EFR32FG14P232F256GM48-B [SILICON]

EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet;
EFR32FG14P232F256GM48-B
型号: EFR32FG14P232F256GM48-B
厂家: SILICON    SILICON
描述:

EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet

文件: 总163页 (文件大小:2473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFR32FG14 Flex Gecko Proprietary  
Protocol SoC Family Data Sheet  
The Flex Gecko proprietary protocol family of SoCs is part of the  
KEY FEATURES  
Wireless Gecko portfolio. Flex Gecko SoCs are ideal for enabling  
energy-friendly proprietary protocol networking for IoT devices.  
• 32-bit ARM® Cortex®-M4 core with 40  
MHz maximum operating frequency  
The single-die solution provides industry-leading energy efficiency, ultra-fast wakeup  
times, a scalable power amplifier, an integrated balun and no-compromise MCU fea-  
tures.  
• Up to 256 kB of flash and 32 kB of RAM  
• Pin-compatible across EFR32FG families  
(exceptions apply for 5V-tolerant pins)  
• 12-channel Peripheral Reflex System  
enabling autonomous interaction of MCU  
peripherals  
Flex Gecko applications include:  
• Home and Building Automation and Security  
• Metering  
• Autonomous Hardware Crypto Accelerator  
• Integrated PA with up to 19 dBm (2.4  
GHz) or 20 dBm (Sub-GHz) tx power  
• Electronic Shelf Labels  
• Industrial Automation  
• Integrated balun for 2.4 GHz  
• Commercial and Retail Lighting and Sensing  
• Robust peripheral set and up to 32 GPIO  
Core / Memory  
Clock Management  
Energy Management  
Other  
H-F Crystal  
Oscillator  
H-F  
RC Oscillator  
Voltage  
Voltage Monitor  
Regulator  
CRYPTO  
ARM CortexTM M4 processor  
with DSP extensions, FPU and MPU  
Flash Program  
Memory  
Auxiliary H-F RC  
Oscillator  
L-F  
DC-DC  
Power-On Reset  
Converter  
CRC  
SMU  
RC Oscillator  
L-F Crystal  
Oscillator  
Ultra L-F RC  
Oscillator  
Brown-Out  
Detector  
Debug Interface  
RAM Memory  
LDMA Controller  
32-bit bus  
Peripheral Reflex System  
Radio Transceiver  
Serial  
I/O Ports  
Timers and Triggers  
Analog I/F  
Interfaces  
RFSENSE  
Sub GHz  
DEMOD  
IFADC  
AGC  
I
External  
Interrupts  
ADC  
USART  
Timer/Counter  
Protocol Timer  
LNA  
RF Frontend  
PGA  
Analog  
Comparator  
PA  
Low Energy  
UARTTM  
General  
Purpose I/O  
Low Energy  
Timer  
Low Energy  
Sensor Interface  
Q
To Sub GHz  
receive I/Q  
mixers and PA  
IDAC  
RFSENSE  
BALUN  
I2C  
Pin Reset  
Pulse Counter  
Watchdog Timer  
Cryotimer  
2.4 GHz  
LNA  
I
VDAC  
Frequency  
Synthesizer  
MOD  
Real Time  
Counter and  
Calendar  
RF Frontend  
Pin Wakeup  
Op-Amp  
PA  
To 2.4 GHz receive  
I/Q mixers and PA  
To Sub GHz  
and 2.4 GHz PA  
Q
Lowest power mode with peripheral operational:  
EM0—Active EM1—Sleep  
EM2—Deep Sleep  
EM3—Stop  
EM4—Hibernate  
EM4—Shutoff  
silabs.com | Building a more connected world.  
Rev. 1.2  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Feature List  
1. Feature List  
The EFR32FG14 highlighted features are listed below.  
Low Power Wireless System-on-Chip  
Wide selection of MCU peripherals  
• 12-bit 1 Msps SAR Analog to Digital Converter (ADC)  
• 2 × Analog Comparator (ACMP)  
High Performance 32-bit 40 MHz ARM Cortex®-M4 with  
DSP instruction and floating-point unit for efficient signal  
processing  
• 2 × Digital to Analog Converter (VDAC)  
• 2 × Operational Amplifier (Opamp)  
• Up to 256 kB flash program memory  
• Up to 32 kB RAM data memory  
• Digital to Analog Current Converter (IDAC)  
• Low-Energy Sensor Interface (LESENSE)  
• 2.4 GHz and Sub-GHz radio operation  
• Transmit power:  
• Up to 32 pins connected to analog channels (APORT)  
shared between analog peripherals  
• 2.4 GHz radio: Up to 19 dBm  
• Sub-GHz radio: Up to 20 dBm  
• Up to 32 General Purpose I/O pins with output state reten-  
tion and asynchronous interrupts  
Low Energy Consumption  
• 8 Channel DMA Controller  
• 8.4 mA RX current at 38.4 kbps, GFSK, 169 MHz  
• 8.8 mA RX current at 1 Mbps, GFSK, 2.4 GHz  
• 10.2 mA RX current at 250 kbps, DSSS-OQPSK, 2.4 GHz  
• 8.5 mA TX current at 0 dBm output power at 2.4 GHz  
• 35.3 mA TX current at 14 dBm output power at 868 MHz  
• 67 μA/MHz in Active Mode (EM0)  
• 12 Channel Peripheral Reflex System (PRS)  
• 2 × 16-bit Timer/Counter  
• 3 or 4 Compare/Capture/PWM channels  
• 1 × 32-bit Timer/Counter  
• 3 Compare/Capture/PWM channels  
• 32-bit Real Time Counter and Calendar  
• 16-bit Low Energy Timer for waveform generation  
• 1.3 μA EM2 DeepSleep current (16 kB RAM retention and  
RTCC running from LFRCO)  
• Wake on Radio with signal strength detection, preamble  
pattern detection, frame detection and timeout  
• 32-bit Ultra Low Energy Timer/Counter for periodic wake-up  
from any Energy Mode  
High Receiver Performance  
• 16-bit Pulse Counter with asynchronous operation  
• 2 × Watchdog Timer with dedicated RC oscillator  
• 2 × Universal Synchronous/Asynchronous Receiver/Trans-  
mitter (UART/SPI/SmartCard (ISO 7816)/IrDA/I2S)  
• -93.8 dBm sensitivity at 1 Mbit/s GFSK, 2.4 GHz  
• -103.3 dBm sensitivity at 250 kbps DSSS-OQPSK, 2.4 GHz  
• -126.2 dBm sensitivity at 600 bps, GFSK, 915 MHz  
• -120.6 dBm sensitivity at 2.4 kbps, GFSK, 868 MHz  
• -109.9 dBm sensitivity at 4.8 kbps, OOK, 433 MHz  
• -112.2 dBm sensitivity at 38.4 kbps, GFSK, 169 MHz  
Supported Modulation Formats  
• 2/4 (G)FSK with fully configurable shaping  
• BPSK / DBPSK TX  
Low Energy UART (LEUART)  
I2C interface with SMBus support and address recognition  
in EM3 Stop  
Wide Operating Range  
• 1.8 V to 3.8 V single power supply  
• Integrated DC-DC, down to 1.8 V output with up to 200 mA  
load current for system  
• OOK / ASK  
• Standard (-40 °C to 85 °C) and Extended (-40 °C to 125 °C)  
temperature grades available  
• Shaped OQPSK / (G)MSK  
• Configurable DSSS and FEC  
Support for Internet Security  
• General Purpose CRC  
Supported Protocols  
• Proprietary Protocols  
• Random Number Generator  
• Wireless M-Bus  
• Hardware Cryptographic Acceleration for AES 128/256,  
SHA-1, SHA-2 (SHA-224 and SHA-256) and ECC  
• Selected IEEE 802.15.4g SUN-FSK PHYs  
• Low Power Wide Area Networks  
QFN32 5x5 mm Package  
QFN48 7x7 mm Package  
Suitable for Systems Targeting Compliance With:  
• FCC Part 90.210 Mask D, FCC part 15.247, 15.231, 15.249  
• ETSI Category I Operation, EN 300 220, EN 300 328  
• ARIB T-108, T-96  
• China regulatory  
silabs.com | Building a more connected world.  
Rev. 1.2 | 2  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Ordering Information  
2. Ordering Information  
Table 2.1. Ordering Information  
Frequency Band  
@ Max TX Power  
2.4 GHz @ 19 dBm  
Protocol  
Stack  
Flash RAM  
Ordering Code  
(kB)  
(kB)  
GPIO Package Temp Range  
EFR32FG14P233F256GM48-B  
Proprietary  
256  
32  
28  
QFN48  
-40 to +85°C  
• Sub-GHz @ 20 dBm  
EFR32FG14P233F128GM48-B  
Proprietary  
2.4 GHz @ 19 dBm  
128  
16  
28  
QFN48  
-40 to +85°C  
• Sub-GHz @ 20 dBm  
EFR32FG14P232F256GM48-B  
EFR32FG14P232F128GM48-B  
EFR32FG14P232F256GM32-B  
EFR32FG14P232F128GM32-B  
EFR32FG14P231F256GM48-B  
EFR32FG14P231F256IM48-B  
EFR32FG14P231F128GM48-B  
EFR32FG14P231F256GM32-B  
EFR32FG14P231F256IM32-B  
EFR32FG14P231F128GM32-B  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
Proprietary  
2.4 GHz @ 19 dBm  
2.4 GHz @ 19 dBm  
2.4 GHz @ 19 dBm  
2.4 GHz @ 19 dBm  
Sub-GHz @ 20 dBm  
Sub-GHz @ 20 dBm  
Sub-GHz @ 20 dBm  
Sub-GHz @ 20 dBm  
Sub-GHz @ 20 dBm  
Sub-GHz @ 20 dBm  
256  
128  
256  
128  
256  
256  
128  
256  
256  
128  
32  
16  
32  
16  
32  
32  
16  
32  
32  
16  
31  
31  
16  
16  
32  
32  
32  
16  
16  
16  
QFN48  
QFN48  
QFN32  
QFN32  
QFN48  
QFN48  
QFN48  
QFN32  
QFN32  
QFN32  
-40 to +85°C  
-40 to +85°C  
-40 to +85°C  
-40 to +85°C  
-40 to +85°C  
-40 to +125°C  
-40 to +85°C  
-40 to +85°C  
-40 to +125°C  
-40 to +85°C  
silabs.com | Building a more connected world.  
Rev. 1.2 | 3  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Ordering Information  
EFR32 X G 1 4 P 733 F 256 G M 48 A R  
Tape and Reel (Optional)  
Revision  
Pin Count  
Package – M (QFN)  
Temperature Grade – G (-40 to +85 °C), -I (-40 to +125 °C)  
Flash Memory Size in kB  
Memory Type (Flash)  
Feature Set Code – r2r1r0  
r2: Reserved  
r1: RF Type – 3 (TRX), 2 (RX), 1 (TX)  
r0: Frequency Band – 1 (Sub-GHz), 2 (2.4 GHz), 3 (Dual-Band)  
Performance Grade – P (Performance), B (Basic), V (Value)  
Device Configuration  
Series  
Gecko  
Family – M (Mighty), B (Blue), F (Flex)  
Wireless Gecko 32-bit  
Figure 2.1. Ordering Code Key  
silabs.com | Building a more connected world.  
Rev. 1.2 | 4  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2 Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.2.1 Antenna Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2.2 Fractional-N Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . 9  
3.2.3 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2.4 Transmitter Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2.5 Wake on Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.6 RFSENSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.7 Flexible Frame Handling . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.8 Packet and State Trace . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.9 Data Buffering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.2.10 Radio Controller (RAC) . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2.11 Random Number Generator . . . . . . . . . . . . . . . . . . . . . . .11  
3.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.3.1 Energy Management Unit (EMU) . . . . . . . . . . . . . . . . . . . . . .12  
3.3.2 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.3.3 Power Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4 General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . .12  
3.5 Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.5.1 Clock Management Unit (CMU) . . . . . . . . . . . . . . . . . . . . . . .13  
3.5.2 Internal and External Oscillators. . . . . . . . . . . . . . . . . . . . . . .13  
3.6 Counters/Timers and PWM . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.1 Timer/Counter (TIMER) . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.2 Wide Timer/Counter (WTIMER) . . . . . . . . . . . . . . . . . . . . . . .13  
3.6.3 Real Time Counter and Calendar (RTCC) . . . . . . . . . . . . . . . . . . .13  
3.6.4 Low Energy Timer (LETIMER) . . . . . . . . . . . . . . . . . . . . . . .14  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER) . . . . . . . . . . . . . . . . .14  
3.6.6 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.6.7 Watchdog Timer (WDOG). . . . . . . . . . . . . . . . . . . . . . . . .14  
3.7 Communications and Other Digital Peripherals . . . . . . . . . . . . . . . . . . .14  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART) . . . . . . . . . .14  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART) . . . . . . . . . .14  
2
3.7.3 Inter-Integrated Circuit Interface (I C) . . . . . . . . . . . . . . . . . . . . .14  
3.7.4 Peripheral Reflex System (PRS) . . . . . . . . . . . . . . . . . . . . . .14  
3.7.5 Low Energy Sensor Interface (LESENSE) . . . . . . . . . . . . . . . . . . .15  
3.8 Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check) . . . . . . . . . . . . . . .15  
3.8.2 Crypto Accelerator (CRYPTO) . . . . . . . . . . . . . . . . . . . . . . .15  
3.8.3 Security Management Unit (SMU) . . . . . . . . . . . . . . . . . . . . . .15  
silabs.com | Building a more connected world.  
Rev. 1.2 | 5  
3.9 Analog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.1 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.2 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.3 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . .15  
3.9.4 Digital to Analog Current Converter (IDAC) . . . . . . . . . . . . . . . . . . .16  
3.9.5 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .16  
3.9.6 Operational Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.10 Reset Management Unit (RMU) . . . . . . . . . . . . . . . . . . . . . . . .16  
3.11 Core and Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.11.1 Processor Core . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.11.2 Memory System Controller (MSC) . . . . . . . . . . . . . . . . . . . . .16  
3.11.3 Linked Direct Memory Access Controller (LDMA) . . . . . . . . . . . . . . . .16  
3.12 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.13 Configuration Summary . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4.1 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1.2 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.1.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.1.4 DC-DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.1.5 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.1.6 Wake Up Times . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
4.1.7 Brown Out Detector (BOD) . . . . . . . . . . . . . . . . . . . . . . . .38  
4.1.8 Frequency Synthesizer. . . . . . . . . . . . . . . . . . . . . . . . . .39  
4.1.9 2.4 GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . . .40  
4.1.10 Sub-GHz RF Transceiver Characteristics . . . . . . . . . . . . . . . . . . .49  
4.1.11 Modem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
4.1.12 Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
4.1.13 Flash Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . .78  
4.1.14 General-Purpose I/O (GPIO) . . . . . . . . . . . . . . . . . . . . . . .79  
4.1.15 Voltage Monitor (VMON). . . . . . . . . . . . . . . . . . . . . . . . .81  
4.1.16 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . .82  
4.1.17 Analog Comparator (ACMP) . . . . . . . . . . . . . . . . . . . . . . .84  
4.1.18 Digital to Analog Converter (VDAC) . . . . . . . . . . . . . . . . . . . . .87  
4.1.19 Current Digital to Analog Converter (IDAC) . . . . . . . . . . . . . . . . . .90  
4.1.20 Operational Amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . .92  
4.1.21 Pulse Counter (PCNT) . . . . . . . . . . . . . . . . . . . . . . . . .95  
4.1.22 Analog Port (APORT) . . . . . . . . . . . . . . . . . . . . . . . . . .95  
4.1.23 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
4.1.24 USART SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
4.2 Typical Performance Curves  
. . . . . . . . . . . . . . . . . . . . . . . .100  
4.2.1 Supply Current  
4.2.2 DC-DC Converter  
4.2.3 2.4 GHz Radio  
. . . . . . . . . . . . . . . . . . . . . . . . . . 1. 01  
. . . . . . . . . . . . . . . . . . . . . . . . . 1.06  
. . . . . . . . . . . . . . . . . . . . . . . . . . 1.08  
5. Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . .110  
silabs.com | Building a more connected world.  
Rev. 1.2 | 6  
5.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
5.2 RF Matching Networks . . . . . . . . . . . . . . . . . . . . . . . . . .112  
5.3 Other Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
6. Pin Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout. . . . . . . . . . . . . . . . . . . 114  
6.2 QFN48 2.4 GHz Device Pinout  
6.3 QFN48 Sub-GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . .118  
6.4 QFN32 2.4 GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . 1.20  
6.5 QFN32 Sub-GHz Device Pinout . . . . . . . . . . . . . . . . . . . . . . .122  
6.6 GPIO Functionality Table . . . . . . . . . . . . . . . . . . . . . . . . 1. 24  
6.7 Alternate Functionality Overview . . . . . . . . . . . . . . . . . . . . . . . 135  
6.8 Analog Port (APORT) Client Maps . . . . . . . . . . . . . . . . . . . . . .145  
. . . . . . . . . . . . . . . . . . . . . . 1.16  
7. QFN48 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 152  
7.1 QFN48 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .152  
7.2 QFN48 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .154  
7.3 QFN48 Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . . .156  
8. QFN32 Package Specifications. . . . . . . . . . . . . . . . . . . . . . . . 157  
8.1 QFN32 Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . .157  
8.2 QFN32 PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .159  
8.3 QFN32 Package Marking  
. . . . . . . . . . . . . . . . . . . . . . . . .161  
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162  
silabs.com | Building a more connected world.  
Rev. 1.2 | 7  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3. System Overview  
3.1 Introduction  
The EFR32 product family combines an energy-friendly MCU with a highly integrated radio transceiver. The devices are well suited for  
any battery operated application as well as other systems requiring high performance and low energy consumption. This section gives a  
short introduction to the full radio and MCU system. The detailed functional description can be found in the EFR32xG14 Wireless  
Gecko Reference Manual.  
A block diagram of the EFR32FG14 family is shown in Figure 3.1 Detailed EFR32FG14 Block Diagram on page 8. The diagram  
shows a superset of features available on the family, which vary by OPN. For more information about specific device features, consult  
Ordering Information.  
Radio Transceiver  
Port I/O Configuration  
Digital Peripherals  
IOVDD  
Sub-GHz RF  
SUBGRF_IP  
SUBGRF_IN  
SUBGRF_OP  
SUBGRF_ON  
I
DEMOD  
IFADC  
AGC  
LNA  
LETIMER  
PA  
Port A  
Drivers  
PGA  
Q
PAn  
TIMER  
CRYOTIMER  
PCNT  
RFSENSE  
BALUN  
2.4 GHz RF  
I
Frequency  
LNA  
Synthesizer  
Port B  
Drivers  
PBn  
PCn  
PDn  
PFn  
2G4RF_IOP  
2G4RF_ION  
To RF  
MOD  
PA  
Frontend  
Circuits  
RTC / RTCC  
USART  
Q
Port  
Mapper  
Port C  
Drivers  
LEUART  
I2C  
Reset  
Management  
Unit  
ARM Cortex-M4 Core  
RESETn  
Port D  
Up to 256 KB ISP Flash  
Program Memory  
CRYPTO  
CRC  
Drivers  
Serial Wire  
Debug /  
Programming  
Debug Signals  
(shared w/GPIO)  
Brown Out /  
Power-On  
Reset  
A
H
B
A
P
B
Up to 32 KB RAM  
Memory Protection Unit  
Floating Point Unit  
DMA Controller  
Port F  
Drivers  
LESENSE  
Energy Management  
Analog Peripherals  
PAVDD  
RFVDD  
IOVDD  
AVDD  
IDAC  
Voltage  
Monitor  
-
+
Watchdog  
Timer  
VDAC  
DVDD  
bypass  
Op-Amp  
VDD  
Internal  
Reference  
Clock Management  
VREGVDD  
VREGSW  
DC-DC  
Converter  
Voltage  
Regulator  
ULFRCO  
AUXHFRCO  
LFRCO  
12-bit ADC  
DECOUPLE  
Temp  
Sense  
LFXTAL_P  
LFXTAL_N  
HFXTAL_P  
HFXTAL_N  
LFXO  
+
-
HFRCO  
HFXO  
Analog Comparator  
Figure 3.1. Detailed EFR32FG14 Block Diagram  
3.2 Radio  
The Flex Gecko family features a radio transceiver supporting proprietary wireless protocols.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 8  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.2.1 Antenna Interface  
The EFR32FG14 family includes devices which support both single-band and dual-band RF communication over separate physical RF  
interfaces.  
The 2.4 GHz antenna interface consists of two pins (2G4RF_IOP and 2G4RF_ION) that interface directly to the on-chip BALUN. The  
2G4RF_ION pin should be grounded externally.  
The sub-GHz antenna interface consists of a differential transmit interface (pins SUBGRF_OP and SUBGRF_ON) and a differential re-  
ceive interface (pinsSUBGRF_IP and SUBGRF_IN).  
The external components and power supply connections for the antenna interface typical applications are shown in the RF Matching  
Networks section.  
3.2.2 Fractional-N Frequency Synthesizer  
The EFR32FG14 contains a high performance, low phase noise, fully integrated fractional-N frequency synthesizer. The synthesizer is  
used in receive mode to generate the LO frequency used by the down-conversion mixer. It is also used in transmit mode to directly  
generate the modulated RF carrier.  
The fractional-N architecture provides excellent phase noise performance combined with frequency resolution better than 100 Hz, with  
low energy consumption. The synthesizer has fast frequency settling which allows very short receiver and transmitter wake up times to  
optimize system energy consumption.  
3.2.3 Receiver Architecture  
The EFR32FG14 uses a low-IF receiver architecture, consisting of a Low-Noise Amplifier (LNA) followed by an I/Q down-conversion  
mixer, employing a crystal reference. The I/Q signals are further filtered and amplified before being sampled by the IF analog-to-digital  
converter (IFADC).  
The IF frequency is configurable from 150 kHz to 1371 kHz. The IF can further be configured for high-side or low-side injection, provid-  
ing flexibility with respect to known interferers at the image frequency.  
The Automatic Gain Control (AGC) module adjusts the receiver gain to optimize performance and avoid saturation for excellent selec-  
tivity and blocking performance. The 2.4 GHz radio is calibrated at production to improve image rejection performance. The sub-GHz  
radio can be calibrated on-demand by the user for the desired frequency band.  
Demodulation is performed in the digital domain. The demodulator performs configurable decimation and channel filtering to allow re-  
ceive bandwidths ranging from 0.1 to 2530 kHz. High carrier frequency and baud rate offsets are tolerated by active estimation and  
compensation. Advanced features supporting high quality communication under adverse conditions include forward error correction by  
block and convolutional coding as well as Direct Sequence Spread Spectrum (DSSS) for 2.4 GHz and sub-GHz bands.  
A Received Signal Strength Indicator (RSSI) is available for signal quality metrics, for level-based proximity detection, and for RF chan-  
nel access by Collision Avoidance (CA) or Listen Before Talk (LBT) algorithms. An RSSI capture value is associated with each received  
frame and the dynamic RSSI measurement can be monitored throughout reception.  
The EFR32FG14 features integrated support for antenna diversity to mitigate the problem of frequency-selective fading due to multipath  
propagation and improve link budget. Support for antenna diversity is available for specific PHY configurations in 2.4 GHz and sub-GHz  
bands. Internal configurable hardware controls an external switch for automatic switching between antennae during RF receive detec-  
tion operations.  
Note: Due to the shorter preamble of 802.15.4 and BLE packets, RX diversity is not supported.  
3.2.4 Transmitter Architecture  
The EFR32FG14 uses a direct-conversion transmitter architecture. For constant envelope modulation formats, the modulator controls  
phase and frequency modulation in the frequency synthesizer. Transmit symbols or chips are optionally shaped by a digital shaping  
filter. The shaping filter is fully configurable, including the BT product, and can be used to implement Gaussian or Raised Cosine shap-  
ing.  
Carrier Sense Multiple Access - Collision Avoidance (CSMA-CA) or Listen Before Talk (LBT) algorithms can be automatically timed by  
the EFR32FG14. These algorithms are typically defined by regulatory standards to improve inter-operability in a given bandwidth be-  
tween devices that otherwise lack synchronized RF channel access.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 9  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.2.5 Wake on Radio  
The Wake on Radio feature allows flexible, autonomous RF sensing, qualification, and demodulation without required MCU activity, us-  
ing a subsystem of the EFR32FG14 including the Radio Controller (RAC), Peripheral Reflex System (PRS), and Low Energy peripher-  
als.  
3.2.6 RFSENSE  
The RFSENSE module generates a system wakeup interrupt upon detection of wideband RF energy at the antenna interface, providing  
true RF wakeup capabilities from low energy modes including EM2, EM3 and EM4.  
RFSENSE triggers on a relatively strong RF signal and is available in the lowest energy modes, allowing exceptionally low energy con-  
sumption. RFSENSE does not demodulate or otherwise qualify the received signal, but software may respond to the wakeup event by  
enabling normal RF reception.  
Various strategies for optimizing power consumption and system response time in presence of false alarms may be employed using  
available timer peripherals.  
3.2.7 Flexible Frame Handling  
EFR32FG14 has an extensive and flexible frame handling support for easy implementation of even complex communication protocols.  
The Frame Controller (FRC) supports all low level and timing critical tasks together with the Radio Controller and Modulator/Demodula-  
tor:  
• Highly adjustable preamble length  
• Up to 2 simultaneous synchronization words, each up to 32 bits and providing separate interrupts  
• Frame disassembly and address matching (filtering) to accept or reject frames  
• Automatic ACK frame assembly and transmission  
• Fully flexible CRC generation and verification:  
• Multiple CRC values can be embedded in a single frame  
• 8, 16, 24 or 32-bit CRC value  
• Configurable CRC bit and byte ordering  
• Selectable bit-ordering (least significant or most significant bit first)  
• Optional data whitening  
• Optional Forward Error Correction (FEC), including convolutional encoding / decoding and block encoding / decoding  
• Half rate convolutional encoder and decoder with constraint lengths from 2 to 7 and optional puncturing  
• Optional symbol interleaving, typically used in combination with FEC  
• Symbol coding, such as Manchester or DSSS, or biphase space encoding using FEC hardware  
• UART encoding over air, with start and stop bit insertion / removal  
• Test mode support, such as modulated or unmodulated carrier output  
• Received frame timestamping  
3.2.8 Packet and State Trace  
The EFR32FG14 Frame Controller has a packet and state trace unit that provides valuable information during the development phase.  
It features:  
• Non-intrusive trace of transmit data, receive data and state information  
• Data observability on a single-pin UART data output, or on a two-pin SPI data output  
• Configurable data output bitrate / baudrate  
• Multiplexed transmitted data, received data and state / meta information in a single serial data stream  
3.2.9 Data Buffering  
The EFR32FG14 features an advanced Radio Buffer Controller (BUFC) capable of handling up to 4 buffers of adjustable size from 64  
bytes to 4096 bytes. Each buffer can be used for RX, TX or both. The buffer data is located in RAM, enabling zero-copy operations.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 10  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.2.10 Radio Controller (RAC)  
The Radio Controller controls the top level state of the radio subsystem in the EFR32FG14. It performs the following tasks:  
• Precisely-timed control of enabling and disabling of the receiver and transmitter circuitry  
• Run-time calibration of receiver, transmitter and frequency synthesizer  
• Detailed frame transmission timing, including optional LBT or CSMA-CA  
3.2.11 Random Number Generator  
The Frame Controller (FRC) implements a random number generator that uses entropy gathered from noise in the RF receive chain.  
The data is suitable for use in cryptographic applications.  
Output from the random number generator can be used either directly or as a seed or entropy source for software-based random num-  
ber generator algorithms such as Fortuna.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 11  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.3 Power  
The EFR32FG14 has an Energy Management Unit (EMU) and efficient integrated regulators to generate internal supply voltages. Only  
a single external supply voltage is required, from which all internal voltages are created. An optional integrated DC-DC buck regulator  
can be utilized to further reduce the current consumption. The DC-DC regulator requires one external inductor and one external capaci-  
tor.  
The EFR32FG14 device family includes support for internal supply voltage scaling, as well as two different power domains groups for  
peripherals. These enhancements allow for further supply current reductions and lower overall power consumption.  
AVDD and VREGVDD need to be 1.8 V or higher for the MCU to operate across all conditions; however the rest of the system will  
operate down to 1.62 V, including the digital supply and I/O. This means that the device is fully compatible with 1.8 V components.  
Running from a sufficiently high supply, the device can use the DC-DC to regulate voltage not only for itself, but also for other PCB  
components, supplying up to a total of 200 mA.  
3.3.1 Energy Management Unit (EMU)  
The Energy Management Unit manages transitions of energy modes in the device. Each energy mode defines which peripherals and  
features are available and the amount of current the device consumes. The EMU can also be used to turn off the power to unused RAM  
blocks, and it contains control registers for the DC-DC regulator and the Voltage Monitor (VMON). The VMON is used to monitor multi-  
ple supply voltages. It has multiple channels which can be programmed individually by the user to determine if a sensed supply has  
fallen below a chosen threshold.  
3.3.2 DC-DC Converter  
The DC-DC buck converter covers a wide range of load currents and provides up to 90% efficiency in energy modes EM0, EM1, EM2  
and EM3, and can supply up to 200 mA to the device and surrounding PCB components. Patented RF noise mitigation allows operation  
of the DC-DC converter without degrading sensitivity of radio components. Protection features include programmable current limiting,  
short-circuit protection, and dead-time protection. The DC-DC converter may also enter bypass mode when the input voltage is too low  
for efficient operation. In bypass mode, the DC-DC input supply is internally connected directly to its output through a low resistance  
switch. Bypass mode also supports in-rush current limiting to prevent input supply voltage droops due to excessive output current tran-  
sients.  
3.3.3 Power Domains  
The EFR32FG14 has two peripheral power domains for operation in EM2 and EM3. If all of the peripherals in a peripheral power do-  
main are configured as unused, the power domain for that group will be powered off in the low-power mode, reducing the overall cur-  
rent consumption of the device.  
Table 3.1. Peripheral Power Subdomains  
Peripheral Power Domain 1  
Peripheral Power Domain 2  
ACMP0  
PCNT0  
ACMP1  
CSEN  
ADC0  
VDAC0  
LEUART0  
I2C0  
LETIMER0  
LESENSE  
APORT  
IDAC  
3.4 General Purpose Input/Output (GPIO)  
EFR32FG14 has up to 32 General Purpose Input/Output pins. Each GPIO pin can be individually configured as either an output or in-  
put. More advanced configurations including open-drain, open-source, and glitch-filtering can be configured for each individual GPIO  
pin. The GPIO pins can be overridden by peripheral connections, like SPI communication. Each peripheral connection can be routed to  
several GPIO pins on the device. The input value of a GPIO pin can be routed through the Peripheral Reflex System to other peripher-  
als. The GPIO subsystem supports asynchronous external pin interrupts.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 12  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.5 Clocking  
3.5.1 Clock Management Unit (CMU)  
The Clock Management Unit controls oscillators and clocks in the EFR32FG14. Individual enabling and disabling of clocks to all periph-  
eral modules is performed by the CMU. The CMU also controls enabling and configuration of the oscillators. A high degree of flexibility  
allows software to optimize energy consumption in any specific application by minimizing power dissipation in unused peripherals and  
oscillators.  
3.5.2 Internal and External Oscillators  
The EFR32FG14 supports two crystal oscillators and fully integrates four RC oscillators, listed below.  
• A high frequency crystal oscillator (HFXO) with integrated load capacitors, tunable in small steps, provides a precise timing refer-  
ence for the MCU. Crystal frequencies in the range from 38 to 40 MHz are supported. An external clock source such as a TCXO can  
also be applied to the HFXO input for improved accuracy over temperature.  
• A 32.768 kHz crystal oscillator (LFXO) provides an accurate timing reference for low energy modes.  
• An integrated high frequency RC oscillator (HFRCO) is available for the MCU system, when crystal accuracy is not required. The  
HFRCO employs fast startup at minimal energy consumption combined with a wide frequency range.  
• An integrated auxilliary high frequency RC oscillator (AUXHFRCO) is available for timing the general-purpose ADC and the Serial  
Wire Viewer port with a wide frequency range.  
• An integrated low frequency 32.768 kHz RC oscillator (LFRCO) can be used as a timing reference in low energy modes, when crys-  
tal accuracy is not required.  
• An integrated ultra-low frequency 1 kHz RC oscillator (ULFRCO) is available to provide a timing reference at the lowest energy con-  
sumption in low energy modes.  
3.6 Counters/Timers and PWM  
3.6.1 Timer/Counter (TIMER)  
TIMER peripherals keep track of timing, count events, generate PWM outputs and trigger timed actions in other peripherals through the  
PRS system. The core of each TIMER is a 16-bit counter with up to 4 compare/capture channels. Each channel is configurable in one  
of three modes. In capture mode, the counter state is stored in a buffer at a selected input event. In compare mode, the channel output  
reflects the comparison of the counter to a programmed threshold value. In PWM mode, the TIMER supports generation of pulse-width  
modulation (PWM) outputs of arbitrary waveforms defined by the sequence of values written to the compare registers, with optional  
dead-time insertion available in timer unit TIMER_0 only.  
3.6.2 Wide Timer/Counter (WTIMER)  
WTIMER peripherals function just as TIMER peripherals, but are 32 bits wide. They keep track of timing, count events, generate PWM  
outputs and trigger timed actions in other peripherals through the PRS system. The core of each WTIMER is a 32-bit counter with up to  
4 compare/capture channels. Each channel is configurable in one of three modes. In capture mode, the counter state is stored in a  
buffer at a selected input event. In compare mode, the channel output reflects the comparison of the counter to a programmed thresh-  
old value. In PWM mode, the WTIMER supports generation of pulse-width modulation (PWM) outputs of arbitrary waveforms defined by  
the sequence of values written to the compare registers, with optional dead-time insertion available in timer unit WTIMER_0 only.  
3.6.3 Real Time Counter and Calendar (RTCC)  
The Real Time Counter and Calendar (RTCC) is a 32-bit counter providing timekeeping in all energy modes. The RTCC includes a  
Binary Coded Decimal (BCD) calendar mode for easy time and date keeping. The RTCC can be clocked by any of the on-board oscilla-  
tors with the exception of the AUXHFRCO, and it is capable of providing system wake-up at user defined instances. When receiving  
frames, the RTCC value can be used for timestamping. The RTCC includes 128 bytes of general purpose data retention, allowing easy  
and convenient data storage in all energy modes down to EM4H.  
A secondary RTC is used by the RF protocol stack for event scheduling, leaving the primary RTCC block available exclusively for appli-  
cation software.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 13  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.6.4 Low Energy Timer (LETIMER)  
The unique LETIMER is a 16-bit timer that is available in energy mode EM2 Deep Sleep in addition to EM1 Sleep and EM0 Active. This  
allows it to be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed  
while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of wave-  
forms with minimal software intervention. The LETIMER is connected to the Real Time Counter and Calendar (RTCC), and can be  
configured to start counting on compare matches from the RTCC.  
3.6.5 Ultra Low Power Wake-up Timer (CRYOTIMER)  
The CRYOTIMER is a 32-bit counter that is capable of running in all energy modes. It can be clocked by either the 32.768 kHz crystal  
oscillator (LFXO), the 32.768 kHz RC oscillator (LFRCO), or the 1 kHz RC oscillator (ULFRCO). It can provide periodic Wakeup events  
and PRS signals which can be used to wake up peripherals from any energy mode. The CRYOTIMER provides a wide range of inter-  
rupt periods, facilitating flexible ultra-low energy operation.  
3.6.6 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) peripheral can be used for counting pulses on a single input or to decode quadrature encoded inputs. The  
clock for PCNT is selectable from either an external source on pin PCTNn_S0IN or from an internal timing reference, selectable from  
among any of the internal oscillators, except the AUXHFRCO. The module may operate in energy mode EM0 Active, EM1 Sleep, EM2  
Deep Sleep, and EM3 Stop.  
3.6.7 Watchdog Timer (WDOG)  
The watchdog timer can act both as an independent watchdog or as a watchdog synchronous with the CPU clock. It has windowed  
monitoring capabilities, and can generate a reset or different interrupts depending on the failure mode of the system. The watchdog can  
also monitor autonomous systems driven by PRS.  
3.7 Communications and Other Digital Peripherals  
3.7.1 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)  
The Universal Synchronous/Asynchronous Receiver/Transmitter is a flexible serial I/O module. It supports full duplex asynchronous  
UART communication with hardware flow control as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with devices sup-  
porting:  
• ISO7816 SmartCards  
• IrDA  
I2S  
3.7.2 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)  
The unique LEUARTTM provides two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow  
UART communication up to 9600 baud. The LEUART includes all necessary hardware to make asynchronous serial communication  
possible with a minimum of software intervention and energy consumption.  
3.7.3 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C bus. It is capable of acting as both a master and a slave and  
supports multi-master buses. Standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates from 10  
kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also available, allowing implementation of an SMBus-compliant system. The  
interface provided to software by the I2C module allows precise timing control of the transmission process and highly automated trans-  
fers. Automatic recognition of slave addresses is provided in active and low energy modes.  
3.7.4 Peripheral Reflex System (PRS)  
The Peripheral Reflex System provides a communication network between different peripheral modules without software involvement.  
Peripheral modules producing Reflex signals are called producers. The PRS routes Reflex signals from producers to consumer periph-  
erals which in turn perform actions in response. Edge triggers and other functionality such as simple logic operations (AND, OR, NOT)  
can be applied by the PRS to the signals. The PRS allows peripheral to act autonomously without waking the MCU core, saving power.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 14  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.7.5 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface LESENSETM is a highly configurable sensor interface with support for up to 16 individually configura-  
ble sensors. By controlling the analog comparators, ADC, and DAC, LESENSE is capable of supporting a wide range of sensors and  
measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a  
programmable finite state machine which enables simple processing of measurement results without CPU intervention. LESENSE is  
available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy  
budget.  
3.8 Security Features  
3.8.1 GPCRC (General Purpose Cyclic Redundancy Check)  
The GPCRC module implements a Cyclic Redundancy Check (CRC) function. It supports both 32-bit and 16-bit polynomials. The sup-  
ported 32-bit polynomial is 0x04C11DB7 (IEEE 802.3), while the 16-bit polynomial can be programmed to any value, depending on the  
needs of the application.  
3.8.2 Crypto Accelerator (CRYPTO)  
The Crypto Accelerator is a fast and energy-efficient autonomous hardware encryption and decryption accelerator. EFR32 devices sup-  
port AES encryption and decryption with 128- or 256-bit keys, ECC over both GF(P) and GF(2m), SHA-1 and SHA-2 (SHA-224 and  
SHA-256).  
Supported block cipher modes of operation for AES include: ECB, CTR, CBC, PCBC, CFB, OFB, GCM, CBC-MAC, GMAC and CCM.  
Supported ECC NIST recommended curves include P-192, P-224, P-256, K-163, K-233, B-163 and B-233.  
The CRYPTO1 block is tightly linked to the Radio Buffer Controller (BUFC) enabling fast and efficient autonomous cipher operations on  
data buffer content. It allows fast processing of GCM (AES), ECC and SHA with little CPU intervention.  
CRYPTO also provides trigger signals for DMA read and write operations.  
3.8.3 Security Management Unit (SMU)  
The Security Management Unit (SMU) allows software to set up fine-grained security for peripheral access, which is not possible in the  
Memory Protection Unit (MPU). Peripherals may be secured by hardware on an individual basis, such that only priveleged accesses to  
the peripheral's register interface will be allowed. When an access fault occurs, the SMU reports the specific peripheral involved and  
can optionally generate an interrupt.  
3.9 Analog  
3.9.1 Analog Port (APORT)  
The Analog Port (APORT) is an analog interconnect matrix allowing access to many analog modules on a flexible selection of pins.  
Each APORT bus consists of analog switches connected to a common wire. Since many clients can operate differentially, buses are  
grouped by X/Y pairs.  
3.9.2 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is high-  
er. Inputs are selected from among internal references and external pins. The tradeoff between response time and current consumption  
is configurable by software. Two 6-bit reference dividers allow for a wide range of internally-programmable reference sources. The  
ACMP can also be used to monitor the supply voltage. An interrupt can be generated when the supply falls below or rises above the  
programmable threshold.  
3.9.3 Analog to Digital Converter (ADC)  
The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to 1 Msps. The output  
sample resolution is configurable and additional resolution is possible using integrated hardware for averaging over multiple samples.  
The ADC includes integrated voltage references and an integrated temperature sensor. Inputs are selectable from a wide range of  
sources, including pins configurable as either single-ended or differential.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 15  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.9.4 Digital to Analog Current Converter (IDAC)  
The Digital to Analog Current Converter can source or sink a configurable constant current. This current can be driven on an output pin  
or routed to the selected ADC input pin for capacitive sensing. The full-scale current is programmable between 0.05 µA and 64 µA with  
several ranges consisting of various step sizes.  
3.9.5 Digital to Analog Converter (VDAC)  
The Digital to Analog Converter (VDAC) can convert a digital value to an analog output voltage. The VDAC is a fully differential, 500  
ksps, 12-bit converter. The opamps are used in conjunction with the VDAC, to provide output buffering. One opamp is used per single-  
ended channel, or two opamps are used to provide differential outputs. The VDAC may be used for a number of different applications  
such as sensor interfaces or sound output. The VDAC can generate high-resolution analog signals while the MCU is operating at low  
frequencies and with low total power consumption. Using DMA and a timer, the VDAC can be used to generate waveforms without any  
CPU intervention. The VDAC is available in all energy modes down to and including EM3.  
3.9.6 Operational Amplifiers  
The opamps are low power amplifiers with a high degree of flexibility targeting a wide variety of standard opamp application areas, and  
are available down to EM3. With flexible built-in programming for gain and interconnection they can be configured to support multiple  
common opamp functions. All pins are also available externally for filter configurations. Each opamp has a rail to rail input and a rail to  
rail output. They can be used in conjunction with the VDAC module or in stand-alone configurations. The opamps save energy, PCB  
space, and cost as compared with standalone opamps because they are integrated on-chip.  
3.10 Reset Management Unit (RMU)  
The RMU is responsible for handling reset of the EFR32FG14. A wide range of reset sources are available, including several power  
supply monitors, pin reset, software controlled reset, core lockup reset, and watchdog reset.  
3.11 Core and Memory  
3.11.1 Processor Core  
The ARM Cortex-M processor includes a 32-bit RISC processor integrating the following features and tasks in the system:  
• ARM Cortex-M4 RISC processor achieving 1.25 Dhrystone MIPS/MHz  
• Memory Protection Unit (MPU) supporting up to 8 memory segments  
• Up to 256 kB flash program memory  
• Up to 32 kB RAM data memory  
• Configuration and event handling of all modules  
• 2-pin Serial-Wire debug interface  
3.11.2 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the microcontroller. The flash memory is readable and writable  
from both the Cortex-M and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code  
is normally written to the main block, whereas the information block is available for special user data and flash lock bits. There is also a  
read-only page in the information block containing system and device calibration data. Read and write operations are supported in en-  
ergy modes EM0 Active and EM1 Sleep.  
3.11.3 Linked Direct Memory Access Controller (LDMA)  
The Linked Direct Memory Access (LDMA) controller allows the system to perform memory operations independently of software. This  
reduces both energy consumption and software workload. The LDMA allows operations to be linked together and staged, enabling so-  
phisticated operations to be implemented.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 16  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
3.12 Memory Map  
The EFR32FG14 memory map is shown in the figures below. RAM and flash sizes are for the largest memory configuration.  
Figure 3.2. EFR32FG14 Memory Map — Core Peripherals and Code Space  
silabs.com | Building a more connected world.  
Rev. 1.2 | 17  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
System Overview  
Figure 3.3. EFR32FG14 Memory Map — Peripherals  
3.13 Configuration Summary  
The features of the EFR32FG14 are a subset of the feature set described in the device reference manual. The table below describes  
device specific implementation of the features. Remaining modules support full configuration.  
Table 3.2. Configuration Summary  
Module  
Configuration  
IrDA  
Pin Connections  
USART0  
US0_TX, US0_RX, US0_CLK, US0_CS  
SmartCard  
I2S  
USART1  
US1_TX, US1_RX, US1_CLK, US1_CS  
SmartCard  
with DTI  
-
TIMER0  
TIMER1  
WTIMER0  
TIM0_CC[2:0], TIM0_CDTI[2:0]  
TIM1_CC[3:0]  
with DTI  
WTIM0_CC[2:0], WTIM0_CDTI[2:0]  
silabs.com | Building a more connected world.  
Rev. 1.2 | 18  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
4.1 Electrical Characteristics  
All electrical parameters in all tables are specified under the following conditions, unless stated otherwise:  
• Typical values are based on TAMB=25 °C and VDD= 3.3 V, by production test and/or technology characterization.  
• Radio performance numbers are measured in conducted mode, based on Silicon Laboratories reference designs using output pow-  
er-specific external RF impedance-matching networks for interfacing to a 50 Ω source or load.  
• Minimum and maximum values represent the worst conditions across supply voltage, process variation, and operating temperature,  
unless stated otherwise.  
Refer to 4.1.2.1 General Operating Conditions for more details about operational supply and temperature limits.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 19  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.1 Absolute Maximum Ratings  
Stresses above those listed below may cause permanent damage to the device. This is a stress rating only and functional operation of  
the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and relia-  
bility data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.  
Table 4.1. Absolute Maximum Ratings  
Parameter  
Symbol  
TSTG  
Test Condition  
Min  
-50  
-0.3  
Typ  
Max  
150  
3.8  
1
Unit  
°C  
Storage temperature range  
Voltage on any supply pin  
VDDMAX  
VDDRAMPMAX  
V
Voltage ramp rate on any  
supply pin  
V / µs  
5V tolerant GPIO pins1 2 3  
Standard GPIO pins  
DC voltage on any GPIO pin VDIGPIN  
-0.3  
Min of 5.25  
and IOVDD  
+2  
V
-0.3  
-0.3  
IOVDD+0.3  
V
V
Voltage on HFXO pins  
VHFXOPIN  
1.4  
10  
Input RF level on pins  
2G4RF_IOP and  
2G4RF_ION  
PRFMAX2G4  
dBm  
Voltage differential between VMAXDIFF2G4  
RF pins (2G4RF_IOP -  
2G4RF_ION)  
-50  
50  
mV  
V
Absolute voltage on RF pins VMAX2G4  
2G4RF_IOP and  
-0.3  
3.3  
2G4RF_ION  
Absolute voltage on Sub-  
GHz RF pins  
VMAXSUBG  
Pins SUBGRF_OP and  
SUBGRF_ON  
-0.3  
-0.3  
3.3  
0.3  
V
V
Pins SUBGRF_IP and  
SUBGRF_IN,  
Total current into VDD power IVDDMAX  
lines  
Source  
200  
200  
mA  
mA  
Total current into VSS  
ground lines  
IVSSMAX  
Sink  
Current per I/O pin  
IIOMAX  
Sink  
50  
50  
mA  
mA  
mA  
mA  
°C  
Source  
Current for all I/O pins  
Junction temperature  
IIOALLMAX  
Sink  
200  
200  
105  
125  
Source  
TJ  
-G grade devices  
-I grade devices  
-40  
-40  
°C  
silabs.com | Building a more connected world.  
Rev. 1.2 | 20  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. When a GPIO pin is routed to the analog module through the APORT, the maximum voltage = IOVDD.  
2. Valid for IOVDD in valid operating range or when IOVDD is undriven (high-Z). If IOVDD is connected to a low-impedance source  
below the valid operating range (e.g. IOVDD shorted to VSS), the pin voltage maximum is IOVDD + 0.3 V, to avoid exceeding the  
maximum IO current specifications.  
3. To operate above the IOVDD supply rail, over-voltage tolerance must be enabled according to the GPIO_Px_OVTDIS register.  
Pins with over-voltage tolerance disabled have the same limits as Standard GPIO.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 21  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.2 Operating Conditions  
When assigning supply sources, the following requirements must be observed:  
• VREGVDD must be greater than or equal to AVDD, DVDD, RFVDD, PAVDD and all IOVDD supplies.  
• VREGVDD = AVDD  
• DVDD ≤ AVDD  
• IOVDD ≤ AVDD  
• RFVDD ≤ AVDD  
• PAVDD ≤ AVDD  
silabs.com | Building a more connected world.  
Rev. 1.2 | 22  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.2.1 General Operating Conditions  
Table 4.2. General Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
-40  
-40  
1.8  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
Operating ambient tempera- TA  
ture range5  
-G temperature grade  
-I temperature grade  
25  
125  
3.8  
AVDD supply voltage2  
VAVDD  
3.3  
VREGVDD operating supply VVREGVDD  
voltage2 1  
DCDC in regulation  
2.4  
1.8  
1.8  
3.3  
3.3  
3.3  
3.8  
3.8  
3.8  
V
V
V
DCDC in bypass, 50mA load  
DCDC not in use. DVDD external-  
ly shorted to VREGVDD  
VREGVDD current  
IVREGVDD  
DCDC in bypass, T ≤ 85 °C  
DCDC in bypass, T > 85 °C  
200  
100  
mA  
mA  
V
RFVDD operating supply  
voltage  
VRFVDD  
1.62  
VVREGVDD  
DVDD operating supply volt- VDVDD  
age  
1.62  
1.62  
1.62  
0.75  
VVREGVDD  
VVREGVDD  
VVREGVDD  
2.75  
V
V
PAVDD operating supply  
voltage  
VPAVDD  
IOVDD operating supply volt- VIOVDD  
age  
All IOVDD pins  
V
DECOUPLE output capaci-  
tor3 4  
CDECOUPLE  
1.0  
µF  
Difference between AVDD  
dVDD  
0.1  
V
and VREGVDD, ABS(AVDD-  
VREGVDD)2  
HFCORECLK frequency  
fCORE  
VSCALE2, MODE = WS1  
VSCALE0, MODE = WS0  
VSCALE2  
40  
20  
40  
20  
MHz  
MHz  
MHz  
MHz  
HFCLK frequency  
fHFCLK  
VSCALE0  
Note:  
1. The minimum voltage required in bypass mode is calculated using RBYP from the DCDC specification table. Requirements for  
other loads can be calculated as VDVDD_min+ILOAD * RBYP_max  
.
2. VREGVDD must be tied to AVDD. Both VREGVDD and AVDD minimum voltages must be satisfied for the part to operate.  
3. The system designer should consult the characteristic specs of the capacitor used on DECOUPLE to ensure its capacitance val-  
ue stays within the specified bounds across temperature and DC bias.  
4. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV / usec for approximately 20 usec. During this transi-  
tion, peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70  
mA (with a 2.7 µF capacitor).  
5. The maximum limit on TA may be lower due to device self-heating, which depends on the power dissipation of the specific appli-  
cation. TA (max) = TJ (max) - (THETAJA x PowerDissipation). Refer to the Absolute Maximum Ratings table and the Thermal  
Characteristics table for TJ and THETAJA  
.
silabs.com | Building a more connected world.  
Rev. 1.2 | 23  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.3 Thermal Characteristics  
Table 4.3. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
64.5  
51.6  
47.7  
26.2  
23.1  
22.1  
82.1  
64.7  
56.3  
36.8  
32  
Max  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal resistance, QFN48 THETAJA_QFN48 2-Layer PCB, Air velocity = 0 m/s  
Package  
2-Layer PCB, Air velocity = 1 m/s  
2-Layer PCB, Air velocity = 2 m/s  
4-Layer PCB, Air velocity = 0 m/s  
4-Layer PCB, Air velocity = 1 m/s  
4-Layer PCB, Air velocity = 2 m/s  
Thermal resistance, QFN32 THETAJA_QFN32 2-Layer PCB, Air velocity = 0 m/s  
Package  
2-Layer PCB, Air velocity = 1 m/s  
2-Layer PCB, Air velocity = 2 m/s  
4-Layer PCB, Air velocity = 0 m/s  
4-Layer PCB, Air velocity = 1 m/s  
4-Layer PCB, Air velocity = 2 m/s  
30.6  
silabs.com | Building a more connected world.  
Rev. 1.2 | 24  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.4 DC-DC Converter  
Test conditions: L_DCDC=4.7 µH (Murata LQH3NPN4R7MM0L), C_DCDC=4.7 µF (Samsung CL10B475KQ8NQNC), V_DCDC_I=3.3  
V, V_DCDC_O=1.8 V, I_DCDC_LOAD=50 mA, Heavy Drive configuration, F_DCDC_LN=7 MHz, unless otherwise indicated.  
Table 4.4. DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range  
VDCDC_I  
Bypass mode, IDCDC_LOAD = 50  
mA  
1.8  
VVREGVDD_  
V
MAX  
Low noise (LN) mode, 1.8 V out-  
put, IDCDC_LOAD = 100 mA, or  
Low power (LP) mode, 1.8 V out-  
put, IDCDC_LOAD = 10 mA  
2.4  
VVREGVDD_  
V
MAX  
Low noise (LN) mode, 1.8 V out-  
put, IDCDC_LOAD = 200 mA  
2.6  
1.8  
VVREGVDD_  
V
V
MAX  
Output voltage programma- VDCDC_O  
ble range1  
VVREGVDD  
Regulation DC accuracy  
ACCDC  
Low Noise (LN) mode, 1.8 V tar-  
get output  
1.7  
1.9  
2.2  
V
V
Regulation window4  
WINREG  
Low Power (LP) mode,  
LPCMPBIASEMxx3 = 0, 1.8 V tar-  
get output, IDCDC_LOAD ≤ 75 µA  
1.63  
Low Power (LP) mode,  
1.63  
2.1  
V
LPCMPBIASEMxx3 = 3, 1.8 V tar-  
get output, IDCDC_LOAD ≤ 10 mA  
Steady-state output ripple  
VR  
Radio disabled  
3
mVpp  
mV  
CCM Mode (LNFORCECCM3 =  
1), Load changes between 0 mA  
and 100 mA  
Output voltage under/over-  
shoot  
VOV  
25  
60  
DCM Mode (LNFORCECCM3 =  
0), Load changes between 0 mA  
and 10 mA  
45  
90  
mV  
Overshoot during LP to LN  
CCM/DCM mode transitions com-  
pared to DC level in LN mode  
200  
40  
mV  
mV  
Undershoot during BYP/LP to LN  
CCM (LNFORCECCM3 = 1) mode  
transitions compared to DC level  
in LN mode  
Undershoot during BYP/LP to LN  
100  
mV  
DCM (LNFORCECCM3 = 0) mode  
transitions compared to DC level  
in LN mode  
DC line regulation  
DC load regulation  
VREG  
Input changes between  
VVREGVDD_MAX and 2.4 V  
0.1  
0.1  
%
%
IREG  
Load changes between 0 mA and  
100 mA in CCM mode  
silabs.com | Building a more connected world.  
Rev. 1.2 | 25  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Max load current  
ILOAD_MAX  
Low noise (LN) mode, Heavy  
Drive2, T ≤ 85 °C  
200  
mA  
Low noise (LN) mode, Heavy  
Drive2, T > 85 °C  
1
4.7  
100  
100  
50  
mA  
mA  
mA  
µA  
Low noise (LN) mode, Medium  
Drive2  
Low noise (LN) mode, Light  
Drive2  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 0  
75  
Low power (LP) mode,  
LPCMPBIASEMxx3 = 3  
10  
mA  
µF  
DCDC nominal output ca-  
pacitor5  
CDCDC  
25% tolerance  
4.7  
DCDC nominal output induc- LDCDC  
tor  
20% tolerance  
4.7  
4.7  
1.2  
4.7  
2.5  
µH  
Resistance in Bypass mode RBYP  
Note:  
1. Due to internal dropout, the DC-DC output will never be able to reach its input voltage, VVREGVDD  
.
2. Drive levels are defined by configuration of the PFETCNT and NFETCNT registers. Light Drive: PFETCNT=NFETCNT=3; Medi-  
um Drive: PFETCNT=NFETCNT=7; Heavy Drive: PFETCNT=NFETCNT=15.  
3. LPCMPBIASEMxx refers to either LPCMPBIASEM234H in the EMU_DCDCMISCCTRL register or LPCMPBIASEM01 in the  
EMU_DCDCLOEM01CFG register, depending on the energy mode.  
4. LP mode controller is a hysteretic controller that maintains the output voltage within the specified limits.  
5. Output voltage under/over-shoot and regulation are specified with CDCDC 4.7 µF. Different settings for DCDCLNCOMPCTRL  
must be used if CDCDC is lower than 4.7 µF. See Application Note AN0948 for details.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 26  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.5 Current Consumption  
4.1.5.1 Current Consumption 3.3 V without DC-DC Converter  
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 3.3 V. T = 25 °C. DCDC is off.  
Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.  
Table 4.5. Current Consumption 3.3 V without DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
38.4 MHz crystal, CPU running  
while loop from flash1  
123  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
96  
93  
103  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
116  
95  
26 MHz HFRCO, CPU running  
while loop from flash  
106  
384  
1 MHz HFRCO, CPU running  
while loop from flash  
227  
82  
Current consumption in EM0 IACTIVE_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
19 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
198  
73  
38.4 MHz crystal1  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
44  
46  
47  
51  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
178  
41  
335  
Current consumption in EM1 IEM1_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
158  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled  
Full 32 kB RAM retention and  
RTCC running from LFXO  
1.9  
2.2  
1.9  
µA  
µA  
µA  
Full 32 kB RAM retention and  
RTCC running from LFRCO  
1 bank (16 kB) RAM retention and  
RTCC running from LFRCO2  
3.3  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 32 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.44  
3.0  
µA  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.89  
0.55  
0.54  
µA  
µA  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
128 byte RAM retention, no RTCC  
0.8  
silabs.com | Building a more connected world.  
Rev. 1.2 | 27  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in  
EM4S mode  
IEM4S  
No RAM retention, no RTCC  
0.04  
0.085  
µA  
Note:  
1. CMU_HFXOCTRL_LOWPOWER=0.  
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.2 | 28  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.5.2 Current Consumption 3.3 V using DC-DC Converter  
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V DC-DC  
output. T = 25 °C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.  
Table 4.6. Current Consumption 3.3 V using DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
DCM mode2  
38.4 MHz crystal, CPU running  
while loop from flash4  
84  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
68  
67  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
80  
26 MHz HFRCO, CPU running  
while loop from flash  
73  
1 MHz HFRCO, CPU running  
while loop from flash  
606  
94  
Current consumption in EM0 IACTIVE_CCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
CCM mode1  
38.4 MHz crystal, CPU running  
while loop from flash4  
38 MHz HFRCO, CPU running  
Prime from flash  
79  
78  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
90  
26 MHz HFRCO, CPU running  
while loop from flash  
90  
1 MHz HFRCO, CPU running  
while loop from flash  
1109  
97  
Current consumption in EM0 IACTIVE_CCM_VS 19 MHz HFRCO, CPU running  
mode with all peripherals dis-  
abled and voltage scaling  
enabled, DCDC in Low  
Noise CCM mode1  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
1093  
38.4 MHz crystal4  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1_DCM  
mode with all peripherals dis-  
abled, DCDC in Low Noise  
55  
µA/MHz  
38  
45  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
DCM mode2  
580  
48  
Current consumption in EM1 IEM1_DCM_VS  
mode with all peripherals dis-  
abled and voltage scaling  
569  
enabled, DCDC in Low  
Noise DCM mode2  
silabs.com | Building a more connected world.  
Rev. 1.2 | 29  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled, DCDC in LP mode3  
Full 32 kB RAM retention and  
RTCC running from LFXO  
1.4  
µA  
Full 32 kB RAM retention and  
RTCC running from LFRCO  
1.5  
1.3  
µA  
µA  
1 bank (16 kB) RAM retention and  
RTCC running from LFRCO5  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 32 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.02  
µA  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.74  
0.48  
µA  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
128 byte RAM retention, no RTCC  
No RAM retention, no RTCC  
0.48  
0.07  
µA  
µA  
Current consumption in  
EM4S mode  
IEM4S  
Note:  
1. DCDC Low Noise CCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=6.4 MHz (RCOBAND=4), ANASW=DVDD.  
2. DCDC Low Noise DCM Mode = Light Drive (PFETCNT=NFETCNT=3), F=3.0 MHz (RCOBAND=0), ANASW=DVDD.  
3. DCDC Low Power Mode = Medium Drive (PFETCNT=NFETCNT=7), LPOSCDIV=1, LPCMPBIASEM234H=0, LPCLIMILIM-  
SEL=1, ANASW=DVDD.  
4. CMU_HFXOCTRL_LOWPOWER=0.  
5. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.2 | 30  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.5.3 Current Consumption 1.8 V without DC-DC Converter  
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = DVDD = RFVDD = PAVDD = 1.8 V. T = 25 °C. DCDC is off.  
Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.  
Table 4.7. Current Consumption 1.8 V without DC-DC Converter  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in EM0 IACTIVE  
mode with all peripherals dis-  
abled  
38.4 MHz crystal, CPU running  
while loop from flash1  
123  
µA/MHz  
38 MHz HFRCO, CPU running  
Prime from flash  
96  
93  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
38 MHz HFRCO, CPU running  
while loop from flash  
38 MHz HFRCO, CPU running  
CoreMark from flash  
115  
95  
26 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
224  
81  
Current consumption in EM0 IACTIVE_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
19 MHz HFRCO, CPU running  
while loop from flash  
1 MHz HFRCO, CPU running  
while loop from flash  
195  
74  
38.4 MHz crystal1  
38 MHz HFRCO  
26 MHz HFRCO  
1 MHz HFRCO  
19 MHz HFRCO  
1 MHz HFRCO  
Current consumption in EM1 IEM1  
mode with all peripherals dis-  
abled  
44  
46  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
µA/MHz  
175  
41  
Current consumption in EM1 IEM1_VS  
mode with all peripherals dis-  
abled and voltage scaling  
enabled  
155  
Current consumption in EM2 IEM2_VS  
mode, with voltage scaling  
enabled  
Full 32 kB RAM retention and  
RTCC running from LFXO  
1.7  
1.9  
1.7  
µA  
µA  
µA  
Full 32 kB RAM retention and  
RTCC running from LFRCO  
1 bank (16 kB) RAM retention and  
RTCC running from LFRCO2  
Current consumption in EM3 IEM3_VS  
mode, with voltage scaling  
enabled  
Full 32 kB RAM retention and  
CRYOTIMER running from ULFR-  
CO  
1.33  
µA  
Current consumption in  
EM4H mode, with voltage  
scaling enabled  
IEM4H_VS  
128 byte RAM retention, RTCC  
running from LFXO  
0.80  
0.44  
µA  
µA  
128 byte RAM retention, CRYO-  
TIMER running from ULFRCO  
128 byte RAM retention, no RTCC  
no RAM retention, no RTCC  
0.43  
0.04  
µA  
µA  
Current consumption in  
EM4S mode  
IEM4S  
silabs.com | Building a more connected world.  
Rev. 1.2 | 31  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. CMU_HFXOCTRL_LOWPOWER=0.  
2. CMU_LFRCOCTRL_ENVREF = 1, CMU_LFRCOCTRL_VREFUPDATE = 1  
silabs.com | Building a more connected world.  
Rev. 1.2 | 32  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.5.4 Current Consumption Using Radio 3.3 V with DC-DC  
Unless otherwise indicated, typical conditions are: VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD = 1.8 V. T = 25  
°C. Minimum and maximum values in this table represent the worst conditions across process variation at T = 25 °C.  
Table 4.8. Current Consumption Using Radio 3.3 V with DC-DC  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, active packet  
reception (MCU in EM1 @  
38.4 MHz, peripheral clocks  
disabled), T ≤ 85 °C  
IRX_ACTIVE  
500 kbit/s, 2GFSK, F = 915 MHz,  
Radio clock prescaled by 4  
9.3  
10.2  
mA  
38.4 kbit/s, 2GFSK, F = 868 MHz,  
Radio clock prescaled by 4  
8.6  
8.6  
8.6  
8.6  
8.4  
8.8  
10.2  
10.2  
10.2  
10.2  
10.2  
10.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
38.4 kbit/s, 2GFSK, F = 490 MHz,  
Radio clock prescaled by 4  
50 kbit/s, 2GFSK, F = 433 MHz,  
Radio clock prescaled by 4  
38.4 kbit/s, 2GFSK, F = 315 MHz,  
Radio clock prescaled by 4  
38.4 kbit/s, 2GFSK, F = 169 MHz,  
Radio clock prescaled by 4  
1 Mbit/s, 2GFSK, F = 2.4 GHz,  
Radio clock prescaled by 4  
802.15.4 receiving frame, F = 2.4  
GHz, Radio clock prescaled by 3  
Current consumption in re-  
ceive mode, active packet  
reception (MCU in EM1 @  
38.4 MHz, peripheral clocks  
disabled), T > 85 °C  
IRX_ACTIVE_HT  
500 kbit/s, 2GFSK, F = 915 MHz,  
Radio clock prescaled by 4  
13  
38.4 kbit/s, 2GFSK, F = 868 MHz,  
Radio clock prescaled by 4  
13  
38.4 kbit/s, 2GFSK, F = 490 MHz,  
Radio clock prescaled by 4  
13  
50 kbit/s, 2GFSK, F = 433 MHz,  
Radio clock prescaled by 4  
13  
38.4 kbit/s, 2GFSK, F = 315 MHz,  
Radio clock prescaled by 4  
13  
38.4 kbit/s, 2GFSK, F = 169 MHz,  
Radio clock prescaled by 4  
13  
silabs.com | Building a more connected world.  
Rev. 1.2 | 33  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in re-  
ceive mode, listening for  
packet (MCU in EM1 @ 38.4  
MHz, peripheral clocks disa-  
bled), T ≤ 85 °C  
IRX_LISTEN  
500 kbit/s, 2GFSK, F = 915 MHz,  
No radio clock prescaling  
10.2  
11  
mA  
38.4 kbit/s, 2GFSK, F = 868 MHz,  
No radio clock prescaling  
9.5  
9.5  
9.5  
9.4  
9.3  
9.6  
11.1  
11  
11  
11  
11  
11  
14  
14  
14  
14  
14  
14  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
38.4 kbit/s, 2GFSK, F = 490 MHz,  
No radio clock prescaling  
50 kbit/s, 2GFSK, F = 433 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 315 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 169 MHz,  
No radio clock prescaling  
1 Mbit/s, 2GFSK, F = 2.4 GHz, No  
radio clock prescaling  
802.15.4, F = 2.4 GHz, No radio  
clock prescaling  
Current consumption in re-  
ceive mode, listening for  
packet (MCU in EM1 @ 38.4  
MHz, peripheral clocks disa-  
bled), T > 85 °C  
IRX_LISTEN_HT  
500 kbit/s, 2GFSK, F = 915 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 868 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 490 MHz,  
No radio clock prescaling  
50 kbit/s, 2GFSK, F = 433 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 315 MHz,  
No radio clock prescaling  
38.4 kbit/s, 2GFSK, F = 169 MHz,  
No radio clock prescaling  
silabs.com | Building a more connected world.  
Rev. 1.2 | 34  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in  
transmit mode (MCU in EM1  
@ 38.4 MHz, peripheral  
clocks disabled), T ≤ 85 °C  
ITX  
F = 915 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
90.2  
134.3  
mA  
F = 915 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
36  
42.5  
mA  
F = 868 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
79.7  
35.3  
106.7  
41  
mA  
mA  
F = 868 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
F = 490 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
93.8  
20.3  
125.4  
24  
mA  
mA  
F = 433 MHz, CW, 10 dBm  
match, External PA supply con-  
nected to DC-DC output  
F = 433 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
34  
41.5  
42  
mA  
mA  
F = 315 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
33.5  
F = 169 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
88.6  
8.5  
116.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
F = 2.4 GHz, CW, 0 dBm output  
power, Radio clock prescaled by 3  
F = 2.4 GHz, CW, 0 dBm output  
power, Radio clock prescaled by 1  
9.5  
F = 2.4 GHz, CW, 3 dBm output  
power  
16.5  
26.0  
34.0  
91.6  
F = 2.4 GHz, CW, 8 dBm output  
power  
F = 2.4 GHz, CW, 10.5 dBm out-  
put power  
F = 2.4 GHz, CW, 16.5 dBm out-  
put power, PAVDD connected di-  
rectly to external 3.3V supply  
F = 2.4 GHz, CW, 19.5 dBm out-  
put power, PAVDD connected di-  
rectly to external 3.3V supply  
131.0  
mA  
silabs.com | Building a more connected world.  
Rev. 1.2 | 35  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Current consumption in  
transmit mode (MCU in EM1  
@ 38.4 MHz, peripheral  
clocks disabled), T > 85 °C  
ITX_HT  
F = 915 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
134.3  
mA  
F = 915 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
42.5  
mA  
F = 868 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
109.8  
41.3  
mA  
mA  
F = 868 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
F = 490 MHz, CW, 20 dBm  
match, External PA supply = 3.3V  
130.8  
24.4  
mA  
mA  
F = 433 MHz, CW, 10 dBm  
match, External PA supply con-  
nected to DC-DC output  
F = 433 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
41.5  
42  
mA  
mA  
mA  
F = 315 MHz, CW, 14 dBm  
match, External PA supply con-  
nected to DCDC output  
F = 169 MHz, CW, 20 dBm  
122.8  
match, External PA supply = 3.3V  
silabs.com | Building a more connected world.  
Rev. 1.2 | 36  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.6 Wake Up Times  
Table 4.9. Wake Up Times  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Wake up time from EM1  
tEM1_WU  
3
AHB  
Clocks  
Wake up from EM2  
Wake up from EM3  
tEM2_WU  
Code execution from flash  
Code execution from RAM  
Code execution from flash  
Code execution from RAM  
Executing from flash  
10  
3
µs  
µs  
µs  
µs  
µs  
tEM3_WU  
10  
3
Wake up from EM4H1  
Wake up from EM4S1  
tEM4H_WU  
tEM4S_WU  
tRESET  
86  
Executing from flash  
290  
µs  
Time from release of reset  
source to first instruction ex-  
ecution  
Soft Pin Reset released  
Any other reset released  
50  
µs  
µs  
340  
Power mode scaling time  
tSCALE  
VSCALE0 to VSCALE2, HFCLK =  
19 MHz4 2  
31.8  
4.3  
µs  
µs  
VSCALE2 to VSCALE0, HFCLK =  
19 MHz3  
Note:  
1. Time from wake up request until first instruction is executed. Wakeup results in device reset.  
2. VSCALE0 to VSCALE2 voltage change transitions occur at a rate of 10 mV/µs for approximately 20 µs. During this transition,  
peak currents will be dependent on the value of the DECOUPLE output capacitor, from 35 mA (with a 1 µF capacitor) to 70 mA  
(with a 2.7 µF capacitor).  
3. Scaling down from VSCALE2 to VSCALE0 requires approximately 2.8 µs + 29 HFCLKs.  
4. Scaling up from VSCALE0 to VSCALE2 requires approximately 30.3 µs + 28 HFCLKs.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 37  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.7 Brown Out Detector (BOD)  
Table 4.10. Brown Out Detector (BOD)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
1.62  
Unit  
V
DVDD BOD threshold  
VDVDDBOD  
DVDD rising  
DVDD falling (EM0/EM1)  
DVDD falling (EM2/EM3)  
1.35  
1.3  
V
V
DVDD BOD hysteresis  
DVDD BOD response time  
AVDD BOD threshold  
VDVDDBOD_HYST  
18  
2.4  
mV  
µs  
V
tDVDDBOD_DELAY Supply drops at 0.1V/µs rate  
VAVDDBOD  
AVDD rising  
1.8  
AVDD falling (EM0/EM1)  
AVDD falling (EM2/EM3)  
1.62  
1.53  
V
V
AVDD BOD hysteresis  
AVDD BOD response time  
EM4 BOD threshold  
VAVDDBOD_HYST  
20  
2.4  
mV  
µs  
V
tAVDDBOD_DELAY Supply drops at 0.1V/µs rate  
VEM4DBOD  
AVDD rising  
AVDD falling  
1.7  
1.45  
V
EM4 BOD hysteresis  
VEM4BOD_HYST  
25  
300  
mV  
µs  
EM4 BOD response time  
tEM4BOD_DELAY Supply drops at 0.1V/µs rate  
silabs.com | Building a more connected world.  
Rev. 1.2 | 38  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.8 Frequency Synthesizer  
Table 4.11. Frequency Synthesizer  
Parameter  
Symbol  
Test Condition  
2400 - 2483.5 MHz  
779 - 956 MHz  
584 - 717 MHz  
358 - 574 MHz  
191 - 358 MHz  
110 - 191 MHz  
2400 - 2483.5 MHz  
779 - 956 MHz  
584 - 717 MHz  
358 - 574 MHz  
191 - 358 MHz  
110 - 191 MHz  
2400 - 2483.5 MHz  
779 - 956 MHz  
584 - 717 MHz  
358 - 574 MHz  
191 - 358 MHz  
110 - 191 MHz  
2400 - 2483.5 MHz  
779 - 956 MHz  
584 - 717 MHz  
358 - 574 MHz  
191 - 358 MHz  
110 - 191 MHz  
Min  
2400  
779  
584  
358  
191  
110  
Typ  
Max  
2483.5  
956  
717  
574  
358  
191  
73  
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Hz  
RF synthesizer frequency  
range  
fRANGE  
LO tuning frequency resolu- fRES  
tion with 38.4 MHz crystal  
24  
Hz  
18.3  
12.2  
7.3  
Hz  
Hz  
Hz  
4.6  
Hz  
Frequency deviation resolu- dfRES  
tion with 38.4 MHz crystal  
73  
Hz  
24  
Hz  
18.3  
12.2  
7.3  
Hz  
Hz  
Hz  
4.6  
Hz  
Maximum frequency devia-  
tion with 38.4 MHz crystal  
dfMAX  
1677  
559  
419  
280  
167  
105  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 39  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9 2.4 GHz RF Transceiver Characteristics  
4.1.9.1 RF Transmitter General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.12. RF Transmitter General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum TX power1  
POUTMAX  
19 dBm-rated part numbers.  
PAVDD connected directly to ex-  
ternal 3.3V supply  
19.5  
dBm  
Minimum active TX Power  
Output power step size  
POUTMIN  
CW  
-30  
1
dBm  
dB  
POUTSTEP  
-5 dBm< Output power < 0 dBm  
0 dBm < output power <  
POUTMAX  
0.5  
dB  
Output power variation vs  
supply at POUTMAX  
POUTVAR_V  
1.8 V < VVREGVDD < 3.3 V,  
PAVDD connected directly to ex-  
ternal supply, for output power >  
10 dBm.  
4.5  
dB  
1.8 V < VVREGVDD < 3.3 V using  
DC-DC converter  
2.2  
1.5  
2.6  
1.5  
2.0  
0.4  
dB  
dB  
Output power variation vs  
temperature at POUTMAX  
POUTVAR_T  
From -40 to +85 °C, PAVDD con-  
nected to DC-DC output  
From -40 to +125 °C, PAVDD  
connected to DC-DC output  
dB  
From -40 to +85 °C, PAVDD con-  
nected to external supply  
dB  
From -40 to +125 °C, PAVDD  
connected to external supply  
dB  
Output power variation vs RF POUTVAR_F  
frequency at POUTMAX  
Over RF tuning frequency range  
dB  
RF tuning frequency range  
FRANGE  
2400  
2483.5  
MHz  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 40  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9.2 RF Receiver General Characteristics for 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.13. RF Receiver General Characteristics for 2.4 GHz Band  
Parameter  
Symbol  
FRANGE  
SPURRX  
Test Condition  
Min  
2400  
Typ  
Max  
2483.5  
Unit  
MHz  
dBm  
dBm  
dBm  
RF tuning frequency range  
Receive mode maximum  
spurious emission  
30 MHz to 1 GHz  
1 GHz to 12 GHz  
-57  
-47  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
216 MHz to 960 MHz, Conducted  
Measurement  
-55.2  
Above 960 MHz, Conducted  
Measurement  
-47.2  
-24  
dBm  
dBm  
Level above which  
RFSENSE will trigger1  
RFSENSETRIG  
CW at 2.45 GHz  
Level below which  
RFSENSE will not trigger1  
RFSENSETHRES CW at 2.45 GHz  
-50  
dBm  
1% PER sensitivity  
SENS2GFSK  
2 Mbps 2GFSK signal  
250 kbps 2GFSK signal  
-89.6  
dBm  
dBm  
-100.7  
Note:  
1. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 41  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9.3 RF Transmitter Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz. Maximum duty cycle of  
85%.  
Table 4.14. RF Transmitter Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate  
Parameter  
Symbol  
TXBW  
Test Condition  
Min  
Typ  
761  
-9.5  
Max  
Unit  
Transmit 6dB bandwidth  
Power spectral density limit  
10 dBm  
kHz  
PSDLIMIT  
Per FCC part 15.247 at 10 dBm  
dBm/  
3kHz  
Per FCC part 15.247 at 20 dBm  
-2  
10  
dBm/  
3kHz  
Per ETSI 300.328 at 10 dBm/1  
MHz  
dBm  
MHz  
dBm  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
99% BW at highest and lowest  
channels in band, 10 dBm  
1.1  
-47  
Emissions of harmonics out- SPURHRM_FCC 2nd,3rd, 5, 6, 8, 9,10 harmonics;  
of-band, per FCC part  
15.247  
continuous transmission of modu-  
lated carrier  
Spurious emissions out-of-  
band, excluding harmonics  
captured in SPURHARM,FCC  
Emissions taken at  
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply  
SPUROOB_FCC  
Per FCC part 15.205/15.209,  
Above 2.483 GHz or below 2.4  
GHz; continuous transmission of  
-47  
-26  
dBm  
dBc  
.
CW carrier, Restricted Bands1 2  
Per FCC part 15.247, Above  
2.483 GHz or below 2.4 GHz;  
continuous transmission of CW  
carrier, Non-Restricted Bands  
Spurious emissions out-of-  
band; per ETSI 300.328  
SPURETSI328  
[2400-BW to 2400] MHz, [2483.5  
to 2483.5+BW] MHz  
-16  
-26  
dBm  
dBm  
[2400-2BW to 2400-BW] MHz,  
[2483.5+BW to 2483.5+2BW]  
MHz per ETSI 300.328  
Spurious emissions per ETSI SPURETSI440  
EN300.440  
47-74 MHz,87.5-108 MHz,  
174-230 MHz, 470-862 MHz  
-60  
dBm  
25-1000 MHz  
1-12 GHz  
-42  
-36  
dBm  
dBm  
Note:  
1. For 2476 MHz, 1.5 dB of power backoff is used to achieve this value.  
2. For 2478 MHz, 4.2 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 42  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9.4 RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4MHz. RF center frequency 2.45 GHz.  
Table 4.15. RF Receiver Characteristics for 2GFSK in the 2.4GHz Band, 1 Mbps Data Rate  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal2. Packet  
length is 20 bytes.  
Max usable receiver input  
level, 0.1% BER  
SAT  
10  
dBm  
Signal is reference signal2. Using  
DC-DC converter.  
Sensitivity, 0.1% BER  
SENS  
-93.8  
dBm  
Signal to co-channel interfer- C/ICC  
er, 0.1% BER  
Desired signal 3 dB above refer-  
ence sensitivity.  
11.25  
-4.7  
dB  
dB  
N+1 adjacent channel selec- C/I1+  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at +1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
reference signal at -67 dBm  
N-1 adjacent channel selec- C/I1-  
tivity, 0.1% BER, with allowa-  
ble exceptions. Desired is  
Interferer is reference signal at -1  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
-4.8  
-45.8  
-49.4  
dB  
dB  
dB  
reference signal at -67 dBm  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I2  
Interferer is reference signal at ± 2  
MHz offset. Desired frequency  
2402 MHz ≤ Fc ≤ 2480 MHz  
Alternate selectivity, 0.1%  
BER, with allowable excep-  
tions. Desired is reference  
signal at -67 dBm  
C/I3  
Interferer is reference signal at ± 3  
MHz offset. Desired frequency  
2404 MHz ≤ Fc ≤ 2480 MHz  
Selectivity to image frequen- C/IIM  
cy, 0.1% BER. Desired is ref-  
erence signal at -67 dBm  
Interferer is reference signal at im-  
age frequency with 1 MHz preci-  
sion  
-40.5  
-49.4  
dB  
dB  
Selectivity to image frequen- C/IIM+1  
cy ± 1 MHz, 0.1% BER. De-  
sired is reference signal at  
-67 dBm  
Interferer is reference signal at im-  
age frequency ± 1 MHz with 1  
MHz precision  
Blocking, less than 0.1%  
BER. Desired is -67dBm  
BLE reference signal at  
2426MHz. Interferer is CW in  
BLOCKOOB  
Interferer frequency 30 MHz ≤ f ≤  
2000 MHz  
-5  
dBm  
dBm  
Interferer frequency 2003 MHz ≤ f  
≤ 2399 MHz3  
-10  
OOB range1  
Interferer frequency 2484 MHz ≤ f  
≤ 2997 MHz  
-10  
-10  
-17  
dBm  
dBm  
dBm  
Interferer frequency 3 GHz ≤ f ≤ 6  
GHz  
Interferer frequency 6 GHz ≤ f ≤  
12.75 GHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 43  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Interferer max power limited by equipment capabilities and path loss. Minimum specified at 25 °C.  
2. Reference signal is defined 2GFSK at -67 dBm, Modulation index = 0.5, BT = 0.5, Bit rate = 1 Mbps, desired data = PRBS9;  
interferer data = PRBS15; frequency accuracy better than 1 ppm.  
3. Except -13 dBm at Desired Frequency - Crystal Frequency.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 44  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9.5 RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz. Maximum duty cycle of  
66%.  
Table 4.16. RF Transmitter Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Error vector magnitude (off- EVM  
set EVM), per  
802.15.4-2011, not including  
2415 MHz channel  
Average across frequency. Signal  
is DSSS-OQPSK reference pack-  
et1  
3.8  
% rms  
Power spectral density limit  
PSDLIMIT  
Relative, at carrier ± 3.5 MHz, out-  
put power at POUTMAX  
-26  
-36  
dBc/  
100kHz  
Absolute, at carrier ± 3.5 MHz,  
dBm/  
100kHz  
3
output power at POUTMAX  
Per FCC part 15.247, output pow-  
er at POUTMAX  
-4.0  
dBm/  
3kHz  
ETSI  
12.1  
2.25  
dBm  
MHz  
Occupied channel bandwidth OCPETSI328  
per ETSI EN300.328  
99% BW at highest and lowest  
channels in band  
Spurious emissions of har-  
monics in restricted bands  
per FCC Part 15.205/15.209,  
Emissions taken at  
POUTMAX, PAVDD connec-  
ted to external 3.3 V supply,  
Test Frequency is 2450 MHz  
SPURHRM_FCC_ Continuous transmission of modu-  
-45.8  
dBm  
lated carrier  
R
Spurious emissions of har-  
monics in non-restricted  
bands per FCC Part  
SPURHRM_FCC_ Continuous transmission of modu-  
-26  
dBc  
lated carrier  
NRR  
15.247/15.35, Emissions tak-  
en at POUTMAX, PAVDD  
connected to external 3.3 V  
supply, Test Frequency is  
2450 MHz  
Spurious emissions out-of-  
band (above 2.483 GHz or  
below 2.4 GHz) in restricted  
bands, per FCC part  
15.205/15.209, Emissions  
taken at POUTMAX, PAVDD  
connected to external 3.3 V  
supply, Test Frequency =  
2450 MHz  
SPUROOB_FCC_ Restricted bands 30-88 MHz; con-  
-61  
-58  
-55  
-47  
dBm  
dBm  
dBm  
dBm  
tinuous transmission of modulated  
R
carrier  
Restricted bands 88-216 MHz;  
continuous transmission of modu-  
lated carrier  
Restricted bands 216-960 MHz;  
continuous transmission of modu-  
lated carrier  
Restricted bands >960 MHz; con-  
tinuous transmission of modulated  
carrier4 5  
silabs.com | Building a more connected world.  
Rev. 1.2 | 45  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Spurious emissions out-of-  
band in non-restricted bands  
per FCC Part 15.247, Emis-  
SPUROOB_FCC_ Above 2.483 GHz or below 2.4  
-26  
dBc  
GHz; continuous transmission of  
NR  
modulated carrier  
sions taken at POUTMAX  
,
PAVDD connected to exter-  
nal 3.3 V supply, Test Fre-  
quency = 2450 MHz  
Spurious emissions out-of-  
band; per ETSI 300.3282  
SPURETSI328  
[2400-BW to 2400], [2483.5 to  
2483.5+BW];  
-16  
-26  
dBm  
dBm  
[2400-2BW to 2400-BW],  
[2483.5+BW to 2483.5+2BW]; per  
ETSI 300.328  
Spurious emissions per ETSI SPURETSI440  
EN300.4402  
47-74 MHz,87.5-108 MHz,  
174-230 MHz, 470-862 MHz  
-60  
-42  
-36  
dBm  
dBm  
dBm  
25-1000 MHz, excluding above  
frequencies  
1G-14G  
Note:  
1. Reference packet is defined as 20 octet PSDU, modulated according to 802.15.4-2011 DSSS-OQPSK in the 2.4GHz band, with  
pseudo-random packet data content.  
2. Specified at maximum power output level of 10 dBm.  
3. For 2415 MHz, 2 dB of power backoff is used to achieve this value.  
4. For 2475 MHz, 2 dB of power backoff is used to achieve this value.  
5. For 2480 MHz, 13 dB of power backoff is used to achieve this value.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 46  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.9.6 RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = PAVDD.  
RFVDD and PAVDD path is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 2.45 GHz.  
Table 4.17. RF Receiver Characteristics for 802.15.4 DSSS-OQPSK in the 2.4 GHz Band  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal is reference signal4. Packet  
length is 20 octets.  
Max usable receiver input  
level, 1% PER  
SAT  
10  
dBm  
Sensitivity, 1% PER  
SENS  
Signal is reference signal. Packet  
length is 20 octets. Using DC-DC  
converter.  
-103.3  
-103.3  
dBm  
dBm  
Signal is reference signal. Packet  
length is 20 octets. Without DC-  
DC converter.  
Co-channel interferer rejec- CCR  
tion, 1% PER  
Desired signal 3 dB above sensi-  
tivity limit  
-4.6  
40.7  
47  
dB  
dB  
dB  
High-side adjacent channel  
rejection, 1% PER. Desired  
is reference signal at 3dB  
above reference sensitivity  
ACRP1  
Interferer is reference signal at +1  
channel-spacing.  
Interferer is filtered reference sig-  
nal2 at +1 channel-spacing.  
level5  
Interferer is CW at +1 channel-  
spacing3.  
60.1  
dB  
Low-side adjacent channel  
rejection, 1% PER. Desired  
is reference signal at 3dB  
above reference sensitivity  
ACRM1  
ACR2  
IR  
Interferer is reference signal at -1  
channel-spacing.  
40.8  
47.5  
dB  
dB  
Interferer is filtered reference sig-  
nal2 at -1 channel-spacing.  
level5  
Interferer is CW at -1 channel-  
spacing.  
61.6  
51.5  
53.7  
dB  
dB  
dB  
Alternate channel rejection,  
1% PER. Desired is refer-  
ence signal at 3dB above  
reference sensitivity level5  
Interferer is reference signal at ± 2  
channel-spacing  
Interferer is filtered reference sig-  
nal2 at ± 2 channel-spacing  
Interferer is CW at ± 2 channel-  
spacing  
66.4  
50.4  
dB  
dB  
Interferer is CW in image band3  
Image rejection , 1% PER,  
Desired is reference signal at  
3dB above reference sensi-  
tivity level5  
Blocking rejection of all other BLOCK  
channels. 1% PER, Desired  
is reference signal at 3dB  
above reference sensitivity  
level5. Interferer is reference  
signal  
Interferer frequency < Desired fre-  
quency - 3 channel-spacing  
58.5  
56.4  
dB  
dB  
Interferer frequency > Desired fre-  
quency + 3 channel-spacing  
Blocking rejection of 802.11g BLOCK80211G  
signal centered at +12MHz  
or -13MHz1  
Desired is reference signal at 6dB  
above reference sensitivity level5  
54.8  
dB  
silabs.com | Building a more connected world.  
Rev. 1.2 | 47  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
5
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMIN  
-98  
dBm  
RSSI resolution  
RSSIRES  
RSSILIN  
over RSSIMIN to RSSIMAX  
0.25  
+/-6  
dB  
dB  
RSSI accuracy in the linear  
region as defined by  
802.15.4-2003  
Note:  
1. This is an IEEE 802.11b/g ERP-PBCC 22 MBit/s signal as defined by the IEEE 802.11 specification and IEEE 802.11g adden-  
dum.  
2. Filter is characterized as a symmetric bandpass centered on the adjacent channel having a 3dB bandwidth of 4.6 MHz and stop-  
band rejection better than 26 dB beyond 3.15 MHz from the adjacent carrier.  
3. Due to low-IF frequency, there is some overlap of adjacent channel and image channel bands. Adjacent channel CW blocker  
tests place the Interferer center frequency at the Desired frequency ± 5 MHz on the channel raster, whereas the image rejection  
test places the CW interferer near the image frequency of the Desired signal carrier, regardless of the channel raster.  
4. Reference signal is defined as O-QPSK DSSS per 802.15.4, Frequency range = 2400-2483.5 MHz, Symbol rate = 62.5 ksym-  
bols/s.  
5. Reference sensitivity level is -85 dBm.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 48  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10 Sub-GHz RF Transceiver Characteristics  
silabs.com | Building a more connected world.  
Rev. 1.2 | 49  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.1 Sub-GHz RF Transmitter characteristics for 915 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 915 MHz.  
Table 4.18. Sub-GHz RF Transmitter characteristics for 915 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
902  
18  
Typ  
Max  
930  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA supply = 3.3V, 20  
dBm output power setting  
19.8  
23.3  
External PA supply connected to  
DC-DC output, 14 dBm output  
power setting  
12.6  
14.2  
16.1  
dBm  
Minimum active TX Power  
Output power step size  
POUTMIN  
-45.5  
0.5  
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply at POUTMAX  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply = 3.3 V, T = 25 °C  
4.8  
dB  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply connected to DC-  
DC output, T = 25 °C  
1.9  
dB  
Output power variation vs  
temperature, peak to peak  
POUTVAR_T  
-40 to +85 °C with External PA  
supply = 3.3 V  
0.6  
0.8  
0.7  
1.3  
1.6  
1.4  
dB  
dB  
dB  
-40 to +125 °C with External PA  
supply = 3.3 V  
-40 to +85 °C with External PA  
supply connected to DC-DC out-  
put  
-40 to +125 °C with External PA  
supply connected to DC-DC out-  
put  
1.0  
1.9  
dB  
Output power variation vs RF POUTVAR_F  
frequency  
External PA supply = 3.3 V, T =  
25 °C  
0.2  
0.3  
-45  
-26  
0.6  
0.6  
-42  
-20  
dB  
dB  
External PA supply connected to  
DC-DC output, T = 25 °C  
Spurious emissions of har-  
monics at 20 dBm output  
power, Conducted measure-  
ment, 20dBm match, Exter-  
nal PA supply = 3.3V, Test  
Frequency = 915 MHz  
SPURHARM_FCC In restricted bands, per FCC Part  
dBm  
dBc  
15.205 / 15.209  
_20  
In non-restricted bands, per FCC  
Part 15.231  
silabs.com | Building a more connected world.  
Rev. 1.2 | 50  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Spurious emissions out-of-  
band at 20 dBm output pow-  
er, Conducted measurement,  
20dBm match, External PA  
supply = 3.3V, Test Frequen-  
cy = 915 MHz  
SPUROOB_FCC_ In non-restricted bands, per FCC  
-26  
-20  
dBc  
Part 15.231  
20  
In restricted bands (30-88 MHz),  
per FCC Part 15.205 / 15.209  
-52  
-61  
-58  
-46  
-56  
-52  
dBm  
dBm  
dBm  
In restricted bands (88-216 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (216-960  
MHz), per FCC Part 15.205 /  
15.209  
In restricted bands (>960 MHz),  
per FCC Part 15.205 / 15.209  
-47  
-47  
-26  
-42  
-42  
-20  
dBm  
dBm  
dBc  
Spurious emissions of har-  
monics at 14 dBm output  
power, Conducted measure-  
ment, 14dBm match, Exter-  
nal PA supply connected to  
DC-DC output, Test Fre-  
quency = 915 MHz  
SPURHARM_FCC In restricted bands, per FCC Part  
15.205 / 15.209  
_14  
In non-restricted bands, per FCC  
Part 15.231  
Spurious emissions out-of-  
band at 14 dBm output pow-  
er, Conducted measurement,  
14dBm match, External PA  
supply connected to DC-DC  
output, Test Frequency =  
915 MHz  
SPUROOB_FCC_ In non-restricted bands, per FCC  
-26  
-52  
-61  
-58  
-20  
-46  
-56  
-52  
dBc  
dBm  
dBm  
dBm  
Part 15.231  
14  
In restricted bands (30-88 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (88-216 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (216-960  
MHz), per FCC Part 15.205 /  
15.209  
In restricted bands (>960 MHz),  
per FCC Part 15.205 / 15.209  
-45  
1.0  
-42  
2.8  
dBm  
Error vector magnitude (off- EVM  
set EVM), per 802.15.4-2011  
Signal is DSSS-OQPSK reference  
packet. Modulated according to  
802.15.4-2011 DSSS-OQPSK in  
the 915MHz band, with pseudo-  
random packet data content. Ex-  
ternal PA supply = 3.3V.  
%rms  
Power spectral density limit  
PSD  
Relative, at carrier ± 1.2 MHz.  
Average spectral power shall be  
measured using a 100kHz resolu-  
tion bandwidth. The reference lev-  
el shall be the highest average  
spectral power measured within ±  
600kHz of the carrier frequency.  
External PA supply = 3.3V.  
-37.1  
-24.8  
dBc/  
100kHz  
Absolute, at carrier ± 1.2 MHz.  
Average spectral power shall be  
measured using a 100kHz resolu-  
tion bandwidth. External PA sup-  
ply = 3.3V.  
-24.2  
-20  
dBm/  
100kHz  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 51  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.2 Sub-GHz RF Receiver Characteristics for 915 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 915 MHz.  
Table 4.19. Sub-GHz RF Receiver Characteristics for 915 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
902  
Typ  
Max  
930  
Unit  
MHz  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT500K  
BER  
Desired is reference 500 kbps  
GFSK signal4  
10  
Sensitivity  
SENS  
Desired is reference 4.8 kbps  
-107.8  
-100.7  
-99.5  
dBm  
dBm  
OOK signal3, 20% PER, T ≤ 85 °C  
Desired is reference 4.8 kbps  
OOK signal3, 20% PER, T > 85  
°C  
Desired is reference 600 bps  
GFSK signal6, 0.1% BER  
-126.2  
-108.2  
dBm  
dBm  
Desired is reference 50 kbps  
-104.2  
GFSK signal5, 0.1% BER, T ≤ 85  
°C  
Desired is reference 50 kbps  
GFSK signal5, 0.1% BER, T > 85  
°C  
-105.1  
-103.1  
-101.5  
-101.3  
-93.2  
dBm  
dBm  
dBm  
dBm  
dBm  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER, T ≤ 85  
°C  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER, T > 85  
°C  
Desired is reference 500 kbps  
GFSK signal4, 0.1% BER, T ≤ 85  
°C  
-98.2  
Desired is reference 500 kbps  
-93.1  
GFSK signal4, 0.1% BER, T > 85  
°C  
Desired is reference 400 kbps  
-95.2  
-91  
-91  
dBm  
dBm  
dBm  
GFSK signal2, 1% PER, T ≤ 85 °C  
Desired is reference 400 kbps  
GFSK signal2, 1% PER, T > 85 °C  
Desired is reference O-QPSK  
-100.1  
DSSS signal7, 1% PER, Payload  
length is 20 octets  
Level above which  
RFSENSETRIG  
CW at 915 MHz  
-28.1  
-50  
dBm  
dBm  
RFSENSE will trigger8  
Level below which  
RFSENSE will not trigger8  
RFSENSETHRES CW at 915 MHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 52  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 ×  
channel-spacing  
48.1  
dB  
Desired is 600 bps GFSK signal6  
at 3dB above sensitivity level,  
0.1% BER  
71.4  
49.8  
51.1  
48.1  
41.4  
49.1  
56.3  
74.7  
55.8  
56.4  
51.8  
46.8  
57.7  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Desired is 50 kbps GFSK signal5  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 500 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 400 kbps 4GFSK sig-  
nal2 at 3dB above sensitivity level,  
0.1% BER  
Desired is reference O-QPSK  
DSSS signal7 at 3dB above sensi-  
tivity level, 1% PER  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 ×  
channel-spacing  
Desired is 600 bps GFSK signal6  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 50 kbps GFSK signal5  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 500 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 400 kbps 4GFSK sig-  
nal2 at 3dB above sensitivity level,  
0.1% BER  
Desired is reference O-QPSK  
DSSS signal7 at 3dB above sensi-  
tivity level, 1% PER  
silabs.com | Building a more connected world.  
Rev. 1.2 | 53  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
48.4  
dB  
Desired is 50 kbps GFSK signal5  
at 3dB above sensitivity level,  
0.1% BER  
54.9  
49.1  
47.9  
42.8  
48.9  
dB  
dB  
dB  
dB  
dB  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 500 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 400 kbps 4GFSK sig-  
nal2 at 3dB above sensitivity level,  
0.1% BER  
Desired is reference O-QPSK  
DSSS signal7 at 3dB above sensi-  
tivity level, 1% PER  
Blocking selectivity, 0.1%  
BER. Desired is 100 kbps  
GFSK signal at 3dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
58.7  
62.5  
76.4  
dB  
dB  
dB  
Interferer CW at Desired ± 10  
MHz  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level  
Intermod selectivity, 0.1%  
BER. CW interferers at 400  
kHz and 800 kHz offsets  
C/IIM  
45  
5
dB  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
RSSIMIN  
RSSIRES  
dBm  
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
-98  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
216-960 MHz  
0.25  
-55  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
-49.2  
-41.2  
Above 960 MHz  
-47  
Max spurious emissions dur- SPURRX_ARIB  
ing active receive mode,per  
ARIB STD-T108 Section 3.3  
Below 710 MHz, RBW=100kHz  
710-900 MHz, RBW=1MHz  
900-915 MHz, RBW=100kHz  
915-930 MHz, RBW=100kHz  
930-1000 MHz, RBW=100kHz  
Above 1000 MHz, RBW=1MHz  
-60  
-61  
-61  
-61  
-60  
-53  
-54  
-55  
-55  
-55  
-54  
-47  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
silabs.com | Building a more connected world.  
Rev. 1.2 | 54  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 400  
kHz.  
2. Definition of reference signal is 400 kbps 4GFSK, BT=0.5, inner deviation = 33.3 kHz, RX channel BW = 368.920 kHz, channel  
spacing = 600 kHz.  
3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz.  
4. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 175 kHz, RX channel BW = 835.076 kHz, channel spacing = 1  
MHz.  
5. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz.  
6. Definition of reference signal is 600 bps 2GFSK, BT=0.5, Δf = 0.3 kHz, RX channel BW = 1.2 kHz, channel spacing = 300 kHz.  
7. Definition of reference signal is O-QPSK DSSS per 802.15.4, Frequency Range = 902-928 MHz, Data rate = 250 kbps, 16-chip  
PN sequence mapping.  
8. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 55  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.3 Sub-GHz RF Transmitter characteristics for 868 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 868 MHz.  
Table 4.20. Sub-GHz RF Transmitter characteristics for 868 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
863  
17.1  
Typ  
Max  
876  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA connected directly to  
3.3V supply, 20 dBm output pow-  
er setting  
19.3  
22.9  
External PA supply connected to  
DC-DC output, 14 dBm output  
power setting  
11.4  
13.7  
16.5  
dBm  
Minimum active TX Power  
Output power step size  
POUTMIN  
-43.5  
0.5  
5
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply at POUTMAX  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply = 3.3 V, T = 25 °C  
dB  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply connected to DC-  
DC output, T = 25 °C  
2
dB  
Output power variation vs  
temperature, peak to peak  
POUTVAR_T  
-40 to +85 °C with External PA  
supply = 3.3 V  
0.6  
0.8  
0.5  
0.9  
1.3  
1.2  
dB  
dB  
dB  
-40 to +125 °C with External PA  
supply = 3.3 V  
-40 to +85 °C with External PA  
supply connected to DC-DC out-  
put  
-40 to +125 °C with External PA  
supply connected to DC-DC out-  
put  
0.7  
1.5  
dB  
Output power variation vs RF POUTVAR_F  
frequency  
External PA supply = 3.3 V, T =  
25 °C  
0.2  
0.2  
-35  
0.6  
0.8  
-30  
dB  
dB  
External PA supply connected to  
DC-DC output, T = 25 °C  
Spurious emissions of har-  
monics, Conducted meas-  
urement, External PA supply  
connected to DC-DC output,  
Test Frequency = 868 MHz  
SPURHARM_ETSI Per ETSI EN 300-220, Section  
7.8.2.1  
dBm  
Spurious emissions out-of-  
band, Conducted measure-  
ment, External PA supply  
connected to DC-DC output,  
Test Frequency = 868 MHz  
SPUROOB_ETSI Per ETSI EN 300-220, Section  
7.8.2.1 (47-74 MHz, 87.5-118  
MHz, 174-230 MHz, and 470-862  
MHz)  
-59  
-54  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (other frequencies below 1  
GHz)  
-42  
-36  
-36  
-30  
dBm  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies above 1  
GHz)  
silabs.com | Building a more connected world.  
Rev. 1.2 | 56  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Error vector magnitude (off- EVM  
set EVM), per 802.15.4-2015  
Signal is DSSS-BPSK reference  
packet. Modulated according to  
802.15.4-2015 DSSS-BPSK in the  
868MHz band, with pseudo-ran-  
dom packet data content. External  
PA supply connected to external  
3.3V supply  
5.7  
%rms  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 57  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.4 Sub-GHz RF Receiver Characteristics for 868 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths is filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 868 MHz.  
Table 4.21. Sub-GHz RF Receiver Characteristics for 868 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
863  
Typ  
Max  
876  
Unit  
MHz  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT2k4  
BER  
Desired is reference 2.4 kbps  
GFSK signal1  
10  
Max usable input level, 0.1% SAT38k4  
BER  
Desired is reference 38.4 kbps  
GFSK signal2  
10  
dBm  
dBm  
dBm  
Sensitivity  
SENS  
Desired is reference 2.4 kbps  
GFSK signal1, 0.1% BER  
-120.6  
-109.5  
Desired is reference 38.4 kbps  
-105.4  
GFSK signal2, 0.1% BER, T ≤ 85  
°C  
Desired is reference 38.4 kbps  
-105.2  
dBm  
GFSK signal2, 0.1% BER, T > 85  
°C  
Desired is reference 500 kbps  
GFSK signal3, 0.1% BER  
-96.4  
-28.1  
-50  
dBm  
dBm  
dBm  
dB  
Level above which  
RFSENSETRIG  
CW at 868 MHz  
RFSENSE will trigger4  
Level below which  
RFSENSE will not trigger4  
RFSENSETHRES CW at 868 MHz  
Desired is 2.4 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 ×  
channel-spacing  
44.5  
56.9  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
35.4  
43  
dB  
dB  
dB  
dB  
dB  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 ×  
channel-spacing  
56.8  
48.2  
50.2  
48.7  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Blocking selectivity, 0.1%  
BER. Desired is 2.4 kbps  
GFSK signal1 at 3 dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
72.1  
77.5  
90.4  
dB  
dB  
dB  
Interferer CW at Desired ± 10  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 58  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
5
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMIN  
RSSIRES  
-98  
dBm  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
30 MHz to 1 GHz  
0.25  
-63  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX  
ing active receive mode  
-57  
-47  
1 GHz to 12 GHz  
-53  
Note:  
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.797 kHz, channel spacing = 12.5  
kHz.  
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100  
kHz.  
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.  
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 59  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.5 Sub-GHz RF Transmitter characteristics for 490 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 490 MHz.  
Table 4.22. Sub-GHz RF Transmitter characteristics for 490 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
470  
18.1  
Typ  
Max  
510  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA supply = 3.3V  
20.3  
23.7  
Minimum active TX Power  
Output power step size  
POUTMIN  
-44.9  
0.5  
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply, peak to peak  
at 20 dBm;1.8 V < VVREGVDD  
<
4.3  
dB  
3.3 V, External PA supply connec-  
ted directly to external supply, T =  
25 °C  
Output power variation vs  
temperature, peak to peak  
POUTVAR_T  
-40 to +85 °C at 20 dBm  
-40 to +125 °C at 20 dBm  
T = 25 °C  
0.2  
0.3  
0.2  
0.9  
1.3  
0.4  
dB  
dB  
dB  
Output power variation vs RF POUTVAR_F  
frequency  
Harmonic emissions, 20  
dBm output power setting,  
490 MHz  
SPURHARM_CN Per China SRW Requirement,  
Section 2.1, frequencies below  
1GHz  
-40  
-36  
-54  
-36  
-30  
dBm  
dBm  
dBm  
Per China SRW Requirement,  
Section 2.1, frequencies above  
1GHz  
Spurious emissions, 20 dBm SPUROOB_CN  
output power setting, 490  
MHz  
Per China SRW Requirement,  
Section 3 (48.5-72.5MHz,  
76-108MHz, 167-223MHz,  
470-556MHz, and 606-798MHz)  
Per China SRW Requirement,  
Section 2.1 (other frequencies be-  
low 1GHz)  
-42  
-36  
dBm  
dBm  
Per China SRW Requirement,  
Section 2.1 (frequencies above  
1GHz)  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 60  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.6 Sub-GHz RF Receiver Characteristics for 490 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 490 MHz.  
Table 4.23. Sub-GHz RF Receiver Characteristics for 490 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
470  
Typ  
Max  
510  
Unit  
dBm  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT2k4  
BER  
Desired is reference 2.4 kbps  
GFSK signal3  
10  
Max usable input level, 0.1% SAT38k4  
BER  
Desired is reference 38.4 kbps  
GFSK signal4  
10  
dBm  
dBm  
dBm  
Sensitivity  
SENS  
Desired is reference 2.4 kbps  
GFSK signal3, 0.1% BER  
-122.2  
-111.4  
Desired is reference 38.4 kbps  
-108.9  
GFSK signal4, 0.1% BER, T ≤ 85  
°C  
Desired is reference 38.4 kbps  
GFSK signal4, 0.1% BER, T > 85  
°C  
-116.8  
-107.9  
-113.9  
-113.2  
-104.7  
-104  
dBm  
dBm  
dBm  
dBm  
dBm  
Desired is reference 10 kbps  
GFSK signal2, 0.1% BER, T ≤ 85  
°C  
Desired is reference 10 kbps  
GFSK signal2, 0.1% BER, T > 85  
°C  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER, T ≤ 85  
°C  
-107.3  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER, T > 85  
°C  
Level above which  
RFSENSETRIG  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER  
48  
-28.1  
-50  
dBm  
dBm  
dB  
RFSENSE will trigger5  
Level below which  
RFSENSE will not trigger5  
RFSENSETHRES CW at 490 MHz  
Desired is 2.4 kbps GFSK signal3  
at 3dB above sensitivity level,  
0.1% BER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 ×  
channel-spacing  
60.3  
Desired is 38.4kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
38.3  
45.6  
60.4  
52.6  
dB  
dB  
dB  
Desired is 2.4kbps GFSK signal3  
at 3dB above sensitivity level,  
0.1% BER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 ×  
channel-spacing  
Desired is 38.4kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
silabs.com | Building a more connected world.  
Rev. 1.2 | 61  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 2.4kbps GFSK signal3  
at 3dB above sensitivity level,  
0.1% BER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
56.5  
dB  
Desired is 38.4kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
54.1  
dB  
Blocking selectivity, 0.1%  
BER. Desired is 2.4 kbps  
GFSK signal3 at 3 dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
73.9  
75.4  
90.2  
dB  
dB  
dB  
Interferer CW at Desired ± 10  
MHz  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
RSSIMIN  
RSSIRES  
5
dBm  
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
-98  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
30 MHz to 1 GHz  
0.25  
-53  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX  
ing active receive mode  
-47  
-47  
1 GHz to 12 GHz  
-53  
Note:  
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz.  
2. Definition of reference signal is 10 kbps 2GFSK, BT=0.5, Δf = 5 kHz, RX channel BW = 20.038 kHz.  
3. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5  
kHz.  
4. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100  
kHz.  
5. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 62  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.7 Sub-GHz RF Transmitter characteristics for 433 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 433 MHz.  
Table 4.24. Sub-GHz RF Transmitter characteristics for 433 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
426  
12.5  
Typ  
Max  
445  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA supply connected to  
DC-DC output, 14dBm output  
power  
15.1  
17.4  
External PA supply connected to  
DC-DC output, 10dBm output  
power  
8.3  
10.6  
13.3  
dBm  
Minimum active TX Power  
Output power step size  
POUTMIN  
-42  
0.5  
1.7  
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply, peak to peak, Pout =  
10dBm  
At 10 dBm;1.8 V < VVREGVDD  
3.3 V, External PA supply = DC-  
DC output, T = 25 °C  
<
dB  
Output power variation vs  
temperature, peak to peak,  
Pout= 10dBm  
POUTVAR_T  
-40 to +85C at 10dBm  
-40 to +125C at 10dBm  
0.5  
0.7  
1.2  
1.7  
dB  
dB  
Output power variation vs RF POUTVAR_F  
frequency, Pout = 10dBm  
T = 25 °C  
0.1  
-47  
-26  
0.2  
-42  
-20  
dB  
Spurious emissions of har-  
monics FCC, Conducted  
measurement, 14dBm  
SPURHARM_FCC In restricted bands, per FCC Part  
15.205 / 15.209  
dBm  
dBc  
In non-restricted bands, per FCC  
Part 15.231  
match, External PA supply  
connected to DC-DC output,  
Test Frequency = 434 MHz  
Spurious emissions out-of-  
band FCC, Conducted  
measurement, 14dBm  
match, External PA supply  
connected to DC-DC output,  
Test Frequency = 434 MHz  
SPUROOB_FCC  
In non-restricted bands, per FCC  
Part 15.231  
-26  
-52  
-61  
-58  
-20  
-46  
-56  
-52  
dBc  
dBm  
dBm  
dBm  
In restricted bands (30-88 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (88-216 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (216-960  
MHz), per FCC Part 15.205 /  
15.209  
In restricted bands (>960 MHz),  
per FCC Part 15.205 / 15.209  
-47  
-42  
-36  
-42  
-36  
-30  
dBm  
dBm  
dBm  
Spurious emissions of har-  
monics ETSI, Conducted  
measurement, 14dBm  
match, External PA supply  
connected to DC-DC output,  
Test Frequency = 434 MHz  
SPURHARM_ETSI Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies below 1Ghz)  
Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies above 1Ghz)  
silabs.com | Building a more connected world.  
Rev. 1.2 | 63  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Spurious emissions out-of-  
band ETSI, Conducted  
measurement, 14dBm  
match, External PA supply  
connected to DC-DC output,  
Test Frequency = 434 MHz  
SPUROOB_ETSI Per ETSI EN 300-220, Section  
7.8.2.1 (47-74 MHz, 87.5-118  
MHz, 174-230 MHz, and 470-862  
MHz)  
-60  
-54  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (other frequencies below 1  
GHz)  
-42  
-36  
-36  
-30  
dBm  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies above 1  
GHz)  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 64  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.8 Sub-GHz RF Receiver Characteristics for 433 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 433 MHz.  
Table 4.25. Sub-GHz RF Receiver Characteristics for 433 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
426  
Typ  
Max  
445  
Unit  
MHz  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT2k4  
BER  
Desired is reference 2.4 kbps  
GFSK signal2  
10  
Max usable input level, 0.1% SAT50k  
BER  
Desired is reference 50 kbps  
GFSK signal4  
10  
dBm  
dBm  
dBm  
Sensitivity  
SENS  
Desired is reference 4.8 kbps  
OOK signal3, 20% PER  
-109.9  
-107.3  
Desired is reference 100 kbps  
-105  
GFSK signal1, 0.1% BER, T ≤ 85  
°C  
Desired is reference 100 kbps  
GFSK signal1, 0.1% BER, T > 85  
°C  
-110.3  
-104  
dBm  
dBm  
dBm  
Desired is reference 50 kbps  
GFSK signal4, 0.1% BER, T ≤ 85  
°C  
-107.2  
-106.6  
Desired is reference 50 kbps  
GFSK signal4, 0.1% BER, T > 85  
°C  
Desired is reference 2.4 kbps  
GFSK signal2, 0.1% BER  
-123.1  
-112.6  
-109  
-108  
dBm  
dBm  
dBm  
dBm  
dBm  
Desired is reference 9.6 kbps  
GFSK signal5, 1% PER, T ≤ 85 °C  
Desired is reference 9.6 kbps  
GFSK signal5, 1% PER, T > 85 °C  
Level above which  
RFSENSE will trigger6  
RFSENSETRIG  
CW at 433 MHz  
-28.1  
-50  
Level below which  
RFSENSE will not trigger6  
RFSENSETHRES CW at 433 MHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 65  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 ×  
channel-spacing  
51.6  
dB  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
35  
47  
45.6  
44.1  
61.5  
53.1  
35.7  
61.5  
54.6  
62.4  
58.1  
50.6  
46.5  
51.7  
57.5  
54.4  
48  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Desired is 2.4 kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 50 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 9.6 kbps 4GFSK sig-  
nal5 at 3dB above sensitivity level,  
1% PER  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 ×  
channel-spacing  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 2.4 kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 50 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 9.6 kbps 4GFSK sig-  
nal5 at 3dB above sensitivity level,  
1% PER  
Desired is 4.8 kbps OOK signal3  
at 3dB above sensitivity level,  
20% PER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
Desired is 100 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 2.4 kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 50 kbps GFSK signal4  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 9.6 kbps 4GFSK sig-  
nal5 at 3dB above sensitivity level,  
1% PER  
Blocking selectivity, 0.1%  
BER. Desired is 2.4 kbps  
GFSK signal2 at 3dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
75.7  
77.2  
92  
dB  
dB  
dB  
Interferer CW at Desired ± 10  
MHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 66  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 2.4 kbps GFSK signal2  
at 3dB above sensitivity level  
Intermod selectivity, 0.1%  
BER. CW interferers at 12.5  
kHz and 25 kHz offsets  
C/IIM  
58.8  
dB  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
RSSIMIN  
RSSIRES  
5
dBm  
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
-98  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
216-960 MHz  
0.25  
-55  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
-49  
-41  
Above 960 MHz  
-47  
Max spurious emissions dur- SPURRX_ETSI  
ing active receive mode, per  
ETSI 300-220 Section 8.6  
Below 1000 MHz  
Above 1000 MHz  
-63  
-53  
-57  
-47  
dBm  
dBm  
Max spurious emissions dur- SPURRX_ARIB  
ing active receive mode, per  
ARIB STD T67 Section  
Below 710 MHz, RBW=100kHz  
-60  
-54  
dBm  
3.3(5)  
Note:  
1. Definition of reference signal is 100 kbps 2GFSK, BT=0.5, Δf = 50 kHz, RX channel BW = 198.024 kHz, channel spacing = 200  
kHz.  
2. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5  
kHz.  
3. Definition of reference signal is 4.8 kbps OOK, RX channel BW = 306.036 kHz, channel spacing = 500 kHz.  
4. Definition of reference signal is 50 kbps 2GFSK, BT=0.5, Δf = 25 kHz, RX channel BW = 99.012 kHz, channel spacing = 200 kHz.  
5. Definition of reference signal is 9.6 kbps 4GFSK, BT=0.5, inner deviation = 0.8 kHz, RX channel BW = 8.5 kHz, channel spacing  
= 12.5 kHz.  
6. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 67  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.9 Sub-GHz RF Transmitter characteristics for 315 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 315 MHz.  
Table 4.26. Sub-GHz RF Transmitter characteristics for 315 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
195  
13.8  
Typ  
Max  
358  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA supply connected to  
DC-DC output  
17.2  
21.1  
Minimum active TX Power  
Output power step size  
POUTMIN  
-43.9  
0.5  
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply = DC-DC output, T  
= 25 °C  
1.8  
dB  
Output power variation vs  
temperature  
POUTVAR_T  
-40 to +85C  
-40 to +125C  
T = 25 °C  
0.5  
0.7  
0.1  
1.2  
1.5  
0.7  
dB  
dB  
dB  
Output power variation vs RF POUTVAR_F  
frequency  
Spurious emissions of har-  
monics at 14 dBm output  
power, Conducted measure-  
ment, 14dBm match, Exter-  
nal PA supply connected to  
DC-DC output, Test Fre-  
quency = 303 MHz  
SPURHARM_FCC In restricted bands, per FCC Part  
15.205 / 15.209  
-47  
-26  
-42  
-20  
dBm  
dBc  
In non-restricted bands, per FCC  
Part 15.231  
Spurious emissions out-of-  
band at 14 dBm output pow-  
er, Conducted measurement,  
14dBm match, External PA  
supply connected to DC-DC  
output, Test Frequency =  
303 MHz  
SPUROOB_FCC  
In non-restricted bands, per FCC  
Part 15.231  
-26  
-52  
-61  
-58  
-20  
-46  
-56  
-52  
dBc  
dBm  
dBm  
dBm  
In restricted bands (30-88 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (88-216 MHz),  
per FCC Part 15.205 / 15.209  
In restricted bands (216-960  
MHz), per FCC Part 15.205 /  
15.209  
In restricted bands (>960 MHz),  
per FCC Part 15.205 / 15.209  
-47  
-42  
dBm  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 68  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.10 Sub-GHz RF Receiver Characteristics for 315 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 315 MHz.  
Table 4.27. Sub-GHz RF Receiver Characteristics for 315 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
195  
Typ  
Max  
358  
Unit  
dBm  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT2k4  
BER  
Desired is reference 2.4 kbps  
GFSK signal1  
10  
Max usable input level, 0.1% SAT38k4  
BER  
Desired is reference 38.4 kbps  
GFSK signal2  
10  
dBm  
dBm  
Sensitivity  
SENS  
Desired is reference 2.4 kbps  
-123.2  
-120.7  
GFSK signal1, 0.1% BER, T ≤ 85  
°C  
Desired is reference 2.4 kbps  
GFSK signal1, 0.1% BER, T > 85  
°C  
-111.4  
-120  
-108.6  
-107.9  
-95.5  
dBm  
dBm  
dBm  
dBm  
dBm  
Desired is reference 38.4 kbps  
GFSK signal2, 0.1% BER, T ≤ 85  
°C  
Desired is reference 38.4 kbps  
GFSK signal2, 0.1% BER, T > 85  
°C  
Desired is reference 500 kbps  
GFSK signal3, 0.1% BER, T ≤ 85  
°C  
-98.8  
Desired is reference 500 kbps  
-94.5  
GFSK signal3, 0.1% BER, T > 85  
°C  
Level above which  
RFSENSETRIG  
CW at 315 MHz  
-28.1  
-50  
dBm  
dBm  
dB  
RFSENSE will trigger4  
Level below which  
RFSENSE will not trigger4  
RFSENSETHRES CW at 315 MHz  
Desired is 2.4 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 ×  
channel-spacing  
54.1  
63.6  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
49.9  
64.2  
56.2  
dB  
dB  
dB  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 ×  
channel-spacing  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level2,  
0.1% BER  
silabs.com | Building a more connected world.  
Rev. 1.2 | 69  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
53  
dB  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
51.4  
dB  
Blocking selectivity, 0.1%  
BER. Desired is 2.4 kbps  
GFSK signal1 at 3 dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
75  
dB  
dB  
dB  
76.5  
91.9  
Interferer CW at Desired ± 10  
MHz  
72.6  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
RSSIMIN  
RSSIRES  
5
dBm  
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
-98  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
216-960 MHz  
0.25  
-63  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX_FCC  
ing active receive mode, per  
FCC Part 15.109(a)  
-57  
-47  
Above 960MHz  
-53  
Note:  
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5  
kHz.  
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100  
kHz.  
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.  
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 70  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.11 Sub-GHz RF Transmitter Characteristics for 169 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 169 MHz.  
Table 4.28. Sub-GHz RF Transmitter Characteristics for 169 MHz Band  
Parameter  
Symbol  
FRANGE  
Test Condition  
Min  
169  
18.1  
Typ  
Max  
170  
Unit  
MHz  
dBm  
RF tuning frequency range  
Maximum TX Power1  
POUTMAX  
External PA supply = 3.3 V  
19.7  
22.4  
Minimum active TX Power  
Output power step size  
POUTMIN  
-42.6  
0.5  
dBm  
dB  
POUTSTEP  
POUTVAR_V  
output power > 0 dBm  
Output power variation vs  
supply, peak to peak  
1.8 V < VVREGVDD < 3.3 V, Exter-  
nal PA supply = 3.3 V, T = 25 °C  
4.8  
5.0  
dB  
Output power variation vs  
temperature, peak to peak  
POUTVAR_T  
-40 to +85 °C at 20 dBm  
-40 to +125 °C at 20 dBm  
0.6  
0.8  
-42  
1.2  
1.5  
dB  
dB  
Spurious emissions of har-  
monics, Conducted meas-  
urement, External PA supply  
= 3.3 V, Test Frequency =  
169 MHz  
SPURHARM_ETSI Per ETSI EN 300-220, Section  
7.8.2.1 (47-74 MHz, 87.5-118  
MHz, 174-230 MHz, and 470-862  
MHz)  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (other frequencies below 1  
GHz)2  
-38  
-36  
-42  
dBm  
dBm  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies above 1  
GHz)2  
Spurious emissions out-of-  
band, Conducted measure-  
ment, External PA supply =  
3.3 V, Test Frequency = 169  
MHz  
SPUROOB_ETSI Per ETSI EN 300-220, Section  
7.8.2.1 (47-74 MHz, 87.5-118  
MHz, 174-230 MHz, and 470-862  
MHz)  
-36  
Per ETSI EN 300-220, Section  
7.8.2.1 (other frequencies below 1  
GHz)  
-42  
-36  
-36  
-30  
dBm  
dBm  
Per ETSI EN 300-220, Section  
7.8.2.1 (frequencies above 1  
GHz)  
Note:  
1. Supported transmit power levels are determined by the ordering part number (OPN). Transmit power ratings for all devices cov-  
ered in this datasheet can be found in the Max TX Power column of the Ordering Information Table.  
2. Typical value marginally passes specification. Additional margin can be obtained by increasing the order of the harmonic filter.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 71  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.10.12 Sub-GHz RF Receiver Characteristics for 169 MHz Band  
Unless otherwise indicated, typical conditions are: T = 25 °C, VREGVDD = AVDD = IOVDD = 3.3 V, DVDD = RFVDD = External PA  
Supply. RFVDD and external PA supply paths filtered using ferrites. Crystal frequency=38.4 MHz. RF center frequency 169 MHz.  
Table 4.29. Sub-GHz RF Receiver Characteristics for 169 MHz Band  
Parameter  
Symbol  
Test Condition  
Min  
169  
Typ  
Max  
170  
Unit  
dBm  
dBm  
Tuning frequency range  
FRANGE  
Max usable input level, 0.1% SAT2k4  
BER  
Desired is reference 2.4 kbps  
GFSK signal1  
10  
Max usable input level, 0.1% SAT38k4  
BER  
Desired is reference 38.4 kbps  
GFSK signal2  
10  
dBm  
dBm  
dBm  
Sensitivity  
SENS  
Desired is reference 2.4 kbps  
GFSK signal1, 0.1% BER  
-124  
Desired is reference 38.4 kbps  
-112.2  
-108  
GFSK signal2, 0.1% BER, T ≤ 85  
°C  
Desired is reference 38.4 kbps  
GFSK signal2, 0.1% BER, T > 85  
°C  
-99.2  
-107  
-96  
dBm  
dBm  
dBm  
Desired is reference 500 kbps  
GFSK signal3, 0.1% BER, T ≤ 85  
°C  
Desired is reference 500 kbps  
-95  
GFSK signal3, 0.1% BER, T > 85  
°C  
Level above which  
RFSENSETRIG  
CW at 169 MHz  
-28.1  
-50  
dBm  
dBm  
dB  
RFSENSE will trigger4  
Level below which  
RFSENSE will not trigger4  
RFSENSETHRES CW at 169 MHz  
Desired is 2.4 kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Adjacent channel selectivity, C/I1  
Interferer is CW at ± 1 x  
channel-spacing  
64.8  
Desired is 38.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
43.3  
51.4  
67.4  
60.6  
47.1  
47.1  
dB  
dB  
dB  
dB  
dB  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Alternate channel selectivity, C/I2  
Interferer is CW at ± 2 x  
channel-spacing  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
Desired is 2.4kbps GFSK signal1  
at 3dB above sensitivity level,  
0.1% BER  
Image rejection, Interferer is C/IIMAGE  
CW at image frequency  
Desired is 38.4kbps GFSK signal2  
at 3dB above sensitivity level,  
0.1% BER  
silabs.com | Building a more connected world.  
Rev. 1.2 | 72  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
73.4  
75  
Max  
Unit  
dB  
Blocking selectivity, 0.1%  
BER. Desired is 2.4 kbps  
GFSK signal1 at 3 dB above  
sensitivity level  
C/IBLOCKER  
Interferer CW at Desired ± 1 MHz  
Interferer CW at Desired ± 2 MHz  
dB  
Interferer CW at Desired ± 10  
MHz  
80  
90.1  
dB  
Upper limit of input power  
range over which RSSI reso-  
lution is maintained  
RSSIMAX  
RSSIMIN  
RSSIRES  
5
dBm  
dBm  
Lower limit of input power  
range over which RSSI reso-  
lution is maintained  
-98  
RSSI resolution  
Over RSSIMIN to RSSIMAX range  
30 MHz to 1 GHz  
0.25  
-63  
dBm  
dBm  
dBm  
Max spurious emissions dur- SPURRX  
ing active receive mode  
-57  
-47  
1 GHz to 12 GHz  
-53  
Note:  
1. Definition of reference signal is 2.4 kbps 2GFSK, BT=0.5, Δf = 1.2 kHz, RX channel BW = 4.798 kHz, channel spacing = 12.5  
kHz.  
2. Definition of reference signal is 38.4 kbps 2GFSK, BT=0.5, Δf = 20 kHz, RX channel BW = 74.809 kHz, channel spacing = 100  
kHz.  
3. Definition of reference signal is 500 kbps 2GFSK, BT=0.5, Δf = 125 kHz, RX channel BW = 753.320 kHz.  
4. RFSENSE performance is only valid from 0 to 85 °C. RFSENSE should be disabled outside this temperature range.  
4.1.11 Modem  
Table 4.30. Modem  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Receive bandwidth  
BWRX  
Configurable range with 38.4 MHz  
crystal  
0.1  
2530  
kHz  
IF frequency  
fIF  
Configurable range with 38.4 MHz  
crystal. Selected steps available.  
150  
1371  
kHz  
DSSS symbol length  
DSSS bits per symbol  
SLDSSS  
Configurable in steps of 1 chip  
Configurable  
2
1
32  
4
chips  
BPSDSSS  
bits/  
symbol  
silabs.com | Building a more connected world.  
Rev. 1.2 | 73  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.12 Oscillators  
4.1.12.1 Low-Frequency Crystal Oscillator (LFXO)  
Table 4.31. Low-Frequency Crystal Oscillator (LFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
32.768  
Max  
Unit  
kHz  
kΩ  
Crystal frequency  
fLFXO  
Supported crystal equivalent ESRLFXO  
series resistance (ESR)  
70  
Supported range of crystal  
load capacitance 1  
CLFXO_CL  
6
8
18  
40  
pF  
pF  
On-chip tuning cap range 2  
CLFXO_T  
On each of LFXTAL_N and  
LFXTAL_P pins  
On-chip tuning cap step size SSLFXO  
0.25  
273  
pF  
nA  
Current consumption after  
startup 3  
ILFXO  
ESR = 70 kOhm, CL = 7 pF,  
GAIN4 = 2, AGC4 = 1  
Start- up time  
tLFXO  
ESR = 70 kOhm, CL = 7 pF,  
GAIN4 = 2  
308  
ms  
Note:  
1. Total load capacitance as seen by the crystal.  
2. The effective load capacitance seen by the crystal will be CLFXO_T /2. This is because each XTAL pin has a tuning cap and the  
two caps will be seen in series by the crystal.  
3. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.  
4. In CMU_LFXOCTRL register.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 74  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.12.2 High-Frequency Crystal Oscillator (HFXO)  
Table 4.32. High-Frequency Crystal Oscillator (HFXO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Crystal frequency  
fHFXO  
38.4 MHz required for radio trans-  
ciever operation  
38  
38.4  
40  
MHz  
Supported crystal equivalent ESRHFXO_38M4 Crystal frequency 38.4 MHz  
series resistance (ESR)  
6
60  
12  
Supported range of crystal  
load capacitance 1  
CHFXO_CL  
pF  
On-chip tuning cap range 2  
CHFXO_T  
SSHFXO  
tHFXO  
On each of HFXTAL_N and  
HFXTAL_P pins  
9
20  
0.04  
300  
25  
40  
pF  
pF  
On-chip tuning capacitance  
step  
Startup time  
38.4 MHz, ESR = 50 Ohm, CL =  
10 pF  
µs  
Frequency tolerance for the FTHFXO  
crystal  
38.4 MHz, ESR = 50 Ohm, CL =  
10 pF  
-40  
ppm  
Note:  
1. Total load capacitance as seen by the crystal.  
2. The effective load capacitance seen by the crystal will be CHFXO_T /2. This is because each XTAL pin has a tuning cap and the  
two caps will be seen in series by the crystal.  
4.1.12.3 Low-Frequency RC Oscillator (LFRCO)  
Table 4.33. Low-Frequency RC Oscillator (LFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ENVREF2 = 1, T ≤ 85 °C  
ENVREF2 = 1, T > 85 °C  
ENVREF2 = 0, T ≤ 85 °C  
ENVREF2 = 0, T > 85 °C  
Oscillation frequency  
fLFRCO  
31.3  
32.768  
33.6  
kHz  
31.6  
31.3  
30  
32.768  
32.768  
32.768  
500  
36.8  
33.4  
33.4  
kHz  
kHz  
kHz  
µs  
Startup time  
tLFRCO  
ILFRCO  
Current consumption 1  
ENVREF = 1 in  
CMU_LFRCOCTRL  
342  
nA  
ENVREF = 0 in  
494  
nA  
CMU_LFRCOCTRL  
Note:  
1. Block is supplied by AVDD if ANASW = 0, or DVDD if ANASW=1 in EMU_PWRCTRL register.  
2. In CMU_LFRCOCTRL register.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 75  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.12.4 High-Frequency RC Oscillator (HFRCO)  
Table 4.34. High-Frequency RC Oscillator (HFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Frequency accuracy  
fHFRCO_ACC  
At production calibrated frequen-  
cies, across supply voltage and  
temperature  
-2.5  
2.5  
%
Start-up time  
tHFRCO  
fHFRCO ≥ 19 MHz  
4 < fHFRCO < 19 MHz  
fHFRCO ≤ 4 MHz  
fHFRCO = 38 MHz  
fHFRCO = 32 MHz  
fHFRCO = 26 MHz  
fHFRCO = 19 MHz  
fHFRCO = 16 MHz  
fHFRCO = 13 MHz  
fHFRCO = 7 MHz  
fHFRCO = 4 MHz  
fHFRCO = 2 MHz  
fHFRCO = 1 MHz  
300  
1
ns  
µs  
2.5  
231  
193  
165  
137  
118  
106  
83  
µs  
Current consumption on all  
supplies  
IHFRCO  
260  
218  
186  
155  
131  
119  
94  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
%
31  
40  
27  
37  
25  
35  
Coarse trim step size (% of  
period)  
SSHFRCO_COARS  
0.8  
E
Fine trim step size (% of pe- SSHFRCO_FINE  
riod)  
0.1  
%
Period jitter  
PJHFRCO  
0.2  
% RMS  
MHz  
Frequency limits  
fHFRCO_BAND  
FREQRANGE = 0, FINETUNIN-  
GEN = 0  
3.47  
6.15  
FREQRANGE = 3, FINETUNIN-  
GEN = 0  
6.24  
11.3  
11.45  
19.8  
22.8  
29.0  
40.63  
48  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FREQRANGE = 6, FINETUNIN-  
GEN = 0  
FREQRANGE = 7, FINETUNIN-  
GEN = 0  
13.45  
16.5  
FREQRANGE = 8, FINETUNIN-  
GEN = 0  
FREQRANGE = 10, FINETUNIN-  
GEN = 0  
23.11  
27.27  
33.33  
FREQRANGE = 11, FINETUNIN-  
GEN = 0  
FREQRANGE = 12, FINETUNIN-  
GEN = 0  
54  
silabs.com | Building a more connected world.  
Rev. 1.2 | 76  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.12.5 Auxiliary High-Frequency RC Oscillator (AUXHFRCO)  
Table 4.35. Auxiliary High-Frequency RC Oscillator (AUXHFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
-3  
Typ  
Max  
Unit  
Frequency accuracy  
fAUXHFRCO_ACC At production calibrated frequen-  
3
%
cies, across supply voltage and  
temperature  
Start-up time  
tAUXHFRCO  
fAUXHFRCO ≥ 19 MHz  
4 < fAUXHFRCO < 19 MHz  
fAUXHFRCO ≤ 4 MHz  
fAUXHFRCO = 38 MHz  
fAUXHFRCO = 32 MHz  
fAUXHFRCO = 26 MHz  
fAUXHFRCO = 19 MHz  
fAUXHFRCO = 16 MHz  
fAUXHFRCO = 13 MHz  
fAUXHFRCO = 7 MHz  
fAUXHFRCO = 4 MHz  
fAUXHFRCO = 2 MHz  
fAUXHFRCO = 1 MHz  
400  
1.4  
2.5  
237  
194  
165  
131  
119  
92  
ns  
µs  
µs  
Current consumption on all  
supplies  
IAUXHFRCO  
265  
218  
186  
148  
134  
104  
70  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
%
61  
34  
42  
29  
37  
26  
34  
Coarse trim step size (% of  
period)  
SSAUXHFR-  
0.8  
CO_COARSE  
Fine trim step size (% of pe- SSAUXHFR-  
0.1  
0.2  
%
riod)  
CO_FINE  
Period jitter  
PJAUXHFRCO  
% RMS  
4.1.12.6 Ultra-low Frequency RC Oscillator (ULFRCO)  
Table 4.36. Ultra-low Frequency RC Oscillator (ULFRCO)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Oscillation frequency  
fULFRCO  
0.95  
1
1.07  
kHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 77  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.13 Flash Memory Characteristics5  
Table 4.37. Flash Memory Characteristics5  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Flash erase cycles before  
failure  
ECFLASH  
10000  
cycles  
Flash data retention  
RETFLASH  
T ≤ 85 °C  
10  
10  
20  
30  
years  
years  
µs  
T ≤ 125 °C  
Word (32-bit) programming  
time  
tW_PROG  
Burst write, 128 words, average  
time per word  
26.1  
Single word  
60  
20  
68.5  
28.8  
80  
40  
µs  
Page erase time4  
Mass erase time1  
Device erase time2 3  
tPERASE  
tMERASE  
tDERASE  
ms  
20  
28.7  
40  
ms  
T ≤ 85 °C  
54.4  
54.4  
70  
75  
ms  
ms  
mA  
T ≤ 125 °C  
Page Erase  
Erase current6  
Write current6  
IERASE  
IWRITE  
VFLASH  
1.6  
3.5  
3.6  
mA  
V
Supply voltage during flash  
erase and write  
1.62  
Note:  
1. Mass erase is issued by the CPU and erases all flash.  
2. Device erase is issued over the AAP interface and erases all flash, SRAM, the Lock Bit (LB) page, and the User data page Lock  
Word (ULW).  
3. From setting the DEVICEERASE bit in AAP_CMD to 1 until the ERASEBUSY bit in AAP_STATUS is cleared to 0. Internal setup  
and hold times for flash control signals are included.  
4. From setting the ERASEPAGE bit in MSC_WRITECMD to 1 until the BUSY bit in MSC_STATUS is cleared to 0. Internal setup  
and hold times for flash control signals are included.  
5. Flash data retention information is published in the Quarterly Quality and Reliability Report.  
6. Measured at 25 °C.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 78  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.14 General-Purpose I/O (GPIO)  
Table 4.38. General-Purpose I/O (GPIO)  
Parameter  
Symbol  
Test Condition  
GPIO pins  
Min  
Typ  
Max  
IOVDD*0.3  
Unit  
V
Input low voltage  
Input high voltage  
VIL  
VIH  
GPIO pins  
IOVDD*0.7  
IOVDD*0.8  
V
Output high voltage relative VOH  
to IOVDD  
Sourcing 3 mA, IOVDD ≥ 3 V,  
V
DRIVESTRENGTH1 = WEAK  
Sourcing 1.2 mA, IOVDD ≥ 1.62  
V,  
IOVDD*0.6  
V
DRIVESTRENGTH1 = WEAK  
Sourcing 20 mA, IOVDD ≥ 3 V,  
IOVDD*0.8  
V
V
V
V
V
V
DRIVESTRENGTH1 = STRONG  
Sourcing 8 mA, IOVDD ≥ 1.62 V,  
IOVDD*0.6  
DRIVESTRENGTH1 = STRONG  
Sinking 3 mA, IOVDD ≥ 3 V,  
Output low voltage relative to VOL  
IOVDD  
IOVDD*0.2  
IOVDD*0.4  
IOVDD*0.2  
IOVDD*0.4  
DRIVESTRENGTH1 = WEAK  
Sinking 1.2 mA, IOVDD ≥ 1.62 V,  
DRIVESTRENGTH1 = WEAK  
Sinking 20 mA, IOVDD ≥ 3 V,  
DRIVESTRENGTH1 = STRONG  
Sinking 8 mA, IOVDD ≥ 1.62 V,  
DRIVESTRENGTH1 = STRONG  
Input leakage current  
IIOLEAK  
All GPIO except LFXO pins, GPIO  
≤ IOVDD, T ≤ 85 °C  
30  
15  
0.1  
0.1  
30  
50  
nA  
nA  
nA  
nA  
µA  
kΩ  
ns  
LFXO Pins, GPIO ≤ IOVDD, T ≤  
85 °C  
All GPIO except LFXO pins, GPIO  
≤ IOVDD, T > 85 °C  
110  
250  
15  
LFXO Pins, GPIO ≤ IOVDD, T >  
85 °C  
Input leakage current on  
5VTOL pads above IOVDD  
I5VTOLLEAK  
IOVDD < GPIO ≤ IOVDD + 2 V  
3.3  
40  
25  
I/O pin pull-up/pull-down re- RPUD  
sistor  
65  
Pulse width of pulses re-  
moved by the glitch suppres-  
sion filter  
tIOGLITCH  
45  
silabs.com | Building a more connected world.  
Rev. 1.2 | 79  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output fall time, From 70%  
to 30% of VIO  
tIOOF  
CL = 50 pF,  
1.8  
ns  
DRIVESTRENGTH1 = STRONG,  
SLEWRATE1 = 0x6  
CL = 50 pF,  
4.5  
2.2  
7.4  
ns  
ns  
ns  
DRIVESTRENGTH1 = WEAK,  
SLEWRATE1 = 0x6  
CL = 50 pF,  
Output rise time, From 30% tIOOR  
to 70% of VIO  
DRIVESTRENGTH1 = STRONG,  
SLEWRATE = 0x61  
CL = 50 pF,  
DRIVESTRENGTH1 = WEAK,  
SLEWRATE1 = 0x6  
Note:  
1. In GPIO_Pn_CTRL register.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 80  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.15 Voltage Monitor (VMON)  
Table 4.39. Voltage Monitor (VMON)  
Parameter  
Symbol  
IVMON  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply current (including  
I_SENSE)  
In EM0 or EM1, 1 supply moni-  
tored, T ≤ 85 °C  
6.3  
8
µA  
In EM0 or EM1, 1 supply moni-  
tored, T > 85 °C  
12.5  
11  
15  
18  
µA  
µA  
µA  
nA  
nA  
nA  
nA  
In EM0 or EM1, 4 supplies moni-  
tored, T ≤ 85 °C  
In EM0 or EM1, 4 supplies moni-  
tored, T > 85 °C  
In EM2, EM3 or EM4, 1 supply  
monitored and above threshold  
62  
In EM2, EM3 or EM4, 1 supply  
monitored and below threshold  
62  
In EM2, EM3 or EM4, 4 supplies  
monitored and all above threshold  
99  
In EM2, EM3 or EM4, 4 supplies  
monitored and all below threshold  
99  
Loading of monitored supply ISENSE  
In EM0 or EM1  
2
2
3.4  
µA  
nA  
V
In EM2, EM3 or EM4  
Threshold range  
VVMON_RANGE  
1.62  
Threshold step size  
NVMON_STESP  
Coarse  
200  
20  
460  
26  
mV  
mV  
ns  
Fine  
Response time  
Hysteresis  
tVMON_RES  
Supply drops at 1V/µs rate  
VVMON_HYST  
mV  
silabs.com | Building a more connected world.  
Rev. 1.2 | 81  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.16 Analog to Digital Converter (ADC)  
Specified at 1 Msps, ADCCLK = 16 MHz, BIASPROG = 0, GPBIASACC = 0, unless otherwise indicated.  
Table 4.40. Analog to Digital Converter (ADC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
12  
Unit  
Bits  
V
Resolution  
VRESOLUTION  
VADCIN  
6
Input voltage range5  
Single ended  
Differential  
VFS  
-VFS/2  
1
VFS/2  
VAVDD  
V
Input range of external refer- VADCREFIN_P  
ence voltage, single ended  
and differential  
V
Power supply rejection2  
PSRRADC  
At DC  
At DC  
80  
80  
dB  
dB  
Analog input common mode CMRRADC  
rejection ratio  
Current from all supplies, us- IADC_CONTINU-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
270  
125  
80  
304  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ing internal reference buffer.  
OUS_LP  
Continuous operation. WAR-  
MUPMODE4 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 1 3  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 1 3  
Current from all supplies, us- IADC_NORMAL_LP 35 ksps / 16 MHz ADCCLK, BIA-  
45  
SPROG = 0, GPBIASACC = 1 3  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE4 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 1 3  
8
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
105  
70  
ing internal reference buffer.  
BY_LP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 1 3  
AWARMUPMODE4 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from all supplies, us- IADC_CONTINU-  
1 Msps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
325  
175  
125  
85  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
ing internal reference buffer.  
OUS_HP  
Continuous operation. WAR-  
MUPMODE4 = KEEPADC-  
WARM  
250 ksps / 4 MHz ADCCLK, BIA-  
SPROG = 6, GPBIASACC = 0 3  
62.5 ksps / 1 MHz ADCCLK, BIA-  
SPROG = 15, GPBIASACC = 0 3  
Current from all supplies, us- IADC_NORMAL_HP 35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
ing internal reference buffer.  
Duty-cycled operation. WAR-  
MUPMODE4 = NORMAL  
5 ksps / 16 MHz ADCCLK BIA-  
SPROG = 0, GPBIASACC = 0 3  
16  
Current from all supplies, us- IADC_STAND-  
125 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
160  
125  
ing internal reference buffer.  
BY_HP  
Duty-cycled operation.  
35 ksps / 16 MHz ADCCLK, BIA-  
SPROG = 0, GPBIASACC = 0 3  
AWARMUPMODE4 = KEEP-  
INSTANDBY or KEEPIN-  
SLOWACC  
Current from HFPERCLK  
IADC_CLK  
HFPERCLK = 16 MHz  
150  
µA  
silabs.com | Building a more connected world.  
Rev. 1.2 | 82  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
fADCCLK  
Test Condition  
Min  
Typ  
7
Max  
16  
1
Unit  
MHz  
ADC clock frequency  
Throughput rate  
fADCRATE  
tADCCONV  
Msps  
cycles  
cycles  
cycles  
µs  
Conversion time1  
6 bit  
8 bit  
12 bit  
5
9
13  
WARMUPMODE4 = NORMAL  
Startup time of reference  
generator and ADC core  
tADCSTART  
WARMUPMODE4 = KEEPIN-  
STANDBY  
58  
67  
68  
2
µs  
µs  
dB  
dB  
WARMUPMODE4 = KEEPINSLO-  
WACC  
1
Internal reference7, differential  
measurement  
SNDR at 1Msps and fIN  
10kHz  
=
SNDRADC  
External reference6, differential  
measurement  
Spurious-free dynamic range SFDRADC  
(SFDR)  
1 MSamples/s, 10 kHz full-scale  
sine wave  
-1  
-6  
75  
2
dB  
Differential non-linearity  
(DNL)  
DNLADC  
12 bit resolution, No missing co-  
des  
LSB  
LSB  
Integral non-linearity (INL),  
End point method  
INLADC  
12 bit resolution  
6
Offset error  
VADCOFFSETERR  
VADCGAIN  
-3  
0
3
LSB  
%
Gain error in ADC  
Using internal reference  
Using external reference  
-0.2  
-1  
3.5  
%
Temperature sensor slope  
VTS_SLOPE  
-1.84  
mV/°C  
Note:  
1. Derived from ADCCLK.  
2. PSRR is referenced to AVDD when ANASW=0 and to DVDD when ANASW=1 in EMU_PWRCTRL.  
3. In ADCn_BIASPROG register.  
4. In ADCn_CNTL register.  
5. The absolute voltage allowed at any ADC input is dictated by the power rail supplied to on-chip circuitry, and may be lower than  
the effective full scale voltage. All ADC inputs are limited to the ADC supply (AVDD or DVDD depending on  
EMU_PWRCTRL_ANASW). Any ADC input routed through the APORT will further be limited by the IOVDD supply to the pin.  
6. External reference is 1.25 V applied externally to ADCnEXTREFP, with the selection CONF in the SINGLECTRL_REF or  
SCANCTRL_REF register field and VREFP in the SINGLECTRLX_VREFSEL or SCANCTRLX_VREFSEL field. The differential  
input range with this configuration is ± 1.25 V.  
7. Internal reference option used corresponds to selection 2V5 in the SINGLECTRL_REF or SCANCTRL_REF register field. The  
differential input range with this configuration is ± 1.25 V. Typical value is characterized using full-scale sine wave input. Minimum  
value is production-tested using sine wave input at 1.5 dB lower than full scale.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 83  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.17 Analog Comparator (ACMP)  
Table 4.41. Analog Comparator (ACMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input voltage range  
VACMPIN  
ACMPVDD =  
ACMPn_CTRL_PWRSEL 1  
VACMPVDD  
V
BIASPROG4 ≤ 0x10 or FULL-  
BIAS4 = 0  
Supply voltage  
VACMPVDD  
1.8  
2.1  
VVREGVDD_  
V
V
MAX  
0x10 < BIASPROG4 ≤ 0x20 and  
FULLBIAS4 = 1  
VVREGVDD_  
MAX  
BIASPROG4 = 1, FULLBIAS4 = 0  
Active current not including  
voltage reference2  
IACMP  
50  
nA  
nA  
BIASPROG4 = 0x10, FULLBIAS4  
= 0  
306  
BIASPROG4 = 0x02, FULLBIAS4  
= 1  
6.1  
74  
50  
10  
92  
µA  
µA  
nA  
BIASPROG4 = 0x20, FULLBIAS4  
= 1  
Current consumption of inter- IACMPREF  
nal voltage reference2  
VLP selected as input using 2.5 V  
Reference / 4 (0.625 V)  
VLP selected as input using VDD  
20  
nA  
µA  
VBDIV selected as input using  
1.25 V reference / 1  
4.1  
VADIV selected as input using  
VDD/1  
2.4  
µA  
silabs.com | Building a more connected world.  
Rev. 1.2 | 84  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
HYSTSEL5 = HYST0  
HYSTSEL5 = HYST1  
HYSTSEL5 = HYST2  
HYSTSEL5 = HYST3  
HYSTSEL5 = HYST4  
HYSTSEL5 = HYST5  
HYSTSEL5 = HYST6  
HYSTSEL5 = HYST7  
HYSTSEL5 = HYST8  
HYSTSEL5 = HYST9  
HYSTSEL5 = HYST10  
HYSTSEL5 = HYST11  
HYSTSEL5 = HYST12  
HYSTSEL5 = HYST13  
HYSTSEL5 = HYST14  
HYSTSEL5 = HYST15  
BIASPROG4 = 1, FULLBIAS4 = 0  
Hysteresis (VCM = 1.25 V,  
BIASPROG4 = 0x10, FULL-  
BIAS4 = 1)  
VACMPHYST  
-3  
0
3
mV  
5
12  
18  
33  
27  
50  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
µs  
17  
46  
67  
23  
57  
86  
26  
68  
104  
130  
155  
3
30  
79  
34  
90  
-3  
0
-27  
-50  
-67  
-86  
-104  
-130  
-155  
-18  
-33  
-45  
-57  
-67  
-78  
-88  
30  
-5  
-12  
-17  
-23  
-26  
-30  
-34  
95  
Comparator delay3  
tACMPDELAY  
BIASPROG4 = 0x10, FULLBIAS4  
= 0  
3.7  
10  
µs  
BIASPROG4 = 0x02, FULLBIAS4  
= 1  
360  
35  
1000  
ns  
ns  
BIASPROG4 = 0x20, FULLBIAS4  
= 1  
BIASPROG4 =0x10, FULLBIAS4  
= 1  
Offset voltage  
VACMPOFFSET  
-35  
35  
mV  
Reference voltage  
VACMPREF  
Internal 1.25 V reference  
Internal 2.5 V reference  
1
1.25  
2.5  
1.47  
2.8  
V
V
1.98  
CSRESSEL6 = 0  
CSRESSEL6 = 1  
CSRESSEL6 = 2  
CSRESSEL6 = 3  
CSRESSEL6 = 4  
CSRESSEL6 = 5  
CSRESSEL6 = 6  
CSRESSEL6 = 7  
Capacitive sense internal re- RCSRES  
sistance  
infinite  
kΩ  
15  
27  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
39  
51  
102  
164  
239  
silabs.com | Building a more connected world.  
Rev. 1.2 | 85  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. ACMPVDD is a supply chosen by the setting in ACMPn_CTRL_PWRSEL and may be IOVDD, AVDD or DVDD.  
2. The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference. IACMPTOTAL = IACMP  
IACMPREF  
+
.
3. ± 100 mV differential drive.  
4. In ACMPn_CTRL register.  
5. In ACMPn_HYSTERESIS registers.  
6. In ACMPn_INPUTSEL register.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 86  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.18 Digital to Analog Converter (VDAC)  
DRIVESTRENGTH = 2 unless otherwise specified. Primary VDAC output.  
Table 4.42. Digital to Analog Converter (VDAC)  
Parameter  
Symbol  
Test Condition  
Single-Ended  
Min  
Typ  
Max  
Unit  
V
Output voltage  
VDACOUT  
0
VVREF  
VVREF  
Differential2  
-VVREF  
V
Current consumption includ- IDAC  
ing references (2 channels)1  
500 ksps, 12-bit, DRIVES-  
TRENGTH = 2, REFSEL = 4  
396  
72  
µA  
µA  
µA  
44.1 ksps, 12-bit, DRIVES-  
TRENGTH = 1, REFSEL = 4  
200 Hz refresh rate, 12-bit Sam-  
ple-Off mode in EM2, DRIVES-  
TRENGTH = 2, BGRREQTIME =  
1, EM2REFENTIME = 9, REFSEL  
= 4, SETTLETIME = 0x0A, WAR-  
MUPTIME = 0x02  
1.2  
Current from HFPERCLK4  
Sample rate  
IDAC_CLK  
2
5
2.5  
500  
1
µA/MHz  
ksps  
MHz  
µs  
SRDAC  
DAC clock frequency  
Conversion time  
Settling time  
fDAC  
tDACCONV  
tDACSETTLE  
tDACSTARTUP  
fDAC = 1MHz  
50% fs step settling to 5 LSB  
µs  
Startup time  
Enable to 90% fs output, settling  
to 10 LSB  
12  
µs  
Output impedance  
ROUT  
DRIVESTRENGTH = 2, 0.4 V ≤  
VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Full supply range  
2
2
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <  
IOUT < 400 µA, Full supply range  
DRIVESTRENGTH = 2, 0.1 V ≤  
VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Full supply range  
2
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <  
IOUT < 100 µA, Full supply range  
2
Power supply rejection ratio6  
PSRR  
Vout = 50% fs. DC  
65.5  
dB  
silabs.com | Building a more connected world.  
Rev. 1.2 | 87  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Signal to noise and distortion SNDRDAC  
ratio (1 kHz sine wave),  
Noise band limited to 250  
kHz  
500 ksps, single-ended, internal  
1.25V reference  
60.4  
dB  
500 ksps, single-ended, internal  
2.5V reference  
61.6  
64.0  
63.3  
64.4  
65.8  
65.3  
66.7  
70.0  
67.8  
69.0  
68.5  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3V VDD  
reference  
Signal to noise and distortion SNDRDAC_BAND 500 ksps, single-ended, internal  
ratio (1 kHz sine wave),  
Noise band limited to 22 kHz  
1.25V reference  
500 ksps, single-ended, internal  
2.5V reference  
500 ksps, single-ended, 3.3V  
VDD reference  
500 ksps, differential, internal  
1.25V reference  
500 ksps, differential, internal  
2.5V reference  
500 ksps, differential, 3.3V VDD  
reference  
Total harmonic distortion  
THD  
70.2  
1
dB  
Differential non-linearity3  
Intergral non-linearity  
DNLDAC  
-0.99  
LSB  
INLDAC  
-4  
-8  
4
8
LSB  
mV  
mV  
Offset error5  
VOFFSET  
T = 25 °C  
Across operating temperature  
range  
-25  
25  
Gain error5  
VGAIN  
T = 25 °C, Low-noise internal ref-  
erence (REFSEL = 1V25LN or  
2V5LN)  
-2.5  
2.5  
%
T = 25 °C, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-5  
5
%
%
%
T = 25 °C, External reference  
(REFSEL = VDD or EXT)  
-1.8  
-3.5  
1.8  
3.5  
Across operating temperature  
range, Low-noise internal refer-  
ence (REFSEL = 1V25LN or  
2V5LN)  
Across operating temperature  
range, Internal reference (RE-  
FSEL = 1V25 or 2V5)  
-7.5  
-2.0  
7.5  
2.0  
%
%
Across operating temperature  
range, External reference (RE-  
FSEL = VDD or EXT)  
silabs.com | Building a more connected world.  
Rev. 1.2 | 88  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
External load capactiance,  
OUTSCALE=0  
CLOAD  
75  
pF  
Note:  
1. Supply current specifications are for VDAC circuitry operating with static output only and do not include current required to drive  
the load.  
2. In differential mode, the output is defined as the difference between two single-ended outputs. Absolute voltage on each output is  
limited to the single-ended range.  
3. Entire range is monotonic and has no missing codes.  
4. Current from HFPERCLK is dependent on HFPERCLK frequency. This current contributes to the total supply current used when  
the clock to the DAC module is enabled in the CMU.  
5. Gain is calculated by measuring the slope from 10% to 90% of full scale. Offset is calculated by comparing actual VDAC output at  
10% of full scale to ideal VDAC output at 10% of full scale with the measured gain.  
6. PSRR calculated as 20 * log10(ΔVDD / ΔVOUT), VDAC output at 90% of full scale  
silabs.com | Building a more connected world.  
Rev. 1.2 | 89  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.19 Current Digital to Analog Converter (IDAC)  
Table 4.43. Current Digital to Analog Converter (IDAC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
4
Max  
Unit  
ranges  
µA  
Number of ranges  
Output current  
NIDAC_RANGES  
IIDAC_OUT  
RANGSEL1 = RANGE0  
RANGSEL1 = RANGE1  
RANGSEL1 = RANGE2  
RANGSEL1 = RANGE3  
0.05  
1.6  
1.6  
0.5  
2
32  
4.7  
16  
64  
µA  
µA  
µA  
Linear steps within each  
range  
NIDAC_STEPS  
steps  
RANGSEL1 = RANGE0  
RANGSEL1 = RANGE1  
RANGSEL1 = RANGE2  
RANGSEL1 = RANGE3  
Step size  
SSIDAC  
-3  
50  
100  
500  
2
3
nA  
nA  
nA  
µA  
%
Total accuracy, STEPSEL1 =  
0x10  
ACCIDAC  
EM0 or EM1, AVDD=3.3 V, T = 25  
°C  
EM0 or EM1, Across operating  
temperature range  
-18  
-2  
22  
%
%
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE0,  
AVDD=3.3 V, T = 25 °C  
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE1,  
AVDD=3.3 V, T = 25 °C  
-1.7  
-0.8  
-0.5  
-0.7  
-0.6  
-0.5  
-0.5  
%
%
%
%
%
%
%
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE2,  
AVDD=3.3 V, T = 25 °C  
EM2 or EM3, Source mode,  
RANGSEL1 = RANGE3,  
AVDD=3.3 V, T = 25 °C  
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE0, AVDD=3.3 V, T  
= 25 °C  
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE1, AVDD=3.3 V, T  
= 25 °C  
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE2, AVDD=3.3 V, T  
= 25 °C  
EM2 or EM3, Sink mode, RANG-  
SEL1 = RANGE3, AVDD=3.3 V, T  
= 25 °C  
silabs.com | Building a more connected world.  
Rev. 1.2 | 90  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Start up time  
tIDAC_SU  
Output within 1% of steady state  
value  
5
µs  
Settling time, (output settled tIDAC_SETTLE  
within 1% of steady state val-  
ue),  
Range setting is changed  
Step value is changed  
5
1
µs  
µs  
Current consumption2  
IIDAC  
EM0 or EM1 Source mode, ex-  
cluding output current, Across op-  
erating temperature range  
11  
15  
µA  
EM0 or EM1 Sink mode, exclud-  
ing output current, Across operat-  
ing temperature range  
13  
18  
µA  
EM2 or EM3 Source mode, ex-  
cluding output current, T = 25 °C  
0.050  
0.075  
11  
µA  
µA  
µA  
µA  
%
EM2 or EM3 Sink mode, exclud-  
ing output current, T = 25 °C  
EM2 or EM3 Source mode, ex-  
cluding output current, T ≥ 85 °C  
EM2 or EM3 Sink mode, exclud-  
ing output current, T ≥ 85 °C  
13  
Output voltage compliance in ICOMP_SRC  
source mode, source current  
change relative to current  
sourced at 0 V  
RANGESEL1=0, output voltage =  
min(VIOVDD, VAVDD2-100 mv)  
0.11  
RANGESEL1=1, output voltage =  
min(VIOVDD, VAVDD2-100 mV)  
0.06  
0.04  
0.03  
%
%
%
RANGESEL1=2, output voltage =  
min(VIOVDD, VAVDD2-150 mV)  
RANGESEL1=3, output voltage =  
min(VIOVDD, VAVDD2-250 mV)  
Output voltage compliance in ICOMP_SINK  
sink mode, sink current  
change relative to current  
sunk at IOVDD  
RANGESEL1=0, output voltage =  
100 mV  
0.12  
0.05  
0.04  
0.03  
%
%
%
%
RANGESEL1=1, output voltage =  
100 mV  
RANGESEL1=2, output voltage =  
150 mV  
RANGESEL1=3, output voltage =  
250 mV  
Note:  
1. In IDAC_CURPROG register.  
2. The IDAC is supplied by either AVDD, DVDD, or IOVDD based on the setting of ANASW in the EMU_PWRCTRL register and  
PWRSEL in the IDAC_CTRL register. Setting PWRSEL to 1 selects IOVDD. With PWRSEL cleared to 0, ANASW selects be-  
tween AVDD (0) and DVDD (1).  
silabs.com | Building a more connected world.  
Rev. 1.2 | 91  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.20 Operational Amplifier (OPAMP)  
Unless otherwise indicated, specified conditions are: Non-inverting input configuration, VDD = 3.3 V, DRIVESTRENGTH = 2, MAIN-  
OUTEN = 1, CLOAD = 75 pF with OUTSCALE = 0, or CLOAD = 37.5 pF with OUTSCALE = 1. Unit gain buffer and 3X-gain connection as  
specified in table footnotes8 1  
.
Table 4.44. Operational Amplifier (OPAMP)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply voltage (from AVDD) VOPA  
HCMDIS = 0, Rail-to-rail input  
range  
2
3.8  
V
HCMDIS = 1  
1.62  
3.8  
V
V
Input voltage  
VIN  
HCMDIS = 0, Rail-to-rail input  
range  
VVSS  
VOPA  
HCMDIS = 1  
VVSS  
100  
VVSS  
VOPA-1.2  
V
MΩ  
V
Input impedance  
Output voltage  
RIN  
VOUT  
CLOAD  
VOPA  
75  
Load capacitance2  
OUTSCALE = 0  
OUTSCALE = 1  
pF  
pF  
37.5  
Output impedance  
ROUT  
DRIVESTRENGTH = 2 or 3, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -8 mA <  
IOUT < 8 mA, Buffer connection,  
Full supply range  
0.25  
DRIVESTRENGTH = 0 or 1, 0.4 V  
≤ VOUT ≤ VOPA - 0.4 V, -400 µA <  
IOUT < 400 µA, Buffer connection,  
Full supply range  
0.6  
0.4  
1
DRIVESTRENGTH = 2 or 3, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -2 mA <  
IOUT < 2 mA, Buffer connection,  
Full supply range  
DRIVESTRENGTH = 0 or 1, 0.1 V  
≤ VOUT ≤ VOPA - 0.1 V, -100 µA <  
IOUT < 100 µA, Buffer connection,  
Full supply range  
Internal closed-loop gain  
Active current4  
GCL  
Buffer connection  
3x Gain connection  
16x Gain connection  
0.99  
2.93  
15.07  
1
1.01  
3.05  
16.33  
-
-
2.99  
15.7  
580  
-
IOPA  
DRIVESTRENGTH = 3, OUT-  
SCALE = 0  
µA  
DRIVESTRENGTH = 2, OUT-  
SCALE = 0  
176  
13  
µA  
µA  
µA  
DRIVESTRENGTH = 1, OUT-  
SCALE = 0  
DRIVESTRENGTH = 0, OUT-  
SCALE = 0  
4.7  
silabs.com | Building a more connected world.  
Rev. 1.2 | 92  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
135  
137  
121  
109  
3.38  
Max  
Unit  
dB  
Open-loop gain  
GOL  
DRIVESTRENGTH = 3  
DRIVESTRENGTH = 2  
DRIVESTRENGTH = 1  
DRIVESTRENGTH = 0  
dB  
dB  
dB  
Loop unit-gain frequency7  
UGF  
DRIVESTRENGTH = 3, Buffer  
connection  
MHz  
DRIVESTRENGTH = 2, Buffer  
connection  
0.9  
132  
34  
MHz  
kHz  
DRIVESTRENGTH = 1, Buffer  
connection  
DRIVESTRENGTH = 0, Buffer  
connection  
kHz  
DRIVESTRENGTH = 3, 3x Gain  
connection  
2.57  
0.71  
113  
28  
MHz  
MHz  
kHz  
DRIVESTRENGTH = 2, 3x Gain  
connection  
DRIVESTRENGTH = 1, 3x Gain  
connection  
DRIVESTRENGTH = 0, 3x Gain  
connection  
kHz  
Phase margin  
PM  
DRIVESTRENGTH = 3, Buffer  
connection  
67  
°
DRIVESTRENGTH = 2, Buffer  
connection  
69  
°
DRIVESTRENGTH = 1, Buffer  
connection  
63  
°
DRIVESTRENGTH = 0, Buffer  
connection  
68  
°
Output voltage noise  
NOUT  
DRIVESTRENGTH = 3, Buffer  
connection, 10 Hz - 10 MHz  
146  
163  
170  
176  
313  
271  
247  
245  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
µVrms  
DRIVESTRENGTH = 2, Buffer  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, Buffer  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 0, Buffer  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 3, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 2, 3x Gain  
connection, 10 Hz - 10 MHz  
DRIVESTRENGTH = 1, 3x Gain  
connection, 10 Hz - 1 MHz  
DRIVESTRENGTH = 0, 3x Gain  
connection, 10 Hz - 1 MHz  
silabs.com | Building a more connected world.  
Rev. 1.2 | 93  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Slew rate5  
SR  
DRIVESTRENGTH = 3,  
INCBW=13  
4.7  
V/µs  
DRIVESTRENGTH = 3,  
INCBW=0  
1.5  
V/µs  
V/µs  
DRIVESTRENGTH = 2,  
INCBW=13  
1.27  
DRIVESTRENGTH = 2,  
INCBW=0  
0.42  
0.17  
V/µs  
V/µs  
DRIVESTRENGTH = 1,  
INCBW=13  
DRIVESTRENGTH = 1,  
INCBW=0  
0.058  
0.044  
V/µs  
V/µs  
DRIVESTRENGTH = 0,  
INCBW=13  
DRIVESTRENGTH = 0,  
INCBW=0  
0.015  
V/µs  
Startup time6  
TSTART  
VOSI  
DRIVESTRENGTH = 2  
-2  
12  
2
µs  
Input offset voltage  
DRIVESTRENGTH = 2 or 3, T =  
25 °C  
mV  
DRIVESTRENGTH = 1 or 0, T =  
25 °C  
-2  
2
mV  
mV  
DRIVESTRENGTH = 2 or 3,  
across operating temperature  
range  
-12  
12  
DRIVESTRENGTH = 1 or 0,  
across operating temperature  
range  
-30  
30  
mV  
DC power supply rejection  
ratio9  
PSRRDC  
Input referred  
70  
70  
90  
dB  
dB  
dB  
DC common-mode rejection CMRRDC  
ratio9  
Input referred  
Total harmonic distortion  
THDOPA  
DRIVESTRENGTH = 2, 3x Gain  
connection, 1 kHz, VOUT = 0.1 V  
to VOPA - 0.1 V  
DRIVESTRENGTH = 0, 3x Gain  
connection, 0.1 kHz, VOUT = 0.1 V  
to VOPA - 0.1 V  
90  
dB  
silabs.com | Building a more connected world.  
Rev. 1.2 | 94  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Specified configuration for 3X-Gain configuration is: INCBW = 1, HCMDIS = 1, RESINSEL = VSS, VINPUT = 0.5 V, VOUTPUT = 1.5  
V. Nominal voltage gain is 3.  
2. If the maximum CLOAD is exceeded, an isolation resistor is required for stability. See AN0038 for more information.  
3. When INCBW is set to 1 the OPAMP bandwidth is increased. This is allowed only when the non-inverting close-loop gain is ≥ 3,  
or the OPAMP may not be stable.  
4. Current into the load resistor is excluded. When the OPAMP is connected with closed-loop gain > 1, there will be extra current to  
drive the resistor feedback network. The internal resistor feedback network has total resistance of 143.5 kOhm, which will cause  
another ~10 µA current when the OPAMP drives 1.5 V between output and ground.  
5. Step between 0.2V and VOPA-0.2V, 10%-90% rising/falling range.  
6. From enable to output settled. In sample-and-off mode, RC network after OPAMP will contribute extra delay. Settling error < 1mV.  
7. In unit gain connection, UGF is the gain-bandwidth product of the OPAMP. In 3x Gain connection, UGF is the gain-bandwidth  
product of the OPAMP and 1/3 attenuation of the feedback network.  
8. Specified configuration for Unit gain buffer configuration is: INCBW = 0, HCMDIS = 0, RESINSEL = DISABLE. VINPUT = 0.5 V,  
VOUTPUT = 0.5 V.  
9. When HCMDIS=1 and input common mode transitions the region from VOPA-1.4V to VOPA-1V, input offset will change. PSRR  
and CMRR specifications do not apply to this transition region.  
4.1.21 Pulse Counter (PCNT)  
Table 4.45. Pulse Counter (PCNT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input frequency  
FIN  
Asynchronous Single and Quad-  
rature Modes  
10  
MHz  
Sampled Modes with Debounce  
filter set to 0.  
8
kHz  
4.1.22 Analog Port (APORT)  
Table 4.46. Analog Port (APORT)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
7
Max  
Unit  
µA  
Supply current2 1  
IAPORT  
Operation in EM0/EM1  
Operation in EM2/EM3  
63  
nA  
Note:  
1. Specified current is for continuous APORT operation. In applications where the APORT is not requested continuously (e.g. peri-  
odic ACMP requests from LESENSE in EM2), the average current requirements can be estimated by mutiplying the duty cycle of  
the requests by the specified continuous current number.  
2. Supply current increase that occurs when an analog peripheral requests access to APORT. This current is not included in repor-  
ted module currents. Additional peripherals requesting access to APORT do not incur further current.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 95  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.23 I2C  
4.1.23.1 I2C Standard-mode (Sm)1  
Table 4.47. I2C Standard-mode (Sm)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
100  
kHz  
tLOW  
4.7  
4
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
250  
100  
4.7  
SDA hold time3  
3450  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
4
µs  
STOP condition set-up time tSU_STO  
4
µs  
µs  
Bus free time between a  
tBUF  
4.7  
STOP and START condition  
Note:  
1. For CLHR set to 0 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Standard-mode, refer to the I2C chapter in the reference manual.  
3. The maximum SDA hold time (tHD_DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
silabs.com | Building a more connected world.  
Rev. 1.2 | 96  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.23.2 I2C Fast-mode (Fm)1  
Table 4.48. I2C Fast-mode (Fm)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
400  
kHz  
tLOW  
1.3  
0.6  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
100  
100  
0.6  
SDA hold time3  
900  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.6  
µs  
STOP condition set-up time tSU_STO  
0.6  
1.3  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 1 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Fast-mode, refer to the I2C chapter in the reference manual.  
3. The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
silabs.com | Building a more connected world.  
Rev. 1.2 | 97  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.23.3 I2C Fast-mode Plus (Fm+)1  
Table 4.49. I2C Fast-mode Plus (Fm+)1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCL clock frequency2  
SCL clock low time  
SCL clock high time  
SDA set-up time  
fSCL  
0
1000  
kHz  
tLOW  
0.5  
0.26  
50  
µs  
µs  
ns  
ns  
µs  
tHIGH  
tSU_DAT  
tHD_DAT  
SDA hold time  
100  
0.26  
Repeated START condition tSU_STA  
set-up time  
(Repeated) START condition tHD_STA  
hold time  
0.26  
µs  
STOP condition set-up time tSU_STO  
0.26  
0.5  
µs  
µs  
Bus free time between a  
tBUF  
STOP and START condition  
Note:  
1. For CLHR set to 0 or 1 in the I2Cn_CTRL register.  
2. For the minimum HFPERCLK frequency required in Fast-mode Plus, refer to the I2C chapter in the reference manual.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 98  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.1.24 USART SPI  
SPI Master Timing  
Table 4.50. SPI Master Timing  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 3 2  
tSCLK  
2 *  
tHFPERCLK  
ns  
CS to MOSI 1 3  
tCS_MO  
tSCLK_MO  
tSU_MI  
-34  
34  
ns  
ns  
SCLK to MOSI 1 3  
MISO setup time 1 3  
-17.5  
17.5  
IOVDD = 1.62 V  
IOVDD = 3.0 V  
94  
48  
-9  
ns  
ns  
ns  
MISO hold time 1 3  
tH_MI  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. tHFPERCLK is one period of the selected HFPERCLK.  
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
tCS_MO  
CS  
tSCKL_MO  
SCLK  
CLKPOL = 0  
tSCLK  
SCLK  
CLKPOL = 1  
MOSI  
MISO  
tSU_MI  
tH_MI  
Figure 4.1. SPI Master Timing Diagram  
silabs.com | Building a more connected world.  
Rev. 1.2 | 99  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
SPI Slave Timing  
Table 4.51. SPI Slave Timing  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SCLK period 1 3 2  
tSCLK  
6 *  
tHFPERCLK  
ns  
SCLK high time1 3 2  
SCLK low time1 3 2  
tSCLK_HI  
2.5 *  
tHFPERCLK  
ns  
ns  
tSCLK_LO  
2.5 *  
tHFPERCLK  
CS active to MISO 1 3  
CS disable to MISO 1 3  
MOSI setup time 1 3  
MOSI hold time 1 3 2  
SCLK to MISO 1 3 2  
tCS_ACT_MI  
tCS_DIS_MI  
tSU_MO  
4
4
70  
50  
ns  
ns  
ns  
ns  
ns  
12.5  
13  
tH_MO  
tSCLK_MI  
6 + 1.5 *  
tHFPERCLK  
45 + 2.5 *  
tHFPERCLK  
Note:  
1. Applies for both CLKPHA = 0 and CLKPHA = 1 (figure only shows CLKPHA = 0).  
2. tHFPERCLK is one period of the selected HFPERCLK.  
3. Measurement done with 8 pF output loading at 10% and 90% of VDD (figure shows 50% of VDD).  
tCS_ACT_MI  
CS  
tCS_DIS_MI  
SCLK  
CLKPOL = 0  
tSCLK_HI  
tSCLK_LO  
SCLK  
tSU_MO  
CLKPOL = 1  
tSCLK  
tH_MO  
MOSI  
MISO  
tSCLK_MI  
Figure 4.2. SPI Slave Timing Diagram  
4.2 Typical Performance Curves  
Typical performance curves indicate typical characterized performance under the stated conditions.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 100  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.2.1 Supply Current  
Figure 4.3. EM0 Active Mode Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.2 | 101  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Figure 4.4. EM1 Sleep Mode Typical Supply Current vs. Temperature  
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 102  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Figure 4.5. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Temperature  
silabs.com | Building a more connected world.  
Rev. 1.2 | 103  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Figure 4.6. EM0 and EM1 Mode Typical Supply Current vs. Supply  
Typical supply current for EM2, EM3 and EM4H using standard software libraries from Silicon Laboratories.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 104  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Figure 4.7. EM2, EM3, EM4H and EM4S Typical Supply Current vs. Supply  
silabs.com | Building a more connected world.  
Rev. 1.2 | 105  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.2.2 DC-DC Converter  
Default test conditions: CCM mode, LDCDC = 4.7 μH, CDCDC = 4.7 μF, VDCDC_I = 3.3 V, VDCDC_O = 1.8 V, FDCDC_LN = 7 MHz  
Figure 4.8. DC-DC Converter Typical Performance Characteristics  
silabs.com | Building a more connected world.  
Rev. 1.2 | 106  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Load Step Response in LN (CCM) mode  
(Heavy Drive)  
LN (CCM) and LP mode transition (load: 5mA)  
DVDD  
DVDD  
20mV/div  
offset:1.8V  
60mV/div  
offset:1.8V  
100mA  
ILOAD  
1mA  
VSW  
2V/div  
offset:1.8V  
10μs/div  
100μs/div  
Figure 4.9. DC-DC Converter Transition Waveforms  
silabs.com | Building a more connected world.  
Rev. 1.2 | 107  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
4.2.3 2.4 GHz Radio  
Figure 4.10. 2.4 GHz RF Transmitter Output Power  
silabs.com | Building a more connected world.  
Rev. 1.2 | 108  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Electrical Specifications  
Figure 4.11. 2.4 GHz RF Receiver Sensitivity  
silabs.com | Building a more connected world.  
Rev. 1.2 | 109  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Typical Connection Diagrams  
5. Typical Connection Diagrams  
5.1 Power  
Typical power supply connections for direct supply, without using the internal DC-DC converter, are shown in the following figure.  
VDD  
Main  
Supply  
+
VREGVDD  
AVDD  
IOVDD  
VREGSW  
HFXTAL_N  
HFXTAL_P  
LFXTAL_N  
LFXTAL_P  
VREGVSS  
DVDD  
DECOUPLE  
RFVDD  
PAVDD  
Figure 5.1. EFR32FG14 Typical Application Circuit: Direct Supply Configuration without DC-DC converter  
Typical power supply circuits using the internal DC-DC converter are shown below. The MCU operates from the DC-DC converter sup-  
ply. For low RF transmit power applications less than 13dBm, the RF PA may be supplied by the DC-DC converter. For OPNs support-  
ing high power RF transmission, the RF PA must be directly supplied by VDD for RF transmit power greater than 13 dBm.  
VDD  
Main  
Supply  
+
VREGVDD  
AVDD  
IOVDD  
VDCDC  
VREGSW  
HFXTAL_N  
HFXTAL_P  
LFXTAL_N  
LFXTAL_P  
VREGVSS  
DVDD  
DECOUPLE  
RFVDD  
PAVDD  
Figure 5.2. EFR32FG14 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDCDC)  
silabs.com | Building a more connected world.  
Rev. 1.2 | 110  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Typical Connection Diagrams  
VDD  
Main  
Supply  
+
VREGVDD  
AVDD  
IOVDD  
VDCDC  
VREGSW  
HFXTAL_N  
HFXTAL_P  
LFXTAL_N  
LFXTAL_P  
VREGVSS  
DVDD  
DECOUPLE  
RFVDD  
PAVDD  
Figure 5.3. EFR32FG14 Typical Application Circuit: Configuration with DC-DC converter (PAVDD from VDD)  
silabs.com | Building a more connected world.  
Rev. 1.2 | 111  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Typical Connection Diagrams  
5.2 RF Matching Networks  
Typical RF matching network circuit diagrams are shown in Figure 5.4 Typical 2.4 GHz RF impedance-matching network circuits on  
page 112 for applications in the 2.4 GHz band, and in Figure 5.5 Typical Sub-GHz RF impedance-matching network circuits on page  
112 for applications in the sub-GHz band. Application-specific component values can be found in the EFR32xG13 Reference Manual.  
For low RF transmit power applications less than 13 dBm, the two-element match is recommended. For OPNs supporting high power  
RF transmission, the four-element match is recommended for high RF transmit power (> 13 dBm).  
4-Element Match for 2.4GHz Band  
2-Element Match for 2.4GHz Band  
PAVDD  
PAVDD  
PAVDD  
PAVDD  
2G4RF_IOP  
2G4RF_ION  
L0  
L0  
L1  
2G4RF_IOP  
2G4RF_ION  
50Ω  
50Ω  
C0  
C0  
C1  
Figure 5.4. Typical 2.4 GHz RF impedance-matching network circuits  
Sub-GHz Match Topology I (169-500 MHz)  
PAVDD  
L1  
L2  
C0  
L3  
C5  
L5  
L6  
L7  
SUBGRF_IN  
SUBGRF_IP  
50Ω  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
L0  
C1  
L4  
C6  
BAL1  
SUBGRF_ON  
SUBGRF_OP  
Sub-GHz Match Topology 2 (500-915 MHz)  
C0  
L3  
PAVDD  
L5  
L6  
SUBGRF_IN  
50Ω  
L0  
C4  
C7  
C8  
C9  
SUBGRF_IP  
L4  
BAL1  
C1  
SUBGRF_ON  
SUBGRF_OP  
Figure 5.5. Typical Sub-GHz RF impedance-matching network circuits  
silabs.com | Building a more connected world.  
Rev. 1.2 | 112  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Typical Connection Diagrams  
5.3 Other Connections  
Other components or connections may be required to meet the system-level requirements. Application Note AN0002: "Hardware De-  
sign Considerations" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs  
website (www.silabs.com/32bit-appnotes).  
silabs.com | Building a more connected world.  
Rev. 1.2 | 113  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6. Pin Definitions  
6.1 QFN48 2.4 GHz and Sub-GHz Device Pinout  
Figure 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.6 GPIO Functionality Table or 6.7 Alternate Functionality Overview.  
Table 6.1. QFN48 2.4 GHz and Sub-GHz Device Pinout  
Pin Name  
VSS  
Pin(s) Description  
Pin Name  
PF0  
Pin(s) Description  
0
2
Ground  
1
3
GPIO (5V)  
PF1  
GPIO (5V)  
PF2  
GPIO (5V)  
PF3  
4
GPIO (5V)  
PF4  
5
GPIO (5V)  
PF5  
6
GPIO (5V)  
PF6  
7
GPIO (5V)  
PF7  
8
GPIO (5V)  
RFVDD  
HFXTAL_P  
9
Radio power supply  
High Frequency Crystal output pin.  
HFXTAL_N  
10  
High Frequency Crystal input pin.  
11  
silabs.com | Building a more connected world.  
Rev. 1.2 | 114  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Reset input, active low. To apply an ex-  
Pin Name  
Pin(s) Description  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
Sub GHz Differential RF output, positive  
path.  
RESETn  
12  
SUBGRF_OP  
13  
Sub GHz Differential RF output, nega-  
tive path.  
Sub GHz Differential RF input, positive  
path.  
SUBGRF_ON  
SUBGRF_IN  
14  
16  
SUBGRF_IP  
RFVSS  
15  
17  
Sub GHz Differential RF input, negative  
path.  
Radio Ground  
2.4 GHz Differential RF input/output,  
negative path. This pin should be exter-  
nally grounded.  
Power Amplifier (PA) voltage regulator  
VSS  
PAVSS  
18  
20  
2G4RF_ION  
PAVDD  
19  
21  
2.4 GHz Differential RF input/output,  
positive path.  
Power Amplifier (PA) voltage regulator  
VDD input  
2G4RF_IOP  
PD13  
PD15  
PA1  
22  
24  
26  
28  
30  
32  
34  
36  
38  
GPIO  
PD14  
PA0  
23  
25  
27  
29  
31  
33  
35  
37  
39  
GPIO  
GPIO  
GPIO  
GPIO  
PA2  
GPIO  
PA3  
GPIO  
PA4  
GPIO  
PA5  
GPIO (5V)  
PB11  
GPIO (5V)  
PB12  
AVDD  
PB15  
VREGSW  
GPIO (5V)  
PB13  
GPIO (5V)  
Analog power supply.  
GPIO  
PB14  
GPIO  
VREGVSS  
VREGVDD  
Voltage regulator VSS  
Voltage regulator VDD input  
DCDC regulator switching node  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
DVDD  
40  
Digital power supply.  
DECOUPLE  
41  
IOVDD  
PC7  
42  
44  
46  
48  
Digital IO power supply.  
GPIO (5V)  
PC6  
PC8  
43  
45  
47  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
PC9  
GPIO (5V)  
PC10  
PC11  
Note:  
GPIO (5V)  
1. GPIO with 5V tolerance are indicated by (5V).  
2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-  
ware compatibility, do not use these pins with 5V domains.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 115  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.2 QFN48 2.4 GHz Device Pinout  
Figure 6.2. QFN48 2.4 GHz Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.6 GPIO Functionality Table or 6.7 Alternate Functionality Overview.  
Table 6.2. QFN48 2.4 GHz Device Pinout  
Pin Name  
VSS  
Pin(s) Description  
Pin Name  
PF0  
Pin(s) Description  
0
2
Ground  
1
3
GPIO (5V)  
PF1  
GPIO (5V)  
PF2  
GPIO (5V)  
PF3  
4
GPIO (5V)  
PF4  
5
GPIO (5V)  
PF5  
6
GPIO (5V)  
PF6  
7
GPIO (5V)  
PF7  
8
GPIO (5V)  
RFVDD  
HFXTAL_P  
9
Radio power supply  
High Frequency Crystal output pin.  
HFXTAL_N  
10  
High Frequency Crystal input pin.  
11  
silabs.com | Building a more connected world.  
Rev. 1.2 | 116  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Reset input, active low. To apply an ex-  
Pin Name  
Pin(s) Description  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
RESETn  
12  
NC  
13  
No Connect.  
Power Amplifier (PA) voltage regulator  
VSS  
RFVSS  
2G4RF_ION  
PAVDD  
14  
16  
18  
Radio Ground  
PAVSS  
2G4RF_IOP  
PD10  
15  
17  
19  
2.4 GHz Differential RF input/output,  
negative path. This pin should be exter-  
nally grounded.  
2.4 GHz Differential RF input/output,  
positive path.  
Power Amplifier (PA) voltage regulator  
VDD input  
GPIO (5V)  
PD11  
PD13  
PD15  
PA1  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
GPIO (5V)  
PD12  
PD14  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
GPIO (5V)  
GPIO  
GPIO  
GPIO  
PA0  
GPIO  
GPIO  
PA2  
GPIO  
PA3  
GPIO  
PA4  
GPIO  
PA5  
GPIO (5V)  
PB11  
GPIO (5V)  
PB12  
AVDD  
PB15  
VREGSW  
GPIO (5V)  
PB13  
GPIO (5V)  
Analog power supply.  
GPIO  
PB14  
GPIO  
VREGVSS  
VREGVDD  
Voltage regulator VSS  
Voltage regulator VDD input  
DCDC regulator switching node  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
DVDD  
40  
Digital power supply.  
DECOUPLE  
41  
IOVDD  
PC7  
42  
44  
46  
48  
Digital IO power supply.  
GPIO (5V)  
PC6  
PC8  
43  
45  
47  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
PC9  
GPIO (5V)  
PC10  
PC11  
GPIO (5V)  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-  
ware compatibility, do not use these pins with 5V domains.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 117  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.3 QFN48 Sub-GHz Device Pinout  
Figure 6.3. QFN48 Sub-GHz Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.6 GPIO Functionality Table or 6.7 Alternate Functionality Overview.  
Table 6.3. QFN48 Sub-GHz Device Pinout  
Pin Name  
VSS  
Pin(s) Description  
Pin Name  
PF0  
Pin(s) Description  
0
2
Ground  
1
3
GPIO (5V)  
PF1  
GPIO (5V)  
PF2  
GPIO (5V)  
PF3  
4
GPIO (5V)  
PF4  
5
GPIO (5V)  
PF5  
6
GPIO (5V)  
PF6  
7
GPIO (5V)  
PF7  
8
GPIO (5V)  
RFVDD  
HFXTAL_P  
9
Radio power supply  
High Frequency Crystal output pin.  
HFXTAL_N  
10  
High Frequency Crystal input pin.  
11  
silabs.com | Building a more connected world.  
Rev. 1.2 | 118  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Reset input, active low. To apply an ex-  
Pin Name  
Pin(s) Description  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
Sub GHz Differential RF output, positive  
path.  
RESETn  
12  
SUBGRF_OP  
13  
Sub GHz Differential RF output, nega-  
tive path.  
Sub GHz Differential RF input, positive  
path.  
SUBGRF_ON  
SUBGRF_IN  
14  
16  
SUBGRF_IP  
RFVSS  
15  
17  
Sub GHz Differential RF input, negative  
path.  
Radio Ground  
PD9  
PD11  
PD13  
PD15  
PA1  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
GPIO (5V)  
PD10  
PD12  
19  
21  
23  
25  
27  
29  
31  
33  
35  
37  
39  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
GPIO  
PD14  
GPIO  
GPIO  
PA0  
GPIO  
GPIO  
PA2  
GPIO  
PA3  
GPIO  
PA4  
GPIO  
PA5  
GPIO (5V)  
PB11  
GPIO (5V)  
PB12  
AVDD  
PB15  
VREGSW  
GPIO (5V)  
PB13  
GPIO (5V)  
Analog power supply.  
GPIO  
PB14  
GPIO  
VREGVSS  
VREGVDD  
Voltage regulator VSS  
Voltage regulator VDD input  
DCDC regulator switching node  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
DVDD  
40  
Digital power supply.  
DECOUPLE  
41  
IOVDD  
PC7  
42  
44  
46  
48  
Digital IO power supply.  
GPIO (5V)  
PC6  
PC8  
43  
45  
47  
GPIO (5V)  
GPIO (5V)  
GPIO (5V)  
PC9  
GPIO (5V)  
PC10  
PC11  
GPIO (5V)  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-  
ware compatibility, do not use these pins with 5V domains.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 119  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.4 QFN32 2.4 GHz Device Pinout  
Figure 6.4. QFN32 2.4 GHz Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.6 GPIO Functionality Table or 6.7 Alternate Functionality Overview.  
Table 6.4. QFN32 2.4 GHz Device Pinout  
Pin Name  
VSS  
Pin(s) Description  
Pin Name  
PF0  
Pin(s) Description  
0
2
4
6
Ground  
1
3
5
7
GPIO (5V)  
PF1  
GPIO (5V)  
PF2  
GPIO (5V)  
PF3  
GPIO (5V)  
RFVDD  
HFXTAL_P  
Radio power supply  
High Frequency Crystal output pin.  
HFXTAL_N  
High Frequency Crystal input pin.  
Reset input, active low. To apply an ex-  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
RESETn  
8
RFVSS  
9
Radio Ground  
silabs.com | Building a more connected world.  
Rev. 1.2 | 120  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
2.4 GHz Differential RF input/output,  
Power Amplifier (PA) voltage regulator  
PAVSS  
10  
12  
2G4RF_ION  
PAVDD  
11  
negative path. This pin should be exter-  
nally grounded.  
VSS  
2.4 GHz Differential RF input/output,  
positive path.  
Power Amplifier (PA) voltage regulator  
VDD input  
2G4RF_IOP  
13  
PD13  
PD15  
14  
16  
18  
20  
22  
24  
26  
GPIO  
PD14  
PA0  
15  
17  
19  
21  
23  
25  
27  
GPIO  
GPIO  
GPIO  
PA1  
GPIO  
PB11  
GPIO (5V)  
PB12  
GPIO (5V)  
PB13  
GPIO (5V)  
AVDD  
PB15  
Analog power supply.  
GPIO  
PB14  
GPIO  
VREGVSS  
VREGVDD  
Voltage regulator VSS  
Voltage regulator VDD input  
VREGSW  
DCDC regulator switching node  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
DVDD  
28  
Digital power supply.  
DECOUPLE  
PC10  
29  
31  
IOVDD  
PC11  
30  
32  
Digital IO power supply.  
GPIO (5V)  
GPIO (5V)  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-  
ware compatibility, do not use these pins with 5V domains.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 121  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.5 QFN32 Sub-GHz Device Pinout  
Figure 6.5. QFN32 Sub-GHz Device Pinout  
The following table provides package pin connections and general descriptions of pin functionality. For detailed information on the sup-  
ported features for each GPIO pin, see 6.6 GPIO Functionality Table or 6.7 Alternate Functionality Overview.  
Table 6.5. QFN32 Sub-GHz Device Pinout  
Pin Name  
VSS  
Pin(s) Description  
Pin Name  
PF0  
Pin(s) Description  
0
2
4
6
Ground  
1
3
5
7
GPIO (5V)  
PF1  
GPIO (5V)  
PF2  
GPIO (5V)  
PF3  
GPIO (5V)  
RFVDD  
HFXTAL_P  
Radio power supply  
High Frequency Crystal output pin.  
HFXTAL_N  
High Frequency Crystal input pin.  
Reset input, active low. To apply an ex-  
ternal reset source to this pin, it is re-  
quired to only drive this pin low during  
reset, and let the internal pull-up ensure  
that reset is released.  
Sub GHz Differential RF output, positive  
path.  
RESETn  
8
SUBGRF_OP  
9
silabs.com | Building a more connected world.  
Rev. 1.2 | 122  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Pin Name  
Pin(s) Description  
Pin Name  
Pin(s) Description  
Sub GHz Differential RF output, nega-  
tive path.  
Sub GHz Differential RF input, positive  
path.  
SUBGRF_ON  
10  
12  
SUBGRF_IP  
RFVSS  
11  
13  
Sub GHz Differential RF input, negative  
path.  
SUBGRF_IN  
Radio Ground  
PD13  
PD15  
14  
16  
18  
20  
22  
24  
26  
GPIO  
PD14  
PA0  
15  
17  
19  
21  
23  
25  
27  
GPIO  
GPIO  
GPIO  
PA1  
GPIO  
PB11  
GPIO (5V)  
PB12  
GPIO (5V)  
PB13  
GPIO (5V)  
AVDD  
PB15  
Analog power supply.  
GPIO  
PB14  
GPIO  
VREGVSS  
VREGVDD  
Voltage regulator VSS  
Voltage regulator VDD input  
VREGSW  
DCDC regulator switching node  
Decouple output for on-chip voltage  
regulator. An external decoupling ca-  
pacitor is required at this pin.  
DVDD  
28  
Digital power supply.  
DECOUPLE  
PC10  
29  
31  
IOVDD  
PC11  
30  
32  
Digital IO power supply.  
GPIO (5V)  
GPIO (5V)  
Note:  
1. GPIO with 5V tolerance are indicated by (5V).  
2. The pins PB11, PB12, and PB13 will not be 5V tolerant on all future devices. In order to preserve upgrade options with full hard-  
ware compatibility, do not use these pins with 5V domains.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 123  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.6 GPIO Functionality Table  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of each GPIO  
pin, followed by the functionality available on that pin. Refer to 6.7 Alternate Functionality Overview for a list of GPIO locations available  
for each function.  
Table 6.6. GPIO Functionality Table  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #0  
TIM0_CC1 #31  
TIM0_CC2 #30  
TIM0_CDTI0 #29  
TIM0_CDTI1 #28  
TIM0_CDTI2 #27  
TIM1_CC0 #0  
TIM1_CC1 #31  
TIM1_CC2 #30  
TIM1_CC3 #29  
WTIM0_CC0 #0 LE-  
TIM0_OUT0 #0 LE-  
TIM0_OUT1 #31  
PCNT0_S0IN #0  
PCNT0_S1IN #31  
US0_TX #0 US0_RX  
#31 US0_CLK #30  
US0_CS #29  
US0_CTS #28  
US0_RTS #27  
US1_TX #0 US1_RX FRC_DFRAME #30  
#31 US1_CLK #30  
US1_CS #29  
FRC_DCLK #0  
FRC_DOUT #31  
CMU_CLK1 #0  
PRS_CH6 #0  
PRS_CH7 #10  
PRS_CH8 #9  
PRS_CH9 #8  
ACMP0_O #0  
ACMP1_O #0  
LES_CH8  
BUSDY BUSCX  
ADC0_EXTN  
MODEM_DCLK #0  
MODEM_DIN #31  
MODEM_DOUT #30  
MODEM_ANT0 #29  
MODEM_ANT1 #28  
PA0  
US1_CTS #28  
US1_RTS #27  
LEU0_TX #0  
LEU0_RX #31  
I2C0_SDA #0  
I2C0_SCL #31  
TIM0_CC0 #1  
TIM0_CC1 #0  
US0_TX #1 US0_RX  
#0 US0_CLK #31  
US0_CS #30  
US0_CTS #29  
US0_RTS #28  
US1_TX #1 US1_RX FRC_DFRAME #31  
#0 US1_CLK #31  
US1_CS #30  
US1_CTS #29  
US1_RTS #28  
LEU0_TX #1  
LEU0_RX #0  
I2C0_SDA #1  
I2C0_SCL #0  
TIM0_CC2 #31  
TIM0_CDTI0 #30  
TIM0_CDTI1 #29  
TIM0_CDTI2 #28  
TIM1_CC0 #1  
FRC_DCLK #1  
FRC_DOUT #0  
CMU_CLK0 #0  
PRS_CH6 #1  
PRS_CH7 #0  
PRS_CH8 #10  
PRS_CH9 #9  
ACMP0_O #1  
ACMP1_O #1  
LES_CH9  
BUSCY BUSDX  
ADC0_EXTP  
VDAC0_EXT  
MODEM_DCLK #1  
MODEM_DIN #0  
MODEM_DOUT #31  
MODEM_ANT0 #30  
MODEM_ANT1 #29  
PA1  
TIM1_CC1 #0  
TIM1_CC2 #31  
TIM1_CC3 #30  
WTIM0_CC0 #1 LE-  
TIM0_OUT0 #1 LE-  
TIM0_OUT1 #0  
PCNT0_S0IN #1  
PCNT0_S1IN #0  
TIM0_CC0 #2  
TIM0_CC1 #1  
TIM0_CC2 #0  
TIM0_CDTI0 #31  
TIM0_CDTI1 #30  
TIM0_CDTI2 #29  
TIM1_CC0 #2  
US0_TX #2 US0_RX  
#1 US0_CLK #0  
US0_CS #31  
US0_CTS #30  
US0_RTS #29  
US1_TX #2 US1_RX  
#1 US1_CLK #0  
US1_CS #31  
FRC_DCLK #2  
FRC_DOUT #1  
PRS_CH6 #2  
PRS_CH7 #1  
PRS_CH8 #0  
PRS_CH9 #10  
ACMP0_O #2  
ACMP1_O #2  
LES_CH10  
VDAC0_OUT1ALT /  
OPA1_OUTALT #1  
BUSDY BUSCX  
OPA0_P  
FRC_DFRAME #0  
MODEM_DCLK #2  
MODEM_DIN #1  
MODEM_DOUT #0  
MODEM_ANT0 #31  
MODEM_ANT1 #30  
TIM1_CC1 #1  
TIM1_CC2 #0  
PA2  
TIM1_CC3 #31  
WTIM0_CC0 #2  
WTIM0_CC1 #0 LE-  
TIM0_OUT0 #2 LE-  
TIM0_OUT1 #1  
PCNT0_S0IN #2  
PCNT0_S1IN #1  
US1_CTS #30  
US1_RTS #29  
LEU0_TX #2  
LEU0_RX #1  
I2C0_SDA #2  
I2C0_SCL #1  
silabs.com | Building a more connected world.  
Rev. 1.2 | 124  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #3  
TIM0_CC1 #2  
TIM0_CC2 #1  
TIM0_CDTI0 #0  
TIM0_CDTI1 #31  
TIM0_CDTI2 #30  
TIM1_CC0 #3  
US0_TX #3 US0_RX  
#2 US0_CLK #1  
US0_CS #0  
US0_CTS #31  
US0_RTS #30  
US1_TX #3 US1_RX  
#2 US1_CLK #1  
US1_CS #0  
FRC_DCLK #3  
FRC_DOUT #2  
PRS_CH6 #3  
PRS_CH7 #2  
PRS_CH8 #1  
PRS_CH9 #0  
ACMP0_O #3  
ACMP1_O #3  
LES_CH11  
FRC_DFRAME #1  
MODEM_DCLK #3  
MODEM_DIN #2  
MODEM_DOUT #1  
MODEM_ANT0 #0  
MODEM_ANT1 #31  
BUSCY BUSDX  
VDAC0_OUT0 /  
OPA0_OUT  
TIM1_CC1 #2  
TIM1_CC2 #1  
PA3  
TIM1_CC3 #0  
US1_CTS #31  
US1_RTS #30  
LEU0_TX #3  
LEU0_RX #2  
I2C0_SDA #3  
I2C0_SCL #2  
WTIM0_CC0 #3  
WTIM0_CC1 #1 LE-  
TIM0_OUT0 #3 LE-  
TIM0_OUT1 #2  
PCNT0_S0IN #3  
PCNT0_S1IN #2  
GPIO_EM4WU8  
TIM0_CC0 #4  
TIM0_CC1 #3  
TIM0_CC2 #2  
TIM0_CDTI0 #1  
TIM0_CDTI1 #0  
TIM0_CDTI2 #31  
TIM1_CC0 #4  
TIM1_CC1 #3  
TIM1_CC2 #2  
TIM1_CC3 #1  
WTIM0_CC0 #4  
WTIM0_CC1 #2  
WTIM0_CC2 #0 LE-  
TIM0_OUT0 #4 LE-  
TIM0_OUT1 #3  
PCNT0_S0IN #4  
PCNT0_S1IN #3  
US0_TX #4 US0_RX  
#3 US0_CLK #2  
US0_CS #1  
US0_CTS #0  
FRC_DCLK #4  
FRC_DOUT #3  
PRS_CH6 #4  
PRS_CH7 #3  
PRS_CH8 #2  
PRS_CH9 #1  
ACMP0_O #4  
ACMP1_O #4  
LES_CH12  
US0_RTS #31  
US1_TX #4 US1_RX  
#3 US1_CLK #2  
US1_CS #1  
VDAC0_OUT1ALT /  
OPA1_OUTALT #2  
BUSDY BUSCX  
OPA0_N  
FRC_DFRAME #2  
MODEM_DCLK #4  
MODEM_DIN #3  
MODEM_DOUT #2  
MODEM_ANT0 #1  
MODEM_ANT1 #0  
PA4  
US1_CTS #0  
US1_RTS #31  
LEU0_TX #4  
LEU0_RX #3  
I2C0_SDA #4  
I2C0_SCL #3  
TIM0_CC0 #5  
TIM0_CC1 #4  
TIM0_CC2 #3  
TIM0_CDTI0 #2  
TIM0_CDTI1 #1  
TIM0_CDTI2 #0  
TIM1_CC0 #5  
TIM1_CC1 #4  
TIM1_CC2 #3  
TIM1_CC3 #2  
WTIM0_CC0 #5  
WTIM0_CC1 #3  
WTIM0_CC2 #1 LE-  
TIM0_OUT0 #5 LE-  
TIM0_OUT1 #4  
PCNT0_S0IN #5  
PCNT0_S1IN #4  
US0_TX #5 US0_RX  
#4 US0_CLK #3  
US0_CS #2  
US0_CTS #1  
US0_RTS #0  
US1_TX #5 US1_RX  
#4 US1_CLK #3  
US1_CS #2  
FRC_DCLK #5  
FRC_DOUT #4  
CMU_CLKI0 #4  
PRS_CH6 #5  
PRS_CH7 #4  
PRS_CH8 #3  
PRS_CH9 #2  
ACMP0_O #5  
ACMP1_O #5  
LES_CH13  
FRC_DFRAME #3  
MODEM_DCLK #5  
MODEM_DIN #4  
MODEM_DOUT #3  
MODEM_ANT0 #2  
MODEM_ANT1 #1  
VDAC0_OUT0ALT /  
OPA0_OUTALT #0  
BUSCY BUSDX  
PA5  
US1_CTS #1  
US1_RTS #0  
LEU0_TX #5  
LEU0_RX #4  
I2C0_SDA #5  
I2C0_SCL #4  
silabs.com | Building a more connected world.  
Rev. 1.2 | 125  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #6  
TIM0_CC1 #5  
TIM0_CC2 #4  
TIM0_CDTI0 #3  
TIM0_CDTI1 #2  
TIM0_CDTI2 #1  
TIM1_CC0 #6  
US0_TX #6 US0_RX  
#5 US0_CLK #4  
US0_CS #3  
US0_CTS #2  
US0_RTS #1  
FRC_DCLK #6  
FRC_DOUT #5  
TIM1_CC1 #5  
PRS_CH6 #6  
PRS_CH7 #5  
PRS_CH8 #4  
PRS_CH9 #3  
ACMP0_O #6  
ACMP1_O #6  
TIM1_CC2 #4  
TIM1_CC3 #3  
US1_TX #6 US1_RX  
#5 US1_CLK #4  
US1_CS #3  
FRC_DFRAME #4  
MODEM_DCLK #6  
MODEM_DIN #5  
MODEM_DOUT #4  
MODEM_ANT0 #3  
MODEM_ANT1 #2  
PB11  
BUSCY BUSDX  
WTIM0_CC0 #15  
WTIM0_CC1 #13  
WTIM0_CC2 #11  
WTIM0_CDTI0 #7  
WTIM0_CDTI1 #5  
WTIM0_CDTI2 #3  
LETIM0_OUT0 #6  
LETIM0_OUT1 #5  
PCNT0_S0IN #6  
PCNT0_S1IN #5  
US1_CTS #2  
US1_RTS #1  
LEU0_TX #6  
LEU0_RX #5  
I2C0_SDA #6  
I2C0_SCL #5  
TIM0_CC0 #7  
TIM0_CC1 #6  
TIM0_CC2 #5  
TIM0_CDTI0 #4  
TIM0_CDTI1 #3  
TIM0_CDTI2 #2  
TIM1_CC0 #7  
US0_TX #7 US0_RX  
#6 US0_CLK #5  
US0_CS #4  
US0_CTS #3  
US0_RTS #2  
FRC_DCLK #7  
FRC_DOUT #6  
TIM1_CC1 #6  
PRS_CH6 #7  
PRS_CH7 #6  
PRS_CH8 #5  
PRS_CH9 #4  
ACMP0_O #7  
ACMP1_O #7  
TIM1_CC2 #5  
TIM1_CC3 #4  
US1_TX #7 US1_RX  
#6 US1_CLK #5  
US1_CS #4  
FRC_DFRAME #5  
MODEM_DCLK #7  
MODEM_DIN #6  
MODEM_DOUT #5  
MODEM_ANT0 #4  
MODEM_ANT1 #3  
PB12  
BUSDY BUSCX  
WTIM0_CC0 #16  
WTIM0_CC1 #14  
WTIM0_CC2 #12  
WTIM0_CDTI0 #8  
WTIM0_CDTI1 #6  
WTIM0_CDTI2 #4  
LETIM0_OUT0 #7  
LETIM0_OUT1 #6  
PCNT0_S0IN #7  
PCNT0_S1IN #6  
US1_CTS #3  
US1_RTS #2  
LEU0_TX #7  
LEU0_RX #6  
I2C0_SDA #7  
I2C0_SCL #6  
TIM0_CC0 #8  
TIM0_CC1 #7  
TIM0_CC2 #6  
TIM0_CDTI0 #5  
TIM0_CDTI1 #4  
TIM0_CDTI2 #3  
TIM1_CC0 #8  
TIM1_CC1 #7  
TIM1_CC2 #6  
US0_TX #8 US0_RX  
#7 US0_CLK #6  
US0_CS #5  
US0_CTS #4  
US0_RTS #3  
US1_TX #8 US1_RX  
#7 US1_CLK #6  
US1_CS #5  
CMU_CLKI0 #0  
PRS_CH6 #8  
PRS_CH7 #7  
PRS_CH8 #6  
PRS_CH9 #5  
ACMP0_O #8  
ACMP1_O #8  
DBG_SWO #1  
GPIO_EM4WU9  
FRC_DCLK #8  
FRC_DOUT #7  
FRC_DFRAME #6  
MODEM_DCLK #8  
MODEM_DIN #7  
MODEM_DOUT #6  
MODEM_ANT0 #5  
MODEM_ANT1 #4  
TIM1_CC3 #5  
PB13  
BUSCY BUSDX  
WTIM0_CC0 #17  
WTIM0_CC1 #15  
WTIM0_CC2 #13  
WTIM0_CDTI0 #9  
WTIM0_CDTI1 #7  
WTIM0_CDTI2 #5  
LETIM0_OUT0 #8  
LETIM0_OUT1 #7  
PCNT0_S0IN #8  
PCNT0_S1IN #7  
US1_CTS #4  
US1_RTS #3  
LEU0_TX #8  
LEU0_RX #7  
I2C0_SDA #8  
I2C0_SCL #7  
silabs.com | Building a more connected world.  
Rev. 1.2 | 126  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #9  
TIM0_CC1 #8  
TIM0_CC2 #7  
TIM0_CDTI0 #6  
TIM0_CDTI1 #5  
TIM0_CDTI2 #4  
TIM1_CC0 #9  
TIM1_CC1 #8  
TIM1_CC2 #7  
US0_TX #9 US0_RX  
#8 US0_CLK #7  
US0_CS #6  
US0_CTS #5  
US0_RTS #4  
US1_TX #9 US1_RX  
#8 US1_CLK #7  
US1_CS #6  
FRC_DCLK #9  
FRC_DOUT #8  
CMU_CLK1 #1  
PRS_CH6 #9  
PRS_CH7 #8  
PRS_CH8 #7  
PRS_CH9 #6  
ACMP0_O #9  
ACMP1_O #9  
FRC_DFRAME #7  
MODEM_DCLK #9  
MODEM_DIN #8  
MODEM_DOUT #7  
MODEM_ANT0 #6  
MODEM_ANT1 #5  
BUSDY BUSCX  
LFXTAL_N  
TIM1_CC3 #6  
PB14  
WTIM0_CC0 #18  
WTIM0_CC1 #16  
WTIM0_CC2 #14  
WTIM0_CDTI0 #10  
WTIM0_CDTI1 #8  
WTIM0_CDTI2 #6  
LETIM0_OUT0 #9  
LETIM0_OUT1 #8  
PCNT0_S0IN #9  
PCNT0_S1IN #8  
US1_CTS #5  
US1_RTS #4  
LEU0_TX #9  
LEU0_RX #8  
I2C0_SDA #9  
I2C0_SCL #8  
TIM0_CC0 #10  
TIM0_CC1 #9  
TIM0_CC2 #8  
US0_TX #10  
US0_RX #9  
US0_CLK #8  
US0_CS #7  
US0_CTS #6  
US0_RTS #5  
US1_TX #10  
US1_RX #9  
TIM0_CDTI0 #7  
TIM0_CDTI1 #6  
TIM0_CDTI2 #5  
TIM1_CC0 #10  
TIM1_CC1 #9  
FRC_DCLK #10  
FRC_DOUT #9  
CMU_CLK0 #1  
PRS_CH6 #10  
PRS_CH7 #9  
PRS_CH8 #8  
PRS_CH9 #7  
ACMP0_O #10  
ACMP1_O #10  
TIM1_CC2 #8  
TIM1_CC3 #7  
FRC_DFRAME #8  
MODEM_DCLK #10  
MODEM_DIN #9  
MODEM_DOUT #8  
MODEM_ANT0 #7  
MODEM_ANT1 #6  
BUSCY BUSDX  
LFXTAL_P  
PB15  
WTIM0_CC0 #19  
WTIM0_CC1 #17  
WTIM0_CC2 #15  
WTIM0_CDTI0 #11  
WTIM0_CDTI1 #9  
WTIM0_CDTI2 #7  
LETIM0_OUT0 #10  
LETIM0_OUT1 #9  
PCNT0_S0IN #10  
PCNT0_S1IN #9  
US1_CLK #8  
US1_CS #7  
US1_CTS #6  
US1_RTS #5  
LEU0_TX #10  
LEU0_RX #9  
I2C0_SDA #10  
I2C0_SCL #9  
TIM0_CC0 #11  
TIM0_CC1 #10  
TIM0_CC2 #9  
US0_TX #11  
US0_RX #10  
US0_CLK #9  
US0_CS #8  
US0_CTS #7  
US0_RTS #6  
US1_TX #11  
US1_RX #10  
US1_CLK #9  
US1_CS #8  
US1_CTS #7  
US1_RTS #6  
LEU0_TX #11  
LEU0_RX #10  
I2C0_SDA #11  
I2C0_SCL #10  
TIM0_CDTI0 #8  
TIM0_CDTI1 #7  
TIM0_CDTI2 #6  
TIM1_CC0 #11  
TIM1_CC1 #10  
TIM1_CC2 #9  
FRC_DCLK #11  
FRC_DOUT #10  
CMU_CLK0 #2  
CMU_CLKI0 #2  
PRS_CH0 #8  
PRS_CH9 #11  
PRS_CH10 #0  
PRS_CH11 #5  
ACMP0_O #11  
ACMP1_O #11  
FRC_DFRAME #9  
MODEM_DCLK #11  
MODEM_DIN #10  
MODEM_DOUT #9  
MODEM_ANT0 #8  
MODEM_ANT1 #7  
TIM1_CC3 #8  
PC6  
BUSBY BUSAX  
WTIM0_CC0 #26  
WTIM0_CC1 #24  
WTIM0_CC2 #22  
WTIM0_CDTI0 #18  
WTIM0_CDTI1 #16  
WTIM0_CDTI2 #14  
LETIM0_OUT0 #11  
LETIM0_OUT1 #10  
PCNT0_S0IN #11  
PCNT0_S1IN #10  
silabs.com | Building a more connected world.  
Rev. 1.2 | 127  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #12  
TIM0_CC1 #11  
TIM0_CC2 #10  
US0_TX #12  
US0_RX #11  
US0_CLK #10  
US0_CS #9  
US0_CTS #8  
US0_RTS #7  
US1_TX #12  
US1_RX #11  
US1_CLK #10  
US1_CS #9  
US1_CTS #8  
US1_RTS #7  
LEU0_TX #12  
LEU0_RX #11  
I2C0_SDA #12  
I2C0_SCL #11  
TIM0_CDTI0 #9  
TIM0_CDTI1 #8  
TIM0_CDTI2 #7  
TIM1_CC0 #12  
TIM1_CC1 #11  
TIM1_CC2 #10  
FRC_DCLK #12  
FRC_DOUT #11  
CMU_CLK1 #2  
PRS_CH0 #9  
PRS_CH9 #12  
PRS_CH10 #1  
PRS_CH11 #0  
ACMP0_O #12  
ACMP1_O #12  
FRC_DFRAME #10  
MODEM_DCLK #12  
MODEM_DIN #11  
MODEM_DOUT #10  
MODEM_ANT0 #9  
MODEM_ANT1 #8  
TIM1_CC3 #9  
PC7  
BUSAY BUSBX  
WTIM0_CC0 #27  
WTIM0_CC1 #25  
WTIM0_CC2 #23  
WTIM0_CDTI0 #19  
WTIM0_CDTI1 #17  
WTIM0_CDTI2 #15  
LETIM0_OUT0 #12  
LETIM0_OUT1 #11  
PCNT0_S0IN #12  
PCNT0_S1IN #11  
TIM0_CC0 #13  
TIM0_CC1 #12  
TIM0_CC2 #11  
US0_TX #13  
US0_RX #12  
US0_CLK #11  
US0_CS #10  
US0_CTS #9  
US0_RTS #8  
US1_TX #13  
US1_RX #12  
US1_CLK #11  
US1_CS #10  
US1_CTS #9  
US1_RTS #8  
LEU0_TX #13  
LEU0_RX #12  
I2C0_SDA #13  
I2C0_SCL #12  
TIM0_CDTI0 #10  
TIM0_CDTI1 #9  
TIM0_CDTI2 #8  
TIM1_CC0 #13  
TIM1_CC1 #12  
TIM1_CC2 #11  
FRC_DCLK #13  
FRC_DOUT #12  
PRS_CH0 #10  
PRS_CH9 #13  
PRS_CH10 #2  
PRS_CH11 #1  
ACMP0_O #13  
ACMP1_O #13  
FRC_DFRAME #11  
MODEM_DCLK #13  
MODEM_DIN #12  
MODEM_DOUT #11  
MODEM_ANT0 #10  
MODEM_ANT1 #9  
TIM1_CC3 #10  
PC8  
BUSBY BUSAX  
WTIM0_CC0 #28  
WTIM0_CC1 #26  
WTIM0_CC2 #24  
WTIM0_CDTI0 #20  
WTIM0_CDTI1 #18  
WTIM0_CDTI2 #16  
LETIM0_OUT0 #13  
LETIM0_OUT1 #12  
PCNT0_S0IN #13  
PCNT0_S1IN #12  
TIM0_CC0 #14  
TIM0_CC1 #13  
TIM0_CC2 #12  
US0_TX #14  
US0_RX #13  
US0_CLK #12  
US0_CS #11  
US0_CTS #10  
US0_RTS #9  
US1_TX #14  
US1_RX #13  
US1_CLK #12  
US1_CS #11  
US1_CTS #10  
US1_RTS #9  
LEU0_TX #14  
LEU0_RX #13  
I2C0_SDA #14  
I2C0_SCL #13  
TIM0_CDTI0 #11  
TIM0_CDTI1 #10  
TIM0_CDTI2 #9  
TIM1_CC0 #14  
TIM1_CC1 #13  
TIM1_CC2 #12  
FRC_DCLK #14  
FRC_DOUT #13  
PRS_CH0 #11  
PRS_CH9 #14  
PRS_CH10 #3  
PRS_CH11 #2  
ACMP0_O #14  
ACMP1_O #14  
FRC_DFRAME #12  
MODEM_DCLK #14  
MODEM_DIN #13  
MODEM_DOUT #12  
MODEM_ANT0 #11  
MODEM_ANT1 #10  
TIM1_CC3 #11  
PC9  
BUSAY BUSBX  
WTIM0_CC0 #29  
WTIM0_CC1 #27  
WTIM0_CC2 #25  
WTIM0_CDTI0 #21  
WTIM0_CDTI1 #19  
WTIM0_CDTI2 #17  
LETIM0_OUT0 #14  
LETIM0_OUT1 #13  
PCNT0_S0IN #14  
PCNT0_S1IN #13  
silabs.com | Building a more connected world.  
Rev. 1.2 | 128  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #15  
TIM0_CC1 #14  
TIM0_CC2 #13  
US0_TX #15  
US0_RX #14  
US0_CLK #13  
US0_CS #12  
US0_CTS #11  
US0_RTS #10  
US1_TX #15  
US1_RX #14  
US1_CLK #13  
US1_CS #12  
US1_CTS #11  
US1_RTS #10  
LEU0_TX #15  
LEU0_RX #14  
I2C0_SDA #15  
I2C0_SCL #14  
TIM0_CDTI0 #12  
TIM0_CDTI1 #11  
TIM0_CDTI2 #10  
TIM1_CC0 #15  
TIM1_CC1 #14  
TIM1_CC2 #13  
FRC_DCLK #15  
FRC_DOUT #14  
CMU_CLK1 #3  
PRS_CH0 #12  
PRS_CH9 #15  
PRS_CH10 #4  
PRS_CH11 #3  
ACMP0_O #15  
ACMP1_O #15  
GPIO_EM4WU12  
FRC_DFRAME #13  
MODEM_DCLK #15  
MODEM_DIN #14  
MODEM_DOUT #13  
MODEM_ANT0 #12  
MODEM_ANT1 #11  
TIM1_CC3 #12  
PC10  
BUSBY BUSAX  
WTIM0_CC0 #30  
WTIM0_CC1 #28  
WTIM0_CC2 #26  
WTIM0_CDTI0 #22  
WTIM0_CDTI1 #20  
WTIM0_CDTI2 #18  
LETIM0_OUT0 #15  
LETIM0_OUT1 #14  
PCNT0_S0IN #15  
PCNT0_S1IN #14  
TIM0_CC0 #16  
TIM0_CC1 #15  
TIM0_CC2 #14  
US0_TX #16  
US0_RX #15  
US0_CLK #14  
US0_CS #13  
US0_CTS #12  
US0_RTS #11  
US1_TX #16  
US1_RX #15  
US1_CLK #14  
US1_CS #13  
US1_CTS #12  
US1_RTS #11  
LEU0_TX #16  
LEU0_RX #15  
I2C0_SDA #16  
I2C0_SCL #15  
TIM0_CDTI0 #13  
TIM0_CDTI1 #12  
TIM0_CDTI2 #11  
TIM1_CC0 #16  
TIM1_CC1 #15  
TIM1_CC2 #14  
FRC_DCLK #16  
FRC_DOUT #15  
CMU_CLK0 #3  
PRS_CH0 #13  
PRS_CH9 #16  
PRS_CH10 #5  
PRS_CH11 #4  
ACMP0_O #16  
ACMP1_O #16  
DBG_SWO #3  
FRC_DFRAME #14  
MODEM_DCLK #16  
MODEM_DIN #15  
MODEM_DOUT #14  
MODEM_ANT0 #13  
MODEM_ANT1 #12  
TIM1_CC3 #13  
PC11  
BUSAY BUSBX  
WTIM0_CC0 #31  
WTIM0_CC1 #29  
WTIM0_CC2 #27  
WTIM0_CDTI0 #23  
WTIM0_CDTI1 #21  
WTIM0_CDTI2 #19  
LETIM0_OUT0 #16  
LETIM0_OUT1 #15  
PCNT0_S0IN #16  
PCNT0_S1IN #15  
TIM0_CC0 #17  
TIM0_CC1 #16  
TIM0_CC2 #15  
TIM0_CDTI0 #14  
TIM0_CDTI1 #13  
TIM0_CDTI2 #12  
TIM1_CC0 #17  
TIM1_CC1 #16  
TIM1_CC2 #15  
TIM1_CC3 #14  
WTIM0_CC1 #31  
WTIM0_CC2 #29  
WTIM0_CDTI0 #25  
WTIM0_CDTI1 #23  
WTIM0_CDTI2 #21  
LETIM0_OUT0 #17  
LETIM0_OUT1 #16  
PCNT0_S0IN #17  
PCNT0_S1IN #16  
US0_TX #17  
US0_RX #16  
US0_CLK #15  
US0_CS #14  
US0_CTS #13  
US0_RTS #12  
US1_TX #17  
US1_RX #16  
US1_CLK #15  
US1_CS #14  
US1_CTS #13  
US1_RTS #12  
LEU0_TX #17  
LEU0_RX #16  
I2C0_SDA #17  
I2C0_SCL #16  
FRC_DCLK #17  
FRC_DOUT #16  
CMU_CLK0 #4  
PRS_CH3 #8  
PRS_CH4 #0  
PRS_CH5 #6  
PRS_CH6 #11  
ACMP0_O #17  
ACMP1_O #17  
LES_CH1  
FRC_DFRAME #15  
MODEM_DCLK #17  
MODEM_DIN #16  
MODEM_DOUT #15  
MODEM_ANT0 #14  
MODEM_ANT1 #13  
PD9  
BUSCY BUSDX  
silabs.com | Building a more connected world.  
Rev. 1.2 | 129  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #18  
TIM0_CC1 #17  
TIM0_CC2 #16  
TIM0_CDTI0 #15  
TIM0_CDTI1 #14  
TIM0_CDTI2 #13  
TIM1_CC0 #18  
TIM1_CC1 #17  
TIM1_CC2 #16  
TIM1_CC3 #15  
WTIM0_CC2 #30  
WTIM0_CDTI0 #26  
WTIM0_CDTI1 #24  
WTIM0_CDTI2 #22  
LETIM0_OUT0 #18  
LETIM0_OUT1 #17  
PCNT0_S0IN #18  
PCNT0_S1IN #17  
US0_TX #18  
US0_RX #17  
US0_CLK #16  
US0_CS #15  
US0_CTS #14  
US0_RTS #13  
US1_TX #18  
US1_RX #17  
US1_CLK #16  
US1_CS #15  
US1_CTS #14  
US1_RTS #13  
LEU0_TX #18  
LEU0_RX #17  
I2C0_SDA #18  
I2C0_SCL #17  
FRC_DCLK #18  
FRC_DOUT #17  
CMU_CLK1 #4  
PRS_CH3 #9  
PRS_CH4 #1  
PRS_CH5 #0  
PRS_CH6 #12  
ACMP0_O #18  
ACMP1_O #18  
LES_CH2  
FRC_DFRAME #16  
MODEM_DCLK #18  
MODEM_DIN #17  
MODEM_DOUT #16  
MODEM_ANT0 #15  
MODEM_ANT1 #14  
PD10  
BUSDY BUSCX  
TIM0_CC0 #19  
TIM0_CC1 #18  
TIM0_CC2 #17  
TIM0_CDTI0 #16  
TIM0_CDTI1 #15  
TIM0_CDTI2 #14  
TIM1_CC0 #19  
TIM1_CC1 #18  
TIM1_CC2 #17  
TIM1_CC3 #16  
WTIM0_CC2 #31  
WTIM0_CDTI0 #27  
WTIM0_CDTI1 #25  
WTIM0_CDTI2 #23  
LETIM0_OUT0 #19  
LETIM0_OUT1 #18  
PCNT0_S0IN #19  
PCNT0_S1IN #18  
US0_TX #19  
US0_RX #18  
US0_CLK #17  
US0_CS #16  
US0_CTS #15  
US0_RTS #14  
US1_TX #19  
US1_RX #18  
US1_CLK #17  
US1_CS #16  
US1_CTS #15  
US1_RTS #14  
LEU0_TX #19  
LEU0_RX #18  
I2C0_SDA #19  
I2C0_SCL #18  
FRC_DCLK #19  
FRC_DOUT #18  
PRS_CH3 #10  
PRS_CH4 #2  
PRS_CH5 #1  
PRS_CH6 #13  
ACMP0_O #19  
ACMP1_O #19  
LES_CH3  
FRC_DFRAME #17  
MODEM_DCLK #19  
MODEM_DIN #18  
MODEM_DOUT #17  
MODEM_ANT0 #16  
MODEM_ANT1 #15  
PD11  
BUSCY BUSDX  
TIM0_CC0 #20  
TIM0_CC1 #19  
TIM0_CC2 #18  
TIM0_CDTI0 #17  
TIM0_CDTI1 #16  
TIM0_CDTI2 #15  
TIM1_CC0 #20  
TIM1_CC1 #19  
TIM1_CC2 #18  
TIM1_CC3 #17  
WTIM0_CDTI0 #28  
WTIM0_CDTI1 #26  
WTIM0_CDTI2 #24  
LETIM0_OUT0 #20  
LETIM0_OUT1 #19  
PCNT0_S0IN #20  
PCNT0_S1IN #19  
US0_TX #20  
US0_RX #19  
US0_CLK #18  
US0_CS #17  
US0_CTS #16  
US0_RTS #15  
US1_TX #20  
US1_RX #19  
US1_CLK #18  
US1_CS #17  
US1_CTS #16  
US1_RTS #15  
LEU0_TX #20  
LEU0_RX #19  
I2C0_SDA #20  
I2C0_SCL #19  
FRC_DCLK #20  
FRC_DOUT #19  
PRS_CH3 #11  
PRS_CH4 #3  
PRS_CH5 #2  
PRS_CH6 #14  
ACMP0_O #20  
ACMP1_O #20  
LES_CH4  
FRC_DFRAME #18  
MODEM_DCLK #20  
MODEM_DIN #19  
MODEM_DOUT #18  
MODEM_ANT0 #17  
MODEM_ANT1 #16  
VDAC0_OUT1ALT /  
OPA1_OUTALT #0  
BUSDY BUSCX  
PD12  
silabs.com | Building a more connected world.  
Rev. 1.2 | 130  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #21  
TIM0_CC1 #20  
TIM0_CC2 #19  
TIM0_CDTI0 #18  
TIM0_CDTI1 #17  
TIM0_CDTI2 #16  
TIM1_CC0 #21  
TIM1_CC1 #20  
TIM1_CC2 #19  
TIM1_CC3 #18  
WTIM0_CDTI0 #29  
WTIM0_CDTI1 #27  
WTIM0_CDTI2 #25  
LETIM0_OUT0 #21  
LETIM0_OUT1 #20  
PCNT0_S0IN #21  
PCNT0_S1IN #20  
US0_TX #21  
US0_RX #20  
US0_CLK #19  
US0_CS #18  
US0_CTS #17  
US0_RTS #16  
US1_TX #21  
US1_RX #20  
US1_CLK #19  
US1_CS #18  
US1_CTS #17  
US1_RTS #16  
LEU0_TX #21  
LEU0_RX #20  
I2C0_SDA #21  
I2C0_SCL #20  
FRC_DCLK #21  
FRC_DOUT #20  
PRS_CH3 #12  
PRS_CH4 #4  
PRS_CH5 #3  
PRS_CH6 #15  
ACMP0_O #21  
ACMP1_O #21  
LES_CH5  
VDAC0_OUT0ALT /  
OPA0_OUTALT #1  
BUSCY BUSDX  
OPA1_P  
FRC_DFRAME #19  
MODEM_DCLK #21  
MODEM_DIN #20  
MODEM_DOUT #19  
MODEM_ANT0 #18  
MODEM_ANT1 #17  
PD13  
TIM0_CC0 #22  
TIM0_CC1 #21  
TIM0_CC2 #20  
TIM0_CDTI0 #19  
TIM0_CDTI1 #18  
TIM0_CDTI2 #17  
TIM1_CC0 #22  
TIM1_CC1 #21  
TIM1_CC2 #20  
TIM1_CC3 #19  
WTIM0_CDTI0 #30  
WTIM0_CDTI1 #28  
WTIM0_CDTI2 #26  
LETIM0_OUT0 #22  
LETIM0_OUT1 #21  
PCNT0_S0IN #22  
PCNT0_S1IN #21  
US0_TX #22  
US0_RX #21  
US0_CLK #20  
US0_CS #19  
US0_CTS #18  
US0_RTS #17  
US1_TX #22  
US1_RX #21  
US1_CLK #20  
US1_CS #19  
US1_CTS #18  
US1_RTS #17  
LEU0_TX #22  
LEU0_RX #21  
I2C0_SDA #22  
I2C0_SCL #21  
CMU_CLK0 #5  
PRS_CH3 #13  
PRS_CH4 #5  
PRS_CH5 #4  
PRS_CH6 #16  
ACMP0_O #22  
ACMP1_O #22  
LES_CH6  
FRC_DCLK #22  
FRC_DOUT #21  
FRC_DFRAME #20  
MODEM_DCLK #22  
MODEM_DIN #21  
MODEM_DOUT #20  
MODEM_ANT0 #19  
MODEM_ANT1 #18  
BUSDY BUSCX  
VDAC0_OUT1 /  
OPA1_OUT  
PD14  
GPIO_EM4WU4  
TIM0_CC0 #23  
TIM0_CC1 #22  
TIM0_CC2 #21  
TIM0_CDTI0 #20  
TIM0_CDTI1 #19  
TIM0_CDTI2 #18  
TIM1_CC0 #23  
TIM1_CC1 #22  
TIM1_CC2 #21  
TIM1_CC3 #20  
WTIM0_CDTI0 #31  
WTIM0_CDTI1 #29  
WTIM0_CDTI2 #27  
LETIM0_OUT0 #23  
LETIM0_OUT1 #22  
PCNT0_S0IN #23  
PCNT0_S1IN #22  
US0_TX #23  
US0_RX #22  
US0_CLK #21  
US0_CS #20  
US0_CTS #19  
US0_RTS #18  
US1_TX #23  
US1_RX #22  
US1_CLK #21  
US1_CS #20  
US1_CTS #19  
US1_RTS #18  
LEU0_TX #23  
LEU0_RX #22  
I2C0_SDA #23  
I2C0_SCL #22  
CMU_CLK1 #5  
PRS_CH3 #14  
PRS_CH4 #6  
PRS_CH5 #5  
PRS_CH6 #17  
ACMP0_O #23  
ACMP1_O #23  
LES_CH7  
FRC_DCLK #23  
FRC_DOUT #22  
VDAC0_OUT0ALT /  
OPA0_OUTALT #2  
BUSCY BUSDX  
OPA1_N  
FRC_DFRAME #21  
MODEM_DCLK #23  
MODEM_DIN #22  
MODEM_DOUT #21  
MODEM_ANT0 #20  
MODEM_ANT1 #19  
PD15  
DBG_SWO #2  
silabs.com | Building a more connected world.  
Rev. 1.2 | 131  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
TIM0_CC0 #24  
TIM0_CC1 #23  
TIM0_CC2 #22  
TIM0_CDTI0 #21  
TIM0_CDTI1 #20  
TIM0_CDTI2 #19  
TIM1_CC0 #24  
TIM1_CC1 #23  
TIM1_CC2 #22  
TIM1_CC3 #21  
WTIM0_CDTI1 #30  
WTIM0_CDTI2 #28  
LETIM0_OUT0 #24  
LETIM0_OUT1 #23  
PCNT0_S0IN #24  
PCNT0_S1IN #23  
US0_TX #24  
US0_RX #23  
US0_CLK #22  
US0_CS #21  
US0_CTS #20  
US0_RTS #19  
US1_TX #24  
US1_RX #23  
US1_CLK #22  
US1_CS #21  
US1_CTS #20  
US1_RTS #19  
LEU0_TX #24  
LEU0_RX #23  
I2C0_SDA #24  
I2C0_SCL #23  
FRC_DCLK #24  
FRC_DOUT #23  
PRS_CH0 #0  
PRS_CH1 #7  
PRS_CH2 #6  
PRS_CH3 #5  
ACMP0_O #24  
ACMP1_O #24  
DBG_SWCLKTCK  
BOOT_TX  
FRC_DFRAME #22  
MODEM_DCLK #24  
MODEM_DIN #23  
MODEM_DOUT #22  
MODEM_ANT0 #21  
MODEM_ANT1 #20  
PF0  
BUSBY BUSAX  
TIM0_CC0 #25  
TIM0_CC1 #24  
TIM0_CC2 #23  
TIM0_CDTI0 #22  
TIM0_CDTI1 #21  
TIM0_CDTI2 #20  
TIM1_CC0 #25  
TIM1_CC1 #24  
TIM1_CC2 #23  
TIM1_CC3 #22  
WTIM0_CDTI1 #31  
WTIM0_CDTI2 #29  
LETIM0_OUT0 #25  
LETIM0_OUT1 #24  
PCNT0_S0IN #25  
PCNT0_S1IN #24  
US0_TX #25  
US0_RX #24  
US0_CLK #23  
US0_CS #22  
US0_CTS #21  
US0_RTS #20  
US1_TX #25  
US1_RX #24  
US1_CLK #23  
US1_CS #22  
US1_CTS #21  
US1_RTS #20  
LEU0_TX #25  
LEU0_RX #24  
I2C0_SDA #25  
I2C0_SCL #24  
FRC_DCLK #25  
FRC_DOUT #24  
PRS_CH0 #1  
PRS_CH1 #0  
PRS_CH2 #7  
PRS_CH3 #6  
ACMP0_O #25  
ACMP1_O #25  
DBG_SWDIOTMS  
BOOT_RX  
FRC_DFRAME #23  
MODEM_DCLK #25  
MODEM_DIN #24  
MODEM_DOUT #23  
MODEM_ANT0 #22  
MODEM_ANT1 #21  
PF1  
BUSAY BUSBX  
US0_TX #26  
US0_RX #25  
US0_CLK #24  
US0_CS #23  
US0_CTS #22  
US0_RTS #21  
US1_TX #26  
US1_RX #25  
US1_CLK #24  
US1_CS #23  
US1_CTS #22  
US1_RTS #21  
LEU0_TX #26  
LEU0_RX #25  
I2C0_SDA #26  
I2C0_SCL #25  
TIM0_CC0 #26  
TIM0_CC1 #25  
TIM0_CC2 #24  
TIM0_CDTI0 #23  
TIM0_CDTI1 #22  
TIM0_CDTI2 #21  
TIM1_CC0 #26  
TIM1_CC1 #25  
TIM1_CC2 #24  
TIM1_CC3 #23  
WTIM0_CDTI2 #30  
LETIM0_OUT0 #26  
LETIM0_OUT1 #25  
PCNT0_S0IN #26  
PCNT0_S1IN #25  
CMU_CLK0 #6  
PRS_CH0 #2  
PRS_CH1 #1  
PRS_CH2 #0  
PRS_CH3 #7  
ACMP0_O #26  
ACMP1_O #26  
DBG_TDO  
FRC_DCLK #26  
FRC_DOUT #25  
FRC_DFRAME #24  
MODEM_DCLK #26  
MODEM_DIN #25  
MODEM_DOUT #24  
MODEM_ANT0 #23  
MODEM_ANT1 #22  
PF2  
BUSBY BUSAX  
DBG_SWO #0  
GPIO_EM4WU0  
silabs.com | Building a more connected world.  
Rev. 1.2 | 132  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
US0_TX #27  
US0_RX #26  
US0_CLK #25  
US0_CS #24  
US0_CTS #23  
US0_RTS #22  
US1_TX #27  
US1_RX #26  
US1_CLK #25  
US1_CS #24  
US1_CTS #23  
US1_RTS #22  
LEU0_TX #27  
LEU0_RX #26  
I2C0_SDA #27  
I2C0_SCL #26  
TIM0_CC0 #27  
TIM0_CC1 #26  
TIM0_CC2 #25  
TIM0_CDTI0 #24  
TIM0_CDTI1 #23  
TIM0_CDTI2 #22  
TIM1_CC0 #27  
TIM1_CC1 #26  
TIM1_CC2 #25  
TIM1_CC3 #24  
WTIM0_CDTI2 #31  
LETIM0_OUT0 #27  
LETIM0_OUT1 #26  
PCNT0_S0IN #27  
PCNT0_S1IN #26  
FRC_DCLK #27  
FRC_DOUT #26  
CMU_CLK1 #6  
PRS_CH0 #3  
PRS_CH1 #2  
PRS_CH2 #1  
PRS_CH3 #0  
ACMP0_O #27  
ACMP1_O #27  
DBG_TDI  
FRC_DFRAME #25  
MODEM_DCLK #27  
MODEM_DIN #26  
MODEM_DOUT #25  
MODEM_ANT0 #24  
MODEM_ANT1 #23  
PF3  
BUSAY BUSBX  
US0_TX #28  
US0_RX #27  
US0_CLK #26  
US0_CS #25  
US0_CTS #24  
US0_RTS #23  
US1_TX #28  
US1_RX #27  
US1_CLK #26  
US1_CS #25  
US1_CTS #24  
US1_RTS #23  
LEU0_TX #28  
LEU0_RX #27  
I2C0_SDA #28  
I2C0_SCL #27  
TIM0_CC0 #28  
TIM0_CC1 #27  
TIM0_CC2 #26  
TIM0_CDTI0 #25  
TIM0_CDTI1 #24  
TIM0_CDTI2 #23  
TIM1_CC0 #28  
FRC_DCLK #28  
FRC_DOUT #27  
PRS_CH0 #4  
PRS_CH1 #3  
PRS_CH2 #2  
PRS_CH3 #1  
ACMP0_O #28  
ACMP1_O #28  
FRC_DFRAME #26  
MODEM_DCLK #28  
MODEM_DIN #27  
MODEM_DOUT #26  
MODEM_ANT0 #25  
MODEM_ANT1 #24  
PF4  
BUSBY BUSAX  
TIM1_CC1 #27  
TIM1_CC2 #26  
TIM1_CC3 #25 LE-  
TIM0_OUT0 #28 LE-  
TIM0_OUT1 #27  
PCNT0_S0IN #28  
PCNT0_S1IN #27  
US0_TX #29  
US0_RX #28  
US0_CLK #27  
US0_CS #26  
US0_CTS #25  
US0_RTS #24  
US1_TX #29  
US1_RX #28  
US1_CLK #27  
US1_CS #26  
US1_CTS #25  
US1_RTS #24  
LEU0_TX #29  
LEU0_RX #28  
I2C0_SDA #29  
I2C0_SCL #28  
TIM0_CC0 #29  
TIM0_CC1 #28  
TIM0_CC2 #27  
TIM0_CDTI0 #26  
TIM0_CDTI1 #25  
TIM0_CDTI2 #24  
TIM1_CC0 #29  
FRC_DCLK #29  
FRC_DOUT #28  
PRS_CH0 #5  
PRS_CH1 #4  
PRS_CH2 #3  
PRS_CH3 #2  
ACMP0_O #29  
ACMP1_O #29  
FRC_DFRAME #27  
MODEM_DCLK #29  
MODEM_DIN #28  
MODEM_DOUT #27  
MODEM_ANT0 #26  
MODEM_ANT1 #25  
PF5  
BUSAY BUSBX  
TIM1_CC1 #28  
TIM1_CC2 #27  
TIM1_CC3 #26 LE-  
TIM0_OUT0 #29 LE-  
TIM0_OUT1 #28  
PCNT0_S0IN #29  
PCNT0_S1IN #28  
silabs.com | Building a more connected world.  
Rev. 1.2 | 133  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
GPIO Name  
Pin Alternate Functionality / Description  
Analog  
Timers  
Communication  
Radio  
Other  
US0_TX #30  
US0_RX #29  
US0_CLK #28  
US0_CS #27  
US0_CTS #26  
US0_RTS #25  
US1_TX #30  
US1_RX #29  
US1_CLK #28  
US1_CS #27  
US1_CTS #26  
US1_RTS #25  
LEU0_TX #30  
LEU0_RX #29  
I2C0_SDA #30  
I2C0_SCL #29  
TIM0_CC0 #30  
TIM0_CC1 #29  
TIM0_CC2 #28  
TIM0_CDTI0 #27  
TIM0_CDTI1 #26  
TIM0_CDTI2 #25  
TIM1_CC0 #30  
FRC_DCLK #30  
FRC_DOUT #29  
CMU_CLK1 #7  
PRS_CH0 #6  
PRS_CH1 #5  
PRS_CH2 #4  
PRS_CH3 #3  
ACMP0_O #30  
ACMP1_O #30  
FRC_DFRAME #28  
MODEM_DCLK #30  
MODEM_DIN #29  
MODEM_DOUT #28  
MODEM_ANT0 #27  
MODEM_ANT1 #26  
PF6  
BUSBY BUSAX  
TIM1_CC1 #29  
TIM1_CC2 #28  
TIM1_CC3 #27 LE-  
TIM0_OUT0 #30 LE-  
TIM0_OUT1 #29  
PCNT0_S0IN #30  
PCNT0_S1IN #29  
US0_TX #31  
US0_RX #30  
US0_CLK #29  
US0_CS #28  
US0_CTS #27  
US0_RTS #26  
US1_TX #31  
US1_RX #30  
US1_CLK #29  
US1_CS #28  
US1_CTS #27  
US1_RTS #26  
LEU0_TX #31  
LEU0_RX #30  
I2C0_SDA #31  
I2C0_SCL #30  
TIM0_CC0 #31  
TIM0_CC1 #30  
TIM0_CC2 #29  
TIM0_CDTI0 #28  
TIM0_CDTI1 #27  
TIM0_CDTI2 #26  
TIM1_CC0 #31  
CMU_CLKI0 #1  
CMU_CLK0 #7  
PRS_CH0 #7  
PRS_CH1 #6  
PRS_CH2 #5  
PRS_CH3 #4  
ACMP0_O #31  
ACMP1_O #31  
GPIO_EM4WU1  
FRC_DCLK #31  
FRC_DOUT #30  
FRC_DFRAME #29  
MODEM_DCLK #31  
MODEM_DIN #30  
MODEM_DOUT #29  
MODEM_ANT0 #28  
MODEM_ANT1 #27  
PF7  
BUSAY BUSBX  
TIM1_CC1 #30  
TIM1_CC2 #29  
TIM1_CC3 #28 LE-  
TIM0_OUT0 #31 LE-  
TIM0_OUT1 #30  
PCNT0_S0IN #31  
PCNT0_S1IN #30  
silabs.com | Building a more connected world.  
Rev. 1.2 | 134  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.7 Alternate Functionality Overview  
A wide selection of alternate functionality is available for multiplexing to various pins. The following table shows the name of the alter-  
nate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings and the associated GPIO  
pin. Refer to 6.6 GPIO Functionality Table for a list of functions available on each GPIO pin.  
Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout  
is shown in the column corresponding to LOCATION 0.  
Table 6.7. Alternate Functionality Overview  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
13: PC8  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Analog comparator  
ACMP0, digital out-  
put.  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
ACMP0_O  
ACMP1_O  
ADC0_EXTN  
ADC0_EXTP  
BOOT_RX  
BOOT_TX  
10: PB15 14: PC9  
11: PC6  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Analog comparator  
ACMP1, digital out-  
put.  
13: PC8  
10: PB15 14: PC9  
11: PC6  
0: PA0  
0: PA1  
0: PF1  
0: PF0  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put negative pin.  
Analog to digital  
converter ADC0 ex-  
ternal reference in-  
put positive pin.  
Bootloader RX.  
Bootloader TX.  
0: PA1  
4: PD9  
5: PD14  
6: PF2  
7: PF7  
Clock Management  
Unit, clock output  
number 0.  
1: PB15  
2: PC6  
3: PC11  
CMU_CLK0  
CMU_CLK1  
CMU_CLKI0  
0: PA0  
4: PD10  
5: PD15  
6: PF3  
Clock Management  
Unit, clock output  
number 1.  
1: PB14  
2: PC7  
3: PC10  
7: PF6  
0: PB13  
1: PF7  
2: PC6  
4: PA5  
Clock Management  
Unit, clock input  
number 0.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 135  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PF0  
Debug-interface  
Serial Wire clock  
input and JTAG  
Test Clock.  
DBG_SWCLKTCK  
DBG_SWDIOTMS  
DBG_SWO  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull down.  
0: PF1  
Debug-interface  
Serial Wire data in-  
put / output and  
JTAG Test Mode  
Select.  
Note that this func-  
tion is enabled to  
the pin out of reset,  
and has a built-in  
pull up.  
0: PF2  
Debug-interface  
Serial Wire viewer  
Output.  
1: PB13  
2: PD15  
3: PC11  
Note that this func-  
tion is not enabled  
after reset, and  
must be enabled by  
software to be  
used.  
0: PF3  
Debug-interface  
JTAG Test Data In.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received,  
and has a built-in  
pull up when JTAG  
is active.  
DBG_TDI  
0: PF2  
Debug-interface  
JTAG Test Data  
Out.  
Note that this func-  
tion becomes avail-  
able after the first  
valid JTAG com-  
mand is received.  
DBG_TDO  
FRC_DCLK  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
11: PC6  
12: PC7  
13: PC8  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Frame Controller,  
Data Sniffer Clock.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 136  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
12: PC9 16: PD10 20: PD14 24: PF2  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Frame Controller,  
Data Sniffer Frame  
active  
13: PC10 17: PD11 21: PD15 25: PF3  
FRC_DFRAME  
FRC_DOUT  
14: PC11 18: PD12 22: PF0  
26: PF4  
27: PF5  
15: PD9  
19: PD13 23: PF1  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9 20: PD13 24: PF1  
17: PD10 21: PD14 25: PF2  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Frame Controller,  
Data Sniffer Out-  
put.  
5: PB11  
6: PB12  
7: PB13  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PF2  
Pin can be used to  
wake the system  
up from EM4  
GPIO_EM4WU0  
GPIO_EM4WU1  
GPIO_EM4WU4  
GPIO_EM4WU8  
GPIO_EM4WU9  
GPIO_EM4WU12  
I2C0_SCL  
0: PF7  
Pin can be used to  
wake the system  
up from EM4  
0: PD14  
0: PA3  
0: PB13  
0: PC10  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
Pin can be used to  
wake the system  
up from EM4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
5: PB11  
6: PB12  
7: PB13  
I2C0 Serial Clock  
Line input / output.  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
11: PC6  
12: PC7  
13: PC8  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
I2C0 Serial Data in-  
put / output.  
I2C0_SDA  
0: PD9  
LESENSE channel  
1.  
LES_CH1  
0: PD10  
0: PD11  
LESENSE channel  
2.  
LES_CH2  
LESENSE channel  
3.  
LES_CH3  
silabs.com | Building a more connected world.  
Rev. 1.2 | 137  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PD12  
LESENSE channel  
4.  
LES_CH4  
0: PD13  
0: PD14  
0: PD15  
0: PA0  
0: PA1  
0: PA2  
0: PA3  
0: PA4  
0: PA5  
LESENSE channel  
5.  
LES_CH5  
LESENSE channel  
6.  
LES_CH6  
LESENSE channel  
7.  
LES_CH7  
LESENSE channel  
8.  
LES_CH8  
LESENSE channel  
9.  
LES_CH9  
LESENSE channel  
10.  
LES_CH10  
LES_CH11  
LES_CH12  
LES_CH13  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
LESENSE channel  
11.  
LESENSE channel  
12.  
LESENSE channel  
13.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
12: PC7  
13: PC8  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Low Energy Timer  
LETIM0, output  
channel 0.  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Low Energy Timer  
LETIM0, output  
channel 1.  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
LEUART0 Receive  
input.  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
silabs.com | Building a more connected world.  
Rev. 1.2 | 138  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
13: PC8  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
LEUART0 Transmit  
output. Also used  
as receive input in  
half duplex commu-  
nication.  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
LEU0_TX  
10: PB15 14: PC9  
11: PC6  
0: PB14  
Low Frequency  
Crystal (typically  
32.768 kHz) nega-  
tive pin. Also used  
as an optional ex-  
ternal clock input  
pin.  
LFXTAL_N  
0: PB15  
Low Frequency  
Crystal (typically  
32.768 kHz) posi-  
tive pin.  
LFXTAL_P  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10 16: PD11 20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
MODEM antenna  
control output 0,  
used for antenna  
diversity.  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
15: PD10 19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
MODEM_ANT0  
MODEM_ANT1  
MODEM_DCLK  
MODEM_DIN  
MODEM_DOUT  
OPA0_N  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
12: PC11 16: PD12 20: PF0  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
MODEM antenna  
control output 1,  
used for antenna  
diversity.  
13: PD9  
17: PD13 21: PF1  
14: PD10 18: PD14 22: PF2  
11: PC10 15: PD11 19: PD15 23: PF3  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
13: PC8  
MODEM data clock  
out.  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
5: PB11  
6: PB12  
7: PB13  
MODEM data in.  
MODEM data out.  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
26: PF4  
27: PF5  
0: PA4  
Operational Amplifi-  
er 0 external nega-  
tive input.  
0: PA2  
Operational Amplifi-  
er 0 external posi-  
tive input.  
OPA0_P  
0: PD15  
0: PD13  
Operational Amplifi-  
er 1 external nega-  
tive input.  
OPA1_N  
Operational Amplifi-  
er 1 external posi-  
tive input.  
OPA1_P  
silabs.com | Building a more connected world.  
Rev. 1.2 | 139  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
13: PC8  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Pulse Counter  
PCNT0 input num-  
ber 0.  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH1  
PRS_CH2  
PRS_CH3  
PRS_CH4  
PRS_CH5  
PRS_CH6  
PRS_CH7  
PRS_CH8  
PRS_CH9  
PRS_CH10  
10: PB15 14: PC9  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Pulse Counter  
PCNT0 input num-  
ber 1.  
5: PB11  
6: PB12  
7: PB13  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0  
27: PF4  
0: PF0  
1: PF1  
2: PF2  
3: PF3  
4: PF4  
5: PF5  
6: PF6  
7: PF7  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10  
13: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 0.  
0: PF1  
1: PF2  
2: PF3  
3: PF4  
4: PF5  
5: PF6  
6: PF7  
7: PF0  
Peripheral Reflex  
System PRS, chan-  
nel 1.  
0: PF2  
1: PF3  
2: PF4  
3: PF5  
4: PF6  
5: PF7  
6: PF0  
7: PF1  
Peripheral Reflex  
System PRS, chan-  
nel 2.  
0: PF3  
1: PF4  
2: PF5  
3: PF6  
4: PF7  
5: PF0  
6: PF1  
7: PF2  
8: PD9  
9: PD10  
10: PD11 14: PD15  
11: PD12  
12: PD13  
13: PD14  
Peripheral Reflex  
System PRS, chan-  
nel 3.  
0: PD9  
4: PD13  
5: PD14  
6: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 4.  
1: PD10  
2: PD11  
3: PD12  
0: PD10  
1: PD11  
2: PD12  
3: PD13  
4: PD14  
5: PD15  
6: PD9  
Peripheral Reflex  
System PRS, chan-  
nel 5.  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PD12  
12: PD10 16: PD14  
13: PD11 17: PD15  
Peripheral Reflex  
System PRS, chan-  
nel 6.  
11: PD9  
15: PD13  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PA0  
Peripheral Reflex  
System PRS, chan-  
nel 7.  
5: PB11  
6: PB12  
7: PB13  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PA0  
10: PA1  
Peripheral Reflex  
System PRS, chan-  
nel 8.  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PA0  
9: PA1  
10: PA2  
11: PC6  
12: PC7  
13: PC8  
14: PC9  
15: PC10  
16: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 9.  
0: PC6  
1: PC7  
2: PC8  
3: PC9  
4: PC10  
5: PC11  
Peripheral Reflex  
System PRS, chan-  
nel 10.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 140  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PC7  
1: PC8  
2: PC9  
3: PC10  
4: PC11  
5: PC6  
Peripheral Reflex  
System PRS, chan-  
nel 11.  
PRS_CH11  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM0_CDTI0  
TIM0_CDTI1  
TIM0_CDTI2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
TIM1_CC3  
US0_CLK  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
12: PC7  
13: PC8  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Timer 0 Capture  
Compare input /  
output channel 0.  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Timer 0 Capture  
Compare input /  
output channel 1.  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Timer 0 Capture  
Compare input /  
output channel 2.  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10 16: PD11 20: PD15 24: PF3  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 0.  
25: PF4  
26: PF5  
27: PF6  
15: PD10 19: PD14 23: PF2  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
12: PC11 16: PD12 20: PF0  
13: PD9  
14: PD10 18: PD14 22: PF2  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 1.  
17: PD13 21: PF1  
11: PC10 15: PD11 19: PD15 23: PF3  
0: PA5  
4: PB14  
5: PB15  
6: PC6  
7: PC7  
8: PC8  
9: PC9  
12: PD9  
13: PD10 17: PD14 21: PF2  
16: PD13 20: PF1  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
Timer 0 Compli-  
mentary Dead Time  
Insertion channel 2.  
1: PB11  
2: PB12  
3: PB13  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
12: PC7  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
Timer 1 Capture  
Compare input /  
output channel 0.  
13: PC8  
11: PC6  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
Timer 1 Capture  
Compare input /  
output channel 1.  
5: PB11  
6: PB12  
7: PB13  
17: PD10 21: PD14 25: PF2  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
12: PC9 16: PD10 20: PD14 24: PF2  
13: PC10 17: PD11 21: PD15 25: PF3  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
Timer 1 Capture  
Compare input /  
output channel 2.  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10 16: PD11 20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
Timer 1 Capture  
Compare input /  
output channel 3.  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
15: PD10 19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
12: PC9  
16: PD10 20: PD14 24: PF2  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
13: PC10 17: PD11 21: PD15 25: PF3  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
USART0 clock in-  
put / output.  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10 16: PD11 20: PD15 24: PF3  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
15: PD10 19: PD14 23: PF2  
25: PF4  
26: PF5  
27: PF6  
USART0 chip se-  
lect input / output.  
US0_CS  
silabs.com | Building a more connected world.  
Rev. 1.2 | 141  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
12: PC11 16: PD12 20: PF0  
13: PD9 17: PD13 21: PF1  
14: PD10 18: PD14 22: PF2  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
USART0 Clear To  
Send hardware  
flow control input.  
US0_CTS  
US0_RTS  
11: PC10 15: PD11 19: PD15 23: PF3  
0: PA5  
4: PB14  
5: PB15  
6: PC6  
7: PC7  
8: PC8  
9: PC9  
12: PD9  
16: PD13 20: PF1  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
USART0 Request  
To Send hardware  
flow control output.  
1: PB11  
2: PB12  
3: PB13  
13: PD10 17: PD14 21: PF2  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
USART0 Asynchro-  
nous Receive.  
5: PB11  
6: PB12  
7: PB13  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
USART0 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US0_RX  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
10: PB15 14: PC9  
12: PC7  
13: PC8  
16: PC11 20: PD12 24: PF0  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
15: PC10 19: PD11 23: PD15 27: PF3  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART0 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
11: PC6  
US0_TX  
USART0 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
4: PB11  
5: PB12  
6: PB13  
7: PB14  
8: PB15  
9: PC6  
10: PC7  
11: PC8  
12: PC9  
16: PD10 20: PD14 24: PF2  
28: PF6  
29: PF7  
30: PA0  
31: PA1  
13: PC10 17: PD11 21: PD15 25: PF3  
14: PC11 18: PD12 22: PF0  
15: PD9 19: PD13 23: PF1  
USART1 clock in-  
put / output.  
US1_CLK  
US1_CS  
26: PF4  
27: PF5  
0: PA3  
1: PA4  
2: PA5  
3: PB11  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
8: PC6  
9: PC7  
10: PC8  
11: PC9  
12: PC10 16: PD11 20: PD15 24: PF3  
13: PC11 17: PD12 21: PF0  
14: PD9 18: PD13 22: PF1  
28: PF7  
29: PA0  
30: PA1  
31: PA2  
25: PF4  
26: PF5  
27: PF6  
USART1 chip se-  
lect input / output.  
15: PD10 19: PD14 23: PF2  
0: PA4  
1: PA5  
2: PB11  
3: PB12  
4: PB13  
5: PB14  
6: PB15  
7: PC6  
8: PC7  
9: PC8  
10: PC9  
12: PC11 16: PD12 20: PF0  
24: PF4  
25: PF5  
26: PF6  
27: PF7  
28: PA0  
29: PA1  
30: PA2  
31: PA3  
USART1 Clear To  
Send hardware  
flow control input.  
13: PD9  
17: PD13 21: PF1  
US1_CTS  
US1_RTS  
14: PD10 18: PD14 22: PF2  
11: PC10 15: PD11 19: PD15 23: PF3  
0: PA5  
4: PB14  
5: PB15  
6: PC6  
7: PC7  
8: PC8  
9: PC9  
12: PD9  
16: PD13 20: PF1  
24: PF5  
25: PF6  
26: PF7  
27: PA0  
28: PA1  
29: PA2  
30: PA3  
31: PA4  
USART1 Request  
To Send hardware  
flow control output.  
1: PB11  
2: PB12  
3: PB13  
13: PD10 17: PD14 21: PF2  
10: PC10 14: PD11 18: PD15 22: PF3  
11: PC11 15: PD12 19: PF0 23: PF4  
0: PA1  
1: PA2  
2: PA3  
3: PA4  
4: PA5  
8: PB14  
9: PB15  
10: PC6  
11: PC7  
12: PC8  
13: PC9  
16: PD9  
17: PD10 21: PD14 25: PF2  
20: PD13 24: PF1  
28: PF5  
29: PF6  
30: PF7  
31: PA0  
USART1 Asynchro-  
nous Receive.  
5: PB11  
6: PB12  
7: PB13  
14: PC10 18: PD11 22: PD15 26: PF3  
15: PC11 19: PD12 23: PF0 27: PF4  
USART1 Synchro-  
nous mode Master  
Input / Slave Out-  
put (MISO).  
US1_RX  
silabs.com | Building a more connected world.  
Rev. 1.2 | 142  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Alternate  
LOCATION  
12 - 15 16 - 19  
16: PC11 20: PD12 24: PF0  
Functionality  
0 - 3  
4 - 7  
8 - 11  
20 - 23  
24 - 27  
28 - 31  
Description  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
6: PB11  
7: PB12  
8: PB13  
9: PB14  
12: PC7  
13: PC8  
28: PF4  
29: PF5  
30: PF6  
31: PF7  
USART1 Asynchro-  
nous Transmit. Al-  
so used as receive  
input in half duplex  
communication.  
17: PD9 21: PD13 25: PF1  
18: PD10 22: PD14 26: PF2  
10: PB15 14: PC9  
11: PC6  
15: PC10 19: PD11 23: PD15 27: PF3  
US1_TX  
USART1 Synchro-  
nous mode Master  
Output / Slave In-  
put (MOSI).  
0: PA1  
0: PA3  
Digital to analog  
converter VDAC0  
external reference  
input pin.  
VDAC0_EXT  
Digital to Analog  
Converter DAC0  
output channel  
number 0.  
VDAC0_OUT0 /  
OPA0_OUT  
0: PA5  
1: PD13  
2: PD15  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 0.  
VDAC0_OUT0AL  
T / OPA0_OUT-  
ALT  
0: PD14  
Digital to Analog  
Converter DAC0  
output channel  
number 1.  
VDAC0_OUT1 /  
OPA1_OUT  
0: PD12  
1: PA2  
2: PA4  
Digital to Analog  
Converter DAC0 al-  
ternative output for  
channel 1.  
VDAC0_OUT1AL  
T / OPA1_OUT-  
ALT  
0: PA0  
1: PA1  
2: PA2  
3: PA3  
4: PA4  
5: PA5  
16: PB12  
17: PB13  
18: PB14  
28: PC8  
29: PC9  
30: PC10 put / output channel  
31: PC11 0.  
Wide timer 0 Cap-  
ture Compare in-  
WTIM0_CC0  
WTIM0_CC1  
WTIM0_CC2  
WTIM0_CDTI0  
WTIM0_CDTI1  
WTIM0_CDTI2  
26: PC6  
27: PC7  
15: PB11 19: PB15  
0: PA2  
1: PA3  
2: PA4  
3: PA5  
16: PB14  
13: PB11 17: PB15  
14: PB12  
24: PC6  
25: PC7  
26: PC8  
27: PC9  
28: PC10 Wide timer 0 Cap-  
29: PC11 ture Compare in-  
put / output channel  
15: PB13  
31: PD9  
1.  
0: PA4  
1: PA5  
12: PB12  
13: PB13  
14: PB14  
24: PC8  
25: PC9  
Wide timer 0 Cap-  
ture Compare in-  
29: PD9  
22: PC6  
23: PC7  
26: PC10 30: PD10 put / output channel  
27: PC11 31: PD11 2.  
11: PB11 15: PB15  
8: PB12  
9: PB13  
10: PB14  
11: PB15  
20: PC8  
21: PC9  
28: PD12 Wide timer 0 Com-  
29: PD13 plimentary Dead  
22: PC10 26: PD10 30: PD14 Time Insertion  
23: PC11 27: PD11 31: PD15 channel 0.  
25: PD9  
18: PC6  
19: PC7  
7: PB11  
8: PB14  
9: PB15  
16: PC6  
17: PC7  
18: PC8  
19: PC9  
20: PC10 24: PD10 28: PD14 Wide timer 0 Com-  
21: PC11 25: PD11 29: PD15 plimentary Dead  
5: PB11  
6: PB12  
7: PB13  
26: PD12 30: PF0  
27: PD13 31: PF1  
Time Insertion  
channel 1.  
23: PD9  
4: PB12  
5: PB13  
6: PB14  
7: PB15  
16: PC8  
17: PC9  
24: PD12 28: PF0  
25: PD13 29: PF1  
Wide timer 0 Com-  
plimentary Dead  
Time Insertion  
channel 2.  
21: PD9  
14: PC6  
15: PC7  
18: PC10 22: PD10 26: PD14 30: PF2  
19: PC11 23: PD11 27: PD15 31: PF3  
3: PB11  
silabs.com | Building a more connected world.  
Rev. 1.2 | 143  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Certain alternate function locations may have non-interference priority. These locations will take precedence over any other functions  
selected on that pin (i.e. another alternate function enabled to the same pin inadvertently).  
Some alternate functions may also have high speed priority on certain locations. These locations ensure the fastest possible paths to  
the pins for timing-critical signals.  
The following table lists the alternate functions and locations with special priority.  
Table 6.8. Alternate Functionality Priority  
Alternate Functionality  
Location  
Priority  
CMU_CLKI0  
1: PF7  
High Speed  
silabs.com | Building a more connected world.  
Rev. 1.2 | 144  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
6.8 Analog Port (APORT) Client Maps  
The Analog Port (APORT) is an infrastructure used to connect chip pins with on-chip analog clients such as analog comparators, ADCs,  
DACs, etc. The APORT consists of a set of shared buses, switches, and control logic needed to configurably implement the signal rout-  
ing. Figure 6.6 APORT Connection Diagram on page 145 shows the APORT routing for this device family (note that available features  
may vary by part number). A complete description of APORT functionality can be found in the Reference Manual.  
1X  
2X  
1X  
2X  
3X  
4X  
NEXT1  
NEXT0  
3X  
4X  
NEXT1  
NEXT0  
POS  
NEG  
PB15  
PF0  
POS  
NEG  
POS  
NEG  
ACMP1  
PB14  
PB13  
1Y  
2Y  
3Y  
PF1  
PF2  
ACMP0  
1Y  
2Y  
4Y  
NEXT1  
NEXT0  
3Y  
4Y  
NEXT1  
NEXT0  
PB12  
PB11  
PF3  
PF4  
1X  
1Y  
1X  
2X  
3X  
4X  
IDAC0  
PF5  
PF6  
PF7  
NEXT0  
PA5  
PA4  
VDAC0_OUT0ALT  
VDAC0_OUT1ALT  
OUT0ALT  
OPA0_N  
ADC0  
1Y  
2Y  
3Y  
4Y  
OUT1ALT  
OUT0  
NEXT1  
EXTP  
EXTN  
PA3  
PA2  
OPA1_P  
1X  
OPA0_P  
POS  
NEG  
OPA0_P  
1X  
2X  
3X  
4X  
2X  
3X  
4X  
POS  
NEG  
VDAC0_OUT1ALT  
OUT1ALT  
ADC_EXTP  
OPA1_N  
1Y  
PA1  
PA0  
OPA1  
OPA0_N  
1Y  
2Y  
3Y  
4Y  
2Y  
3Y  
4Y  
ADC_EXTN  
OPA0  
OUT1  
OUT1ALT  
OUT1  
OUT2  
OUT3  
OPA1_N  
PD15  
OUT0  
OUT0ALT  
OUT1  
OUT2  
OUT3  
OUT  
VDAC0_OUT0ALT  
OUT0ALT  
OUT4  
NEXT1  
OUT  
OUT4  
NEXT0  
nX, nY  
APORTnX, APORTnY  
AX, BY, …  
BUSAX, BUSBY, ...  
Figure 6.6. APORT Connection Diagram  
Client maps for each analog circuit using the APORT are shown in the following tables. The maps are organized by bus, and show the  
peripheral's port connection, the shared bus, and the connection from specific bus channel numbers to GPIO pins.  
In general, enumerations for the pin selection field in an analog peripheral's register can be determined by finding the desired pin con-  
nection in the table and then combining the value in the Port column (APORT__), and the channel identifier (CH__). For example, if pin  
silabs.com | Building a more connected world.  
Rev. 1.2 | 145  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
PF7 is available on port APORT2X as CH23, the register field enumeration to connect to PF7 would be APORT2XCH23. The shared  
bus used by this connection is indicated in the Bus column.  
Table 6.9. ACMP0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.2 | 146  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Table 6.10. ACMP1 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.2 | 147  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Table 6.11. ADC0 Bus and Pin Mapping  
Table 6.12. IDAC0 Bus and Pin Mapping  
silabs.com | Building a more connected world.  
Rev. 1.2 | 148  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
Table 6.13. VDAC0 / OPA Bus and Pin Mapping  
OPA0_N  
OPA0_P  
silabs.com | Building a more connected world.  
Rev. 1.2 | 149  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
OPA1_N  
OPA1_P  
VDAC0_OUT0 / OPA0_OUT  
silabs.com | Building a more connected world.  
Rev. 1.2 | 150  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Pin Definitions  
VDAC0_OUT1 / OPA1_OUT  
silabs.com | Building a more connected world.  
Rev. 1.2 | 151  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN48 Package Specifications  
7. QFN48 Package Specifications  
7.1 QFN48 Package Dimensions  
Figure 7.1. QFN48 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.2 | 152  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN48 Package Specifications  
Table 7.1. QFN48 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
6.90  
6.90  
4.60  
4.60  
0.30  
7.10  
7.10  
4.80  
4.80  
D
7.00  
E
7.00  
D2  
E2  
e
4.70  
4.70  
0.50 BSC  
0.40  
L
0.30  
0.20  
0.09  
0.50  
K
R
0.14  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 153  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN48 Package Specifications  
7.2 QFN48 PCB Land Pattern  
Figure 7.2. QFN48 PCB Land Pattern Drawing  
silabs.com | Building a more connected world.  
Rev. 1.2 | 154  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN48 Package Specifications  
Table 7.2. QFN48 PCB Land Pattern Dimensions  
Dimension  
Typ  
6.01  
6.01  
4.70  
4.70  
0.50  
0.26  
0.86  
S1  
S
L1  
W1  
e
W
L
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
7. A 4x4 array of 0.75 mm square openings on a 1.00 mm pitch can be used for the center ground pad.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 155  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN48 Package Specifications  
7.3 QFN48 Package Marking  
EFR32  
PPPPPPPPPP  
YYWWTTTTTT  
Figure 7.3. QFN48 Package Marking  
The package marking consists of:  
• PPPPPPPPP – The part number designation.  
1. Family Code (B | M | F)  
2. G (Gecko)  
3. Series (1, 2,...)  
4. Device Configuration (1, 2,...)  
5. Performance Grade (P | B | V)  
6. Feature Code (1 to 7)  
7. TRX Code (3 = TXRX | 2= RX | 1 = TX)  
8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)  
9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K)  
10. Temperature Grade (G = -40 to 85 | I = -40 to 125)  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 156  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN32 Package Specifications  
8. QFN32 Package Specifications  
8.1 QFN32 Package Dimensions  
Figure 8.1. QFN32 Package Drawing  
silabs.com | Building a more connected world.  
Rev. 1.2 | 157  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN32 Package Specifications  
Table 8.1. QFN32 Package Dimensions  
Dimension  
Min  
0.80  
0.00  
Typ  
0.85  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
4.90  
3.40  
0.30  
5.10  
3.60  
D/E  
D2/E2  
E
5.00  
3.50  
0.50 BSC  
0.40  
L
0.30  
0.20  
0.09  
0.50  
K
R
0.14  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 158  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN32 Package Specifications  
8.2 QFN32 PCB Land Pattern  
Figure 8.2. QFN32 PCB Land Pattern Drawing  
silabs.com | Building a more connected world.  
Rev. 1.2 | 159  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN32 Package Specifications  
Table 8.2. QFN32 PCB Land Pattern Dimensions  
Dimension  
Typ  
4.01  
4.01  
3.50  
3.50  
0.50  
0.26  
0.86  
S1  
S
L1  
W1  
e
W
L
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
5. The stencil thickness should be 0.125 mm (5 mils).  
6. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
7. A 3x3 array of 0.85 mm square openings on a 1.00 mm pitch can be used for the center ground pad.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 160  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
QFN32 Package Specifications  
8.3 QFN32 Package Marking  
EFR32  
PPPPPPPPPP  
YYWWTTTTTT  
Figure 8.3. QFN32 Package Marking  
The package marking consists of:  
• PPPPPPPPP – The part number designation.  
1. Family Code (B | M | F)  
2. G (Gecko)  
3. Series (1, 2,...)  
4. Device Configuration (1, 2,...)  
5. Performance Grade (P | B | V)  
6. Feature Code (1 to 7)  
7. TRX Code (3 = TXRX | 2= RX | 1 = TX)  
8. Band (1 = Sub-GHz | 2 = 2.4 GHz | 3 = Dual-band)  
9. Flash (J = 1024K | H = 512K | G = 256K | F = 128K | E = 64K | D = 32K)  
10. Temperature Grade (G = -40 to 85 | I = -40 to 125)  
• YY – The last 2 digits of the assembly year.  
• WW – The 2-digit workweek when the device was assembled.  
• TTTTTT – A trace or manufacturing code. The first letter is the device revision.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 161  
EFR32FG14 Flex Gecko Proprietary Protocol SoC Family Data Sheet  
Revision History  
9. Revision History  
Revision 1.2  
August, 2018  
• Removed TRNG.  
• “PAVDD” references in Sub-GHz specification tables clarified to refer to “External PA Supply”. The PAVDD pin is for the 2.4 GHz  
radio.  
• GPIO Functionality table re-sorted to list pins alphabetically by GPIO Name column.  
Revision 1.1  
March, 2018  
• Removed 2 Mbps sensitivity plot from Figure 4.11 2.4 GHz RF Receiver Sensitivity on page 109.  
Figure 6.6 APORT Connection Diagram on page 145: Corrected OPA output connections to route through "Y" buses.  
Revision 1.0  
October, 2017  
• Removed Confidential watermark.  
Front Page and Feature List: Updated highlighted features for consistency across product line.  
Ordering Code Key Figure: Removed L (BGA) from package designation.  
System Overview: Memory maps updated with LE peripherals and new formatting.  
Absolute Maximum Ratings Table: Added footnote to clarify VDIGPIN specification for 5V tolerant GPIO.  
General Operating Conditions Table: Added footnote for additional information on peak current during voltage scaling operations.  
• Updated all specification table values, conditions, and footnotes according to latest characterization data, spec standards, and pro-  
duction test limits.  
Sub-GHz RF Receiver Characteristics for 868 MHz Band Table: Removed BPSK DSSS signal specifications from table and foot-  
notes.  
2.4 GHz RF Transmitter Output Power Figure: Extended temperature range to 125 C.  
2.4 GHz RF Receiver Sensitivity Figure: Updated with latest characterization data and added 125 C operational plots.  
• Updated pinout table formatting.  
• Removed 2 Mbps 2GFSK RX and TX specification tables and associated information.  
Revision 0.1  
August 23, 2017  
Initial release.  
silabs.com | Building a more connected world.  
Rev. 1.2 | 162  
Simplicity Studio  
One-click access to MCU and  
wireless tools, documentation,  
software, source code libraries &  
more. Available for Windows,  
Mac and Linux!  
IoT Portfolio  
www.silabs.com/IoT  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal  
injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or  
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM  
Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY