller  
RFSENSE  
w/ OOK Detect  
DEMOD  
IFADC  
AGC  
External  
Interrupts  
USART  
PDM  
Timer/Counter  
Protocol Timer  
ADC  
General  
Purpose I/O  
Temperature  
Sensor  
Watchdog Timer  
Low Energy Timer  
RX/TX Frontend  
with Integrated PA  
BUFC RAM  
FRC  
Real Time  
Capture Counter  
Back-Up Real  
Time Counter  
EUART  
I2C  
Pin Reset  
Frequency  
Synthesizer  
MOD  
CRC  
Pin Wakeup  
Lowest power mode with peripheral operational:  
EM0—Active  
EM1—Sleep  
EM2—Deep Sleep  
EM3—Stop  
EM4—Shutoff  
silabs.com | Building a more connected world.  
Rev. 1.0  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Feature List  
1. Feature List  
The EFR32BG22 highlighted features are listed below.  
Low Power Wireless System-on-Chip  
Wide selection of MCU peripherals  
High Performance 32-bit 76.8 MHz MHz ARM Cortex®-M33  
with DSP instruction and floating-point unit for efficient sig-  
nal processing  
• Analog to Digital Converter (ADC)  
• 12-bit @ 1 Msps  
• 16-bit @ 76.9 ksps  
• Up to 512 kB flash program memory  
• Up to 32 kB RAM data memory  
• Up to 26 General Purpose I/O pins with output state reten-  
tion and asynchronous interrupts  
• 2.4 GHz radio operation  
• 8 Channel DMA Controller  
Radio Performance  
• 12 Channel Peripheral Reflex System (PRS)  
• -106.7 dBm sensitivity @ 125 kbps GFSK  
• -98.9 dBm sensitivity @ 1 Mbit/s GFSK  
• -96.2 dBm sensitivity @ 2 Mbit/s GFSK  
• TX power up to 6 dBm  
• 4 × 16-bit Timer/Counter with 3 Compare/Capture/PWM  
channels  
• 1 × 32-bit Timer/Counter with 3 Compare/Capture/PWM  
channels  
• 32-bit Real Time Counter  
• 2.5 mA radio receive current  
• 24-bit Low Energy Timer for waveform generation  
• 1 × Watchdog Timer  
• 3.4 mA radio transmit current @ 0 dBm output power  
• 7.5 mA radio transmit current @ 6 dBm output power  
Low System Energy Consumption  
• 3.6 mA RX current (1 Mbps GFSK)  
• 4.1 mA TX current @ 0 dBm output power  
• 8.2 mA TX current @ 6 dBm output power  
• 27 μA/MHz in Active Mode (EM0) at 76.8 MHz  
• 2 × Universal Synchronous/Asynchronous Receiver/Trans-  
mitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)  
• 1 × Enhanced Universal Asynchronous Receiver/Transmit-  
ter (EUART)  
2 × I2C interface with SMBus support  
• Digital microphone interface (PDM)  
• 1.40 μA EM2 DeepSleep current (32 kB RAM retention and  
RTC running from LFXO)  
• Precision Low-Frequency RC Oscillator to replace 32 kHz  
sleep crystal  
• 1.75 μA EM2 DeepSleep current (32 kB RAM retention and  
RTC running from Precision LFRCO)  
• RFSENSE with selective OOK mode  
• Die temperature sensor with +/-1.5 degree C accuracy after  
single-point calibration  
• 0.17 μA EM4 current  
Supported Modulation Format  
• 2 (G)FSK with fully configurable shaping  
• OQPSK DSSS  
Wide Operating Range  
• 1.71 V to 3.8 V single power supply  
• -40 °C to 125 °C  
• (G)MSK  
Security Features  
Protocol Support  
• Secure Boot with Root of Trust and Secure Loader (RTSL)  
• Bluetooth Low Energy (Bluetooth 5.2)  
• Hardware Cryptographic Acceleration for AES128/256,  
SHA-1, SHA-2 (up to 256-bit), ECC (up to 256-bit), ECDSA,  
and ECDH  
• Direction finding using Angle-of-Arrival (AoA) and Angle-of-  
Departure (AoD)  
• Proprietary  
• True Random Number Generator (TRNG) compliant with  
NIST SP800-90 and AIS-31  
ARM® TrustZone®  
• Secure Debug with lock/unlock  
Packages  
QFN40 5 mm × 5 mm × 0.85 mm  
QFN32 4 mm × 4 mm × 0.85 mm  
TQFN32 4 mm × 4 mm × 0.30 mm  
silabs.com | Building a more connected world.  
Rev. 1.0 | 2  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Ordering Information  
2. Ordering Information  
Table 2.1. Ordering Information  
Protocol  
Stack  
Max TX  
Power  
Max CPU  
Speed  
Flash RAM  
(kB) (kB) GPIO Package Temp Range  
Ordering Code  
LFRCO  
EFR32BG22C222F352GM32-C • Bluetooth  
5.2  
6 dBm  
6 dBm  
6 dBm  
6 dBm  
76.8 MHz Precision 352  
76.8 MHz Precision 352  
76.8 MHz Precision 352  
76.8 MHz Precision 512  
32  
32  
32  
32  
18 QFN32  
26 QFN40  
18 TQFN32  
18 QFN32  
-40 to 85 °C  
-40 to 85 °C  
-40 to 85 °C  
-40 to 85 °C  
• Proprietary  
EFR32BG22C222F352GM40-C • Bluetooth  
5.2  
• Proprietary  
EFR32BG22C222F352GN32-C • Bluetooth  
5.2  
• Proprietary  
EFR32BG22C224F512GM32-C • Bluetooth  
5.2  
• Direction  
finding  
• Proprietary  
EFR32BG22C224F512GM40-C • Bluetooth  
5.2  
6 dBm  
6 dBm  
6 dBm  
6 dBm  
76.8 MHz Precision 512  
76.8 MHz Precision 512  
76.8 MHz Precision 512  
76.8 MHz Precision 512  
32  
32  
32  
32  
26 QFN40  
18 TQFN32  
18 QFN32  
26 QFN40  
-40 to 85 °C  
-40 to 85 °C  
-40 to 125 °C  
-40 to 125 °C  
• Direction  
finding  
• Proprietary  
EFR32BG22C224F512GN32-C • Bluetooth  
5.2  
• Direction  
finding  
• Proprietary  
EFR32BG22C224F512IM32-C  
EFR32BG22C224F512IM40-C  
• Bluetooth  
5.2  
• Direction  
finding  
• Proprietary  
• Bluetooth  
5.2  
• Direction  
finding  
• Proprietary  
LE Long Range (125 kbps and 500 kbps) PHYs are only supported on part numbers which include AoA/AoD direction-finding capability.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 3  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.1 Antenna Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2.2 Fractional-N Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . 8  
3.2.3 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.4 Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.5 Packet and State Trace . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.6 Data Buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.7 Radio Controller (RAC). . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.8 RFSENSE Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . 9  
3.4 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.1 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . . 9  
3.4.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . . 9  
3.5 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.5.1 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.5.2 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . . .10  
3.5.3 Real Time Clock with Capture (RTCC) . . . . . . . . . . . . . . . . . . . .10  
3.5.4 Back-Up Real Time Counter . . . . . . . . . . . . . . . . . . . . . . . .10  
3.5.5 Watchdog Timer (WDOG). . . . . . . . . . . . . . . . . . . . . . . . .10  
3.6 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .10  
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . . .10  
3.6.2 Enhanced Universal Asynchronous Receiver/Transmitter (EUART) . . . . . . . . . . .10  
2
3.6.3 Inter-Integrated Circuit Interface (I C) . . . . . . . . . . . . . . . . . . . . .10  
3.6.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . .11  
3.6.5 Pulse Density Modulation (PDM) Interface . . . . . . . . . . . . . . . . . . .11  
3.7 Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.7.1 Secure Boot with Root of Trust and Secure Loader (RTSL) . . . . . . . . . . . . .11  
3.7.2 Cryptographic Accelerator. . . . . . . . . . . . . . . . . . . . . . . . .11  
3.7.3 True Random Number Generator . . . . . . . . . . . . . . . . . . . . . .11  
3.7.4 Secure Debug with Lock/Unlock. . . . . . . . . . . . . . . . . . . . . . .12  
3.8 Analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8.1 Analog to Digital Converter (IADC) . . . . . . . . . . . . . . . . . . . . . .12  
3.9 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.1 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . . .13  
3.9.2 Voltage Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.4 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .14  
silabs.com | Building a more connected world.  
Rev. 1.0 | 4  
3.11 Core and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.11.2 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . . .14  
3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . .14  
3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.2 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.3 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.4.1 DC-DC Operating Limits . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.6 Current Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.6.1 MCU current consumption using DC-DC at 3.0 V input . . . . . . . . . . . . . . .25  
4.6.2 MCU current consumption at 3.0 V . . . . . . . . . . . . . . . . . . . . . .27  
4.6.3 MCU current consumption at 1.8 V . . . . . . . . . . . . . . . . . . . . . .29  
4.6.4 Radio current consumption at 3.0V using DCDC . . . . . . . . . . . . . . . . .31  
4.7 Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
4.8 Wake Up, Entry, and Exit times . . . . . . . . . . . . . . . . . . . . . . . .34  
4.9 RFSENSE Low-energy Wake-on-RF . . . . . . . . . . . . . . . . . . . . . .35  
4.10 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . . . .36  
4.10.1 RF Transmitter Characteristics. . . . . . . . . . . . . . . . . . . . . . .36  
4.10.2 RF Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . .43  
4.11 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
4.11.1 High Frequency Crystal Oscillator. . . . . . . . . . . . . . . . . . . . . .49  
4.11.2 Low Frequency Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . .50  
4.11.3 High Frequency RC Oscillator (HFRCO) . . . . . . . . . . . . . . . . . . .51  
4.11.4 Fast Start_Up RC Oscillator (FSRCO) . . . . . . . . . . . . . . . . . . . .52  
4.11.5 Precision Low Frequency RC Oscillator (LFRCO) . . . . . . . . . . . . . . . .53  
4.11.6 Ultra Low Frequency RC Oscillator . . . . . . . . . . . . . . . . . . . . .53  
4.12 GPIO Pins (3V GPIO pins) . . . . . . . . . . . . . . . . . . . . . . . . .54  
4.13 Analog to Digital Converter (IADC) . . . . . . . . . . . . . . . . . . . . . . .56  
4.14 Temperature Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
4.15 Brown Out Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4.15.1 DVDD BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4.15.2 LE DVDD BOD . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
4.15.3 AVDD and IOVDD BODs . . . . . . . . . . . . . . . . . . . . . . . .60  
4.16 PDM Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . .61  
4.16.1 Pulse Density Modulator (PDM), Common DBUS . . . . . . . . . . . . . . . .61  
4.17 USART SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . .62  
4.17.1 SPI Master Timing, Voltage Scaling = VSCALE2. . . . . . . . . . . . . . . . .63  
silabs.com | Building a more connected world.  
Rev. 1.0 | 5  
4.17.2 SPI Master Timing, Voltage Scaling = VSCALE1. . . . . . . . . . . . . . . . .63  
4.18 USART SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . .64  
4.18.1 SPI Slave Timing, Voltage Scaling = VSCALE2 . . . . . . . . . . . . . . . . .64  
4.18.2 SPI Slave Timing, Voltage Scaling = VSCALE1 . . . . . . . . . . . . . . . . .65  
4.19 I2C Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . .66  
4.19.1 I2C Standard-mode (Sm) . . . . . . . . . . . . . . . . . . . . . . . .66  
4.19.2 I2C Fast-mode (Fm) . . . . . . . . . . . . . . . . . . . . . . . . . .67  
4.19.3 I2C Fast-mode Plus (Fm+) . . . . . . . . . . . . . . . . . . . . . . . .68  
4.20 Typical Performance Curves . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.20.1 Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
4.20.2 RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
4.20.3 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
4.20.4 IADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
5. Typical Connections  
. . . . . . . . . . . . . . . . . . . . . . . . . . .73  
5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
5.2 RF Matching Networks . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
5.2.1 2.4 GHz Matching Network . . . . . . . . . . . . . . . . . . . . . . . .74  
5.3 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.1 QFN32 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
6.2 QFN40 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
6.3 TQFN32 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
6.4 Alternate Function Table. . . . . . . . . . . . . . . . . . . . . . . . . . .80  
6.5 Analog Peripheral Connectivity . . . . . . . . . . . . . . . . . . . . . . . .81  
6.6 Digital Peripheral Connectivity . . . . . . . . . . . . . . . . . . . . . . . . .82  
7. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 85  
7.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .85  
7.2 QFN32 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .87  
7.3 QFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .89  
8. TQFN32 Package Specifications . . . . . . . . . . . . . . . . . . . . . . . 90  
8.1 TQFN32 Package Dimensions. . . . . . . . . . . . . . . . . . . . . . . . .90  
8.2 TQFN32 PCB Land Pattern. . . . . . . . . . . . . . . . . . . . . . . . . .92  
8.3 TQFN32 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .94  
9. QFN40 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 95  
9.1 QFN40 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . .95  
9.2 QFN40 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .97  
9.3 QFN40 Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . .98  
10. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
silabs.com | Building a more connected world.  
Rev. 1.0 | 6  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
The EFR32 product family combines an energy-friendly MCU with a high performance radio transceiver. The devices are well suited for  
secure connected IoT multi-protocol devices requiring high performance and low energy consumption. This section gives a short intro-  
duction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG22 Reference Manual.  
A block diagram of the EFR32BG22 family is shown in Figure 3.1 Detailed EFR32BG22 Block Diagram on page 7. The diagram  
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult  
Ordering Information.  
Radio Subsystem  
Port I/O Configuration  
Digital Peripherals  
IOVDD  
RFSENSE  
ARM CortexTM M0+  
Radio Controller  
DEMOD  
IFADC  
AGC  
w/ OOK Detect  
USART  
EUART  
I2C  
RX/TX Frontend  
with Integrated PA  
BUFC RAM  
FRC  
Port A  
Drivers  
RF2G4_IO  
PAn  
Frequency  
Synthesizer  
MOD  
Port B  
CRC  
PBn  
PCn  
PDn  
Drivers  
LETIMER  
DBUS  
Port  
Mappers  
TIMER  
RTCC  
Core and Memory  
Port C  
Drivers  
Reset Management Unit,  
Brown Out and POR  
RESETn  
ARM Cortex-M33 Core  
with Floating Point Unit  
PDM  
Serial Wire and ETM  
Debug / Programming  
with Debug Challenge I/F  
Port D  
Drivers  
Debug Signals  
(shared w/GPIO)  
Up to 512 KB ISP Flash  
Program Memory  
TRNG  
A
H
B
A
P
B
CRYPTOACC  
CRC  
32 KB RAM  
Trust Zone  
Energy Management  
PAVDD  
RFVDD  
IOVDD  
AVDD  
LDMA Controller  
Analog Peripherals  
Voltage  
Monitor  
Watchdog  
Timer  
Internal  
Reference  
Temperature  
Sensor  
DVDD  
bypass  
VREGVDD  
VREGSW  
DC-DC  
Converter  
Voltage  
Regulator  
Clock Management  
ULFRCO  
VDD  
12-bit ADC  
DECOUPLE  
FSRCO  
LFRCO  
LFXO  
LFXTAL_I  
LFXTAL_O  
HFXTAL_I  
HFXTAL_O  
HFRCO  
HFXO  
Figure 3.1. Detailed EFR32BG22 Block Diagram  
3.2 Radio  
The EFR32BG22 Wireless Gecko features a highly configurable radio transceiver supporting the Bluetooth Low Energy wireless proto-  
col.  
3.2.1 Antenna Interface  
The 2.4 GHz antenna interface consists of a single-ended pin (RF2G4_IO). The external components for the antenna interface in typi-  
cal applications are shown in the RF Matching Networks section.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 7  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.2.2 Fractional-N Frequency Synthesizer  
The EFR32BG22 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is  
used in receive mode to generate the LO frequency for the down-conversion mixer. It is also used in transmit mode to directly generate  
the modulated RF carrier.  
The fractional-N architecture provides excellent phase noise performance, frequency resolution better than 100 Hz, and low energy  
consumption. The synthesizer’s fast frequency settling allows for very short receiver and transmitter wake up times to reduce system  
energy consumption.  
3.2.3 Receiver Architecture  
The EFR32BG22 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion  
mixer. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital converter (IFADC).  
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, provid-  
ing flexibility with respect to known interferers at the image frequency.  
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selec-  
tivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance.  
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow re-  
ceive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and  
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by  
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS).  
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF chan-  
nel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received  
frame and the dynamic RSSI measurement can be monitored throughout reception.  
3.2.4 Transmitter Architecture  
The EFR32BG22 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls  
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping  
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shap-  
ing.  
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by  
the EFR32BG22. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth be-  
tween devices that otherwise lack synchronized RF channel access.  
3.2.5 Packet and State Trace  
The EFR32BG22 Frame Controller has a packet and state trace unit that provides valuable information during the development phase.  
It features:  
• Non-intrusive trace of transmit data, receive data and state information  
• Data observability on a single-pin UART data output, or on a two-pin SPI data output  
• Configurable data output bitrate / baudrate  
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream  
3.2.6 Data Buffering  
The EFR32BG22 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64  
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.  
3.2.7 Radio Controller (RAC)  
The Radio Controller controls the top level state of the radio subsystem in the EFR32BG22. It performs the following tasks:  
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry  
• Run-time calibration of receiver, transmitter and frequency synthesizer  
• Detailed frame transmission timing, including optional LBT or CSMA-CA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 8  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.2.8 RFSENSE Interface  
The RFSENSE block allows the device to remain in EM2, EM3 or EM4 and wake when RF energy above a specified threshold is detec-  
ted. When operated in selective mode, the RFSENSE block performs OOK preamble and sync word detection, preventing false wake-  
up events.  
3.3 General Purpose Input/Output (GPIO)  
EFR32BG22 has up to 26 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or  
input. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO  
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to  
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripher-  
als. The GPIO subsystem supports asynchronous external pin interrupts.  
All of the pins on ports A and port B are EM2 capable. These pins may be used by Low-Energy peripherals in EM2/3 and may also be  
used as EM2/3 pin wake-ups. Pins on ports C and D are latched/retained in their current state when entering EM2 until EM2 exit upon  
which internal peripherals could once again drive those pads.  
A few GPIOs also have EM4 wake functionality. These pins are listed in the Alternate Function Table.  
3.4 Clocking  
3.4.1 Clock Management Unit (CMU)  
The Clock Management Unit controls oscillators and clocks in the EFR32BG22. Individual enabling and disabling of clocks to all periph-  
eral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility  
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and  
oscillators.  
3.4.2 Internal and External Oscillators  
The EFR32BG22 supports two crystal oscillators and fully integrates four RC oscillators, listed below.  
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing refer-  
ence for the MCU. The HFXO provides excellent RF clocking performance using a 38.4 MHz crystal. The HFXO can also support an  
external clock source such as a TCXO for applications that require an extremely accurate clock frequency over temperature.  
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.  
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The  
HFRCO employs fast start-up at minimal energy consumption combined with a wide frequency range, from 1 MHz to 76.8 MHz.  
• An integrated fast start-up RC oscillator (FSRCO) that runs at a fixed 20 MHz  
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) for low power operation without an external crystal. Precision mode  
enables periodic recalibration against the 38.4 MHz HFXO crystal to improve accuracy to +/- 500 ppm, suitable for BLE sleep inter-  
val timing.  
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-  
sumption in low energy modes.  
3.5 Counters/Timers and PWM  
3.5.1 Timer/Counter (TIMER)  
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the  
Peripheral Reflex System (PRS). The core of each TIMER is a 16-bit or 32-bit counter with up to 3 compare/capture channels. Each  
channel is configurable in one of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In  
compare mode, the channel output reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER  
supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the  
compare registers. In addition some timers offer dead-time insertion.  
See 3.13 Configuration Summary for information on the feature set of each timer.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 9  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.5.2 Low Energy Timer (LETIMER)  
The unique LETIMER is a 24-bit timer that is available in energy mode EM0 Active, EM1 Sleep, EM2 Deep Sleep, and EM3 Stop. This  
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed  
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-  
forms with minimal software intervention. The LETIMER is connected to the Peripheral Reflex System (PRS), and can be configured to  
start counting on compare matches from other peripherals such as the RTCC.  
3.5.3 Real Time Clock with Capture (RTCC)  
The Real Time Clock with Capture (RTCC) is a 32-bit counter providing timekeeping down to EM3. The RTCC can be clocked by any of  
the on-board low-frequency oscillators, and it is capable of providing system wake-up at user defined intervals.  
A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for appli-  
cation software.  
3.5.4 Back-Up Real Time Counter  
The Back-Up Real Time Counter (BURTC) is a 32-bit counter providing timekeeping in all energy modes, including EM4. The BURTC  
can be clocked by any of the on-board low-frequency oscillators, and it is capable of providing system wake-up at user defined inver-  
vals.  
3.5.5 Watchdog Timer (WDOG)  
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed  
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can  
also monitor autonomous systems driven by the Peripheral Reflex System (PRS).  
3.6 Communications and Other Digital Peripherals  
3.6.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous  
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices sup-  
porting:  
• ISO7816 SmartCards  
• IrDA  
I2S  
3.6.2 Enhanced Universal Asynchronous Receiver/Transmitter (EUART)  
The Enhanced Universal Asynchronous Receiver/Transmitter supports full duplex asynchronous UART communication with hardware  
flow control, RS-485 and IrDA support. In EM0 and EM1 the EUART provides a high-speed, buffered communication interface.  
When routed to GPIO ports A or B, the EUART may also be used in a low-energy mode and operate in EM2. A 32.768 kHz clock  
source allows full duplex UART communication up to 9600 baud.  
3.6.3 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and  
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10  
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The  
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated trans-  
fers. Automatic recognition of slave addresses is provided in active and low energy modes. Note that not all instances of I2C are avalia-  
ble in all energy modes.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 10  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.6.4 Peripheral Reflex System (PRS)  
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.  
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer periph-  
erals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)  
can be applied by the PRS to the signals. The PRS allows peripherals to act autonomously without waking the MCU core, saving  
power.  
3.6.5 Pulse Density Modulation (PDM) Interface  
The PDM module provides a serial interface and decimation filter for Pulse Density Modulation (PDM) microphones, isolated Sigma-  
delta ADCs, digital sensors and other PDM or sigma delta bit stream peripherals. A programmable Cascaded Integrator Comb (CIC)  
filter is used to decimate the incoming bit streams. PDM supports stereo or mono input data and DMA transfer.  
3.7 Security Features  
The following security features are available on the EFR32BG22:  
• Secure Boot with Root of Trust and Secure Loader (RTSL)  
• Cryptographic Accelerator  
• True Random Number Generator (TRNG)  
• Secure Debug with Lock/Unlock  
3.7.1 Secure Boot with Root of Trust and Secure Loader (RTSL)  
The Secure Boot with RTSL authenticates a chain of trusted firmware that begins from an immutable memory (ROM).  
It prevents malware injection, prevents rollback, ensures that only authentic firmware is executed and protects Over The Air updates.  
More information on this feature can be found in the Application Note AN1218: Series 2 Secure Boot with RTSL.  
3.7.2 Cryptographic Accelerator  
The Cryptographic Accelerator is an autonomous hardware accelerator which supports AES encryption and decryption with  
128/192/256-bit keys, Elliptic Curve Cryptography (ECC) to support public key operations and hashes.  
Supported block cipher modes of operation for AES include:  
• ECB (Electronic Code Book)  
• CTR (Counter Mode)  
• CBC (Cipher Block Chaining)  
• CFB (Cipher Feedback)  
• GCM (Galois Counter Mode)  
• CBC-MAC (Cipher Block Chaining Message Authentication Code)  
• GMAC (Galois Message Authentication Code)  
• CCM (Counter with CBC-MAC)  
The Cryptographic Accelerator accelerates Elliptical Curve Cryptography and supports the NIST (National Institute of Standards and  
Technology) recommended curves including P-192 and P-256 for ECDH(Elliptic Curve Diffie-Hellman) key derivation and ECDSA (El-  
liptic Curve Digital Signature Algorithm) sign and verify operations.  
Supported hashes include SHA-1, SHA2/224, and SHA-2/256.  
This implementation provides a fast and energy efficient solution to state of the art cryptographic needs.  
3.7.3 True Random Number Generator  
The True Random Number Generator module is a non-deterministic random number generator that harvests entropy from a thermal  
energy source. It includes start-up health tests for the entropy source as required by NIST SP800-90B and AIS-31 as well as online  
health tests required for NIST SP800-90C.  
The TRNG is suitable for periodically generating entropy to seed an approved pseudo random number generator.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 11  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.7.4 Secure Debug with Lock/Unlock  
For obvious security reasons, it is critical for a product to have its debug interface locked before being released in the field.  
In addition, the EFR32BG22 also provides a secure debug unlock function that allows authenticated access based on public key cryp-  
tography. This functionality is particularly useful for supporting failure analysis while maintaining confidentiality of IP and sensitive end-  
user data.  
More information on this feature can be found in the Application Note AN1190: EFR32xG2x Secure Debug.  
3.8 Analog  
3.8.1 Analog to Digital Converter (IADC)  
The IADC is a hybrid architecture combining techniques from both SAR and Delta-Sigma style converters. It has a resolution of 12 bits  
at 1 Msps and 16 bits at up to 76.9 ksps. Hardware oversampling reduces system-level noise over multiple front-end samples. The  
IADC includes integrated voltage reference options. Inputs are selectable from a wide range of sources, including pins configurable as  
either single-ended or differential.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 12  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.9 Power  
The EFR32BG22 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only  
a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator  
can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capaci-  
tor.  
The EFR32BG22 device family includes support for internal supply voltage scaling, as well as two different power domains groups for  
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.  
3.9.1 Energy Management Unit (EMU)  
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and  
features are available and the amount of current the device consumes. The EMU can also be used to implement system-wide voltage  
scaling and turn off the power to unused RAM blocks to optimize the energy consumption in the target application. The DC-DC regula-  
tor operation is tightly integrated with the EMU.  
3.9.2 Voltage Scaling  
The EFR32BG22 supports supply voltage scaling for the LDO powering DECOUPLE, with independent selections for EM0 / EM1 and  
EM2 / EM3. Voltage scaling helps to optimize the energy efficiency of the system by operating at lower voltages when possible. The  
default EM0 / EM1 voltage scaling level is VSCALE2, which allows the core to operate in active mode at full speed. The intermediate  
level, VSCALE1, allows operation in EM0 and EM1 at up to 40 MHz. The lowest level, VSCALE0, can be used to conserve power in  
EM2 and EM3. The EMU will automatically switch the target voltage scaling level when transitioning between energy modes.  
3.9.3 DC-DC Converter  
The DC-DC buck converter covers a wide range of load currents, provides high efficiency in energy modes EM0, EM1, EM2 and EM3,  
and can supply up to 60 mA for device and radio operation. RF noise mitigation allows operation of the DC-DC converter without signifi-  
cantly degrading sensitivity of radio components. An on-chip supply-monitor signals when the supply voltage is low to allow bypass of  
the regulator via programmable software interrupt. It employs soft switching at boot and DCDC regulating-to-bypass transitions to limit  
the max supply slew-rate and mitigate inrush current.  
3.9.4 Power Domains  
The EFR32BG22 has three peripheral power domains for operation in EM2 and EM3, as well as the ability to selectively retain configu-  
rations for EM0/EM1 peripherals. A small set of peripherals always remain powered on in EM2 and EM3, including all peripherals which  
are available in EM4. If all of the peripherals in PD0B or PD0C are configured as unused, that power domain will be powered off in EM2  
or EM3, reducing the overall current consumption of the device. Likewise, if the application can tolerate the setup time to re-configure  
used EM0/EM1 peripherals on wake, register retention for these peripherals can be disabled to further reduce the EM2 or EM3 current.  
Table 3.1. Peripheral Power Subdomains  
Always available in EM2/EM3  
Power Domain PD0B  
LETIMER0  
Power Domain PD0C  
RTCC  
LFRCO (Precision Mode)  
LFRCO (Non-precision mode)1  
IADC0  
LFXO1  
I2C0  
BURTC1  
RFSENSE1  
WDOG0  
EUART0  
PRS  
ULFRCO1  
FSRCO  
DEBUG  
Note:  
1. Peripheral also available in EM4.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 13  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.10 Reset Management Unit (RMU)  
The RMU is responsible for handling reset of the EFR32BG22. A wide range of reset sources are available, including several power  
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.  
3.11 Core and Memory  
3.11.1 Processor Core  
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:  
• ARM Cortex-M33 RISC processor achieving 1.50 Dhrystone MIPS/MHz  
• ARM TrustZone security technology  
• Embedded Trace Macrocell (ETM) for real-time trace and debug  
• Up to 512 kB flash program memory  
• Up to 32 kB RAM data memory  
• Configuration and event handling of all modules  
• 2-pin Serial-Wire debug interface  
3.11.2 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable  
from both the Cortex-M and DMA. In addition to the main flash array where Program code is normally written the MSC also provides an  
Information block where additional information such as special user information or flash-lock bits are stored. There is also a read-only  
page in the information block containing system and device calibration data. Read and write operations are supported in energy modes  
EM0 Active and EM1 Sleep.  
3.11.3 Linked Direct Memory Access Controller (LDMA)  
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This  
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-  
phisticated operations to be implemented.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 14  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.12 Memory Map  
The EFR32BG22 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.  
Figure 3.2. EFR32BG22 Memory Map — Core Peripherals and Code Space  
silabs.com | Building a more connected world.  
Rev. 1.0 | 15  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
System Overview  
3.13 Configuration Summary  
The features of the EFR32BG22 are a subset of the feature set described in the device reference manual. The table below describes  
device specific implementation of the features. Remaining modules support full configuration.  
Table 3.2. Configuration Summary  
Module  
Lowest Energy Mode  
Configuration  
EM21  
EM1  
EM2  
I2C0  
I2C1  
IADC0  
EM21  
LETIMER0  
PDM  
EM1  
2-channel  
TIMER0  
TIMER1  
TIMER2  
TIMER3  
TIMER4  
EUART0  
EM1  
32-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
16-bit, 3-channels, +DTI  
EM1  
EM1  
EM1  
EM1  
EM1 - Full high-speed operation  
EM21 - Low-energy operation, 9600 Baud  
USART0  
USART1  
Note:  
EM1  
EM1  
+IrDA, +I2S, +SmartCard  
+IrDA, +I2S, +SmartCard  
1. EM2 and EM3 operation is only supported for digital peripheral I/O on Port A and Port B. All GPIO ports support digital peripheral  
operation in EM0 and EM1.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 16  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:  
• Typical values are based on TA=25 °C and all supplies at 3.0 V, by production test and/or technology characterization.  
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-  
er-specific external RF impedance-matching networks for interfacing to a 50 Ω antenna.  
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,  
unless stated otherwise.  
Power Supply Pin Dependencies  
Due to on-chip circuitry (e.g., diodes), some EFR32 power supply pins have a dependent relationship with one or more other power  
supply pins. These internal relationships between the external voltages applied to the various EFR32 supply pins are defined below.  
Exceeding the below constraints can result in damage to the device and/or increased current draw.  
• VREGVDD & DVDD  
• In systems using the DCDC converter, DVDD (the buck converter output) should be connected to the recommended LDCDC and  
CDCDC, and should not be driven by an off-chip regulator.  
• In systems not using the DCDC converter, DVDD must be shorted to VREGVDD on the PCB (VREGVDD=DVDD)  
• DVDD ≥ DECOUPLE  
• PAVDD ≥ RFVDD  
• AVDD, IOVDD: No dependency with each other or any other supply pin  
silabs.com | Building a more connected world.  
Rev. 1.0 | 17  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.2 Absolute Maximum Ratings  
Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of  
the devices at those or any other conditions beyond those indicated in the operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and relia-  
bility data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
Test Condition  
Min  
-50  
Typ  
Max  
+150  
3.8  
Unit  
°C  
Storage temperature range  
Voltage on any supply pin1  
Junction temperature  
VDDMAX  
-0.3  
V
TJMAX  
-G grade  
-I grade  
+105  
+125  
1.0  
°C  
°C  
Voltage ramp rate on any  
supply pin  
VDDRAMPMAX  
V / µs  
Voltage on HFXO pins  
VHFXOPIN  
-0.3  
-0.3  
1.4  
V
V
DC voltage on any GPIO pin VDIGPIN  
VIOVDD  
0.3  
+
DC voltage on RESETn pin2  
VRESETn  
-0.3  
3.8  
V
Input RF level on RF pins  
RF2G4_IO  
PRFMAX2G4  
+10  
dBm  
Absolute voltage on RF pin  
RF2G4_IO  
VMAX2G4  
-0.3  
VPAVDD  
0.3  
+
V
Total current into VDD power IVDDMAX  
lines  
Source  
Sink  
200  
mA  
mA  
Total current into VSS  
ground lines  
IVSSMAX  
200  
Current per I/O pin  
Current for all I/O pins  
Note:  
IIOMAX  
Sink  
50  
50  
mA  
mA  
mA  
mA  
Source  
Sink  
IIOALLMAX  
200  
200  
Source  
1. The maximum supply voltage on VREGVDD is limited under certain conditions when using the DC-DC. See the DC-DC specifica-  
tions for more details.  
2. The RESETn pin has a pull-up device to the DVDD supply. For minimum leakage, RESETn should not exceed the voltage at  
DVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 18  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.3 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
-G temperature grade 1  
Operating ambient tempera- TA  
ture range  
-40  
+85  
°C  
-I temperature grade 1  
EM0/1  
-40  
+125  
° C  
DVDD supply voltage  
VDVDD  
1.71  
1.71  
3.0  
3.0  
3.8  
3.8  
V
V
EM2/3/42  
AVDD supply voltage  
VAVDD  
1.71  
1.71  
3.0  
3.0  
3.8  
3.8  
V
V
IOVDDx operating supply  
voltage (All IOVDD pins)  
VIOVDDx  
PAVDD operating supply  
voltage  
VPAVDD  
1.71  
2.2  
3.0  
3.0  
3.8  
3.8  
V
V
DC-DC in regulation3  
VREGVDD operating supply VVREGVDD  
voltage  
DC-DC in bypass 60 mA load  
1.8  
3.0  
3.0  
3.8  
3.8  
V
V
DC-DC not in use. DVDD exter-  
nally shorted to VREGVDD  
1.71  
RFVDD operating supply  
voltage  
VRFVDD  
1.71  
1.0  
3.0  
VPAVDD  
V
DECOUPLE output capaci-  
tor4  
CDECOUPLE  
1.0 µF ± 10% X8L capacitor used  
for performance characterization.  
2.75  
µF  
HCLK and SYSCLK frequen- fHCLK  
cy  
VSCALE2, MODE = WS1  
VSCALE2, MODE = WS0  
VSCALE1, MODE = WS0  
VSCALE2  
76.8  
40  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
40  
PCLK frequency  
fPCLK  
50  
VSCALE1  
40  
EM01 Group A clock fre-  
quency  
fEM01GRPACLK  
fEM01GRPBCLK  
fRHCLK  
VSCALE2  
76.8  
40  
VSCALE1  
EM01 Group B clock fre-  
quency  
VSCALE2  
76.8  
40  
VSCALE1  
Radio HCLK frequency5  
VSCALE2 or VSCALE1  
38.4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 19  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. The device may operate continuously at the maximum allowable ambient TA rating as long as the absolute maximum TJMAX is not  
exceeded. For an application with significant power dissipation, the allowable TA may be lower than the maximum TA rating. TA =  
TJMAX - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal Characteristics table for  
TJMAX and THETAJA  
.
2. The DVDD supply is monitored by the DVDD BOD in EM0/1 and the LE DVDD BOD in EM2/3/4.  
3. The maximum supply voltage on VREGVDD is limited under certain conditions when using the DC-DC. See the DC-DC specifica-  
tions for more details.  
4. Murata GCM21BL81C105KA58L used for performance characterization. Actual capacitor values can be significantly de-rated  
from their specified nominal value by the rated tolerance, as well as the application's AC voltage, DC bias, and temperature. The  
minimum capacitance counting all error sources should be no less than 0.6 µF.  
5. The recommended radio crystal frequency is 38.4 MHz. Any crystal frequency other than 38.4 MHz is expressly not supported.  
See HFXO specifications for more detail on crystal tolerance.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 20  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.4 DC-DC Converter  
Test conditions: LDCDC = 2.2 µH (Samsung CIG22H2R2MNE), CDCDC = 4.7 µF (Samsung CL10B475KQ8NQNC), VVREGVDD = 3.0 V,  
VOUT = 1.8 V, IPKVAL in EM0/1 modes is set to 150 mA, and in EM2/3 modes is set to 90 mA, unless otherwise indicated.  
Table 4.3. DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range at  
VREGVDD pin1  
VVREGVDD  
DCDC in regulation, ILOAD = 60  
mA, EM0/EM1 mode  
2.2  
3.0  
3.8*  
V
DCDC in regulation, ILOAD = 5  
1.8  
3.0  
3.8*  
V
mA, EM0/EM1 or EM2/EM3 mode  
Bypass mode  
1.8  
3.0  
1.8  
3.8  
V
V
Regulated output voltage  
Regulation DC accuracy  
VOUT  
ACCDC  
VVREGVDD ≥ 2.2 V, Steady state in  
EM0/EM1 mode or EM2/EM3  
mode  
-2.5  
3.3  
%
Regulation total accuracy  
ACCTOT  
With mode transitions between  
EM0/EM1 and EM2/EM3 modes  
-5  
7
%
Steady-state output ripple  
DC line regulation  
VR  
ILOAD = 20 mA in EM0/EM1 mode  
14.3  
5.5  
mVpp  
mV/V  
VREG  
ILOAD = 60 mA in EM0/EM1  
mode, VVREGVDD ≥ 2.2 V  
DC load regulation  
Efficiency  
IREG  
EFF  
Load current between 100 µA and  
60 mA in EM0/EM1 mode  
0.27  
91  
mV/mA  
%
Load current between 100 µA and  
60 mA in EM0/EM1 mode, or be-  
tween 10 µA and 5 mA in  
EM2/EM3 mode  
Output load current  
ILOAD  
EM0/EM1 mode, DCDC in regula-  
tion  
60  
5
mA  
mA  
EM2/EM3 mode, DCDC in regula-  
tion  
Bypass mode  
60  
10  
mA  
µF  
Nominal output capacitor  
CDCDC  
4.7 µF ± 10% X7R capacitor used  
for performance characterization2  
4.7  
Nominal inductor  
LDCDC  
CIN  
± 20% tolerance  
CDCDC  
2.2  
3
µH  
µF  
Nominal input capacitor  
Resistance in bypass mode RBYP  
Bypass switch from VREGVDD to  
DVDD, VVREGVDD = 1.8 V  
1.75  
Powertrain PFET switch from  
VREGVDD to VREGSW,  
VVREGVDD = 1.8 V  
0.86  
1.5  
Supply monitor threshold  
programming range  
VCMP_RNG  
Programmable in 0.1 V steps  
Supply falling edge trip point  
2.0  
-5  
2.3  
5
V
Supply monitor threshold ac- VCMP_ACC  
curacy  
%
silabs.com | Building a more connected world.  
Rev. 1.0 | 21  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply monitor threshold  
hysteresis  
VCMP_HYST  
Positive hysteresis on the supply  
rising edge referred to the falling  
edge trip point  
4
%
Supply monitor response  
time  
tCMP_DELAY  
Supply falling edge at -100 mV /  
µs  
0.6  
µs  
Note:  
1. The supported maximum VVREGVDD in regulation mode is a function of temperature and 10-year lifetime average load current.  
See more details in 4.4.1 DC-DC Operating Limits.  
2. Samsung CL10B475KQ8NQNC used for performance characterization. Actual capacitor values can be significantly de-rated from  
their specified nominal value by the rated tolerance, as well as the application's AC voltage, DC bias, and temperature. The mini-  
mum capacitance counting all error sources should be no less than 2.4 µF.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 22  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.4.1 DC-DC Operating Limits  
The maximum supported voltage on the VREGVDD supply pin is limited under certain conditions. Maximum input voltage is a function  
of temperature and the average load current over a 10-year lifetime. Figure 4.1 Lifetime average load current limit vs. Maximum input  
voltage on page 23 shows the safe operating region under specific conditions. Exceeding this safe operating range may impact the  
reliability and performance of the DC-DC converter.  
The average load current for an application can typically be determined by examining the current profile during the time the device is  
powered. For example, an application that is continuously powered which spends 99% of the time asleep consuming 2 µA and 1% of  
the time active and consuming 10 mA has an average lifetime load current of about 102 µA.  
Tj 125 °C  
60  
5
3.3  
Maximum VVREGVDD (V)  
3.8  
Figure 4.1. Lifetime average load current limit vs. Maximum input voltage  
The minimum input voltage for the DC-DC in EM0/EM1 mode is a function of the maximum load current, and the peak current setting.  
Figure 4.2 Transient maximum load current vs. Minimum input voltage on page 23 shows the max load current vs. input voltage for  
different DC-DC peak inductor current settings.  
60  
36  
IPEAK = 150 mA  
IPEAK = 90 mA  
5
1.8  
2.2  
Minimum VVREGVDD (V)  
Figure 4.2. Transient maximum load current vs. Minimum input voltage  
silabs.com | Building a more connected world.  
Rev. 1.0 | 23  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.5 Thermal Characteristics  
Table 4.4. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
4-Layer PCB, Natural Convection1  
Thermal Resistance Junction THE-  
to Ambient QFN32 (4x4mm) TAJA_QFN32_4X4  
Package  
35.4  
°C/W  
4-Layer PCB, Natural Convection1  
4-Layer PCB, Natural Convection1  
Thermal Resistance Junction THE-  
40.2  
32.6  
°C/W  
°C/W  
to Ambient TQFN32  
(4x4mm) Package  
TAJA_TQFN32_4X  
4
Thermal Resistance, Junc-  
tion to Ambient, QFN40  
(5x5mm) Package  
THE-  
TAJA_QFN40_5X5  
Note:  
1. Measured according to JEDEC standard JESD51-2A. Integrated Circuit Thermal Test Method Environmental Conditions - Natural  
Convection (Still Air).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 24  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.6 Current Consumption  
4.6.1 MCU current consumption using DC-DC at 3.0 V input  
Unless otherwise indicated, typical conditions are: VREGVDD = 3.0 V. AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8 V from DC-  
DC. Voltage scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across  
process variation at TA = 25 °C.  
Table 4.5. MCU current consumption using DC-DC at 3.0 V input  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
28  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
27  
37  
µA/MHz  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
38.4 MHz crystal, CPU running  
Prime from flash  
28  
26  
38  
22  
24  
27  
159  
17  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38.4 MHz crystal, CPU running  
while loop from flash  
38.4 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal,  
VSCALE2  
38.4 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
17  
13  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
15  
18  
150  
silabs.com | Building a more connected world.  
Rev. 1.0 | 25  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
Full RAM retention and RTC run-  
ning from LFXO  
1.40  
µA  
Full RAM retention and RTC run-  
ning from LFRCO  
1.40  
1.75  
µA  
µA  
Full RAM retention and RTC run-  
ning from LFRCO in precision  
mode  
24 kB RAM retention and RTC  
running from LFXO  
1.32  
1.66  
µA  
µA  
24 kB RAM retention and RTC  
running from LFRCO in precision  
mode  
8 kB RAM retention and RTC run-  
ning from LFXO  
1.21  
1.20  
1.03  
µA  
µA  
µA  
8 kB RAM retention and RTC run-  
ning from LFRCO  
8 kB RAM retention and RTC run-  
ning from LFXO, Radio RAM and  
CPU cache not retained  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
8 kB RAM retention and RTC run-  
ning from ULFRCO  
1.05  
0.37  
µA  
µA  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled1  
Note:  
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See for a list of the  
peripherals in each power domain.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 26  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.6.2 MCU current consumption at 3.0 V  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = VREGVDD = 3.0 V. DC-DC not used. Voltage  
scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across process varia-  
tion at TA = 25 °C.  
Table 4.6. MCU current consumption at 3.0 V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
42  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
39  
54  
µA/MHz  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
38.4 MHz crystal, CPU running  
Prime from flash  
40  
39  
55  
33  
35  
40  
228  
24  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38.4 MHz crystal, CPU running  
while loop from flash  
38.4 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
50  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
830  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal,  
VSCALE2  
38.4 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
25  
19  
35  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
21  
27  
215  
770  
silabs.com | Building a more connected world.  
Rev. 1.0 | 27  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
Full RAM retention and RTC run-  
ning from LFXO  
1.94  
µA  
Full RAM retention and RTC run-  
ning from LFRCO  
1.95  
1.81  
2.34  
4.9  
µA  
µA  
µA  
24 kB RAM retention and RTC  
running from LFXO  
24 kB RAM retention and RTC  
running from LFRCO in precision  
mode  
8 kB RAM retention and RTC run-  
ning from LFXO  
1.64  
1.65  
1.39  
µA  
µA  
µA  
8 kB RAM retention and RTC run-  
ning from LFRCO  
8 kB RAM retention and RTC run-  
ning from LFXO, Radio RAM and  
CPU cache not retained  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
8 kB RAM retention and RTC run-  
ning from ULFRCO  
1.41  
3.7  
µA  
Current consumption in EM4 IEM4  
mode  
No BURTC, no LF oscillator  
BURTC with LFXO  
0.17  
0.50  
234  
0.43  
µA  
µA  
µA  
Current consumption during IRST  
reset  
Hard pin reset held  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled1  
0.56  
µA  
Note:  
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See for a list of the  
peripherals in each power domain.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 28  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.6.3 MCU current consumption at 1.8 V  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = RFVDD = PAVDD = VREGVDD = 1.8 V. DC-DC not used. Voltage  
scaling level = VSCALE1. TA = 25 °C. Minimum and maximum values in this table represent the worst conditions across process varia-  
tion at TA = 25 °C.  
Table 4.7. MCU current consumption at 1.8 V  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running Prime from flash,  
VSCALE2  
42  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running while loop from flash,  
VSCALE2  
39  
54  
µA/MHz  
µA/MHz  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal, CPU  
running CoreMark loop from flash,  
VSCALE2  
38.4 MHz crystal, CPU running  
Prime from flash  
41  
39  
55  
33  
35  
40  
227  
24  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38.4 MHz crystal, CPU running  
while loop from flash  
38.4 MHz crystal, CPU running  
CoreMark loop from flash  
38 MHz HFRCO, CPU running  
while loop from flash  
26 MHz HFRCO, CPU running  
while loop from flash  
16 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
76.8 MHz HFRCO w/ DPLL refer-  
enced to 38.4 MHz crystal,  
VSCALE2  
38.4 MHz crystal  
38 MHz HFRCO  
26 MHz HFRCO  
16 MHz HFRCO  
1 MHz HFRCO  
25  
19  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
21  
27  
213  
silabs.com | Building a more connected world.  
Rev. 1.0 | 29  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, VSCALE0  
Full RAM retention and RTC run-  
ning from LFXO  
1.87  
µA  
Full RAM retention and RTC run-  
ning from LFRCO  
1.86  
1.73  
2.26  
µA  
µA  
µA  
24 kB RAM retention and RTC  
running from LFXO  
24 kB RAM retention and RTC  
running from LFRCO in precision  
mode  
8 kB RAM retention and RTC run-  
ning from LFXO  
1.57  
1.56  
1.32  
µA  
µA  
µA  
8 kB RAM retention and RTC run-  
ning from LFRCO  
8 kB RAM retention and RTC run-  
ning from LFXO, Radio RAM and  
CPU cache not retained  
Current consumption in EM3 IEM3_VS  
mode, VSCALE0  
8 kB RAM retention and RTC run-  
ning from ULFRCO  
1.34  
µA  
Current consumption in EM4 IEM4  
mode  
No BURTC, no LF oscillator  
BURTC with LFXO  
0.13  
0.44  
190  
µA  
µA  
µA  
Current consumption during IRST  
reset  
Hard pin reset held  
Additional current in EM2 or IPD0B_VS  
EM3 when any peripheral in  
PD0B is enabled1  
0.54  
µA  
Note:  
1. Extra current consumed by power domain. Does not include current associated with the enabled peripherals. See for a list of the  
peripherals in each power domain.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 30  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.6.4 Radio current consumption at 3.0V using DCDC  
RF current consumption measured with MCU in EM1, HCLK = 38.4 MHz, and all MCU peripherals disabled. Unless otherwise indica-  
ted, typical conditions are: VREGVDD = 3.0V. AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8 V powered from DCDC. TA = 25 °C.  
Minimum and maximum values in this table represent the worst conditions across process variation at TA = 25 °C.  
Table 4.8. Radio current consumption at 3.0V using DCDC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
System current consumption IRX_ACTIVE  
in receive mode, active pack-  
et reception  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
3.7  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.0  
4.1  
3.8  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.0  
4.2  
3.6  
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
3.8  
3.9  
4.0  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.2  
4.4  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 31  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
System current consumption IRX_LISTEN  
in receive mode, listening for  
packet  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
3.8  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.0  
4.1  
3.8  
mA  
mA  
mA  
125 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.0  
4.1  
3.6  
mA  
mA  
mA  
500 kbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
3.8  
4.0  
4.1  
mA  
mA  
mA  
1 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1, EM1P (Radio clocks  
only)  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE1  
4.3  
4.5  
4.1  
mA  
mA  
mA  
2 Mbit/s, 2GFSK, f = 2.4 GHz,  
VSCALE2  
System current consumption ITX  
in transmit mode  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE1,  
EM1P (Radio clocks only)  
f = 2.4 GHz, CW, 6 dBm PA, 6  
dBm output power, VSCALE1,  
EM1P (Radio clocks only)  
8.2  
mA  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE1  
4.3  
8.4  
4.4  
8.5  
mA  
mA  
mA  
mA  
f = 2.4 GHz, CW, 6 dBm PA, 6  
dBm output power, VSCALE1  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power, VSCALE2  
f = 2.4 GHz, CW, 6 dBm PA, 6  
dBm output power, VSCALE2  
silabs.com | Building a more connected world.  
Rev. 1.0 | 32  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.7 Flash Characteristics  
Table 4.9. Flash Characteristics  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Flash Supply voltage during VFLASH  
write or erase  
1.71  
3.8  
V
Flash erase cycles before  
failure1  
ECFLASH  
TA ≤ 125 °C  
TA ≤ 125 °C  
10,000  
cycles  
Flash data retention1  
Program Time  
RETFLASH  
tPROG  
10  
years  
one word (32-bits)  
42.1  
10.3  
11.4  
11.7  
44  
10.9  
12.9  
13  
45.6  
11.3  
14.4  
14.3  
1.45  
1.34  
1.28  
uSec  
uSec  
ms  
average per word over 128 words  
Page Erase Time  
Mass Erase Time  
Program Current  
Page Erase Current  
Mass Erase Current  
Note:  
tPERASE  
tMERASE  
IPROG  
Erases all of User Code area  
ms  
mA  
IPERASE  
IMERASE  
Page Erase  
Mass Erase  
mA  
mA  
1. Flash data retention information is published in the Quarterly Quality and Reliability Report.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 33  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.8 Wake Up, Entry, and Exit times  
Unless otherwise specified, these times are measured using the HFRCO at 19 MHz.  
Table 4.10. Wake Up, Entry, and Exit times  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
WakeupTime from EM1  
tEM1_WU  
Code execution from flash  
3
AHB  
Clocks  
Code execution from RAM  
1.42  
µs  
µs  
WakeupTime from EM2  
tEM2_WU  
Code execution from flash, No  
Voltage Scaling  
13.22  
Code execution from RAM, No  
Voltage Scaling  
5.15  
µs  
Voltage scaling up one level1  
Voltage scaling up two levels2  
37.89  
50.56  
13.21  
µs  
µs  
µs  
WakupTime from EM3  
tEM3_WU  
Code execution from flash, No  
Voltage Scaling  
Code execution from RAM, No  
Voltage Scaling  
5.15  
µs  
Voltage scaling up one level1  
37.90  
50.55  
µs  
µs  
Voltage scaling up two levels2  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Code execution from flash  
Up from VSCALE1 to VSCALE2  
WakeupTime from EM4  
Entry time to EM1  
Entry time to EM2  
Entry time to EM3  
Entry time to EM4  
tEM4_WU  
tEM1_ENT  
tEM2_ENT  
tEM3_ENT  
tEM4_ENT  
tSCALE  
8.81  
1.29  
5.23  
5.23  
9.96  
32  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
Voltage scaling in time in  
EM03  
Down from VSCALE2 to  
VSCALE1  
172  
Note:  
1. Voltage scaling one level is between VSCALE0 and VSCALE1 or between VSCALE1 and VSCALE2.  
2. Voltage scaling two levels is between VSCALE0 and VSCALE2.  
3. During voltage scaling in EM0, RAM is inaccessible and processor will be halted until complete.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 34  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.9 RFSENSE Low-energy Wake-on-RF  
Table 4.11. RFSENSE Low-energy Wake-on-RF  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
138  
131  
Max  
Unit  
nA  
Average current  
IRFSENSE  
RF energy below wake threshold  
Selective mode, RF energy above  
threshold but no OOK sync detec-  
ted  
nA  
RF level above which  
THRESTRIG  
Threshold set to -34 dBm  
Threshold set to -22 dBm  
Threshold set to -34 dBm  
Threshold set to -22 dBm  
-28  
-19  
dBm  
dBm  
dBm  
dBm  
RFSENSE will detect signal1  
RF level below which  
RFSENSE will not detect sig-  
nal1  
THRESNOTRIG  
-40  
-26  
Sensitivity in selective OOK SENSOOK  
mode1  
Sensitivity for > 90% probability of  
OOK detection2, threshold set to  
-34 dBm  
-28  
dBm  
Sensitivity for > 90% probability of  
-19  
dBm  
OOK detection2, threshold set to  
-22 dBm  
Note:  
1. Values collected with conducted measurements performed at the end of the matching network.  
2. Selective wake signal is 1 kHz OOK Manchester-coded, 8 bits of preamble, 32-bit sync word.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 35  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10 2.4 GHz RF Transceiver Characteristics  
4.10.1 RF Transmitter Characteristics  
4.10.1.1 RF Transmitter General Characteristics for the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.12. RF Transmitter General Characteristics for the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
mA  
RF tuning frequency range  
FRANGE  
Radio-only current consump- ITX_RADIO  
tion while transmitting1  
f = 2.4 GHz, CW, 0 dBm PA, 0  
dBm output power  
3.4  
f = 2.4 GHz, CW, 6 dBm PA, 6  
dBm output power  
7.5  
6
mA  
Maximum TX power2  
6 dBm PA3  
0 dBm PA  
6 dBm PA  
0 dBm PA  
POUTMAX  
dBm  
0
dBm  
dBm  
dBm  
dB  
Minimum active TX power  
POUTMIN  
-27  
-28  
0.04  
Output power variation vs  
supply voltage variation, fre-  
quency = 2450 MHz  
POUTVAR_V  
6 dBm PA output power, using  
DCDC with VREGVDD swept  
from 1.8 to 3.0 V  
0 dBm PA output power, using  
DCDC with VREGVDD swept  
from 1.8 to 3.0 V  
0.03  
dB  
Output power variation vs  
temperature, Frequency =  
2450 MHz  
POUTVAR_T  
6 dBm PA at 6 dBm, (-40 to +125  
°C)  
0.18  
1.4  
dB  
dB  
dB  
dB  
0 dBm PA at 0 dBm, (-40 to +125  
°C)  
6 dBm PA at 6 dBm, (-40 to +85  
°C)  
0.17  
1.0  
0 dBm PA at 0 dBm, (-40 to +85  
°C)  
Output power variation vs RF POUTVAR_F  
frequency  
6 dBm PA, 6 dBm  
0 dBm PA, 0 dBm  
0.20  
0.19  
-47  
dB  
dB  
Spurious emissions of har-  
monics in restricted bands  
per FCC Part 15.205/15.209  
SPURHRM_FCC_ Continuous transmission of CW  
dBm  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz.  
R
silabs.com | Building a more connected world.  
Rev. 1.0 | 36  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Spurious emissions out-of-  
band (above 2.483 GHz or  
below 2.4 GHz) in restricted  
bands, per FCC part  
SPUROOB_FCC_ Restricted bands 30-88 MHz,  
-47  
dBm  
Continuous transmission of CW  
R
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
15.205/15.209  
Restricted bands 88 - 216 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
-47  
-47  
-47  
-26  
dBm  
dBm  
dBm  
dBc  
Restricted bands 216 - 960 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
Restricted bands > 960 MHz,  
Continuous transmission of CW  
carrier, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
Spurious emissions out-of-  
band in non-restricted bands  
per FCC Part 15.247  
SPUROOB_FCC_ Frequencies above 2.483 GHz or  
below 2.4 GHz, continuous trans-  
NR  
mission CW carrier, Pout  
=
POUTMAX, Test Frequency =  
2450 MHz  
Spurious emissions per ETSI SPURETSI440  
EN300.440  
47-74 MHz,87.5-108 MHz,  
174-230 MHz, 470-862 MHz, Pout  
= POUTMAX, Test Frequency =  
2450 MHz  
-60  
-42  
dBm  
dBm  
25-1000 MHz, excluding above  
frequencies. Pout = POUTMAX  
,
Test Frequency = 2450 MHz  
1G-14G, Pout = POUTMAX, Test  
Frequency = 2450 MHz  
-36  
-26  
dBm  
dBm  
Spurious emissions out-of-  
band, per ETSI 300.328  
SPURETSI328  
[2400-2BW to 2400-BW],  
[2483.5+BW to 2483.5+2BW],  
Pout = POUTMAX, Test Frequency  
= 2450 MHz  
47-74 MHz, 87.5-118 MHz,  
174-230 MHz, 470-862 MHz, Pout  
= POUTMAX, Test Frequency =  
2450 MHz  
-60  
-42  
dBm  
dBm  
30-47 MHz, 74-87.5 MHz,  
118-174 MHz, 230-470 MHz,  
862-1000 MHz , Pout = POUTMAX  
,
Test Frequency = 2450 MHz  
1G-12.75 GHz, excluding bands  
-36  
-16  
dBm  
dBm  
listed above, Pout = POUTMAX  
,
Test Frequency = 2450 MHz  
[2400-BW to 2400], [2483.5 to  
2483.5+BW] Pout = POUTMAX  
,
Test Frequency = 2450 MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 37  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Supply current to radio, supplied by DC-DC with 3.0 V, measured at VREGVDD.  
2. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this data sheet can be found in the Max TX Power column of the Ordering Information Table.  
3. The PA is capable of delivering higher than 6 dBm output power (see Figure 4.9 Transmitter Output Power on page 71). How-  
ever, all transmitter characteristics and recommended application circuits are specified at 6 dBm output. If used with the recom-  
mended application circuits above 6 dBm, harmonics may be higher than regulatory limits.  
4.10.1.2 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.13. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Pout = 6 dBm  
Pout = 0 dBm  
Min  
Typ  
630  
640  
2.9  
Max  
Unit  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
Power spectral density limit  
PSDLIMIT  
Pout = 6 dBm, Per FCC part  
15.247 at 6 dBm  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
-3.2  
7.1  
1.1  
1.1  
-41  
-48  
-47  
-54  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 6 dBm 99% BW at highest  
and lowest channels in band  
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
Pout = 6 dbm, Inband spurs at ± 2  
MHz  
Pout = 0 dbm, Inband spurs at ± 2  
MHz  
Pout = 6 dBm Inband spurs at ± 3  
MHz  
Pout = 0dbm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 38  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.1.3 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.14. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Pout = 6 dBm  
Pout = 0 dBm  
Min  
Typ  
1250  
1220  
0.5  
Max  
Unit  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
Power spectral density limit  
PSDLIMIT  
Pout = 6 dBm, Per FCC part  
15.247 at 6 dBm  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
-5.7  
6.3  
2.1  
2.1  
-41  
-47  
-46  
-53  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 6 dBm 99% BW at highest  
and lowest channels in band  
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
Pout = 6 dbm, Inband spurs at ± 4  
MHz  
Pout = 0 dBm, Inband spurs at ± 4  
MHz  
Pout = 6 dBm Inband spurs at ± 6  
MHz  
Pout = 0 dbm Inband spurs at ± 6  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 39  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.1.4 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.15. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Pout = 6 dBm  
Pout = 0 dBm  
Min  
Typ  
640  
650  
2.8  
Max  
Unit  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
Power spectral density limit  
PSDLIMIT  
Pout = 6 dBm, Per FCC part  
15.247 at 6 dBm  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
-3.5  
7.1  
1.1  
1.1  
-41  
-48  
-47  
-54  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 6 dBm 99% BW at highest  
and lowest channels in band  
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
Pout = 6 dbm, Inband spurs at ± 2  
MHz  
Pout = 0 dbm, Inband spurs at ± 2  
MHz  
Pout = 6 dBm Inband spurs at ± 3  
MHz  
Pout = 0dbm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 40  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.1.5 RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.16. RF Transmitter Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Pout = 6 dBm  
Pout = 0 dBm  
Min  
Typ  
600  
600  
2.0  
Max  
Unit  
kHz  
kHz  
Transmit 6 dB bandwidth  
TXBW  
Power spectral density limit  
PSDLIMIT  
Pout = 6 dBm, Per FCC part  
15.247 at 6 dBm  
dBm/  
3kHz  
Pout = 0 dBm, Per FCC part  
15.247 at 0 dBm  
-4.2  
7.1  
1.1  
1.1  
-41  
-47  
-47  
-54  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
MHz  
dBm  
dBm  
dBm  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
Pout = 6 dBm 99% BW at highest  
and lowest channels in band  
Pout = 0 dBm 99% BW at highest  
and lowest channels in band  
In-band spurious emissions, SPURINB  
with allowed exceptions1  
Pout = 6 dbm, Inband spurs at ± 2  
MHz  
Pout = 0 dbm, Inband spurs at ± 2  
MHz  
Pout = 6 dBm Inband spurs at ± 3  
MHz  
Pout = 0dbm Inband spurs at ± 3  
MHz  
Note:  
1. Per Bluetooth Core_5.1, Vol.6 Part A, Section 3.2.2, exceptions are allowed in up to three bands of 1 MHz width, centered on a  
frequency which is an integer multiple of 1 MHz. These exceptions shall have an absolute value of -20 dBm or less.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 41  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.1.6 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.17. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Error vector magnitude per  
802.15.4-2011  
EVM  
Average across frequency, signal  
is DSSS-OQPSK reference pack-  
et, Pout = 6 dBm  
3.0  
% rms  
Average across frequency, signal  
is DSSS-OQPSK reference pack-  
et, Pout = 0 dBm  
3.0  
% rms  
Power spectral density limit  
PSDLIMIT  
Relative, at carrier ± 3.5 MHz,  
Pout = 6 dBm  
-50.7  
-50.8  
-52.5  
-58.3  
-1.4  
dBc/  
100kHz  
Relative, at carrier ± 3.5 MHz,  
Pout = 0 dBm  
dBc/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
Pout = 6 dBm  
dBm/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
Pout = 0 dBm  
dBm/  
100kHz  
Per FCC part 15.247, Pout = 6  
dBm  
dBm/  
3kHz  
Per FCC part 15.247, Pout = 0  
dBm  
-7.4  
dBm/  
3kHz  
ETSI 300.328 Pout = 6 dBm  
ETSI 300.328 Pout = 0 dbm  
5.6  
-1.0  
2.2  
dBm  
dBm  
MHz  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
99% BW at highest and lowest  
channels in band, Pout = 6 dBm  
99% BW at highest and lowest  
channels in band, Pout = 0 dBm  
2.2  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 42  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2 RF Receiver Characteristics  
4.10.2.1 RF Receiver General Characteristics for the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.18. RF Receiver General Characteristics for the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
mA  
RF tuning frequency range  
FRANGE  
Radio-only current consump- IRX_RADIO  
tion in receive mode1  
2.5  
Receive mode maximum  
spurious emission  
SPURRX  
30 MHz to 1 GHz  
1 GHz to 12 GHz  
-63  
-53  
-47  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
216 MHz to 960 MHz, conducted  
measurement  
Above 960 MHz, conducted  
measurement.  
-47  
dBm  
2GFSK Sensitivity  
SENS2GFSK  
2 Mbps 2GFSK signal, 1% PER  
-93  
dBm  
dBm  
250 kbps 2GFSK signal, 0.1%  
BER  
-104  
Note:  
1. Supply current to radio, supplied by DC-DC with 3.0 V, measured at VREGVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 43  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2.2 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz, Packet length is 255 bytes.  
Table 4.19. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-98.9  
-97.4  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-96.9  
8.7  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-6.6  
-6.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-40.9  
-39.9  
-45.9  
-46.2  
-23.5  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-40.9  
-6.6  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
n = 3 (see note7)  
Intermodulation performance IM  
-17.1  
dBm  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -67 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 44  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2.3 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz, Packet length is 255 bytes.  
Table 4.20. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 2 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-96.2  
-94.6  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-94.4  
8.8  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-9.2  
-6.6  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +4  
MHz offset1 5 4 6  
-43.3  
-44.0  
-48.6  
-50.7  
-23.8  
Interferer is reference signal at -4  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +6  
MHz offset1 5 4 6  
Interferer is reference signal at -6  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 2 MHz  
Interferer is reference signal at im-  
age frequency +2 MHz with 1  
-43.3  
-9.2  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -2 MHz with 1 MHz  
precision1 6  
n = 3 (see note7)  
Intermodulation performance IM  
-18.8  
dBm  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -64 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
7. As specified in Bluetooth Core specification version 5.1, Vol 6, Part A, Section 4.4  
silabs.com | Building a more connected world.  
Rev. 1.0 | 45  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2.4 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz, Packet length is 255 bytes.  
Table 4.21. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 500 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-102.5  
-101.2  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-100.2  
2.7  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-8.0  
-7.9  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
-46.5  
-49.9  
-48.9  
-53.8  
-48.3  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-49.9  
-46.5  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -72 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 46  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2.5 RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz, Packet length is 255 bytes.  
Table 4.22. RF Receiver Characteristics for Bluetooth Low Energy in the 2.4 GHz Band 125 kbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1  
Max usable receiver input  
level  
SAT  
10  
dBm  
Sensitivity  
SENS  
Signal is reference signal, 37 byte  
payload2  
-106.7  
-106.4  
dBm  
dBm  
Signal is reference signal, 255  
byte payload1  
With non-ideal signals3 1  
(see notes)1 4  
-105.8  
0.9  
dBm  
dB  
Signal to co-channel interfer- C/ICC  
er  
N ± 1 Adjacent channel se-  
lectivity  
C/I1  
C/I2  
C/I3  
Interferer is reference signal at +1  
MHz offset1 5 4 6  
-13.6  
-13.4  
-52.6  
-55.8  
-53.7  
-59.0  
-52.7  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Interferer is reference signal at -1  
MHz offset1 5 4 6  
N ± 2 Alternate channel se-  
lectivity  
Interferer is reference signal at +2  
MHz offset1 5 4 6  
Interferer is reference signal at -2  
MHz offset1 5 4 6  
N ± 3 Alternate channel se-  
lectivity  
Interferer is reference signal at +3  
MHz offset1 5 4 6  
Interferer is reference signal at -3  
MHz offset1 5 4 6  
Selectivity to image frequen- C/IIM  
cy  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion1 6  
Selectivity to image frequen- C/IIM_1  
cy ± 1 MHz  
Interferer is reference signal at im-  
age frequency +1 MHz with 1  
-53.7  
-52.6  
dB  
dB  
MHz precision1 6  
Interferer is reference signal at im-  
age frequency -1 MHz with 1 MHz  
precision1 6  
Note:  
1. 0.017% Bit Error Rate.  
2. 0.1% Bit Error Rate.  
3. With non-ideal signals as specified in Bluetooth Test Specification RF-PHY.TS.5.0.1 section 4.7.1  
4. Desired signal -79 dBm.  
5. Desired frequency 2402 MHz ≤ Fc ≤ 2480 MHz.  
6. With allowed exceptions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 47  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.10.2.6 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: TA = 25 °C, VREGVDD = 3.0V, AVDD = DVDD = IOVDD = RFVDD = PAVDD = 1.8  
V powered from DCDC. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.23. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal1. Packet  
length is 20 octets  
Max usable receiver input  
level, 1% PER  
SAT  
10  
dBm  
Sensitivity, 1% PER  
SENS  
Signal is reference signal. Packet  
length is 20 octets  
-102.3  
-1.7  
dBm  
dB  
Co-channel interferer rejec- CCR  
tion, 1% PER  
Desired signal 3 dB above sensi-  
tivity limit  
High-side adjacent channel  
rejection, 1% PER. Desired  
is reference signal at 3 dB  
above reference sensitivity  
ACRP1  
Interferer is reference signal at +1  
channel-spacing  
34.9  
dB  
level2  
Low-side adjacent channel  
rejection, 1% PER. Desired  
is reference signal at 3 dB  
above reference sensitivity  
ACRM1  
Interferer is reference signal at -1  
channel-spacing  
34.8  
dB  
level2  
Alternate channel rejection,  
1% PER. Desired is refer-  
ence signal at 3 dB above  
ACR2  
Interferer is reference signal at ± 2  
channel-spacing  
47.1  
34.1  
dB  
dB  
reference sensitivity level2  
Interferer is CW in image band3  
Image rejection , 1% PER.  
Desired is reference signal at  
3 dB above reference sensi-  
tivity level2  
IR  
Blocking rejection of all other BLOCK  
channels, 1% PER. Desired  
is reference signal at 3 dB  
above reference sensitivity  
level2. Interferer is reference  
signal  
Interferer frequency < Desired fre-  
quency - 3 channel-spacing  
53.2  
53.1  
dB  
dB  
Interferer frequency > Desired fre-  
quency + 3 channel-spacing  
RSSI resolution  
RSSIRES  
RSSILIN  
-100 dBm to +5 dBm  
0.25  
+/-6  
dB  
dB  
RSSI accuracy in the linear  
region as defined by  
802.15.4-2003  
Note:  
1. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksym-  
bols/s.  
2. Reference sensitivity level is -85 dBm.  
3. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker  
tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection  
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 48  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.11 Oscillators  
4.11.1 High Frequency Crystal Oscillator  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = 3.0 V. TA = 25 °C. Minimum and maximum values in this table  
represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.  
Table 4.24. High Frequency Crystal Oscillator  
Parameter  
Symbol  
Test Condition  
see note1  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
FHFXO  
38.4  
MHz  
38.4 MHz, CL = 10 pF2 3  
Supported crystal equivalent ESRHFXO_38M4  
series resistance (ESR)  
40  
10  
60  
38.4 MHz, ESR = 40 Ohm3  
Supported range of crystal  
load capacitance4  
CHFXO_LC  
pF  
Supply Current  
Startup Time  
IHFXO  
415  
160  
µA  
µs  
TSTARTUP  
38.4 MHz, ESR = 40 Ohm, CL =  
10 pF  
On-chip tuning cap step  
size5  
SSHFXO  
0.04  
pF  
Note:  
1. The BLE radio requires a 38.4 MHz crystal with a tolerance of ± 50 ppm over temperature and aging. Please use the recommen-  
ded crystal.  
2. The crystal should have a maximum ESR less than or equal to this maximum rating.  
3. RF performance characteristics have been determined using crystals with an ESR of 40 Ω and CL of 10 pF.  
4. Total load capacitance as seen by the crystal.  
5. The tuning step size is the effective step size when incrementing one of the tuning capacitors by one count. The step size for the  
each of the indivdual tuning capacitors is twice this value.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 49  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.11.2 Low Frequency Crystal Oscillator  
Table 4.25. Low Frequency Crystal Oscillator  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
kΩ  
kΩ  
pF  
Crystal Frequency  
FLFXO  
Supported Crystal equivalent ESRLFXO  
series resistance (ESR)  
GAIN = 0  
GAIN = 1 to 3  
GAIN = 0  
GAIN = 1  
GAIN = 2  
80  
100  
6
Supported range of crystal  
load capacitance 1  
CLFXO_CL  
4
6
10  
pF  
10  
12.5  
12.5  
18  
pF  
GAIN = 3 (see note2)  
pF  
Current consumption  
Startup Time  
ICL12p5  
ESR = 70 kOhm, CL = 12.5 pF,  
GAIN3 = 2, AGC4 = 1  
357  
nA  
TSTARTUP  
ESR = 70 kOhm, CL = 7 pF,  
GAIN3 = 1, AGC4 = 1  
63  
ms  
On-chip tuning cap step size SSLFXO  
0.26  
4
pF  
pF  
On-chip tuning capacitor val- CLFXO_MIN  
ue at minimum setting5  
CAPTUNE = 0  
On-chip tuning capacitor val- CLFXO_MAX  
ue at maximum setting5  
CAPTUNE = 0x4F  
24.5  
pF  
Note:  
1. Total load capacitance seen by the crystal  
2. Crystals with a load capacitance of greater than 12 pF require external load capacitors.  
3. In LFXO_CAL Register  
4. In LFXO_CFG Register  
5. The effective load capacitance seen by the crystal will be CLFXO/2. This is because each XTAL pin has a tuning cap and the two  
caps will be seen in series by the crystal  
silabs.com | Building a more connected world.  
Rev. 1.0 | 50  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.11.3 High Frequency RC Oscillator (HFRCO)  
Unless otherwise indicated, typical conditions are: AVDD = DVDD = 3.0 V. TA = 25 °C. Minimum and maximum values in this table  
represent the worst conditions across process variation, operating supply voltage range, and operating temperature range.  
Table 4.26. High Frequency RC Oscillator (HFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Frequency Accuracy  
FHFRCO_ACC  
For all production calibrated fre-  
quencies  
-3  
3
%
Current consumption on all  
supplies 1  
IHFRCO  
FHFRCO = 1 MHz  
FHFRCO = 2 MHz  
FHFRCO = 4 MHz  
FHFRCO = 5 MHz  
FHFRCO = 7 MHz  
FHFRCO = 10 MHz  
FHFRCO = 13 MHz  
FHFRCO = 16 MHz  
FHFRCO = 19 MHz  
FHFRCO = 20 MHz  
FHFRCO = 26 MHz  
FHFRCO = 32 MHz  
FHFRCO = 38 MHz  
FHFRCO = 80 MHz  
28  
28  
µA  
µA  
28  
µA  
30  
µA  
60  
µA  
66  
µA  
79  
µA  
88  
µA  
92  
µA  
105  
118  
141  
172  
289  
2.72  
µA  
µA  
µA  
µA  
µA  
Clock out current for  
HFRCODPLL2  
ICLKOUT_HFRCOD FORECEEN bit of CTRL = 1 and  
µA/MHz  
the CLKOUTDIS0 bit of TEST = 1.  
PLL  
FORECEEN bit of CTRL i= 1 and  
the CLKOUTDIS1 bit of TEST = 1.  
0.36  
µA/MHz  
Startup Time3  
TSTARTUP  
FREQRANGE = 0 to 7  
FREQRANGE = 8 to 15  
1.2  
0.6  
µs  
µs  
silabs.com | Building a more connected world.  
Rev. 1.0 | 51  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
3.71  
4.39  
5.25  
6.22  
7.88  
9.9  
Typ  
Max  
5.24  
6.26  
7.55  
9.01  
11.6  
14.6  
17.0  
20.9  
24.7  
30.4  
34.9  
44.4  
51.0  
64.6  
74.8  
87.4  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Band Frequency Limits4  
fHFRCO_BAND  
FREQRANGE = 0  
FREQRANGE = 1  
FREQRANGE = 2  
FREQRANGE = 3  
FREQRANGE = 4  
FREQRANGE = 5  
FREQRANGE = 6  
FREQRANGE = 7  
FREQRANGE = 8  
FREQRANGE = 9  
FREQRANGE = 10  
FREQRANGE = 11  
FREQRANGE = 12  
FREQRANGE = 13  
FREQRANGE = 14  
FREQRANGE = 15  
11.5  
14.1  
16.4  
19.8  
22.7  
28.6  
33.0  
42.2  
48.8  
57.6  
Note:  
1. Does not include additional clock tree current. See specifications for additional current when selected as a clock source for a par-  
ticular clock multiplexer.  
2. When the HFRCO is enabled for characterization using the FORCEEN bit, the total current will be the HFRCO core current plus  
the specified CLKOUT current. When the HFRCO is enabled on demand, the clock current may be different.  
3. Hardware delay ensures settling to within ± 0.5%. Hardware also enforces this delay on a band change.  
4. The frequency band limits represent the lowest and highest freqeuncy which each band can achieve over the operating range.  
4.11.4 Fast Start_Up RC Oscillator (FSRCO)  
Table 4.27. Fast Start_Up RC Oscillator (FSRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FSRCO frequency  
FFSRCO  
17.2  
20  
21.2  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 52  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.11.5 Precision Low Frequency RC Oscillator (LFRCO)  
Table 4.28. Precision Low Frequency RC Oscillator (LFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Nominal oscillation frequen- FLFRCO  
cy  
32.768  
kHz  
Frequency accuracy  
FLFRCO_ACC  
Normal mode  
-3  
3
%
Precision mode1, across operat-  
ing temperature range2  
-500  
500  
ppm  
Startup time  
tSTARTUP  
Normal mode  
204  
µs  
Precision mode1  
Normal mode  
11.7  
ms  
Current consumption  
ILFRCO  
175  
655  
nA  
nA  
Precision mode1, T = stable at 25  
°C 3  
Note:  
1. The LFRCO operates in high-precision mode when CFG_HIGHPRECEN is set to 1. High-precision mode is not available in EM4.  
2. Includes ± 40 ppm frequency tolerance of the HFXO crystal.  
3. Includes periodic re-calibration against HFXO crystal oscillator.  
4.11.6 Ultra Low Frequency RC Oscillator  
Table 4.29. Ultra Low Frequency RC Oscillator  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation Frequency  
FULFRCO  
0.944  
1.0  
1.095  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 53  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.12 GPIO Pins (3V GPIO pins)  
Table 4.30. GPIO Pins (3V GPIO pins)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Leakage current  
ILEAK_IO  
MODEx = DISABLED, IOVDD =  
1.71 V  
1.9  
nA  
MODEx = DISABLED, IOVDD =  
3.0 V  
2.5  
nA  
nA  
nA  
MODEx = DISABLED, IOVDD =  
3.8 V TA = 85 °C  
150  
200  
Pins other than PA00, PA03,  
PB00, PC03, PC04 and PD00;  
MODEx = DISABLED, IOVDD =  
3.8 V TA = 125 °C  
Pins PA00, PA03, PB00, PC03,  
PC04 and PD00; MODEx = DISA-  
BLED, IOVDD = 3.8 V TA = 125  
°C  
550  
nA  
Input low voltage1  
VIL  
Any GPIO pin  
RESETn  
0.3*IOVDD  
V
V
V
V
V
0.3*DVDD  
Input high voltage1  
VIH  
Any GPIO pin  
RESETn  
0.7*IOVDD  
0.7*DVDD  
Hysteresis of input voltage  
VHYS  
Any GPIO pin  
0.05*IOVD  
D
RESETn  
0.05*DVDD  
V
V
Output high voltage  
Output low voltage  
GPIO rise time  
VOH  
Sourcing 20mA, IOVDD = 3.0 V  
0.8 *  
IOVDD  
Sourcing 8mA, IOVDD = 1.71 V  
Sinking 20mA, IOVDD = 3.0 V  
Sinking 8mA, IOVDD = 1.71 V  
0.6 *  
IOVDD  
V
V
VOL  
0.2 *  
IOVDD  
0.4 *  
IOVDD  
V
TGPIO_RISE  
IOVDD = 3.0 V, Cload = 50pF,  
SLEWRATE = 4, 10% to 90%  
8.4  
13  
ns  
ns  
ns  
ns  
IOVDD = 1.71 V, Cload = 50pF,  
SLEWRATE = 4, 10% to 90%  
GPIO fall time  
TGPIO_FALL  
IOVDD = 3.0 V, Cload = 50pF,  
SLEWRATE = 4, 90% to 10%  
7.1  
11.9  
IOVDD = 1.71 V, Cload = 50pF,  
SLEWRATE = 4, 90% to 10%  
silabs.com | Building a more connected world.  
Rev. 1.0 | 54  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Pull up/down resistance2  
RPULL  
Any GPIO pin. Pull-up to IOVDD:  
MODEn = DISABLE DOUT=1.  
Pull-down to VSS: MODEn =  
WIREDORPULLDOWN DOUT =  
0.  
35  
44  
55  
kΩ  
RESETn pin. Pull-up to DVDD  
MODE = INPUT, DOUT = 1  
35  
44  
27  
55  
kΩ  
ns  
Maximum filtered glitch width TGF  
Note:  
1. GPIO input thresholds are proportional to the IOVDD pin. RESETn input thresholds are proportional to DVDD.  
2. GPIO pull-ups connect to IOVDD supply, pull-downs connect to VSS. RESETn pull-up connects to DVDD.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 55  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.13 Analog to Digital Converter (IADC)  
Specified at 1 Msps, ADCCLK = 10 MHz, OSR=2, unless otherwise indicated.  
Table 4.31. Analog to Digital Converter (IADC)  
Parameter  
Symbol  
VAVDD  
Test Condition  
Min  
Typ  
Max  
3.8  
Unit  
V
Main analog supply  
Normal Mode  
1.71  
0
Maximum Input Range1  
Full-Scale Voltage  
VIN_MAX  
Maximum allowable input voltage  
AVDD  
V
VFS  
VIN  
Voltage required for Full-Scale  
measurement  
VREF / Gain  
Input Measurement Range  
Differential Mode - Plus and Mi-  
nus inputs  
-VFS  
+VFS  
VFS  
V
V
Single Ended Mode - One input  
tied to ground  
0
Input Sampling Capacitance Cs  
Analog Gain = 1x  
1.8  
3.6  
7.2  
0.9  
pF  
pF  
Analog Gain = 2x  
Analog Gain = 4x  
pF  
Analog Gain = 0.5x  
Normal Mode  
pF  
ADC clock frequency  
Throughput rate  
fCLK  
10  
1
MHz  
Msps  
ksps  
µA  
fSAMPLE  
fCLK = 10 MHz, OSR = 2  
fCLK = 10 MHz, OSR = 32  
76.9  
385  
Current from all supplies,  
Continuous operation  
IADC_CONT  
Normal Mode, 1 Msps, OSR = 2,  
fCLK = 10 MHz  
290  
Current in Standby mode.  
ADC is not functional but can  
wake up in 1us.  
ISTBY  
Normal Mode  
16  
µA  
ADC Startup Time  
tstartup  
From power down state  
From Standby state  
5
1
µs  
µs  
ADC Resolution2  
Resolution  
DNL  
12  
bits  
Differential Nonlinearity  
Differential Input, OSR = 2, (No  
missing codes) .  
-1  
+/- 0.25  
+/- 0.65  
11.7  
1.5  
2.5  
LSB12  
LSB12  
bits  
Integral Nonlinearity  
INL  
Normal Mode, Differential Input,  
OSR = 2.  
-2.5  
10.5  
Effective number of bits3  
ENOB  
Differential Input. Gain = 1x, OSR  
= 2, fIN = 10 kHz, Internal  
VREF=1.21V. OSR=2  
Differential Input. Gain = 1x, OSR  
= 32, fIN = 2.5 kHz, Internal VREF  
= 1.21 V.  
13.5  
14.3  
bits  
bits  
Differential Input. Gain = 1x, OSR  
= 32, fIN = 2.5 kHz, External  
VREF = 1.25 V.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 56  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal to Noise + Distortion  
Ratio3  
SNDR  
Differential Input. Gain=1x, OSR =  
2, fIN = 10 kHz, Internal  
VREF=1.21V  
65  
72.3  
dB  
Differential Input. Gain=2x, OSR =  
2, fIN = 10 kHz, Internal  
VREF=1.21V  
72  
72.3  
68.8  
72.5  
-80.8  
86.5  
dB  
dB  
dB  
dB  
dB  
Differential Input. Gain=4x, OSR =  
2, fIN = 10 kHz, Internal  
VREF=1.21V  
Differential Input. Gain=0.5x, OSR  
= 2, fIN = 10 kHz, Internal  
VREF=1.21V  
Total Harmonic Distortion  
THD  
Differential Input. Gain=1x, OSR =  
2, fIN = 10 kHz, Internal  
VREF=1.21V  
-70  
Spurious-Free Dynamic  
Range  
SFDR  
CMRR  
Differential Input. Gain=1x, OSR =  
2, fIN = 10 kHz, Internal  
VREF=1.21V  
Common Mode Rejection  
Ratio  
Normal Mode. DC to 100 Hz  
Normal Mode. AC high frequency  
Normal mode. DC to 100 Hz  
87.0  
68.6  
80.4  
33.4  
dB  
dB  
dB  
dB  
Power Supply Rejection Ra- PSRR  
tio  
Normal mode. AC high frequency,  
using VREF pad.  
Normal mode. AC high frequency,  
using internal VBGR.  
65.2  
dB  
%
%
%
%
%
Gain Error  
GE  
GAIN=1 and 0.5, using external  
VREF, direct mode.  
-0.3  
-0.4  
-0.7  
-1.1  
-1.5  
0.069  
0.151  
0.186  
0.227  
0.023  
0.3  
0.4  
0.7  
1.1  
1.5  
GAIN=2, using external VREF, di-  
rect mode.  
GAIN=3, using external VREF, di-  
rect mode.  
GAIN=4, using external VREF, di-  
rect mode.  
Internal VREF4, all GAIN settings  
GAIN=1 and 0.5, Differential Input  
GAIN=2, Differential Input  
Offset  
OFFSET  
-3  
-4  
0.27  
0.27  
0.25  
0.29  
3
LSB  
LSB  
LSB  
LSB  
V
4
GAIN=3, Differential Input  
-4  
4
4
GAIN=4, Differential Input  
-4  
External reference voltage  
range1  
VEVREF  
1.0  
AVDD  
Internal Reference voltage  
VIVREF  
1.21  
V
silabs.com | Building a more connected world.  
Rev. 1.0 | 57  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. When inputs are routed to external GPIO pins, the maximum pin voltage is limited to the lower of the IOVDD and AVDD supplies.  
2. ADC output resolution depends on the OSR and digital averaging settings. With no digital averaging, ADC output resolution is 12  
bits at OSR=2, 13 bits at OSR = 4, 14 bits at OSR = 8, 15 bits at OSR = 16, 16 bits at OSR = 32 and 17 bits at OSR = 64. Digital  
averaging has a similar impact on ADC output resolution. See the product reference manual for additional details.  
3. The relationship between ENOB and SNDR is specified according to the equation: ENOB = (SNDR - 1.76) / 6.02.  
4. Includes error from internal VREF drift.  
4.14 Temperature Sense  
Table 4.32. Temperature Sense  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Temperature sensor range1  
TRANGE  
-40  
125  
°C  
Temperature sensor resolu- TRESOLUTION  
tion  
0.25  
°C  
Measurement noise (RMS)  
TNOISE  
Single measurement  
0.6  
°C  
°C  
16-sample average (TEMPAVG-  
NUM = 0)  
0.17  
64-sample average (TEMPAVG-  
NUM = 1)  
0.12  
3.14  
3
°C  
°C  
°C  
°C  
°C  
Temperature offset  
TOFF  
Mean error of uncorrected output  
across full temperature range  
Temperature sensor accura- TACC  
cy2 3  
Direct output accuracy after mean  
error (TOFF) removed  
-3  
After linearization in software, no  
calibration  
-2  
2
After linearization in software, with  
single-temperature calibration at  
25 °C4  
-1.5  
1.5  
Measurement interval  
tMEAS  
250  
ms  
Note:  
1. The sensor reports absolute die temperature in °K. All specifications are in °C to match the units of the specified product temper-  
aure range.  
2. Error is measured as the deviation of the mean temperature reading from the expected die temperature. Accuracy numbers rep-  
resent statistical minimum and maximum using ± 4 standard deviations of measured error.  
3. The raw output of the temperature sensor is a predictable curve. It can be linearized with a polynomial function for additional ac-  
curacy.  
4. Assuming calibration accuracy of ± 0.25 °C.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 58  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.15 Brown Out Detectors  
4.15.1 DVDD BOD  
BOD Thresholds on DVDD in EM0 and EM1 only, unless otherwise noted. Typical conditions are at TA = 25 °C. Minimum and maxi-  
mum values in this table represent the worst conditions across process variation, operating supply voltage range, and operating tem-  
perature range.  
Table 4.33. DVDD BOD  
Parameter  
Symbol  
Test Condition  
Supply Rising  
Supply Falling  
Min  
Typ  
1.64  
1.65  
0.95  
Max  
1.71  
Unit  
V
BOD threshold  
VDVDD_BOD  
1.62  
V
BOD response time  
BOD hysteresis  
Note:  
tDVDD_BOD_DE-  
Supply dropping at 100mV/µs  
slew rate1  
µs  
LAY  
VDVDD_BOD_HYS  
20  
mV  
T
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
4.15.2 LE DVDD BOD  
BOD thresholds on DVDD pin for low energy modes EM2 to EM4, unless otherwise noted.  
Table 4.34. LE DVDD BOD  
Parameter  
Symbol  
Test Condition  
Min  
1.5  
Typ  
Max  
1.71  
Unit  
V
BOD threshold  
BOD response time  
VDVDD_LE_BOD  
Supply Falling  
tDVDD_LE_BOD_D Supply dropping at 2mV/µs slew  
50  
µs  
rate1  
ELAY  
BOD hysteresis  
VDVDD_LE_BOD_  
20  
mV  
HYST  
Note:  
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 59  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.15.3 AVDD and IOVDD BODs  
BOD thresholds for AVDD BOD and IOVDD BOD. Available in all energy modes.  
Table 4.35. AVDD and IOVDD BODs  
Parameter  
Symbol  
VBOD  
Test Condition  
Min  
1.45  
Typ  
Max  
1.71  
Unit  
V
BOD threshold  
BOD response time  
Supply falling  
tBOD_DELAY  
Supply dropping at 2mV/µs slew  
rate1  
50  
µs  
BOD hysteresis  
VBOD_HYST  
20  
mV  
Note:  
1. If the supply slew rate exceeds the specified slew rate, the BOD may trip later than expected (at a threshold below the minimum  
specified threshold), or the BOD may not trip at all (e.g., if the supply ramps down and then back up at a very fast rate)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 60  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.16 PDM Timing Specifications  
PDM Microphone Mode  
PDM_CLK  
tISU tIH  
tISU tIH  
PDM_DAT0-3  
L
R
L
R
L
PDM Sensor Mode  
PDM_CLK  
tISU  
tIH  
PDM_DAT0-3  
Figure 4.3. PDM Timing Diagrams  
4.16.1 Pulse Density Modulator (PDM), Common DBUS  
Timing specifications are for all PDM signals routed to the same DBUS (DBUSAB or DBUSCD), though routing to the same GPIO port  
is the optimal configuration. CLOAD < 20 pF. System voltage scaling = VSCALE1 or VSCALE2. All GPIO set to slew rate = 6. Data delay  
(PDM_CFG1_DLYMUXSEL) = 0.  
Table 4.36. Pulse Density Modulator (PDM), Common DBUS  
Parameter  
Symbol  
Test Condition  
Microphone mode  
Sensor mode  
Min  
Typ  
Max  
5
Unit  
MHz  
MHz  
%
PDM_CLK frequency during FPDM_CLK  
data transfer  
20  
PDM_CLK duty cycle  
PDM_CLK rise time  
PDM_CLK fall time  
Input setup time  
DCPDM_CLK  
47.5  
52.5  
5.5  
5.5  
tR  
ns  
tF  
ns  
tISU  
Microphone mode  
Sensor mode  
30  
20  
3
ns  
ns  
Input hold time  
tIH  
ns  
silabs.com | Building a more connected world.  
Rev. 1.0 | 61  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.17 USART SPI Master Timing  
tCS_MO  
CS  
tSCLK_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.4. SPI Master Timing (SMSDELAY = 0)  
tCS_MO  
CS  
tSCLK_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.5. SPI Master Timing (SMSDELAY = 1)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 62  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.17.1 SPI Master Timing, Voltage Scaling = VSCALE2  
Table 4.37. SPI Master Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
2*tHFPERCL  
ns  
K
CS to MOSI 1 2  
tCS_MO  
tSCLK_MO  
tSU_MI  
-22  
22.5  
14.5  
ns  
ns  
SCLK to MOSI 1 2  
MISO setup time 1 2  
-14.5  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
38.5  
28.5  
-8.5  
ns  
ns  
ns  
MISO hold time 1 2  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD  
.
3. tHFPERCLK is one period of the selected HFPERCLK.  
4.17.2 SPI Master Timing, Voltage Scaling = VSCALE1  
Table 4.38. SPI Master Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
2*tHFPERCL  
ns  
K
CS to MOSI 1 2  
tCS_MO  
tSCLK_MO  
tSU_MI  
-33  
-15  
34.5  
26  
ns  
ns  
SCLK to MOSI 1 2  
MISO setup time 1 2  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
47  
39  
ns  
ns  
ns  
MISO hold time 1 2  
tH_MI  
-9.5  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD  
.
3. tHFPERCLK is one period of the selected HFPERCLK.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 63  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.18 USART SPI Slave Timing  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.6. SPI Slave Timing  
4.18.1 SPI Slave Timing, Voltage Scaling = VSCALE2  
Table 4.39. SPI Slave Timing, Voltage Scaling = VSCALE2  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
6*tHFPERCL  
ns  
K
SCLK high time1 2 3  
SCLK low time1 2 3  
tSCLK_HI  
2.5*tHFPER  
ns  
ns  
CLK  
tSCLK_LO  
2.5*tHFPER  
CLK  
CS active to MISO 1 2  
CS disable to MISO 1 2  
MOSI setup time 1 2  
MOSI hold time 1 2 3  
SCLK to MISO 1 2 3  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
25  
19.5  
4.5  
5
47.5  
38.5  
ns  
ns  
ns  
ns  
ns  
tH_MO  
tSCLK_MI  
22 +  
1.5*tHFPER  
33.5 +  
2.5*tHFPER  
CLK  
CLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
3. tHFPERCLK is one period of the selected HFPERCLK.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 64  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.18.2 SPI Slave Timing, Voltage Scaling = VSCALE1  
Table 4.40. SPI Slave Timing, Voltage Scaling = VSCALE1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 2 3  
tSCLK  
6*tHFPERCL  
ns  
K
SCLK high time1 2 3  
SCLK low time1 2 3  
tSCLK_HI  
2.5*tHFPER  
ns  
ns  
CLK  
tSCLK_LO  
2.5*tHFPER  
CLK  
CS active to MISO 1 2  
CS disable to MISO 1 2  
MOSI setup time 1 2  
MOSI hold time 1 2 3  
SCLK to MISO 1 2 3  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
30.5  
25  
57.5  
55  
ns  
ns  
ns  
ns  
ns  
7.5  
8.5  
tH_MO  
tSCLK_MI  
24.5 +  
1.5*tHFPER  
45.5 +  
2.5*tHFPER  
CLK  
CLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
3. tHFPERCLK is one period of the selected HFPERCLK.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 65  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.19 I2C Electrical Specifications  
4.19.1 I2C Standard-mode (Sm)  
CLHR set to 0 in the I2Cn_CTRL register.  
Table 4.41. I2C Standard-mode (Sm)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
100  
kHz  
tLOW  
4.7  
4
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
250  
0
SDA hold time  
Repeated START condition tSU_STA  
set-up time  
4.7  
Repeated START condition tHD_STA  
hold time  
4.0  
µs  
STOP condition set-up time tSU_STO  
4.0  
4.7  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 66  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.19.2 I2C Fast-mode (Fm)  
CLHR set to 1 in the I2Cn_CTRL register.  
Table 4.42. I2C Fast-mode (Fm)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
400  
kHz  
tLOW  
1.3  
0.6  
100  
0
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
Repeated START condition tSU_STA  
set-up time  
0.6  
Repeated START condition tHD_STA  
hold time  
0.6  
µs  
STOP condition set-up time tSU_STO  
0.6  
1.3  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 67  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.19.3 I2C Fast-mode Plus (Fm+)  
CLHR set to 1 in the I2Cn_CTRL register.  
Table 4.43. I2C Fast-mode Plus (Fm+)  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
SCL clock frequency1  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
1000  
kHz  
tLOW  
0.5  
0.26  
50  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
0
Repeated START condition tSU_STA  
set-up time  
0.26  
Repeated START condition tHD_STA  
hold time  
0.26  
µs  
STOP condition set-up time tSU_STO  
0.26  
0.5  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. The maximum SCL clock frequency listed is assuming that an arbitrary clock frequency is available. The maximum attainable  
SCL clock frequency may be slightly less using the HFXO or HFRCO due to the limited frequencies available. The CLKDIV  
should be set to a value that keeps the SCL clock frequency below the max value listed.  
4.20 Typical Performance Curves  
Typical performance curves indicate typical characterized performance under the stated conditions.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 68  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.20.1 Supply Current  
Figure 4.7. EM0 and EM1 Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.0 | 69  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
Figure 4.8. EM2 and EM4 Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.0 | 70  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.20.2 RF Characteristics  
Figure 4.9. Transmitter Output Power  
Note: Although the 6 dBm PA is capable of delivering more than 6 dBm output power, all transmitter characteristics and recommended  
application circuits are specifiat 6 dBm. Above 6 dBm, current consumption will increase and harmonics may be higher than regulatory  
limits.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 71  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Electrical Specifications  
4.20.3 DC-DC Converter  
Performance characterized with Samsung CIG22H2R2MNE (LDCDC = 2.2 uH ) and Samsung CL10B475KQ8NQNC (CDCDC = 4.7 uF)  
Figure 4.10. DC-DC Efficiency  
4.20.4 IADC  
Typical performance is shown using 10 MHz ADC clock for fastest sampling speed and adjusting oversampling ratio (OSR).  
Figure 4.11. Typical ENOB vs. Oversampling Ratio  
silabs.com | Building a more connected world.  
Rev. 1.0 | 72  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Typical Connections  
5. Typical Connections  
5.1 Power  
Typical power supply connections are shown in the following figures.  
VDD  
Main  
Supply  
+
VREGVDD  
AVDD  
IOVDD  
VREGSW  
VREGVSS  
HFXTAL_I  
HFXTAL_O  
LFXTAL_I  
38.4 MHz  
DVDD  
32.768 kHz  
(optional)  
LFXTAL_O  
DECOUPLE  
VDD  
RFVDD  
PAVDD  
CDECOUPLE  
Figure 5.1. EFR32BG22 Typical Application Circuit: Direct Supply Configuration without DCDC  
VDD  
Main  
Supply  
+
CIN  
VREGVDD  
AVDD  
IOVDD  
LDCDC  
VDCDC  
VREGSW  
VREGVSS  
HFXTAL_I  
HFXTAL_O  
LFXTAL_I  
38.4 MHz  
CDCDC  
DVDD  
32.768 kHz  
(optional)  
LFXTAL_O  
DECOUPLE  
CDECOUPLE  
RFVDD  
PAVDD  
Figure 5.2. EFR32BG22 Typical Application Circuit: DCDC Configuration  
silabs.com | Building a more connected world.  
Rev. 1.0 | 73  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Typical Connections  
5.2 RF Matching Networks  
5.2.1 2.4 GHz Matching Network  
The recommended RF matching network circuit diagram is shown in Figure 5.3 Typical RF impedance-matching network circuit on  
page 74. Typical component values are shown in Table 5.1 Component Values on page 74. Please refer to the development board  
Bill of Materials for specific part recommendation including tolerance, component size, recommended manufacturer, and recommended  
part number.  
L1  
C2  
C3  
RF2G4_IO  
50Ω  
C1  
Figure 5.3. Typical RF impedance-matching network circuit  
Table 5.1. Component Values  
Designator  
Value  
1.2 pF  
1.3 pF  
2.6 nH  
18 pF  
C1  
C2  
L1  
C3  
5.3 Other Connections  
Other components or connections may be required to meet the system-level requirements. Application Note AN0002.2: "EFR32 Wire-  
less Gecko Series 2 Hardware Design Considerations" contains detailed information on these connections. Application Notes can be  
accessed on the Silicon Labs website (www.silabs.com/32bit-appnotes).  
silabs.com | Building a more connected world.  
Rev. 1.0 | 74  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
6. Pin Definitions  
6.1 QFN32 Device Pinout  
Figure 6.1. QFN32 Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.4 Alternate Function Table, 6.5 Analog Peripheral Connectivity, and 6.6 Digital Peripheral  
Connectivity.  
Table 6.1. QFN32 Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
GPIO  
2
4
6
8
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
GPIO  
PC05  
GPIO  
HFXTAL_I  
High Frequency Crystal Input  
HFXTAL_O  
High Frequency Crystal Output  
silabs.com | Building a more connected world.  
Rev. 1.0 | 75  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
9
RFVDD  
10  
Radio power supply  
RFVSS  
PAVDD  
PB01  
11  
13  
15  
17  
19  
21  
Radio Ground  
RF2G4_IO  
PB02  
12  
14  
16  
18  
20  
22  
2.4 GHz Single-ended RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PB00  
PA00  
PA01  
PA02  
PA03  
PA04  
PA05  
Decouple outputput for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA06  
23  
GPIO  
DECOUPLE  
24  
VREGSW  
VREGVSS  
AVDD  
25  
27  
29  
31  
DCDC regulator switching node  
DCDC ground  
VREGVDD  
DVDD  
26  
28  
30  
32  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
Analog power supply  
GPIO  
IOVDD  
PD00  
PD01  
silabs.com | Building a more connected world.  
Rev. 1.0 | 76  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
6.2 QFN40 Device Pinout  
Figure 6.2. QFN40 Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.4 Alternate Function Table, 6.5 Analog Peripheral Connectivity, and 6.6 Digital Peripheral  
Connectivity.  
Table 6.2. QFN40 Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
9
GPIO  
2
4
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
GPIO  
PC05  
6
GPIO  
PC06  
GPIO  
PC07  
8
GPIO  
HFXTAL_I  
High Frequency Crystal Input  
HFXTAL_O  
10  
High Frequency Crystal Output  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
11  
RFVDD  
12  
Radio power supply  
silabs.com | Building a more connected world.  
Rev. 1.0 | 77  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
Pin Name  
RFVSS  
PAVDD  
PB03  
Pin(s) Description  
Pin Name  
RF2G4_IO  
PB04  
Pin(s) Description  
13  
15  
17  
19  
21  
23  
25  
27  
Radio Ground  
14  
16  
18  
20  
22  
24  
26  
28  
2.4 GHz Single-ended RF input/output  
Power Amplifier (PA) power supply  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PB02  
PB01  
PB00  
PA00  
PA01  
PA02  
PA03  
PA04  
PA05  
PA06  
PA07  
Decouple outputput for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA08  
29  
GPIO  
DECOUPLE  
30  
VREGSW  
VREGVSS  
AVDD  
31  
33  
35  
37  
39  
DCDC regulator switching node  
DCDC ground  
VREGVDD  
DVDD  
32  
34  
36  
38  
40  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
Analog power supply  
GPIO  
IOVDD  
PD02  
PD03  
PD01  
GPIO  
PD00  
GPIO  
silabs.com | Building a more connected world.  
Rev. 1.0 | 78  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
6.3 TQFN32 Device Pinout  
Figure 6.3. TQFN32 Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.4 Alternate Function Table, 6.5 Analog Peripheral Connectivity, and 6.6 Digital Peripheral  
Connectivity.  
Table 6.3. TQFN32 Device Pinout  
Pin Name  
PC00  
Pin(s) Description  
Pin Name  
PC01  
Pin(s) Description  
1
3
5
7
GPIO  
2
4
6
8
GPIO  
PC02  
GPIO  
PC03  
GPIO  
PC04  
GPIO  
PC05  
GPIO  
HFXTAL_I  
High Frequency Crystal Input  
HFXTAL_O  
High Frequency Crystal Output  
Reset Pin. The RESETn pin is internally  
pulled up to DVDD.  
RESETn  
RFVSS  
9
RFVDD  
10  
12  
Radio power supply  
11  
Radio Ground  
RF2G4_IO  
2.4 GHz Single-ended RF input/output  
silabs.com | Building a more connected world.  
Rev. 1.0 | 79  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
Pin Name  
PAVDD  
PB01  
Pin(s) Description  
Pin Name  
PB02  
Pin(s) Description  
13  
15  
17  
19  
21  
Power Amplifier (PA) power supply  
14  
16  
18  
20  
22  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PB00  
PA00  
PA01  
PA02  
PA03  
PA04  
PA05  
Decouple outputput for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
PA06  
23  
GPIO  
DECOUPLE  
24  
VREGSW  
VREGVSS  
AVDD  
25  
27  
29  
31  
DCDC regulator switching node  
DCDC ground  
VREGVDD  
DVDD  
26  
28  
30  
32  
DCDC regulator input supply  
Digital power supply  
I/O power supply  
GPIO  
Analog power supply  
GPIO  
IOVDD  
PD00  
PD01  
6.4 Alternate Function Table  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows what functions are  
available on each device pin.  
Table 6.4. GPIO Alternate Function Table  
GPIO  
Alternate Function  
PC00  
PC05  
PC07  
PB03  
PB01  
PB00  
PA00  
PA01  
PA02  
GPIO.EM4WU6  
GPIO.EM4WU7  
GPIO.EM4WU8  
GPIO.EM4WU4  
GPIO.EM4WU3  
IADC0.VREFN  
IADC0.VREFP  
GPIO.SWCLK  
GPIO.SWDIO  
GPIO.THMSW_EN  
GPIO.TRACEDA-  
TA0  
PA03  
GPIO.SWV  
GPIO.TDO  
PA04  
PA05  
PD02  
PD01  
PD00  
GPIO.TDI  
GPIO.TRACECLK  
GPIO.EM4WU0  
GPIO.EM4WU9  
LFXO.LFXTAL_I  
LFXO.LFXTAL_O  
LFXO.LF_EXTCLK  
silabs.com | Building a more connected world.  
Rev. 1.0 | 80  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
6.5 Analog Peripheral Connectivity  
Many analog resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avali-  
able on each GPIO port. When a differential connection is being used Positive inputs are restricted to the EVEN pins and Negative  
inputs are restricted to the ODD pins. When a single ended connection is being used positive input is avaliable on all pins. See the  
device Reference Manual for more details on the ABUS and analog peripherals.  
Table 6.5. ABUS Routing Table  
Peripheral  
Signal  
PA  
ODD  
PB  
ODD  
PC  
ODD  
PD  
ODD  
EVEN  
Yes  
EVEN  
Yes  
EVEN  
Yes  
EVEN  
Yes  
IADC0  
ana_neg  
ana_pos  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
silabs.com | Building a more connected world.  
Rev. 1.0 | 81  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
6.6 Digital Peripheral Connectivity  
Many digital resources are routable and can be connected to numerous GPIO's. The table below indicates which peripherals are avalia-  
ble on each GPIO port.  
Table 6.6. DBUS Routing Table  
Peripheral.Resource  
PORT  
PC  
PA  
PB  
PD  
CMU.CLKIN0  
Available  
Available  
Available  
Available  
CMU.CLKOUT0  
CMU.CLKOUT1  
CMU.CLKOUT2  
EUART0.CTS  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
EUART0.RTS  
EUART0.RX  
EUART0.TX  
FRC.DCLK  
FRC.DFRAME  
FRC.DOUT  
I2C0.SCL  
Available  
Available  
Available  
Available  
I2C0.SDA  
I2C1.SCL  
I2C1.SDA  
LETIMER0.OUT0  
LETIMER0.OUT1  
MODEM.ANT0  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
MODEM.ANT1  
MODEM.ANT_ROLL_OVER  
MODEM.ANT_RR0  
MODEM.ANT_RR1  
MODEM.ANT_RR2  
MODEM.ANT_RR3  
MODEM.ANT_RR4  
MODEM.ANT_RR5  
MODEM.ANT_SW_EN  
MODEM.ANT_SW_US  
MODEM.ANT_TRIG  
MODEM.ANT_TRIG_STOP  
MODEM.DCLK  
Available  
Available  
silabs.com | Building a more connected world.  
Rev. 1.0 | 82  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
Peripheral.Resource  
PORT  
PA  
PB  
PC  
PD  
MODEM.DIN  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
MODEM.DOUT  
PDM.CLK  
Available  
Available  
Available  
Available  
Available  
Available  
PDM.DAT0  
PDM.DAT1  
PRS.ASYNCH0  
PRS.ASYNCH1  
PRS.ASYNCH10  
PRS.ASYNCH11  
PRS.ASYNCH2  
PRS.ASYNCH3  
PRS.ASYNCH4  
PRS.ASYNCH5  
PRS.ASYNCH6  
PRS.ASYNCH7  
PRS.ASYNCH8  
PRS.ASYNCH9  
PRS.SYNCH0  
PRS.SYNCH1  
PRS.SYNCH2  
PRS.SYNCH3  
TIMER0.CC0  
TIMER0.CC1  
TIMER0.CC2  
TIMER0.CDTI0  
TIMER0.CDTI1  
TIMER0.CDTI2  
TIMER1.CC0  
TIMER1.CC1  
TIMER1.CC2  
TIMER1.CDTI0  
TIMER1.CDTI1  
TIMER1.CDTI2  
TIMER2.CC0  
TIMER2.CC1  
TIMER2.CC2  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
silabs.com | Building a more connected world.  
Rev. 1.0 | 83  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Pin Definitions  
Peripheral.Resource  
PORT  
PA  
PB  
PC  
PD  
TIMER2.CDTI0  
TIMER2.CDTI1  
TIMER2.CDTI2  
TIMER3.CC0  
TIMER3.CC1  
TIMER3.CC2  
TIMER3.CDTI0  
TIMER3.CDTI1  
TIMER3.CDTI2  
TIMER4.CC0  
TIMER4.CC1  
TIMER4.CC2  
TIMER4.CDTI0  
TIMER4.CDTI1  
TIMER4.CDTI2  
USART0.CLK  
USART0.CS  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
Available  
USART0.CTS  
USART0.RTS  
USART0.RX  
USART0.TX  
USART1.CLK  
USART1.CS  
USART1.CTS  
USART1.RTS  
USART1.RX  
USART1.TX  
silabs.com | Building a more connected world.  
Rev. 1.0 | 84  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN32 Package Specifications  
7. QFN32 Package Specifications  
7.1 QFN32 Package Dimensions  
Figure 7.1. QFN32 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 85  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN32 Package Specifications  
Table 7.1. QFN32 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
0.02  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.20 REF  
0.20  
4.00  
4.00  
2.70  
2.70  
0.40 BSC  
0.30  
0.15  
3.90  
3.90  
2.60  
2.60  
0.25  
4.10  
4.10  
2.80  
2.80  
D
E
D2  
E2  
e
L
0.20  
0.20  
0.40  
K
R
0.075  
0.125  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 86  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN32 Package Specifications  
7.2 QFN32 PCB Land Pattern  
Figure 7.2. QFN32 PCB Land Pattern Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 87  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN32 Package Specifications  
Table 7.2. QFN32 PCB Land Pattern Dimensions  
Dimension  
Typ  
0.76  
0.22  
0.40  
3.21  
3.21  
2.80  
2.80  
L
W
e
S
S1  
L1  
W1  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.101 mm (4 mils).  
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
7. A 2x2 array of 1.10 mm x 1.10 mm openings on a 1.30 mm pitch can be used for the center ground pad.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
10. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use  
different parameters and fine tune their SMT process as required for their application and tooling.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 88  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN32 Package Specifications  
7.3 QFN32 Package Marking  
FFFF  
PPPPPP  
TTTTTT  
YYWW  
Figure 7.3. QFN32 Package Marking  
The package marking consists of:  
• FFFF – The product family codes.  
1. Family Code ( B | M | F )  
2. G (Gecko)  
3. Series (2)  
4. Device Configuration (1, 2, 3, ...)  
• PPPPPP – The product option codes.  
• 1-2. MCU Feature Codes  
• 3-4. Radio Feature Codes  
• 5. Flash (J = 1024k | I = 768k | H = 512k | W= 352k | G = 256k | F = 128k)  
• 6. Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C )  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 89  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
TQFN32 Package Specifications  
8. TQFN32 Package Specifications  
8.1 TQFN32 Package Dimensions  
Figure 8.1. TQFN32 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 90  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
TQFN32 Package Specifications  
Table 8.1. TQFN32 Package Dimensions  
Dimension  
Min  
Typ  
Max  
A
0.27  
0.30  
0.33  
A1  
A2  
b
0.20 REF  
0.10 REF  
0.20  
0.15  
3.90  
3.90  
2.60  
2.60  
0.25  
4.10  
4.10  
2.80  
2.80  
D
4.00  
E
4.00  
D2  
E2  
e
2.70  
2.70  
0.40 BSC  
0.32  
L
0.22  
0.42  
K
0.33 REF  
R
0.075  
0.125  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 91  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
TQFN32 Package Specifications  
8.2 TQFN32 PCB Land Pattern  
Figure 8.2. TQFN32 PCB Land Pattern Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 92  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
TQFN32 Package Specifications  
Table 8.2. TQFN32 PCB Land Pattern Dimensions  
Dimension  
Typ  
0.76  
0.22  
0.40  
3.21  
3.21  
2.80  
2.80  
L
W
e
S
S1  
L1  
W1  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.101 mm (4 mils).  
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
7. A 2x2 array of 1.10 mm x 1.10 mm openings on a 1.30 mm pitch can be used for the center ground pad.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
10. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use  
different parameters and fine tune their SMT process as required for their application and tooling.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 93  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
TQFN32 Package Specifications  
8.3 TQFN32 Package Marking  
FFFF  
PPPPPP  
TTTTTT  
YYWW  
Figure 8.3. TQFN32 Package Marking  
The package marking consists of:  
• FFFF – The product family codes.  
1. Family Code ( B | M | F )  
2. G (Gecko)  
3. Series (2)  
4. Device Configuration (1, 2, 3, ...)  
• PPPPPP – The product option codes.  
• 1-2. MCU Feature Codes  
• 3-4. Radio Feature Codes  
• 5. Flash (J = 1024k | I = 768k | H = 512k | W= 352k | G = 256k | F = 128k)  
• 6. Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C )  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 94  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN40 Package Specifications  
9. QFN40 Package Specifications  
9.1 QFN40 Package Dimensions  
Figure 9.1. QFN40 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.0 | 95  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN40 Package Specifications  
Table 9.1. QFN40 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
0.02  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.20 REF  
0.20  
5.00  
5.00  
3.70  
3.70  
0.40 BSC  
0.40  
0.15  
4.90  
4.90  
3.55  
3.55  
0.25  
5.10  
5.10  
3.85  
3.85  
D
E
D2  
E2  
e
L
0.30  
0.20  
0.50  
K
R
0.075  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 96  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN40 Package Specifications  
9.2 QFN40 PCB Land Pattern  
Figure 9.2. QFN40 PCB Land Pattern Drawing  
Table 9.2. QFN40 PCB Land Pattern Dimensions  
Dimension  
Typ  
4.25  
4.25  
3.85  
3.85  
0.40  
0.22  
0.74  
S1  
S
L1  
W1  
e
W
L
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
4. The stencil thickness should be 0.101 mm (4 mils).  
5. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
6. A 3x3 array of 0.90 mm square openings on a 1.20 mm pitch can be used for the center ground pad.  
7. A No-Clean, Type-3 solder paste is recommended.  
8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
9. Above notes and stencil design are shared as recommendations only. A customer or user may find it necessary to use  
different parameters and fine tune their SMT process as required for their application and tooling.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 97  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
QFN40 Package Specifications  
9.3 QFN40 Package Marking  
FFFF  
PPPPPP  
TTTTTT  
YYWW  
Figure 9.3. QFN40 Package Marking  
The package marking consists of:  
• FFFF – The product family codes.  
1. Family Code ( B | M | F )  
2. G (Gecko)  
3. Series (2)  
4. Device Configuration (1, 2, 3, ...)  
• PPPPPP – The product option codes.  
• 1-2. MCU Feature Codes  
• 3-4. Radio Feature Codes  
• 5. Flash (J = 1024k | I = 768k | H = 512k | W= 352k | G = 256k | F = 128k)  
• 6. Temperature grade (G = -40 to 85 °C | I = -40 to 125 °C )  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 98  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Revision History  
10. Revision History  
Revision 1.0  
June, 2020  
3.7.2 Cryptographic Accelerator: Removed text referencing DPA.  
3.7.4 Secure Debug with Lock/Unlock: Removed text referencing Secure Element.  
4.1 Electrical Characteristics:  
• Expanded Power Supply Pin Dependencies section to include more details and restrictions on DECOUPLE.  
• Finalized remaining MIN / MAX specifications according to characterization and qualification results.  
Table 4.30 GPIO Pins (3V GPIO pins) on page 54: Relaxed 3.8 V, 125 °C GPIO maximum leakage specification on PA00, PA03,  
PB00, PC03, PC04, and PD00 from 400 nA to 550 nA.  
• Corrected BLE Bit Error Rate conditions for sensitivity measurements with 255 byte payload.  
• Added GPIO hysteresis specification.  
• Updated DCDC lifetime condition guidance in 4.4.1 DC-DC Operating Limits.  
• Expanded IADC descriptions to include information at higher oversampling ratios and added typical performance curve.  
• Corrected tolerance of dimension "L" in Table 8.1 TQFN32 Package Dimensions on page 91.  
Revision 0.5  
February, 2020  
1. Feature List: Updated list slightly to highlight different features.  
• Expanded 3.7 Security Features section and corrected security details.  
• Added 3.9.2 Voltage Scaling section.  
4.1 Electrical Characteristics:  
• Additional characterization results and test limits added where available.  
• Removed thermistor driver specification table until full software support becomes available.  
• Updated 5.2 RF Matching Networks section with recommended match values.  
• Updated 9.3 QFN40 Package Marking with mark details.  
Revision 0.4  
December, 2019  
4.1 Electrical Characteristics:  
• Added detailed lifetime information to DC-DC specifications section.  
• Additional characterization results and preliminary test limits added where available.  
• Added DC-DC efficiency plots and updated supply current plots to 4.20 Typical Performance Curves.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 99  
EFR32BG22 Wireless Gecko SoC Family Data Sheet  
Revision History  
Revision 0.3  
October, 2019  
• In the front page block diagram, updated the lowest energy mode for LETIMER.  
• Updated 3.5.2 Low Energy Timer (LETIMER) lowest energy mode.  
1. Feature List updated with additional modulation formats, protocol stack, and security details.  
2. Ordering Information:  
• OPN numbering changes for security grade differentiator.  
• Supported protocol stack details updated.  
4.1 Electrical Characteristics:  
• Additional characterization results and preliminary test limits added where available.  
• Corrected maximum clock speed details in General Operating Conditions Table.  
• Removed specification lines with 3 dBm output power conditions from RF transmit tables.  
• Removed DECOUPLE BOD table.  
• Added timing diagrams and specifications for PDM and USART SPI.  
• Added 4.20 Typical Performance Curves.  
Revision 0.2  
July, 2019  
2. Ordering Information: Updated part number to revision C, added several new variants.  
4.1 Electrical Characteristics: Added early silicon characterization data to several tables, and refined specification conditions.  
4.1 Electrical Characteristics: Added flash electrical characteristics table.  
• Minor wording edits for System Overview sections.  
Revision 0.1  
April, 2019  
Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 100  
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without  
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior  
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance  
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license  
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is  
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,  
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs  
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering  
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such  
unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-  
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a  
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY