SI2107-D-FMR [SILICON]

暂无描述;
SI2107-D-FMR
型号: SI2107-D-FMR
厂家: SILICON    SILICON
描述:

暂无描述

接收机
文件: 总80页 (文件大小:958K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si2107/08/09/10  
SATELLITE RECEIVER FOR DVB-S/DSS  
Features  
Single-chip tuner, demodulator, Automatic acquisition and fade  
and LNB controller  
recovery  
DVB-S- and DSS-compliant Automatic gain control  
QPSK/BPSK demodulation  
Integrated step-up dc-dc  
On-chip blind scan accelerator  
(Si2109/10 only)  
converter for LNB power supply DiSEqC™ 2.2 support  
(Si2108/10 only)  
Power, C/N, and BER estimators  
I2C bus interface  
Pin Assignments  
Input signal level:  
–81 to –18 dBm  
Si2107/08/09/10  
3.3/1.8 V supply, 3.3 V I/O  
Symbol rate range:  
Lead-free/RoHS-compliant  
1 to 45 MBaud  
package  
44 43 42 41 40 39 38 37 36  
1
VDD_LNA  
REXT  
35 XTAL1  
Applications  
2
3
4
5
6
7
8
9
GND  
34 XTAL2  
ADDR  
33 VDD_XTAL  
32 XTOUT  
Set-top boxes  
Digital video recorders  
Digital televisions  
Satellite PC-TV  
SMATV trans-modulators  
(Satellite Master Antenna TV)  
VDD_MIX  
VDD_BB  
VDD_ADC  
VSEN/TDET  
LNB1/TGEN  
ISEN  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
Top  
View  
28  
TS_VAL  
27 TS_SYNC  
26 SDA  
LNB2/DRC 10  
Description  
RESET 11  
PWM/DCS 12  
VDD_DIG18 13  
25 SCL  
24 TS_DATA[7]  
GND  
TS_DATA[6]  
23  
The Si2107/08/09/10 are a family of pin-compatible, complete front-end solutions  
for DSS and DVB-S digital satellite reception. The IC family incorporates a tuner,  
demodulator, and LNB controller into a single device resulting in significantly  
reduced board space and external component count. The device supports symbol  
rates of 1 to 45 MBaud over a 950 to 2150 MHz range. A full suite of features  
including automatic acquisition, fade recovery, blind scanning, performance  
monitoring, and DiSEqC Level 2.2 compliant signaling are supported. The Si2108/  
10 further add short circuit protection, overcurrent protection, and a step-up dc-dc  
controller to implement a low-cost LNB supply solution. Si2110/09 versions  
include a hardware channel scan accelerator for fast “blindscan”. An I2C bus  
interface is used to configure and monitor all internal parameters.  
14 15 16 17 18 19 20 21 22  
Functional Block Diagram  
Acquisition Control  
AGC  
TS_CLK  
TS_DATA[7:0]  
TS_VAL  
RS  
Decoder  
Viterbi  
Decoder  
Tuner  
Demodulator  
RFIP  
TS_SYNC  
TS_ERR  
VSEN/TDET  
LNB2/DRL  
ISEN/NC  
LNB1/TGEN  
PWM/DCS  
LNB Control  
RF Sythesizer  
I2C Interface  
SCL SDA  
INT/RLK/GPO  
XOUT  
Preliminary Rev. 0.7 3/06  
Copyright © 2006 by Silicon Laboratories  
Si2107/08/09/10  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si2107/08/09/10  
2
Preliminary Rev. 0.7  
Si2107/08/09/10  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4. Part Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.1. Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.2. Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.3. DVB-S/DSS Channel Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.4. On-Chip Blindscan Accelerator (Si2109/10 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.5. LNB Signaling Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.6. On-Chip LNB DC-DC Step-Up Controller (Si2108/10 Only) . . . . . . . . . . . . . . . . . . .18  
5.7. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
6. Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6.1. System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6.2. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6.3. Receiver Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.4. Tuning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.5. Channel Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
6.6. Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6.7. LNB Signaling Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
6.8. On-Chip LNB DC-DC Step-Up Controller (Si2108/10 Only) . . . . . . . . . . . . . . . . . . .28  
7. I2C Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
10. Ordering Guide1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
11. Package Outline: 44-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Preliminary Rev. 0.7  
3
Si2107/08/09/10  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient temperature  
Symbol  
Min  
0
Typ  
Max  
70  
Unit  
°C  
V
T
A
DC supply voltage, 3.3 V  
DC supply voltage, 1.8 V  
V
V
3.0  
1.71  
3.3  
1.8  
3.6  
3.3  
1.8  
1.89  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Table 2. Absolute Maximum Ratings1, 2  
Parameter  
Symbol  
Min  
–0.3  
–0.3  
–0.3  
–10  
–10  
–55  
Max  
3.9  
Unit  
V
DC supply voltage, 3.3 V  
DC supply voltage, 1.8 V  
Input voltage - pins 2, 3, 7, 9, 11  
Input current - pins 2, 3, 7, 9, 11  
Operating ambient temperature  
Storage temperature  
V
V
3.3  
1.8  
2.19  
V
V
V
+ 0.3  
3.3  
V
IN  
IN  
I
+10  
+70  
150  
10  
1
mA  
°C  
°C  
dBm  
kV  
kV  
T
OP  
T
STG  
RF input level  
ESD protection - pins 39–40, 42–43  
ESD protection - pins 1–38, 41, 44  
Notes:  
2
1. Permanent damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operations sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. The Si2107/08/09/10 is a high-performance RF integrated circuit. Handling and assembly of these devices should  
only be done at ESD-protected workstations.  
4
Preliminary Rev. 0.7  
Si2107/08/09/10  
Table 3. DC Characteristics  
(V3.3 = 3.3 V ±10%, V1.8 = 1.8 V ±10%, TA = 0–70 ºC)  
Parameter  
Symbol  
Test Condition  
45 Msps, CR 7/8*  
20 Msps, CR 2/3*  
45 Msps, CR 7/8*  
20 Msps, CR 2/3*  
SCL(25), SDA(26)  
SCL(25), SDA(26)  
SCL(25), SDA(26)  
Min  
2.3  
0
Typ  
313  
298  
292  
217  
Max  
Unit  
mA  
mA  
mA  
mA  
V
Supply Current, 3.3 V  
I
3.3  
Supply Current, 1.8 V  
I
1.8  
Input high voltage  
Input low voltage  
Input leakage  
V
5.5  
0.8  
±10  
IH  
V
I
V
IL  
I
2.4  
µA  
V
Output high voltage  
Output low voltage  
Output leakage  
V
OH  
V
I
0.4  
±10  
V
OL  
µA  
OL  
*Note: LNB dc-dc converter disabled; LNB_EN (CEh[2]) = 0.  
Table 4. RF Electrical Characteristics  
Parameter  
Input power, single channel  
Aggregate input power  
Input impedance, balanced  
Return Loss  
Symbol  
Test Condition  
Min  
–81  
Typ  
Max  
–23  
–7  
Unit  
dBm  
dBm  
Ω
P
i,ch  
P
i,agg  
Z
Z
= 75 Ω  
75  
in  
SOURCE  
–10  
75  
dB  
Dynamic voltage gain range  
Maximum voltage gain  
Noise figure  
Δ
dB  
GV  
G
55  
dB  
V(max)  
1
NF  
Max gain  
+9.5  
+15  
+12.5  
dB  
2
3
IP3  
IP3  
Min gain  
+5  
dBm  
dBm  
dBc/Hz  
dBc/Hz  
°rms  
LO leakage  
L
950 to 2150 MHz  
100 kHz offset  
1 MHz offset  
–70  
–94  
–94  
2.8  
LO  
–97  
–97  
2.1  
LO SSB phase noise  
N
N
LO  
LO  
LO DSB phase noise (integrated)  
10 kHz to 1/2 Baud  
Rate  
RF synthesizer spurious  
At 20 MHz offset  
At 2 kHz offset  
–40  
–130  
100  
dBc/Hz  
dBc/Hz  
µs  
Reference oscillator phase noise  
LO oscillator settling time  
t
s,LO  
Notes:  
1. Max gain = +55 dB.  
2. IM3 can be calculated as follows: IM3 = 2 x (IP3 – Pin).  
3. Min gain = –35 dB.  
Preliminary Rev. 0.7  
5
Si2107/08/09/10  
Table 5. Receiver Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RF input frequency range  
f
950  
2150  
MHz  
in  
Fine tune step size  
f
1
125  
45  
kHz  
MBaud  
MHz  
step  
Symbol rate range  
R
S
Carrier offset correction range  
f
±6  
car_off  
Table 6. LNB Supply Characteristics (Si2108/10 Only)  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
Min  
8
Typ  
12  
Max  
13.2  
290  
19.5  
19.0  
14.0  
14.0  
1
Unit  
V
V
LNB_IN  
Converter Switch Frequency  
237  
17.75  
17.0  
12.75  
12.5  
264  
kHz  
V
VHIGH = 1010  
VHIGH = 0000  
VLOW = 0110  
VLOW = 0100  
13 to 18 V  
18.625  
18.0  
13.375  
13.25  
Output HIGH voltage  
V
V
Output LOW voltage  
V
Low to High Transition Time  
High to Low Transition Time  
Line Regulation  
ms  
ms  
ΔmV  
18 to 13 V  
1
V
= 8 to  
200  
CC  
13.2 V  
I = 500 mA  
o
Load Regulation  
I = 50 to  
200  
ΔmV  
o
500 mA  
V
= 12 V  
CC  
Load Capacitance Tolerance  
Output current limiting  
DiSEqC 1.x  
DiSEqC 2.x  
ILIM = 00  
ILIM = 01  
ILIM = 10  
ILIM = 11  
1.6  
22  
650  
50  
6
0.75  
0.25  
550  
650  
850  
1000  
1.92  
24  
µF  
µF  
400  
500  
650  
800  
1.4  
20  
mA  
mA  
mA  
mA  
A
Maximum LNB Supply Current  
Tone Frequency  
IMAX = 01  
f
kHz  
mV  
%
tone  
Tone Amplitude  
500  
40  
800  
60  
Tone Duty Cycle  
Tone Rise and Fall Time  
3
10  
µs  
Tone Detector Frequency Capture  
Range  
17.6  
26.4  
kHz  
Tone Detector Input Amplitude  
200  
1000  
mV  
pp  
Note: Specifications based on recommended schematics in Figure 5 and Figure 6.  
6
Preliminary Rev. 0.7  
Si2107/08/09/10  
Table 7. I2C Bus Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCL Clock Frequency  
f
SCL  
BUF  
Bus Free Time between START and  
STOP Condition  
t
1.3  
Hold Time (repeated) START Condition.  
(After this period, the first clock pulse is  
generated.)  
t
0.6  
µs  
HD, STA  
LOW Period of SCL Clock  
HIGH Period of SCL Clock  
Data Setup Time  
t
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
ns  
µs  
LOW  
t
HIGH  
t
SU, DAT  
HD, DAT  
Data Hold Time  
t
0.9  
300  
SCL and SDA Rise and Fall Time  
t t  
r, f  
Setup Time for a Repeated START Con-  
dition  
t
0.6  
SU, STA  
Setup Time for STOP Condition  
Capacitive Load for each Bus Line  
t
0.6  
µs  
pF  
SU,STO  
C
400  
B
SDA  
tr  
tBUF  
tSU;DAT  
tf  
tf  
tLOW  
tr  
tHD;STA  
tSP  
SCL  
tSU;STO  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;STA  
Sr  
S
P
S
2
Figure 1. I C Timing Diagram  
Preliminary Rev. 0.7  
7
Si2107/08/09/10  
Table 8. MPEG-TS Specifications (Rising Launch and Capture)  
Parameter  
Symbol  
Test Condition  
Serial mode  
Min  
11.3  
77  
Typ  
Max  
28.6  
8000  
6.9  
Unit  
ns  
Clock cycle time  
t
cycle  
Parallel mode  
ns  
Clock low time  
Clock high time  
Hold time  
t
Serial mode (TSSCR = 11)  
Serial mode (TSSCR = 00)  
Parallel mode  
5.1  
ns  
clow  
12.0  
39  
15.8  
4000  
ns  
ns  
t
Serial mode (TSSCR = 01)  
Serial mode (TSSCR = 11)  
Parallel mode  
5.1  
12.0  
39  
6.9  
15.8  
4000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
chigh  
t
Normal operation  
0
hold  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
Normal operation  
1.5  
–1.5  
Setup time  
t
t
t
– 1.5  
setup  
cycle  
cycle  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
– 3.0  
t
cycle  
Access time  
t
1.5  
access  
tcycle  
C
L
TS_CLK  
TS_DATA  
thold  
tsetup  
taccess  
Figure 2. MPEG-TS (Rising Launch and Capture) Timing Diagram  
8
Preliminary Rev. 0.7  
Si2107/08/09/10  
Table 9. MPEG-TS Specifications (Rising Launch, Falling Capture)  
Parameter  
Symbol  
Test Condition  
Serial mode  
Min  
11.3  
77  
Typ  
Max  
28.6  
8000  
6.9  
Unit  
ns  
Clock cycle time  
t
cycle  
Parallel mode  
ns  
Clock low time  
Clock high time  
Hold time  
t
Serial mode (TSSCR = 11)  
Serial mode (TSSCR = 00)  
Parallel mode  
5.1  
ns  
clow  
12.0  
39  
15.8  
4000  
ns  
ns  
t
Serial mode (TSSCR = 01)  
Serial mode (TSSCR = 11)  
Parallel mode  
5.1  
12.0  
39  
6.9  
15.8  
4000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
chigh  
t
Normal operation  
t
/2  
cycle  
hold  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
Normal operation  
t
t
t
/2 + 1.5  
/2 – 1.5  
/2 – 1.5  
/2 – 3.0  
cycle  
cycle  
cycle  
Setup time  
t
setup  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
t
cycle  
t
/2  
cycle  
Access time  
t
1.5  
access  
tcycle  
C
L
L
TS_CLK  
TS_DATA  
thold  
tsetup  
taccess  
Figure 3. MPEG-TS (Rising Launch, Falling Capture) Timing Diagram  
Preliminary Rev. 0.7  
9
Si2107/08/09/10  
2. Typical Application Schematic  
2
V D D _ L N A  
A L 1 X T  
A L 2 X T  
1
3 5  
3 4  
R E X T  
2
A D D R  
A L  
V D D _ X T  
3
3 3  
V D D _ M I X  
O U X T T  
4
3 2  
V D D _ P L L 3 3  
3 1  
/ R L K I N / G T P O  
V D D _ B B  
5
V D D _ A D C  
6
3 0  
T S _ E R R  
2 9  
/ V S E E T D N T  
7
1
/ L N N E B T G  
N C / I S E N  
D R C / L N B 2  
T S _ V A L  
2 8  
8
T S _ S Y N C  
2 7  
9
S D A  
1 0  
1 1  
1 2  
1 3  
2 6  
R E S E T  
S C L  
2 5  
D C S / P W M  
V D D _ D I G  
A 7  
A 6  
_ D S T A T  
2 4  
2 3  
1 8  
_ D S T A T  
10  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Si2110 LNB Control  
Preliminary Rev. 0.7  
11  
Si2107/08/09/10  
Si2110 LNB Control  
12  
Preliminary Rev. 0.7  
Si2107/08/09/10  
3. Bill of Materials  
Table 10. Si2107/08/09/10 Bill of Materials  
Component  
Description  
Vendor  
C1,C2,C4,C6,C10,C8,C9,  
C10,C13,C14,C15,C16  
0.1 µF, X7R, ±20%  
C5  
0.01 µF, X7R, ±20%  
33 pF, 6 V, NP0, ±10%  
C3,C7,C11,C12  
C19,C36  
33 pF, 50 V, NP0, ±10%  
2
D4  
Transient voltage suppressor, 20 V  
Littlefuse SMCJ20CA  
J1  
Connector, F-type, 75 Ω, 950-2150 MHz  
4.53 kΩ, 62.5 mW, ±1%  
See Note 1  
R2  
TC1-5  
X1  
Balun transformer  
Anaren B0922J7575A00  
Silicon Laboratories  
Y1  
20 MHz, 20 pF, 50 ppm, 20 Ω ESR  
Si2107/08/09/10  
U1  
Notes:  
1. Tuning component values depend on the balun selected and layout. Contact Silicon Laboratories for  
assistance reviewing layouts and selecting matching components.  
2. The transient voltage suppression device should be selected to match the surge requirements of the  
application.  
Preliminary Rev. 0.7  
13  
Si2107/08/09/10  
Table 11. DiSEqC 1.x LNB Supply Bill of Materials (Si2108/10 Only)  
Component  
C30  
Description  
Vendor  
47 µF, 25 V,Electrolytic,± 20%  
0.47 µF, 25 V, X7R,± 20%  
22 nF, 25 V, X7R, ± 20%  
0.22 µF, 25 V, X7R, ± 20%  
4.7 µF, 25 V, X7R, ± 20%  
C31  
C32  
C33  
C34  
D1  
CMPSH1-4, 40 V, 1 A  
ZHCS750TA, 40 V, 750 mA  
Central Semiconductor  
Zetex  
D3  
L2  
MMBD1705, Dual diode, 20 V, 25 mA  
Fairchild  
DR78098,33 µH,1.2 A, 20%  
SD0705-330K-R-SL  
Datatronic  
ACT  
Q1  
ZXMN3B14  
FDN337N  
Zetex  
Fairchild  
Q2  
Q3,Q5,Q6  
Q4  
FMMT618  
Zetex  
Fairchild  
Zetex  
MMBT3904  
FMMT718  
R5  
1.3 Ω, 500 mW, ±5%  
33 Ω, 250 mW, ±5%  
10 kΩ, 62.5 mW, ±5%  
1 kΩ, 250 mW, ±5%  
680 Ω, 125 mW, ±5%  
0.22 Ω, 1 W, ±5%  
22 kΩ, 62.5 mW, ±1%  
20 kΩ, 62.5 mW, ±5%  
33 Ω, 62.5 mW, ±5%  
43 kΩ, 62.5 mW, ±5%  
3 kΩ, 100 mW, ±5%  
2 kΩ, 250 mW, ±5%  
2.2 kΩ, 62.5 mW, ±1%  
R6  
R7  
R8  
R9  
R10  
R11  
R12,R20  
R13  
R14  
R15  
R16  
R17  
14  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Table 12. DiSEqC 2.x LNB Supply Bill of Materials (Si2108/10 Only)  
Component  
C17  
Description  
Vendor  
1200 pF, 25 V, X7R, ± 20%  
47 µF, 25 V,Electrolytic,± 20%  
0.47 µF, 25 V, X7R,± 20%  
22 nF, 25 V, X7R, ± 20%  
0.22 µF, 25 V, X7R, ± 20%  
4.7 µF, 25 V, X7R, ± 20%  
C30  
C31,C35  
C32  
C33  
C34  
D1  
CMPSH1-4, 40 V, 1 A  
ZHCS750TA, 40 V, 750 mA  
Central Semiconductor  
Zetex  
D3  
L2  
MMBD1705, Dual diode, 20 V, 25 mA  
Fairchild  
DR78098,33 µH,1.2 A, 20%  
SD0705-330K-R-SL  
Datatronic  
ACT  
L3  
DR78097,100 µH, 500 mA, 20%  
SD0504-101K-R-SL  
Datatronic  
ACT  
Q1  
ZXMN3B14  
FDN337N  
Zetex  
Fairchild  
Q2  
Q3,Q5,Q6  
Q4  
FMMT618  
Zetex  
Fairchild  
Zetex  
MMBT3904  
FMMT718  
R5  
1.3 Ω, 500 mW, ±5%  
33 Ω, 250 mW, ±5%  
10 kΩ, 62.5 mW, ±5%  
1 kΩ, 250 mW, ±5%  
680 Ω, 125 mW, ±5%  
0.22 Ω, 1 W, ±5%  
22 kΩ, 62.5 mW, ±1%  
20 kΩ, 62.5 mW, ±5%  
33 Ω, 62.5 mW, ±5%  
43 kΩ, 62.5 mW, ±5%  
3 kΩ, 100 mW, ±5%  
2 kΩ, 250 mW, ±5%  
2.2 kΩ, 62.5 mW, ±1%  
16 Ω, 250 mW, ±5%  
R6  
R7  
R8  
R9  
R10  
R11  
R12,R20  
R13  
R14  
R15  
R16  
R17  
R18  
Preliminary Rev. 0.7  
15  
Si2107/08/09/10  
4. Part Versions  
There are four pin- and software-compatible versions of  
this device. All versions include the L-band tuner, DVB-  
S/DSS demodulator and channel decoder, and LNB  
signaling controller. Furthermore, the Si2108 and  
Si2110 integrate an efficient LNB supply regulator while  
allowing operation with an external LNB supply  
regulator circuit. The LNB supply controller utilizes a  
step-up converter architecture. In case operation with  
an external regulator is desired, Si2107 and Si2109 can  
be used; these do not integrate the LNB step-up dc-dc  
controller.  
On the other hand, the Si2109 and Si2110 integrate an  
on-chip “blindscan” accelerator, which allows the  
implementation of a very fast channel scan, an  
important feature for end products targeted to free-to-air  
(FTA) applications in which channel locations are  
unknown. Si2107 and Si2108 do not integrate this  
accelerator and are a good fit when symbol rates and  
frequencies of satellite channels are known, as in the  
case of pay-TV receivers or for FTA receivers in which  
the embedded firmware contains the channel tuning  
information. Table 13 summarizes the differences  
between part versions.  
Table 13. Device Versions  
Part  
DVB-S/DSS  
LNB Supply  
Regulator  
On-Chip  
Blindscan  
Accelerator  
Number Integrated Tuner/  
Demodulator with  
Integrated LNB  
Messaging  
Si2110  
Si2109  
Si2108  
Si2107  
Y
Y
Y
Y
Y
N
Y
N
Y
Y
N
N
16  
Preliminary Rev. 0.7  
Si2107/08/09/10  
solution for the free-to-air (FTA) and common interface  
(CI) market. Automatic acquisition and fade recovery  
5. Functional Description  
The Si2107/08/09/10 is a family of highly-integrated sequencers are also included to reduce the required  
CMOS RF satellite receivers for DVB-S and DSS amount of software interaction and to simplify the  
applications. The device is an ideal solution for satellite overall design. The output of the demodulator is  
set-top boxes, digital video recorders, digital televisions, quantized into a 4-bit number by the soft-decision  
and satellite PC-TV. The IC incorporates a tuner, decoder. The use of soft-decision decoding improves  
demodulator, and LNB controller into a single device the error correction capabilities of the channel decoder.  
resulting in a significant reduction in board space and  
5.3. DVB-S/DSS Channel Decoder  
external component count. The device supports symbol  
rates of 1 to 45 Msym/s over a 950 to 2150 MHz range. The Si2107/08/09/10 integrates a full-channel decoder,  
A full suite of features including automatic acquisition, which can be configured in either DSS or DVB-S mode  
fade recovery, blind scanning, performance monitoring, and consists of a soft-decision Viterbi decoder, de-  
and DiSEqC™ Level 2.2 compliant signaling are interleaver, Reed-Solomon decoder, and energy-  
supported. The Si2110 and Si2108 further add short- dispersal descrambler.  
circuit protection, overcurrent protection, and a step-up  
5.3.1. Viterbi decoder  
dc-dc controller to implement a low-cost LNB supply.  
The Viterbi decoder performs maximum likelihood  
Furthermore, the Si2109 and Si2110 have an on-chip  
estimation of convolutional codes in compliance with  
blindscan accelerator. An I2C bus interface is used to  
DVB-S and DSS standards. The decoder is capable of  
configure and monitor all internal parameters.  
detecting code rate, puncturing pattern phase, 90°  
phase rotation, and I/Q interchange. Supported code  
rates are listed in Table 14  
5.1. Tuner  
The tuner is designed to accept RF signals within a 950  
to 2150 MHz frequency range. The inputs are matched  
to a 75 Ω coaxial cable in a single-ended configuration.  
Table 14. Viterbi Code Rates  
The tuner block consists of a low-noise amplifier (LNA),  
DVB-S  
1/2  
DSS  
variable gain attenuators, a local oscillator, quadrature  
downconverters, and anti-aliasing filters. The LNA and  
variable gain stages provide balance between the noise  
figure and linearity characteristics of the system. When  
all gain stages are combined, the device provides more  
than 80 dB of gain range. The desired tuning frequency  
can be adjusted in intervals of 125 kHz, without the aid  
of external varactors, using a unique two-stage tuning  
algorithm that is supplied with the software driver. The  
rapid settling time of the local oscillator improves  
channel acquisition and switching performance. The  
PLL loop filter has been completely integrated into the  
2/3  
2/3  
3/4  
5/6  
6/7  
7/8  
device resulting in low tuner phase noise, improved The device allows monitoring of the Viterbi bit-error rate  
spurious response, and reduced BOM cost. An external (BER) over a finite or infinite measurement window.  
20 MHz crystal unit generates the reference frequency  
for the system.  
5.3.2. Convolutional De-Interleaver  
The deinterleaver disassembles the Reed-Solomon  
(RS) code words, which were interleaved by the  
modulator, to provide better resilience against burst  
errors. The Si2110/09 performs deinterleaving  
according to DVB-S and DSS standards.  
5.2. Demodulator  
The demodulator supports QPSK and BPSK  
demodulation of channels between 1 to 45 Msym/s. It  
incorporates the following functional blocks: analog-to-  
digital converters (ADCs), dc notch filters, I/Q imbalance  
5.3.3. Reed-Solomon decoder  
corrector, decimation filters, matched filters, equalizer, The Si2109/10 supports RS codes in compliance with  
digital automatic gain controls, and a soft-decision DVB-S and DSS specifications. Both standards use a  
decoder. The demodulator supports rapid channel shortened Reed-Solomon code, which can correct up to  
acquisition using an advanced carrier offset estimation eight byte errors per information packet. DVB-S utilizes  
algorithm. When combined with the Si2209/10’s blind 204 byte codes. DSS utilizes 146 byte codes.  
scanning capabilities, the device becomes an ideal  
Preliminary Rev. 0.7  
17  
Si2107/08/09/10  
The device allows monitoring of correctable bit,  
correctable byte, and uncorrectable packet errors over a  
finite or infinite measurement window. The device also  
includes a total BER monitor, which compares received  
data from a modulated PRBS sequence against the  
same sequence generated from an on-chip PRBS  
generator.  
5.6. On-Chip LNB DC-DC Step-Up Control-  
ler (Si2108/10 Only)  
Next to the LNB message signaling controller, the  
device also integrates the LNB supply regulator  
controller. The supported LNB supply regulator  
architecture consists of a step-up dc-dc (boost)  
converter followed by an efficient filter, linefeed, and  
DiSEqC transmit/receive circuit, which implements a  
very power-efficient LNB supply solution. This facilitates  
a complete LNB supply circuit with only a minimal  
number of external components.  
5.3.4. Energy-dispersal descrambler  
The descrambler removes the energy dispersal  
scrambling introduced by the DVB-S process. The  
descrambler is automatically bypassed in DSS mode.  
5.4. On-Chip Blindscan Controller  
(Si2109/10 Only)  
5.7. Crystal Oscillator  
The crystal oscillator requires a crystal with a resonant  
The device includes on-chip circuitry to facilitate fundamental frequency of 20 MHz to generate the  
extremely fast detection of available satellite channels. reference frequency for the local oscillator. A single  
For each valid DVB-S/DSS channel, the tuning crystal can be shared between two devices by utilizing  
frequency and symbol rate, which can be stored by the the master-slave configuration shown in Figure 6.  
host for subsequent tuning, are determined. On Si2107/  
08 devices, the host needs to provide the channel  
tuning frequency and symbol rate to the device.  
C11  
XTAL1  
XTAL1  
5.5. LNB Signaling Controller  
Y1  
The device supports several LNB signaling methods  
including dc voltage selection, continuous tone, tone  
burst, DiSEqC 1.x- and DiSEqC 2.x-compliant  
messaging, and several combinations of these to allow  
simultaneous operation with legacy tone/burst and  
DiSEqC-capable peripherals.  
XTAL2  
C12  
XTOUT  
Si2107/09 includes the capability to convert I2C  
signaling commands to signals that interface to an  
external LNB supply regulator circuit. In the case of (bi-  
directional) DiSEqC operation, the device modulates  
(and demodulates) the PWK data to (and from) an  
internal message FIFO, which the host uses to write  
(and read) DiSEqC messages. In the case of  
transmission, the device can generate either the 22 kHz  
tone burst directly or generate a tone envelope for when  
an external LNB supply controller is used, which  
includes the 22 kHz oscillator.  
Figure 6. Master-Slave Crystal Sharing  
18  
Preliminary Rev. 0.7  
Si2107/08/09/10  
All signals on the MPEG-TS output interface can be  
individually tri-stated using bits TSE_OE, TSV_OE,  
6. Operational Description  
The following sections discuss the user-programmable TSS_OE, TSC_OE, and TSD_OE.  
functionality offered by the corresponding register map  
Transport stream data can be output in a parallel byte-  
sections. Refer to Table 19, “Register Summary,” on  
page 31 and detailed register descriptions starting on  
page 35.  
wide mode or a serial bit-wide mode for system-level  
flexibility. Selection of the interface mode is controlled  
via the TSM bit. In serial mode, data is output on  
TS_DATA[0] while TS_DATA[7:1] are held low. The  
direction of the serial data stream may be programmed  
to output in an MSB or LSB first direction using the  
TSDF bit. Parity data may be optionally zeroed by  
setting the TSPG bit. To support board-level timing  
modifications, the data stream may be delayed by  
setting TSDD.  
6.1. System Configuration  
The MPEG Transport Stream (TS) output interface  
carries the decoded satellite data to external devices for  
further processing. Both DVB-S and DSS receiver  
modes and associated output data packet formats are  
supported. Mode selection is controlled via the system  
mode register, SYSM. QPSK or BPSK demodulation is  
set via the modulation type (MOD) register.  
The transport stream clock can be programmed such  
that data is transitioning on its rising or falling edge  
using the TSCE bit. When operating in serial mode, the  
transport stream clock mode bit, TSCM, can be used to  
select either a gapped or continuous clock mode. In the  
gapped mode, the clock is active only when data is  
being output. For this, parity information is not  
considered data when the TSPG is set to output zero  
data during parity. In the continuous mode, the clock  
runs without regard to data being output, and the user  
uses TS_VAL as a data strobe. To support board-level  
timing modifications, the clock stream may be delayed  
by register bit TSCD.  
The MPEG-TS output interface consists of the following  
output pins:  
TS_DATA[7:0]  
TS_CLK  
Data  
Clock  
TS_SYNC  
TS_VAL  
Sync/Frame Start Indicator  
Valid Data Indicator  
Uncorrectable Packet Error  
TS_ERR  
The start of a TS frame is indicated by the TS_SYNC  
signal. The TS_SYNC signal is a pulse that is active  
during the sync byte in a DVB-S frame or during the first  
byte of a DSS frame and is active only while TS  
synchronization exists. In serial mode, the TS_SYNC  
pulse can be programmed to be active for the whole  
byte, or the first bit only, by setting the TSSL bit. The  
polarity of the TS_SYNC pulse can be programmed to  
be either active high or active low using the TSSP bit.  
In serial mode, the transport stream clock rate range is  
determined by the TSSCR register. The exact rate is  
determined during the acquisition process. The range  
that minimizes the difference between the effective  
transport stream data rate and the clock rate should be  
chosen. The recommended settings are listed in  
Table 15.  
The TS_VAL output is used to indicate when valid data  
is present. TS_VAL is active during the MPEG-TS frame  
packet data and inactive while parity data is being  
output or when there is no TS synchronization. The  
polarity of the TS_VAL output can be programmed to be  
active high or active low using the TSVP bit.  
Table 15. Serial MPEG-TS Clock Frequency  
TSSCR  
00  
Baud Rate  
40–50 Msps  
30–40 Msps  
19–30 Msps  
1–19 Msps  
Serial Clock Rate  
80–88.5 MHz  
The TS_ERR output indicates that an uncorrectable  
error has been detected in the RS decoding stage and  
that the current TS data packet contains uncorrectable  
errors. The TS_ERR output is active during the entire  
erred TS frame. The polarity of TS_ERR can be  
programmed to be active high or active low using the  
TSEP bit.  
01  
76.8–82.8 MHz  
54.9–59.2 MHz  
35–37.7 MHz  
10  
11  
Figure 7 illustrates the parallel data mode. Figure 8  
illustrates the continuous and gapped serial data  
modes.  
Preliminary Rev. 0.7  
19  
Si2107/08/09/10  
Parallel Data Mode  
TS_CLK, rising edge  
TS_DATA[7:0]  
TS1 (sync)  
TS1 (sync)  
TS188  
TS2  
TS2  
RS1  
TS_SYNC active high  
TS_VAL active high  
TS_ERR active high  
Figure 7. MPEG-TS Parallel Mode  
Continuous Serial Data Mode  
TS_CLK rising edge  
TS1 (sync)  
TS2  
TS188  
RS1  
TS1 (sync)  
TS2  
TS_DATA[0]  
TS_SYNC, active low/1-bit wide  
TS_VAL active low  
TS_ERR, active low  
Gapped Serial Data Mode  
TS_CLK falling edge/ gapped  
TS1 (sync)  
RS1  
TS2  
TS188  
TS2  
TS1 (sync)  
TS_DATA[0]  
TS_SYNC active high  
TS_VAL active high  
TS_ERR active high  
Figure 8. MPEG-TS Serial Modes  
The device has one output pin (pin 30), which can be  
configured as either a receiver lock indicator, general  
purpose output, or interrupt output, using the pin select  
register, PSEL. The receiver lock indicator provides a  
signal output for register bit RCVL. The general purpose  
output reflects the polarity of register bit GPO. The  
interrupt output is discussed further in “6.2. Interrupts”.  
6.2. Interrupts  
The device is equipped with several sticky interrupt bits  
to provide precise event tracking and monitoring.  
Next to interrupts being signaled via the I2C register  
map, the user can program one of the device terminals  
(INT) as a dedicated interrupt pin via the pin select  
register bit, PSEL. The device contains an extensive  
collection of interrupt sources that can be individually  
masked from the INT pin using the corresponding  
interrupt enable register bits, labeled with suffix “_E”.  
Thus, the INT output is a logical-OR of all enabled  
interrupts. Generation of the channel interrupt on pin  
INT can be masked off by using the interrupt enable bit,  
INT_EN. Note that interrupt reporting in the register  
map is not affected by INT_EN.  
The user can configure the device such that  
components of the channel decoder are bypassed. This  
is controlled by the energy-dispersal descrambler  
bypass bit, DS_BP, the Reed-Solomon decoder bypass  
bit, RS_BP, and the convolutional de-interleaver bypass  
bit, DI_BP. The use of these bypass options is defined  
for the implementation of a BER test on a known  
modulated PRBS data sequence as explained later in  
"6.5. Channel Decoder" on page 24.  
20  
Preliminary Rev. 0.7  
Si2107/08/09/10  
The interrupt signal polarity can be configured to be Interrupt bits are set by the device to 1 when an  
active high or active low using the interrupt polarity bit, interrupt occurs. The host clears an interrupt bit by  
INTP. The interrupt signal type can be configured to be writing a 1 again, at which time the device resets the  
CMOS output or open-drain/source output using the interrupt bit to zero. Table 16 illustrates the interrupt  
interrupt type bit, INTT.  
sources and their associated status, enable, and  
interrupt bits.  
Table 16. Events, Interrupts, and Status Bits  
Event  
Interrupt Bit  
RCVL_I  
RCVU_I  
TUNL_I  
AGCL_I  
AGCTS_I  
CEL_I  
Enable Bit  
RCVL_E  
RCVU_E  
TUNL_E  
AGCL_E  
AGCTS_E  
CEL_E  
Status Bit  
RCVL (0 –>1)  
RCVL (1 –> 0)  
TUNL (0 –> 1)  
AGCL (0 –> 1)  
AGCTS (0 –> 1)  
CEL (0 –> 1)  
SRL (0 –> 1)  
STL (0 –> 1)  
STL (1 –> 0)  
CRL (0 –> 1)  
CRL (1 –> 0)  
VTL (0 –> 1)  
VTL (1 –> 0)  
FSL (0 –> 1)  
FSL (1 –> 0)  
AQF (0 –> 1)  
CNS (1 –> 0)  
VTBRS (1 –> 0)  
RSERS (1 –> 0)  
FE (0 –> 1)  
Receiver lock  
Receiver unlock  
Tuner lock  
AGC lock  
AGC threshold  
Carrier estimation lock  
Symbol rate estimation lock  
Symbol timing lock  
Symbol timing unlock  
Carrier recovery lock  
Carrier recovery unlock  
Viterbi lock  
SRL_I  
SRL_E  
STL_I  
STL_E  
STU_I  
STU_E  
CRL_I  
CRL_E  
CRU_I  
VTL_I  
CRU_E  
VTL_E  
Viterbi unlock  
VTU_I  
VTU_E  
Frame synchronizer lock  
Frame synchronizer unlock  
Acquisition fail  
FSL_I  
FSL_E  
FSU_I  
FSU_E  
AQF_I  
AQF_E  
CN_E  
C/N measurement complete  
Viterbi BER measurement complete  
RS measurement complete  
Message FIFO empty  
Message FIFO full  
Message received  
Message parity error  
Message receive timeout  
Short-circuit detect  
Overcurrent detect  
CN_I  
VTBR_I  
RSER_I  
FE_I  
VTBR_E  
RSER_E  
FE_E  
FF_I  
FF_E  
FF (0 –> 1)  
MSGR_I  
MSGPE_  
MSGTO_I  
SCD_I  
OCD_I  
MSGPE_E  
MSGR_  
MSGTO_E  
SCD_E  
OCD_E  
MSGR (0 –> 1)  
MSGPE (0 –> 1)  
MSGTO (0 –> 1)  
SCD (0 –> 1)  
OCD (0 –> 1)  
Preliminary Rev. 0.7  
21  
Si2107/08/09/10  
6.3. Receiver Status  
During receive operation, the host can retrieve  
information on the status of AGC lock (AGCL), carrier  
estimation lock (CEL), symbol rate estimation lock  
(SRL), symbol timing lock (STL), carrier recovery lock  
(CRL), Viterbi decoder lock (VTL), frame sync lock  
(FSL), and overall receiver lock (RCVL).  
Acquisition Start  
Calibration  
done  
LO Tuning  
During channel acquisition, the host can retrieve  
information on error conditions due to: AGC search  
(AGCF), carrier estimation (CEF), symbol rate search  
(SRF), symbol timing search (STF), carrier recovery  
search (CRF), Viterbi code rate search (VTF), frame  
sync search (FSF), and overall receiver acquisition  
(AQF),  
done  
Analog AGC Search  
done  
Stage fail  
Stage fail  
CFO Estimation1  
lock  
6.4. Tuning Control  
Symbol Rate Estimation1  
lock  
The Si2107/08/09/10 utilizes a unique two-stage tuning  
algorithm to provide optimal RF reception. The input  
signal is first mixed down to a low-IF frequency by a  
coarse tuning stage and then down to baseband by a  
fine-tune mixer. The user programs both coarse and  
fine-tuning frequencies using the CTF and FTF  
registers.  
Stage fail but  
STL is locked  
Stage fail  
Symbol Timing Loop1  
Stage fail  
and STL  
unlocked  
lock  
Carrier Frequency Loop1  
An algorithm (supplied with the reference software  
driver) is used to automatically calculate the required  
values. As part of the tuning process, the sample rate,  
fs, should also be programmed via the ADCSR register.  
Values between 192 and 207 MHz are supported. An  
algorithm is supplied with the reference software driver  
to automatically select the optimal sampling rate.  
Stage fail  
Stage fail  
Viterbi Search2  
Frame Search2  
Receiver locked  
6.4.1. Automatic Acquisition  
The receiver acquisition sequence consists of the  
following stages: Analog AGC Search, Carrier Offset  
Estimation, Symbol Rate Estimation, Symbol Timing  
Recovery, Carrier Recovery, Viterbi Search, and Frame  
Synchronization. For the receiver to lock, each stage  
must run to completion or declare lock as shown in  
Figure 9. If a given stage is unable to achieve lock after  
exhausting a parameter search range or exceeding the  
timeout period, it asserts a fail signal.  
1. Acquisition fail if stage fails n times in a row.  
2. Acquisition fail if stage completes parameter range  
without locking.  
Figure 9. Acquisition Sequence (Symbol Rate  
Estimation Available on Si2109/10 Only)  
6.4.2. Carrier Offset Estimation  
The desired carrier frequency may be offset from its  
nominal position due to the imperfections and  
temperature dependencies of the LNB. The carrier  
offset estimator uses a search procedure to identify,  
track, and remove this frequency offset from the system.  
To initiate the acquisition sequence, the user should  
program the acquisition start bit, AQS. All search  
parameters must be specified before initiating the  
acquisition. Upon completion of the acquisition  
sequence, the AQS bit is automatically cleared. The  
acquisition sequence can be aborted at any time by  
clearing the AQS bit.  
Seven different carrier offset estimation search ranges  
can be programmed from 0.10 to ~6.0 MHz with register  
CESR. Smaller search ranges result in faster search  
times.  
The status of the acquisition sequence can be  
monitored via the registers in the receiver status register  
map section. A successful acquisition is reported by the  
assertion of the receiver lock bit, RCVL. A failed  
acquisition is reported by the assertion of the acquisition  
fail bit, AQF.  
When carrier offset estimation is complete, the CEL bit  
is asserted. If an error is detected during carrier offset  
estimation, the CEF bit is set. Carrier offset estimation  
commences under the control of the acquisition  
22  
Preliminary Rev. 0.7  
Si2107/08/09/10  
sequencer.  
The symbol timing recovery loop is responsible for  
acquiring and tracking the symbol timing of the  
incoming data signal. When lock is achieved, the  
symbol timing loop lock indicator, STL, is asserted. If  
symbol timing lock is not achieved within a predefined  
timeout period, the device declares symbol timing loop  
failure by asserting the STF bit. The symbol timing  
recovery loop commences under the control of the  
acquisition sequencer.  
After the completion of a search, the estimated carrier  
offset is stored in the carrier frequency error register,  
CFER. If no signal is found, the CEF bit is asserted. The  
value contained in CFER may be optionally transferred  
to the CFO register to adjust the search center  
frequency and permit the utilization of a smaller search  
range for subsequent acquisitions. This relationship can  
be expressed by the following equation:  
6.4.6. Automatic Fade Recovery  
fs  
215  
The device is designed to automatically recover lock in  
the event of a fade condition. Fade recovery is  
performed when any stage loses synchronization after  
receiver lock has been achieved. It is assumed that  
symbol rate, code rate, and puncturing pattern have not  
changed; so, these parameters remain fixed during the  
attempted reacquisition. The fade recovery sequence is  
shown in Figure 10.  
--------  
Search center frequency = fdesired + CFO ×  
Hz  
6.4.3. Symbol Rate Estimation (Si2109/10 Only)  
The Si2109/10 supports the ability to automatically  
detect the symbol rate of a channel when it is unknown.  
This feature is ideal for FTA/CI applications where it is  
often desirable to rapidly scan (blind scan) and detect  
the available channels of a given satellite. If symbol rate  
estimation is not required, the user should program the  
symbol rate explicitly into the SR register. This is the  
only mode of operation for Si2107/08.  
The fade recovery sequence continues until either  
receiver lock is achieved or a new acquisition is  
initiated.  
On Si2109/10, the symbol rate unknown bit, SRUK, can  
be changed from its default value to activate symbol  
rate estimation. The search range must then be  
bounded by programming the symbol rate maximum  
and minimum registers, SRMX and SRMN. If the  
symbol rate search is successful, the estimated symbol  
rate is automatically written to the SR register. Smaller  
search ranges result in faster search times. Note that  
the values stored in the symbol rate, symbol rate  
maximum, and symbol rate minimum registers are  
sample rate-dependent. This relationship is described  
by the following equation:  
Calibration  
LO Tuning  
Analog AGC Search  
Fail  
Done  
CFO Estimation  
Done  
Symbol Rate Estimation  
Unlock  
fs  
224  
--------  
Actual Symbol Rate = Symbol Rate ×  
MHz  
Symbol Timing Loop  
When symbol rate estimation is complete, the SRL bit is  
asserted. If an error is detected during symbol rate  
estimation, the SRF bit is also set. The symbol rate  
estimator commences under the control of the  
acquisition sequencer.  
lock  
Unlock  
Unlock  
Carrier Frequency Loop  
lock  
Viterbi Search  
(Limited)  
6.4.4. Carrier Recovery Loop  
Unlock  
Unlock  
lock  
Frame Search  
lock  
The carrier recovery loop is responsible for acquiring  
frequency and phase lock to the incoming signal. When  
lock is achieved, the carrier recovery lock indicator,  
CRL, is asserted. If carrier recovery lock is not achieved  
within a predefined timeout period, the device declares  
carrier recovery failure by asserting the CRF bit. The  
carrier recovery loop commences under the control of  
the acquisition sequencer.  
Receiver locked  
Figure 10. Fade Recovery Sequence  
6.4.5. Symbol Timing Loop  
Preliminary Rev. 0.7  
23  
Si2107/08/09/10  
6.4.7. C/N Estimator  
6.5.3. Reed-Solomon Error Monitor  
A carrier-to-noise estimator is provided to aid in satellite The Reed-Solomon error monitor is capable of counting  
antenna positioning. The C/N measurement mode bit, bit, byte, and uncorrectable packet errors. The error  
CNM, controls whether the count is performed over a type to be counted is controlled by the Reed-Solomon  
fixed-length or infinite window. With a fixed-length error type register, RSERT. The Reed-Solomon error  
window, the window size is defined by register CNW. mode bit, RSERM, controls whether the count is to be  
Measurements are stored in a 16-bit saturating register, performed over a fixed length or infinite window. The  
CNL. Setting the C/N estimator start bit, CNS clears the window size is defined by RSERW. The BER count is  
CNL register and initiates the C/N measurement. When stored in a 16-bit saturating register, RSERC. Setting  
operating in the finite window mode, the CNS bit is the RS BER measurement start bit, RSERS, clears the  
automatically cleared when the measurement is RSERC register and initiates the measurement. When  
complete. The CNS bit must be cleared manually in the operating in the finite window mode, the RSERS bit is  
infinite mode to stop the count. An external lookup table automatically cleared when the measurement is  
is used to translate the measurement into a C/N complete. The RSERS bit must be cleared manually in  
estimate for a given setting of the C/N threshold, CNET, the infinite mode, to stop the count.  
and a given digital AGC setting.  
6.5.4. PRBS BER Tester  
To facilitate in-system pseudo random bit sequence  
(PRBS) BER testing, the device provides the ability to  
6.5. Channel Decoder  
6.5.1. Viterbi Decoder  
synchronize and track test sequences contained in the  
The Viterbi decoder performs maximum likelihood  
payload (i.e. not SYNC bytes) of the MPEG data  
estimation of convolutional codes in compliance with  
stream. A PRBS test pattern must be encoded,  
DVB-S and DSS standards. When lock is achieved, the  
Viterbi lock indicator, VTL, is asserted. If Viterbi lock is  
not achieved after exhausting the specified parameter  
space, the device declares Viterbi search failure by  
modulated, and injected into the channel to be  
23  
monitored. The device supports a PRBS 2 – 1 bits  
long described by the following polynomial:  
G(x) = x23 + x18 + 1  
asserting the VTF bit. The Viterbi search commences  
under the control of the acquisition sequencer.  
To enable PRBS testing, the Reed-Solomon error type  
The device can be programmed to attempt to  
register, RSERT, must be appropriately programmed.  
automatically acquire Viterbi lock using all, one, or a  
After the device has synchronized to the incoming  
subset of the supported code rates using the VTCS  
PRBS test pattern, errors are reported in the RSERC  
register.  
register.  
If lock is achieved, the status of the search, including  
Measurements can be performed at the output of the  
code rate, puncturing pattern phase, 90-degree phase  
Viterbi or Reed-Solomon decoder. To record errors at  
rotation, and I/Q swap, can be monitored in the Viterbi  
the output of the Viterbi decoder, the Reed-Solomon  
search status registers, VTRS, VTPS, and VTIQS.  
decoder and interleaver must be bypassed by setting  
6.5.2. Viterbi BER Estimator  
RS_BP and DI_BP in the “System Configuration”  
The Viterbi BER estimator measures the frequency of  
bit errors at the input of the Viterbi decoder. The Viterbi  
BER mode bit, VTERM, controls whether the count is to  
be performed over a fixed length or infinite window. The  
window size is defined by VTERW. The BER count is  
stored in a 16-bit saturating register, VTBRC. Setting  
the Viterbi BER measurement start bit, VTERS, clears  
the VTBRC register and initiates the measurement.  
When operating in the finite window mode, the VTERS  
bit is automatically cleared when the measurement is  
complete. The VTERS bit must be cleared manually in  
the infinite mode to stop the count.  
section of the register map. To record errors at the  
output of the Reed-Solomon block, the RS_BP bit must  
be cleared.  
6.5.5. Frame Synchronizer  
The output of the Viterbi decoder is aligned into bytes by  
detecting sync patterns within the data stream. In DVB-  
S systems, the sync byte, 47h, occurs during the first  
byte of a 204 byte RS code block. In DSS systems, a  
sync byte, 1Dh, is appended to the beginning of each  
RS encoded 146-byte block, resulting in 147-byte RS  
code blocks. In DSS mode, sync bytes are discarded  
before the byte stream is output to subsequent  
decoding stages. When lock is achieved, the frame  
synchronization lock bit, FSL, is asserted. If lock is not  
achieved, the frame synchronizer fail bit, FSF, is  
asserted.  
24  
Preliminary Rev. 0.7  
Si2107/08/09/10  
The frame synchronizer commences under the control  
of the acquisition sequencer.  
fs  
-------------------  
AGC measurement frequency =  
Hz  
AGCW  
Following frame synchronization lock, the device  
examines the byte stream for a possible 180-degree When gain adjustments are made, the device allows up  
phase shift. If an inversion is detected, data are inverted to 100 µs for the gain changes to settle before  
prior to being output.  
beginning the next measurement.  
To facilitate a rapid initial acquisition, Si2107/08/09/10  
includes an acquisition mode wherein the measurement  
window size is reduced by a factor of 64 when  
compared to the normal tracking mode.  
6.6. Automatic Gain Control  
The Si2107/08/09/10 is equipped with the ability to  
adjust signal levels via an automatic gain control (AGC)  
loop. This ensures that the noise and linearity  
characteristics of the signal path are optimized at all  
times. AGC settings can be set at 4 points in the analog  
signal chain and 2 points in the digital signal chain.  
During the AGC search, the device is in acquisition  
mode, and the gain is adjusted until the measured  
signal power crosses the desired threshold or a limit is  
reached. If the signal power crosses the threshold  
before reaching a limit, the search completes, and the  
6.6.1. Analog AGC  
System gain is distributed into four independent stages AGCL bit is asserted. If a gain limit is reached, the  
as shown in Figure 11. The gain range of all stages device asserts both the AGCL bit and the AGCF bit.  
combined is over 80 dB. When the AGC search  
In the normal tracking mode, the device continuously  
completes, the AGCL bit is asserted. If an error is  
measures the input signal power according to the AGC  
encountered during the AGC search, the AGCF bit is  
measurement window size. If the absolute value of the  
also set. The AGC search commences under the  
difference between the AGCTH and AGCPWR exceeds  
the value of the AGC tracking threshold, AGCTR, the  
control of the acquisition sequencer.  
The AGC loop works to automatically adjust the gain of AGC loop adjusts gain settings until the AGCPWR level  
each stage to minimize the error between a measured matches AGCTH.  
signal power and a desired output level. Signal power is  
The AGC gain offset register, AGCO, provides the  
measured at the output of the ADC using an internal  
ability to apply a static gain offset to the input channel.  
rms power calculator. The result is stored in a 7-bit  
Silicon Laboratories will provide the recommended  
saturating register, AGCPWR. The desired output level  
values for this register. It is possible to read out the  
is stored in the AGC threshold register, AGCTH. Signal  
instantaneous settings of each of the four VGAs from  
power measurements occur at a frequency dictated by  
the AGC<n>, <n = 1..4>, registers.  
the AGC measurement window size, AGCW. This  
frequency can be described using the following  
equation, where fs equals the ADC sampling rate,  
ADCSR.  
LPF  
OFFSET  
LNA  
VGA1  
VGA2  
MIXER  
A/D  
rms calculator  
AGC  
AGC Threshold  
Figure 11. Analog AGC Control Loop  
Preliminary Rev. 0.7  
25  
Si2107/08/09/10  
6.6.2. Digital AGC  
When an external LNB supply regulator is used, the  
DCS pin is driven high or low depending on the  
selection of high or low voltage.  
Downstream of the analog VGAs, after A/D conversion  
of the signal, there are two points at which the digital  
gain can be programmed. Digital AGC1 is used to 6.7.2. Tone Generation  
change signal power after removal of adjacent channels  
by the (digital) anti-aliasing filter.  
Tone-related information is communicated to external  
devices via the TGEN pin. The tone format select bit,  
By default, DAGC1 is enabled and periodically adjusts TFS, specifies whether the output of TGEN is an  
the gain of the I & Q data streams based on a internally-generated tone or a tone envelope. The  
comparison of the measured complex RMS level and a frequency of the internal tone generator is governed by  
target value. The target value can be selected with the the following equation:  
DAGC1T register. Two levels are provided to allow  
operation with additional headroom for signal peaks  
during signal acquisition. The gain function of DAGC1  
can be disabled using DAGC1_EN; then, no gain is  
applied to I & Q data streams. The signal measurement  
and gain adjustment normally operate continuously,  
allowing the gain to track the input level. The  
measurement window can be adjusted by register  
DAGC1W. The automatic updating of the gain can be  
frozen by register bit DAGC1HOLD. This holds the gain  
to the last setting. The value of the gain can be read  
from the DAGC1 register. It is possible to override the  
internal AGC algorithm and provide host-based control  
of AGC1 by appropriately programming register bit  
DAGC1HOST.  
100  
----------------------------------------------------------  
MHz  
ftone  
=
[32 × (TFQ[7:0] + 1)]  
Frequencies between 20 and 24 kHz are supported.  
The default value of TFQ results in a nominal tone  
frequency of 22 kHz. When tone envelope output is  
selected, a high signal on TGEN corresponds to "tone  
on" while a low signal corresponds to "tone off." When  
operating in the “Manual LNB messaging mode”, the TT  
bit directly controls the output of the tone or tone  
envelope.  
6.7.2.1. Continuous Tone  
A continuous tone is typically used to select between  
the high and low band of an incoming satellite signal.  
The LNBCT bit can be set to one to generate a  
continuous tone.  
Digital AGC2 (DAGC2) is intended to optimally scale the  
soft decision outputs of the demodulator prior to Viterbi  
decoding. This allows it to compensate for signal level  
variations after matched filtering and equalization.  
Normally, operation is continuous, but tracking can be  
disabled using register bit DAGC2_TDIS. This holds the  
gain to the last setting.  
6.7.2.2. Tone Burst  
The tone burst signaling method can be used to  
facilitate the control of a simple two-way switch. Two  
types of tone burst are available, as shown in Figure 12.  
An unmodulated tone burst persists for 12.5 ms. A  
modulated tone burst lasts for the same duration but  
consists of a sequence of nine 0.5 ms pulses and 1 ms  
gaps. Tone burst selection is controlled via the LNBB  
bit. The tone burst command can optionally be disabled  
to support systems that do not use tone burst signaling  
by setting the burst disable bit, BRST_DS, to one. This  
disables the tone/burst generation as part of the  
DiSEqC signaling sequence when the device uses  
“Automatic LNB messaging mode” as described below.  
During AGC operation, the average power of the signal  
is compared to a threshold set by register DAGC2T. The  
signal power is measured over a finite window specified  
by DAGC2W. The gain applied to the signal to make the  
input match the programmed threshold can be read  
from register DAGC2GA.  
6.7. LNB Signaling Controller  
All device versions provide LNB signaling capability.  
The device supports several LNB signaling methods  
including dc voltage selection, continuous tone, tone  
burst, DiSEqC 1.x- and DiSEqC 2.x-compliant  
messaging. A description of each method follows.  
'0' Tone Burst (Satellite A)  
Envelope  
Tone  
'1' Tone Burst (Satellite B)  
Envelope  
6.7.1. DC Voltage Selection  
A constant dc voltage of 18 or 13 V is typically used to  
switch the LNB between horizontal and vertical polarity  
or clockwise and counterclockwise polarization. The  
LNBV bit is used to select the desired voltage.  
Tone  
12.5 ms  
Figure 12. Tone Burst Modulation  
26  
Preliminary Rev. 0.7  
Si2107/08/09/10  
6.7.3. DiSEqC™  
6.7.3.2. DiSEqC 2.x two-way communication  
The DiSEqC signaling method extends the functionality Two-way communication is supported via DiSEqC 2.x-  
of the legacy 22 kHz tone by superimposing a compliant messages. When the seventh bit in the  
command protocol and adding an optional return framing byte of an outgoing message is set to 1, the  
channel. A DiSEqC command normally consists of a device anticipates a response and monitors the line for  
framing byte, an address byte, a command byte, and, up to 150 ms for an incoming message. If no message  
optionally, one or more data bytes. This format is is detected during the 150 ms monitoring period, the  
illustrated in Figure 13.  
MSGTO bit is asserted to indicate the time-out  
condition. A DiSEqC reply message typically consists of  
a single framing byte and optionally one or more data  
bytes as shown in Figure 15.  
P
P
FRAMING  
ADDRESS  
P
P
COMMAND  
DATA  
Figure 13. DiSEqC Message Format  
The length of a message is specified by MSGL. When  
the message length is set to one byte, the message is  
modulated using tone burst modulation. When the  
message length is set to two or more bytes, the  
message is modulated using DiSEqC-compliant  
modulation, and the odd parity bit is automatically  
added. The DiSEqC modulation scheme is illustrated in  
Figure 14.  
DATA  
DATA  
FRAMING  
P
P
P
Figure 15. DiSEqC Reply Format  
When a complete message has been received (one or  
more bytes followed by 4 ms of silence), the MSGR bit  
is asserted. Should parity errors exist in the received  
message, the MSGPE flag is also asserted. If the  
received message is longer than 6 bytes, the FIFO full  
bit, FF, is asserted to indicate that a byte has been  
written to FIFO6. The LNB control module writes the  
next byte to FIFO1. The length of the received message  
is recorded in the MSGRL register.  
'1' Data Bit  
'0' Data Bit  
6.7.4. LNB Signaling Modes  
6.7.4.1. Automatic LNB Messaging Mode  
1.0 ms  
0.5 ms  
1.0 ms  
0.5 ms  
The Si2107/08/09/10 LNB Signaling Controller can fully  
manage the generation and sequencing of all LNB  
commands. The device is configured in this mode by  
appropriately programming the LNB Messaging mode  
register, LNBM. To initiate a message sequence, the  
user should first program LNB voltage selection (LNBV),  
continuous tone enable (LNBCT), tone burst type  
(LNBB), and DiSEqC message parameters (MMSG,  
MSGL, and FIFO1..6). Subsequently, the LNB  
sequence start bit, LNBS, must be set to start the  
automated transmission sequence. The device  
automatically allocates the required delays between  
each signaling method. Prior dc voltage levels and  
continuous tones, if present, persist until the sequence  
is initiated. A typical sequence is shown in Figure 16.  
Figure 14. DiSEqC Compliant Modulation  
6.7.3.1. DiSEqC 1.x One-Way Communication  
Messages are programmed directly into the device  
using a message FIFO that consists of six byte wide  
registers, FIFO1–6. The messages must be written in a  
first-in-first-out manner such that the first byte of a  
message is stored in FIFO1; the second byte is stored  
in FIFO2, and so on. If messages are longer than six  
bytes, the device asserts the FIFO empty indicator, FE,  
as soon as the sixth byte has been read. The LNB  
control module then takes its next byte from FIFO1 and  
continues the process. The message length must also  
be reprogrammed to indicate how many more bytes  
remain to be sent. The interval between FIFO reads is  
typically 13.5 ms.  
Multiple messages can be sent in a sequential manner  
by setting the MMSG bit. When this bit is set, the LNB  
control module delays continuous tone and tone burst  
commands until all messages in the sequence have  
been sent. After the current message is transmitted, the  
MMSG bit is automatically cleared. The tone burst can  
be disabled as part of this sequence depending on the  
setting of BRST_DS.  
To support cascaded DiSEqC devices, it may be  
necessary to repeat commands. Repeated commands  
should be separated by at least 100 ms to ensure that  
the far-end device is connected to the signaling path. To  
facilitate the required 100 ms delay, a four byte  
command can be inserted between repeated  
commands.  
Preliminary Rev. 0.7  
27  
Si2107/08/09/10  
When the sequence has completed, the device clears 6.7.4.2. Step-by-Step LNB Messaging Mode  
the LNB sequence start bit, LNBS, automatically. Note By appropriately programming the LNB Messaging  
that, when operating in this mode, the DRC pin is high Mode register, LNBM, the device allows for individual  
while transmitting and low while receiving.  
control of each signaling method by the host. In this  
mode, the LNB voltage, LNBV, and LNB continuous  
tone enable, LNBCT, take effect once they are set  
without waiting for the user to set the LNB sequence  
start bit, LNBS.  
End of continuous  
tone (if present)  
Change of voltage  
(if required)  
1st message (no  
reply requested)  
2nd message  
(reply requested)  
Reply to 2nd  
message  
Start of continuous  
tone (if present)  
Tone Burst  
> 15ms  
> 25ms  
< 150ms  
> 15ms  
> 15ms  
Figure 16. LNB Signaling Sequence  
The DiSEqC message uses the LNBS bit to start When the tone format select bit, TFS, is programmed to  
transmission and behaves the same as in Automatic use an external oscillator, the TT bit directly controls the  
LNB Messaging Mode. However, the guard intervals output of the TGEN pin, and the TR bit directly reflects  
between each signaling method (LNB voltage change, the input of the TDET pin. In this mode, the tone  
DiSEqC message, tone burst, and continuous tone direction control bit, TDIR, directly controls the output of  
resumption) are controlled by the host.  
the DRC pin.  
In this mode, the tone burst should be implemented by  
using a 1-byte DiSEqC message of all 0s or all 1s  
programmed into FIFO1. The device uses appropriate  
modulation for the tone burst; i.e., when FIFO1 is  
programmed to 00h (rather than a DiSEqC-compliant  
modulation for a '00h' byte), no tone is generated. Also,  
the device does not expect a reply if FIFO1 is  
programmed to FFh; i.e., the assertion of bit7 is not  
considered a request for the peripheral to reply in step-  
by-step LNB messaging mode.  
6.8. On-Chip LNB DC-DC Step-Up  
Controller (Si2108/10 Only)  
In addition to the LNB signaling controller present on all  
device versions, Si2108 and Si2110 devices contain an  
internal supply controller circuit. This internal dc-dc  
controller can be enabled via register bit LNB_EN. The  
internal circuit requires the connection of an external  
circuit with a specified bill-of-materials, and this  
combination generates the selected LNB voltage with  
superimposed one-way or two-way LNB signaling  
communications. Si2108/10 devices include short-  
circuit protection, overcurrent protection, and a step-up  
dc-dc controller to implement a low-cost LNB power  
supply using minimal external components. The  
required circuit for DiSEqC1.x operation is illustrated in  
Figure 5 on page 11. A circuit for DiSEqC2.x operation  
is shown in Figure 6 on page 12.  
6.7.4.3. Manual LNB Messaging Mode  
The manual LNB messaging mode provides the  
maximum level of signaling flexibility but at the expense  
of increased software interaction. The device is  
configured in this mode by appropriately programming  
the LNBM register. The continuous tone, tone burst, and  
messaging controls are not functional in this mode.  
When the tone format bit, TFS, is programmed for use  
of the internal oscillator, assertion of the TT bit  
modulates the output of the internal tone generator on  
the TGEN pin, and the TR bit records the envelope of a  
tone presented to the TDET pin.  
When the LNB supply circuit is populated, the Si2108/  
10 detects a connection to ground on the ISEN pin via  
R10 during reset and configures the LNB pins for dc-dc  
converter control instead of providing the interfaces to  
an external LNB supply regulator discussed in the  
previous section. See Table 17.  
28  
Preliminary Rev. 0.7  
Si2107/08/09/10  
The nominal level of both the low- and high-output  
voltages can be further fine-tuned using the VLOW and  
VHIGH registers. Register bit LNBV selects whether to  
output high or low dc voltage to the LNB. During  
operation, the voltage level of the line can be monitored  
via the VMON register.  
Table 17. LNB Pin Configuration  
Pin  
LNB Supply Circuit  
Connected Unconnected  
7
10  
9
VSEN  
LNB2  
ISEN  
LNB1  
PWM  
TDET  
DRC  
NC  
The maximum current draw of the LNB supply can be  
set using the IMAX register. The overcurrent threshold  
of the LNB supply may be set via the ILIM register. If the  
output current exceeds this value, the external LNB  
power supply is automatically disabled, and the  
overcurrent detect bit, OCD, is asserted. The device  
attempts to restore normal operation after 1 s by  
supplying power to the line. During the recovery period,  
overcurrent detection is disabled for the time specified  
by the OLOT register.  
8
TGEN  
DCS  
12  
The LNB supply controller is disabled by default. To use  
the supply, it must be enabled by setting the LNB enable  
bit, LNB_EN. If the LNB supply circuit is connected, the  
TFS bit is ignored; the internal LNB supply controller  
uses its internal oscillator to generate the 22 kHz tone.  
The TFQ setting can still be used to modify the nominal  
frequency as explained earlier.  
Short circuit protection circuitry operates in conjunction  
with overcurrent detection to rapidly identify short-circuit  
conditions. If the output is shorted to ground, the  
external LNB power supply is automatically disabled,  
and the short-circuit detect bit, SCD, is asserted. The  
device attempts to restore normal operation after one  
second by supplying power to the line. During the  
recovery period, short-circuit detection is disabled for  
the time specified by the SLOT register.  
Selection of high or low voltage outputs the  
corresponding PWM control signal for the boost  
converter. Since Japan uses a different LNB supply  
voltage than the rest of the world (R.O.W.), the device  
can be configured to either generate 13 V/18 V  
(R.O.W.) or 12 V/15 V (Japan) dc levels via register bit  
LNBLVL. To compensate for long cable lengths, a 1 V  
boost can be applied to both levels by setting the COMP  
bit.  
The LNB supply circuit is protected from an overvoltage  
condition by design. In the event that the LNB supply  
circuit is accidentally connected to a voltage source  
greater than the intended output voltage, it remains  
operational. The LNB supply circuit resumes normal  
operation when the connection to the external voltage  
source has been removed.  
Preliminary Rev. 0.7  
29  
Si2107/08/09/10  
master. During a write, data is sent from the bus master  
to the device. The field labeled “DATA (ADR)” must  
7. I2C Control Interface  
The I2C bus interface is provided for configuration and contain the 8-bit address of the target register. The data  
monitoring of all internal registers. The Si2107/08/09/10 to be transferred to or from the target register must be  
supports the 7-bit addressing procedure and is capable placed in the following 8-bit “DATA” field. When the  
of operating at rates up to 400 kbps. Individual data auto-increment feature is enabled, INC_DS, the target  
transfers to and from the device are 8-bits. The I2C bus register address, is automatically incremented for  
consists of two wires: a serial clock line (SCL) and a subsequent data transfers until a STOP condition ends  
serial data line (SDA). The device always operates as a the operation.  
bus slave. Read and write operations are performed in  
accordance with the I2C-bus specification and the  
DATA field permitted by I2C. These registers are split  
following sequences.  
Some registers in the device are larger than the 8-bit  
into 8-bit addressable chunks that are uniquely  
The first byte after the START condition consists of the identified by a positional suffix. The suffix L indicates the  
slave address (SLAVE ADR, 7-bits) of the target device. low-byte; the suffix M indicates the middle-byte (for 24-  
The slave address is configured during a hard reset by bit registers only), and the suffix H indicates the high-  
setting the voltage on the ADDR pin. Possible slave byte.  
addresses and their corresponding ADDR voltages are  
listed in Table 18.  
To read a multibyte register as a single unit, the low byte  
must be read first. This forces the device to sample and  
hold the contents of the remaining bytes until the  
multibyte read is complete. If a STOP condition occurs  
Table 18. I2C Slave Address Selection  
before the operation is complete, the buffered data is  
discarded.  
Fixed Address  
11010  
LSBs  
00  
ADDR Voltage (V)  
(pullup)  
To write a multibyte register as a single unit, the low  
byte must be written first. All bytes must be transferred  
to the device before the multibyte value is recorded. If a  
STOP condition occurs before the operation is  
complete, the buffered data is discarded.  
V
3.3  
11010  
01  
2/3 x V ±10%  
3.3  
11010  
10  
1/3 x V ±10%  
3.3  
The slave address consists of a fixed part and a  
programmable part. The voltage of the ADDR pin is  
used to set the two least significant bits of the address  
during device power-up according to the table below.  
This enables up to four devices to share the same I2C  
bus.  
11010  
11  
0 (pulldown)  
Four addresses are available, allowing up to four  
devices to share the same I2C bus. The R/W bit  
determines the direction of data transfer. During a read  
operation, data is sent from the device to the bus  
Read Operation  
S
SLAVE ADR  
W
W
A
A
DATA (ADR)  
DATA (ADR)  
A
A
Sr or P  
SLAVE ADR  
SLAVE ADR  
R
A
A
DATA  
A/A  
A/A  
P
P
n bytes + ack  
Write Operation  
SLAVE ADR  
S
Sr or P  
W
DATA  
n bytes + ack  
Master  
Slave  
A = Acknowledge  
R = Read (1)  
S = START condition  
P = STOP condition  
W= Write (0)  
Sr = Repeated START condition  
Figure 17. I2C Interface Protocol  
30  
Preliminary Rev. 0.7  
Si2107/08/09/10  
8. Control Registers  
The control registers can be divided into three main classes: Initialization, Run-time, and Status. Initialization  
registers (“I”) need only be programmed once following device power-up. Run-time registers (“RT”) are the primary  
registers for device control. Status registers (“S”) provide device state information. The corresponding category of  
each register is indicated in the rightmost column of Table 19.  
Table 19. Register Summary  
Name  
I2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
System Configuration  
Device ID  
System Mode  
TS Ctrl 1  
00h  
01h  
02h  
03h  
DEV[3:0]  
INC_DS  
REV[3:0]  
S
I
MOD[1:0]  
SYSM[2:0]  
TSDF  
TSEP  
TSVP  
TSSP  
TSPCS  
INTP  
TSSL  
TSCD  
TSCM  
TSDD  
TSCE  
TSPG  
TSM  
I
TS Ctrl 2  
TSSCR[1:0]  
I
Pin Ctrl 1  
Pin Ctrl 2  
Bypass  
04h INT_EN  
INTT  
TSE_OE TSV_OE  
TSS_OE  
GPO  
TSC_OE  
TSD_OE  
I
05h  
06h  
PSEL[1:0]  
I
DS_BP  
RS_BP  
Interrupts  
SRL_E  
DI_BP  
I
Int En 1  
Int En 2  
Int En 3  
Int En 4  
Int Stat 1  
Int Stat 2  
Int Stat 3  
Int Stat 4  
07h RCVL_E  
AGCL_E  
CEL_E  
STL_E  
VTU_E  
FE_E  
CRL_E  
FSU_E  
FF_E  
VTL_E  
FSL_E  
AQF_E  
MSGTD_E  
OCD_E  
FSL_I  
I
I
08h RCVU_E AGCTS_E STU_E  
CRU_E  
09h  
0Ah  
CN_E  
VTBER_E RSER_E MSGPE_E  
MSGR_E  
SCD_E  
VTL_I  
I
I
0Bh RCVL_I  
AGCL_I  
CEL_I  
STU_I  
SRL_I  
CRU_I  
STL_I  
VTU_I  
FE_I  
CRL_I  
FSU_I  
FF_I  
S
S
S
S
0Ch RCVU_I AGCTS_I  
AQF_I  
0Dh  
0Eh  
CN_I  
VTBR_I  
RSER_I MSGPE_I  
MSGR_I  
SCD_I  
MSGTO_I  
OCD_I  
Receiver Status  
Lock Stat 1  
Lock Stat 2  
Acq Stat  
0Fh  
10h  
11h  
AGCL  
AGCF  
CEL  
CEF  
SRL  
STL  
STF  
CRL  
CRF  
VTL  
VTF  
FSL  
FSF  
S
S
S
RCVL  
AQF  
SRF  
Tuning Control  
Acq Ctrl 1  
ADC SR  
14h  
15h  
16h  
AQS  
RT  
RT  
RT  
ADCSR[7:0]  
CTF[7:0]  
Coarse Tune  
Preliminary Rev. 0.7  
31  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
Name  
I2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
Fine Tune L  
Fine Tune H  
CE Ctrl  
17h  
18h  
29h  
36h  
37h  
38h  
39h  
3Ah  
3Fh  
40h  
41h  
42h  
43h  
7Ch  
7Dh  
7Eh  
7Fh  
FTF[7:0]  
RT  
RT  
I
FTF[14:8]  
CESR[2:0]  
CE Offset L  
CE Offset H  
CE Err L  
CE Err H  
SR Ctrl  
CFO[7:0]  
CFO[15:8]  
CFER[7:0]  
CFER[15:8]  
RT  
RT  
RT  
RT  
RT  
RT  
RT  
RT  
RT  
RT  
I
SRUK  
Sym Rate L  
Sym Rate M  
Sym Rate H  
SR Max  
SR[7:0]  
SR[15:8]  
SR[23:16]  
SRMX[7:0]  
SRMN[7:0]  
SR Min  
CN Ctrl  
CNS  
CNM  
CNW[1:0]  
CN TH  
CNET[7:0]  
CNL[7:0]  
I
CN L  
RT  
RT  
CN H  
CNL[15:8]  
Channel Decoder  
VT Ctrl 1  
VT Ctrl 2  
VT Stat  
A0h  
A2h  
A3h  
VTCS[5:0]  
VTERM  
I
VTERS  
VTERW[1:0]  
RT  
S
VTRS[2:0]  
VTPS  
VTIQS  
VT BER Cnt L ABh  
VT BER Cnt H ACh  
VTBRC[7:0]  
VTBRC[15:8]  
RSERM  
RT  
RT  
RT  
RT  
RT  
I
RS Err Ctrl  
RS Err Cnt L  
RS Err Cnt H  
DS Ctrl  
B0h  
B1h  
B2h  
B3h  
B5h  
RSERS  
RSERW  
RSERT[1:0]  
RSERC[7:0]  
RSERC[15:8]  
DST_DS  
DSO_DS  
PRBS Ctl  
PRBS_  
START  
PRBS_  
INVERT  
PRBS_  
SYNC  
PRBS_HEADER_SIZE  
RT  
32  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
Name  
I2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
Automatic Gain Control  
AGC Ctrl 1  
AGC Ctrl 2  
23h  
24h  
AGCW[1:0]  
I
I
AGCTR[3:0]  
AGCO[3:0]  
AGC 1–2 Gain 25h  
AGC 3–4 Gain 26h  
AGC2[3:0]  
AGC4[3:0]  
AGC1[3:0]  
AGC3[3:0]  
I
I
AGC TH  
AGC PL  
27h  
28h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
AGCTH[6:0]  
AGCPWR[6:0]  
I
S
I
DAGC 1 Ctrl  
DAGC1 L  
DAGC1_EN  
DAGC1W[1:0]  
DAGC1T DAGC1HOLD DAGC1HOST  
DAGC1[7:0]  
I
DAGC1 H  
DAGC1[15:8]  
I
DAGC2 Ctrl  
DAGC2 TH  
DAGC2Lvl L  
DAGC2Lvl H  
DAGC2[3:0]  
DAGC2W[1:0]  
DAGC2TDIS  
I
DAGC2T[7:0]  
I
DAGC2GA[7:0]  
I
DAGC2GA[15:8]  
I
LNB Supply Controller  
LNB Ctrl 1  
LNB Ctrl 2  
LNB Ctrl 3  
LNB Ctrl 4  
LNB Stat  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
LNBS  
LNBV  
TT  
LNBCT  
LNBB  
MMSG  
MSGL[2:0]  
TFS  
RT  
RT  
RT  
RT  
S
LNBM[1:0]  
BRST_DS  
TDIR  
TR  
TFQ[7:0]  
MSGTO  
FE  
FF  
MSGPE  
MSGR  
MSGRL[2:0]  
Msg FIFO 1  
Msg FIFO 2  
Msg FIFO 3  
Msg FIFO 4  
Msg FIFO 5  
Msg FIFO 6  
LNB S Ctrl1  
LNB S Ctrl2  
LNB S Ctrl3  
FIFO1[7:0]  
FIFO2[7:0]  
FIFO3[7:0]  
FIFO4[7:0]  
FIFO5[7:0]  
FIFO6[7:0]  
RT  
RT  
RT  
RT  
RT  
RT  
I
VLOW[3:0]  
VHIGH[3:0]  
ILIM[1:0]  
IMAX[1:0]  
SLOT[1:0]  
VMON[7:0]  
OLOT[1:0]  
I
S
Preliminary Rev. 0.7  
33  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
Name  
I2C  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
LNB S Ctrl4  
LNB S Stat  
CEh  
CFh  
LNBL  
LNB_EN  
COMP  
LNBLVL  
SCD  
LNBMD  
OCD  
I
S
34  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 00h. Device ID Register  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
REV[3:0]  
D1  
D0  
Name  
DEV[3:0]  
Bit  
Name  
Function  
7:4  
DEV[3:0]  
REV[3:0]  
Device ID.  
0h = Si2110  
1h = Si2109  
2h = Si2108  
3h = Si2107  
3:0  
Revision.  
Current revision = 3h  
Register 01h. System Mode  
Bit  
D7  
D6  
D5  
INC_DS  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
MOD[1:0]  
SYSM[2:0]  
Bit  
7:6  
5
Name  
Function  
Reserved  
INC_DS  
Program to zero.  
I2C Automatic Address Increment Disable.  
0 = Enabled (default)  
1 = Disabled  
4:3  
2:0  
MOD[1:0]  
Modulation Selection.  
00 = BPSK Demodulation  
01 = QPSK Demodulation (default)  
10 = Reserved  
11 = Reserved  
SYSM[2:0]  
System Mode.  
000 = DVB-S (default)  
001 = DSS  
010–111 = Reserved  
Preliminary Rev. 0.7  
35  
Si2107/08/09/10  
Register 02h. Transport Stream Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
TSEP  
TSVP  
TSSP  
TSSL  
TSCM  
TSCE  
TSDF  
TSM  
Bit  
Name  
Function  
7
TSEP  
Transport Stream Error Polarity.  
0 = Active high (default)  
1 = Active low  
6
5
4
TSVP  
TSSP  
TSSL  
Transport Stream Valid Polarity.  
0 = Active high (default)  
1 = Active low  
Transport Stream Sync Polarity.  
0 = Active high (default)  
1 = Active low  
Transport Stream Start Length.  
0 = Byte wide (default)  
1 = Bit wide  
Note: This bit is ignored in parallel mode.  
3
2
1
TSCM  
TSCE  
TSDF  
Transport Stream Clock Mode.  
0 = Gapped mode (default)  
1 = Continuous mode  
Transport Stream Clock Edge.  
0 = Data transitions on rising edge (default)  
1 = Data transitions on falling edge  
Transport Stream Serial Data Format.  
0 = MSB first (default)  
1 = LSB first  
Note: This bit is ignored in parallel mode  
0
TSM  
Transport Stream Mode.  
0 = Serial (default)  
1 = Parallel  
36  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 03h. Transport Stream Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
TSPCS  
TSCD  
TSDD  
TSPG  
TSSCR[1:0]  
Bit  
7:6  
5
Name  
Function  
Reserved  
TSPCS  
Program to zero.  
Transport Stream Parallel Clock Smoother.  
Smoothens TS_CLK to ~50% duty cycle.  
0 = Smoothing disabled  
1 = Smoothen clock to ~50% duty cycle (default)  
4
3
TSCD  
TSDD  
Transport Stream Clock Delay.  
Adds delay to TS_CLK to adjust clock-data timing relationship.  
0 = Normal operation (default)  
1 = Delay clock relative to data  
Transport Stream Data Delay.  
Adds delay to TS_DATA, TS_SYNC, TS_VAL, TS_ERR output to adjust  
clock-data timing relationship.  
0 = Normal operation (default)  
1 = Delay data relative to clock  
2
TSPG  
Transport Stream Parity Gate.  
0 = Normal operation (default)  
1 = Zero data lines during parity  
1:0  
TSSCR[1:0]  
Transport Stream Serial Clock Rate.  
00 = 80–88.5 MHz (default)  
01 = 76.8–82.8 MHz  
10 = 54.9–59.2 MHz  
11 = 35–37.7 MHz  
Preliminary Rev. 0.7  
37  
Si2107/08/09/10  
Register 04h. Pin Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INT_EN  
INTT  
INTP  
TSE_OE  
TSV_OE  
TSS_OE  
TSC_OE  
TSD_OE  
Bit  
Name  
Function  
7
INT_EN  
Interrupt Pin Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
1
0
INTT  
Interrupt Pin Type.  
0 = CMOS (default)  
1 = Open drain/source  
INTP  
Interrupt Polarity.  
0 = Active low (default)  
1 = Active high  
TSE_OE  
TSV_OE  
TSS_OE  
TSC_OE  
TSD_OE  
Transport Stream Error Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Valid Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Sync Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Clock Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Data Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
38  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 05h. Pin Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
1
0
0
GPO  
PSEL[1:0]  
Bit  
7:3  
2
Name  
Function  
Reserved  
GPO  
Program to zero (except bit D5, which is programmed to 1).  
General Purpose Output Control.  
Controls output of pin 30 when PSEL = 10  
0 = Output logic zero. (default)  
1 = Output logic 1.  
1:0  
PSEL[1:0]  
Pin Select (Pin 30).  
00 = Interrupt (default)  
01 = Receiver lock indicator  
10 = General Purpose Output  
11 = Reserved  
Register 06h. Bypass  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
DS_BP  
RS_BP  
DI_BP  
0
0
0
Bit  
7:6  
5
Name  
Reserved  
DS_BP  
Function  
Program to zero.  
Descrambler Bypass.  
0 = Normal operation (default)  
1 = Bypass  
Note: This bit is ignored in DSS mode; the descrambler is automatically  
bypassed.  
4
3
RS_BP  
DI_BP  
Reed-Solomon Bypass.  
0 = Normal operation (default)  
1 = Bypass  
Deinterleaver Bypass.  
0 = Normal operation (default)  
1 = Bypass  
2:0  
Reserved  
Program to zero.  
Preliminary Rev. 0.7  
39  
Si2107/08/09/10  
Register 07h. Interrupt Enable 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVL_E  
AGCL_E  
CEL_E  
SRL_E  
STL_E  
CRL_E  
VTL_E  
FSL_E  
Bit  
Name  
Function  
7
RCVL_E  
AGCL_E  
CEL_E  
Receiver Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
AGC Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Carrier Estimator Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
SRL_E  
Symbol Rate Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Note: Available on Si2109/10 only.  
3
2
1
0
STL_E  
CRL_E  
VTL_E  
FSL_E  
Symbol Timing Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Carrier Recovery Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Frame Sync Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
40  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 08h. Interrupt Enable 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVU_E  
AGCTS_E  
STU_E  
CRU_E  
VTU_E  
FSU_E  
0
AQF_E  
Bit  
Name  
Function  
7
RCVU_E  
AGCTS_E  
STU_E  
Receiver Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
AGC Tracking Threshold Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Symbol Timing Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
CRU_E  
VTU_E  
Carrier Recovery Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
FSU_E  
Frame Sync Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
1
0
Reserved  
AQF_E  
Program to zero.  
Acquisition Fail Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Preliminary Rev. 0.7  
41  
Si2107/08/09/10  
Register 09h. Interrupt Enable 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
CN_E  
VTBER_E RSER_E  
MSGPE_E  
FE_E  
FF_E  
MSGR_E  
MSGTD_E  
Bit  
Name  
Function  
7
CN_E  
VTBER_E  
RSER_E  
MSGPE_E  
FE_E  
C/N Estimator Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
1
0
Viterbi BER Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Reed-Solomon Error Measurement Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Message Parity Error Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Transmit FIFO Empty Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
FF_E  
LNB Receive FIFO Full Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
MSGR_E  
MSGTD_E  
LNB Receive Message Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Receive Timeout Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
42  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 0Ah. Interrupt Enable 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
SCD_E  
OCD_E  
Bit  
7:2  
1
Name  
Function  
Reserved  
SCD_E  
Program to zero.  
Short Circuit Detect Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
0
OCD_E  
Over Current Detect Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Preliminary Rev. 0.7  
43  
Si2107/08/09/10  
Register 0Bh. Interrupt Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVL_I  
AGCL_I  
CEL_I  
SRL_I  
STL_I  
CRL_I  
VTL_I  
FSL_I  
Bit  
Name  
Function  
7
RCVL_I  
AGCL_I  
CEL_I  
Receiver Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
AGC Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Carrier Estimator Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
SRL_I  
Symbol Rate Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Note: Available on Si2109/10 only.  
3
2
1
0
STL_I  
CRL_I  
VTL_I  
FSL_I  
Symbol Timing Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Carrier Recovery Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Frame Sync Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
44  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 0Ch. Interrupt Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVU_I  
AGCTS_I  
STU_I  
CRU_I  
VTU_I  
FSU_I  
0
AQF_I  
Bit  
7
Name  
RCVU_I  
AGCTS_I  
Function  
Receiver Unlock Interrupt.  
6
AGC Tracking Threshold Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
5
4
3
2
STU_I  
CRU_I  
VTU_I  
FSU_I  
Symbol Timing Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Carrier Recovery Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Viterbi Search Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Frame Sync Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
1
0
Reserved  
AQF_I  
Program to zero.  
Acquisition Fail Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Preliminary Rev. 0.7  
45  
Si2107/08/09/10  
Register 0Dh. Interrupt Status 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
CN_I  
VTBR_I  
RSER_I MSGPE_I  
FE_I  
FF_I  
MSGR_I  
MSGTO_I  
Bit  
Name  
Function  
7
CN_I  
C/N Estimator Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
6
5
4
3
2
1
0
VTBR_I  
RSER_I  
MSGPE_I  
FE_I  
Viterbi BER Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Reed-Solomon Error Measurement Complete Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Message Parity Error Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Transmit FIFO Empty Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
FF_I  
LNB Receive FIFO Full Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
MSGR_I  
MSGTO_I  
LNB Receive Message Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Receive Timeout Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
46  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 0Eh. Interrupt Status 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
SCD_I  
OCD_I  
Bit  
7:2  
1
Name  
Function  
Reserved  
SCD_I  
Program to zero.  
Short Circuit Detect Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
0
OCD_I  
Over Current Detect Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Preliminary Rev. 0.7  
47  
Si2107/08/09/10  
Register 0Fh. Lock Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
AGCL  
CEL  
SRL  
STL  
CRL  
VTL  
FSL  
Name  
Bit  
7
Name  
Reserved  
AGCL  
Function  
Program to zero.  
6
AGC Lock Status.  
0 = Pending (default)  
1 = Complete  
5
4
CEL  
SRL  
Carrier Estimation Status.  
0 = Pending (default)  
1 = Complete  
Symbol Rate Estimation Status.  
0 = Pending (default)  
1 = Complete  
Note: Available on Si2109/10 only.  
3
2
1
0
STL  
CRL  
VTL  
FSL  
Symbol Timing Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Carrier Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Viterbi Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Frame Sync Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Register 10h. Lock Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
RCVL  
0
0
0
0
0
0
0
Bit  
Name  
Function  
7
RCVL  
Receiver Lock Status.  
0 = Unlocked (default)  
1 = Locked  
6:0  
Reserved  
Program to zero.  
48  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 11h. Acquisition Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
AQF  
AGCF  
CEF  
SRF  
STF  
CRF  
VTF  
FSF  
Bit  
Name  
Function  
7
AQF  
Receiver Acquisition Status.  
0 = Normal operation (default)  
1 = Acquisition failed  
6
5
4
AGCF  
CEF  
AGC Search Status.  
0 = Normal operation (default)  
1 = Gain control limit reached  
Carrier Estimation Search Status.  
0 = Normal operation (default)  
1 = Carrier offset not found  
SRF  
Symbol Rate Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Note: Available on Si2109/10 only.  
3
2
1
0
STF  
CRF  
VTF  
FSF  
Symbol Timing Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Carrier Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Viterbi Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Frame Sync Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Preliminary Rev. 0.7  
49  
Si2107/08/09/10  
Register 14h. Acquisition Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AQS  
0
0
0
0
0
0
0
Bit  
Name  
Function  
Automatic Acquisition Start.  
7
AQS  
Writing a one to this bit initiates the acquisition sequence. This bit is  
automatically cleared when the acquisition sequence completes.  
6:0  
Reserved  
Program to zero.  
Register 15h. ADC Sampling Rate  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
ADCSR[7:0]  
Bit  
Name  
ADCSR[7:0]  
Function  
7:0  
ADC Sampling Rate.  
f = ADCSR x 1 MHz  
s
Default: C8h (200 MHz)  
Register 16h. Coarse Tune Frequency  
Bit  
D7  
D6  
D5  
D4  
CTF[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CTF[7:0]  
Function  
7:0  
Coarse Tune Frequency.  
Calculation of the coarse tune value is determined by the reference  
software driver.  
f
= CTF x 10 MHz  
coarse  
Default: 00h  
50  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 17h. Fine Tune Frequency L  
Bit  
D7  
D6  
D5  
D4  
FTF[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
FTF[7:0]  
Function  
Fine Tune Frequency (Low Byte).  
7:0  
fs  
214  
--------  
ffine = FTF ×  
where FTF is stored as a 2s complement value.  
Calculation of the fine tune value is determined by the reference soft-  
ware driver.  
Default: 00h  
Register 18h. Fine Tune Frequency H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
FTF[14:8]  
Bit  
7
Name  
Function  
Reserved  
FTF[14:8]  
Program to zero.  
6:0  
Fine Tune Frequency (High Byte).  
See Register 17h.  
Register 23h. Analog AGC Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
AGCW[1:0]  
0
0
0
0
Bit  
7:6  
5:4  
Name  
Function  
Reserved  
AGCW[1:0]  
Program to zero.  
AGC Measurement Window.  
Acquisition  
00 = 1024 (default)  
01 = 2048  
Tracking  
65536 samples (default)  
131072 samples  
10 = 4096  
262144 samples  
11 = 8192  
524288 samples  
3:0  
Reserved  
Program to zero.  
Preliminary Rev. 0.7  
51  
Si2107/08/09/10  
Register 24h. AGC Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGCTR[3:0]  
AGCO[3:0]  
Bit  
Name  
Function  
7:4  
AGCTR[3:0]  
AGC Tracking Threshold.  
Specifies the maximum difference between AGCPWR (28h) and  
AGCTH (27h) before making a gain adjustment.  
Default: 1000.  
3:0  
AGCO[3:0]  
AGC Gain Offset.  
Applies a static gain offset to the input channel.  
0000 = +0 dB (default)  
0001 = +1 dB  
1110 = +14 dB  
1111 = +15 dB  
Register 25h. Analog AGC 1–2 Gain  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGC2[3:0]  
AGC1[3:0]  
Bit  
Name  
Function  
7:4  
AGC2[3:0]  
Analog Gain stage 2 setting.  
Default: 0h  
3:0  
AGC1[3:0]  
Analog Gain stage 1 setting.  
Default: 0h  
Register 26h. Analog AGC 3–4 Gain  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGC4[3:0]  
AGC3[3:0]  
Bit  
Name  
Function  
7:4  
AGC4[3:0]  
Analog Gain stage 4 setting  
Default: 0h  
3:0  
AGC3[3:0]  
Analog Gain stage 3 setting  
Default: 0h  
52  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 27h. AGC Threshold  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
AGCTH[6:0]  
Bit  
7
Name  
Function  
Reserved  
Program to zero.  
6:0  
AGCTH[6:0]  
AGC Threshold.  
The value specified in this register corresponds to the desired AGC  
power level. The AGC loop adjusts the gain of the system to drive the  
AGC power level to this value.  
Default: 20h.  
Register 28h. AGC Power Level  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
AGCPWR[6:0]  
Bit  
7
Name  
Function  
Reserved  
Program to zero.  
6:0  
AGCPWR[6:0]  
AGC Power Level.  
Represents the measured input power level after the ADC in rms format.  
The measurement window is set by AGCW (23h[6:4]). This register sat-  
urates at full scale.  
Default: 00h.  
Preliminary Rev. 0.7  
53  
Si2107/08/09/10  
Register 29h. Carrier Estimation Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
1
CESR[2:0]  
Bit  
7:4  
3
Name  
Function  
Reserved  
Reserved  
CESR[2:0]  
Program to zero.  
Program to one.  
2:0  
Carrier Estimation Search Range.  
000 = Reserved  
001 = ± f / 32  
(± 6.3 MHz typ.) (default)  
(± 3.1 MHz typ.)  
(± 1.6 MHz typ.)  
(± 0.8 MHz typ.)  
(± 0.4 MHz typ.)  
(± 0.2 MHz typ.)  
(± 0.1 MHz typ.)  
s
010 = ± f / 64  
s
011 = ± f / 128  
s
100 = ± f / 256  
s
101 = ± f / 512  
s
110 = ± f / 1024  
s
111 = ± f / 2048  
s
Register 36h. Carrier Estimator Offset L  
Bit  
D7  
D6  
D5  
D4  
CFO[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CFO[7:0]  
Function  
Carrier Frequency Offset (Low Byte).  
7:0  
Designed to store a residual carrier frequency offset for future acquisi-  
tions. Used during carrier offset estimation to adjust the center fre-  
quency.  
fs  
215  
--------  
Search center frequency = fdesired + CFO ×  
Hz  
Note: CFO is a 16-bit Twos complement number.  
Default: 00h  
54  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 37h. Carrier Estimator Offset H  
Bit  
D7  
D6  
D5  
D4  
CFO[15:8]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CFO[15:8]  
Function  
7:0  
Carrier Frequency Offset (High Byte).  
See register 36h.  
Register 38h. Carrier Frequency Offset Error L  
Bit  
D7  
D6  
D5  
D4  
CFER[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CFER[7:0]  
Function  
Carrier Frequency Offset Error (Low Byte).  
7:0  
Stores the carrier frequency offset that is identified during the carrier  
offset estimation stage.  
fs  
--------  
Offset = –CFER ×  
Hz  
215  
Note: CFER is a 16-bit Twos complement number.  
Default: 00h  
Register 39h. Carrier Frequency Offset Error H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CFER[15:8]  
Bit  
Name  
CFER[15:8]  
Function  
7:0  
Carrier Frequency Offset Error (High Byte).  
See register 38h.  
Preliminary Rev. 0.7  
55  
Si2107/08/09/10  
Register 3Ah. Symbol Rate Control (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
SRUK  
0
0
0
0
0
0
Bit  
7
Name  
Function  
Reserved  
SRUK  
Program to zero.  
6
Symbol Rate Unknown.  
0 = Symbol rate is known. (default)  
1 = Symbol rate is unknown.  
5:0  
Reserved  
Program to zero.  
Register 3Fh. Symbol Rate L  
Bit  
D7  
D6  
D5  
D4  
SR[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
SR[7:0]  
Function  
7:0  
Symbol Rate (Low Byte).  
Symbol rate = SR ×  
fs  
224  
--------  
Hz  
Default: 00h.  
Register 40h. Symbol Rate M  
Bit  
D7  
D6  
D5  
D4  
SR[15:8]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
SR[15:8]  
Function  
7:0  
Symbol Rate (Mid Byte).  
See register 3Fh.  
56  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 41h. Symbol Rate H  
Bit  
D7  
D6  
D5  
D4  
SR[23:16]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
SR[23:16]  
Function  
7:0  
Symbol Rate (High Byte).  
See register 3F.  
Register 42h. Symbol Rate Maximum (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SRMX[7:0]  
Bit  
Name  
SRMX[7:0]  
Function  
Symbol Rate Estimation Maximum.  
Max symbol rate = SRMX ×  
7:0  
fs  
216  
--------  
Hz  
Default: 00h.  
Register 43h. Symbol Rate Minimum (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SRMN[7:0]  
Bit  
Name  
SRMN[7:0]  
Function  
Symbol Rate Estimation Minimum.  
7:0  
fs  
216  
--------  
Min symbol rate = SRMN ×  
Hz  
Default: 00h.  
Preliminary Rev. 0.7  
57  
Si2107/08/09/10  
Register 75h. Digital AGC 1 Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
DAGC1_EN  
DAGC1W[1:0]  
DAGC1T DAGC1HOLD  
DAGC1HOST  
0
Bit  
Name  
Function  
7
Reserved  
Program to 0 (device may change the value of this bit during opera-  
tion)  
6
DAGC1_EN  
Enable digital AGC 1  
0 = Disabled  
1 = Enabled (default)  
5:4  
DAGC1W[1:0]  
Digital AGC Measurement Window  
00 = 256 samples  
01 = 512 samples  
10 = 1024 samples (default)  
11 = 2048 samples  
3
2
1
DAGC1T  
Select AGC threshold  
0 = –15 dBFS (default)  
1 = –9 dBFS  
DAGC1HOLD  
DAGC1HOST  
Hold previous computed gain value on DAGC1  
0 = Update gain after each calculation (default)  
1 = Do not update gain value  
Host-controlled DAGC1  
0 = Gain is determined by DAGC1 module. Digital AGC1 gain regis-  
ter is read-only. (Default)  
1 = Gain is determined by host and specified in Digital AGC1 Gain  
Register (76h & 77h).  
0
Reserved  
Program to 0.  
Register 76h. Digital AGC 1 Gain L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC1[7:0]  
Bit  
Name  
DAGC1[7:0]  
Function  
7:0  
Gain of digital AGC 1 (low-byte).  
Default: 00h  
58  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 77h. Digital AGC 1 Gain H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC1[15:8]  
Bit  
Name  
DAGC1[15:8]  
Function  
7:0  
Gain of digital AGC 1 (high-byte).  
Default: 00h  
Register 78h. Digital AGC 2 Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DAGC2TDIS  
Name  
Reserved  
DAGC2[3:0]  
DAGC2W[1:0]  
Bit  
Name  
Reserved  
Function  
7
Program to 0 (device may change the value of this bit during opera-  
tion)  
6:3  
2:1  
DAGC2[3:0]  
Digital AGC2 gain factor  
Default: 0h  
DAGC2W[1:0]  
Digital AGC2 Measurement window  
Acquisition  
Tracking  
00 = 16 samples (default)  
01 = 32 samples  
10 = 64 samples  
11 = 128 samples  
1024 samples (default)  
2048 samples  
4096 samples  
8192 samples  
0
DAGC2TDIS  
Digital AGC2 Automatic Tracking Disable  
1 = Disable automatic tracking. Freeze applied to gain.  
0 = Enable automatic tracking. (default)  
Register 79h. Digital AGC 2 Threshold  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2T[7:0]  
Bit  
Name  
DAGC2T[7:0]  
Function  
7:0  
Digital AGC2 Threshold  
Default: B5h  
Preliminary Rev. 0.7  
59  
Si2107/08/09/10  
Register 7Ah. Digital AGC 2 Level L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2GA[7:0]  
Bit  
Name  
DAGC2GA[7:0]  
Function  
7:0  
Digital AGC2 Gain Auto (low byte).  
Digital AGC2 gain applied to meet threshold  
Default: 00h  
Register 7Bh. Digital AGC 2 Level H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2GA[15:8]  
Bit  
Name  
DAGC2GA[15:8]  
Function  
7:0  
Digital AGC2 Gain Auto (high byte).  
See register 7Ah.  
Default: 00h  
Register 7Ch. C/N Estimator Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CNS  
0
0
0
CNM  
CNW[1:0]  
0
Bit  
Name  
Function  
7
CNS  
C/N Estimator Start.  
Writing a one to this bit initiates an C/N estimator and clears the result  
stored in CNE_LEVEL. This bit is automatically cleared to zero when the  
measurement period elapses.  
6:3  
2
Reserved  
CNM  
Program to zero.  
C/N Estimator Mode.  
0 = Finite window  
1 = Infinite window (default)  
1:0  
CNW[1:0]  
C/N Measurement Window.  
00 = 1024 samples  
01 = 4096 samples (default)  
10 = 16384 samples  
11 = 65536 samples  
60  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register 7Dh. C/N Estimator Threshold0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CNET[7:0]  
Bit  
Name  
CNET[7:0]  
Function  
7:0  
C/N Estimator Threshold.  
This value defines a noise threshold for the C/N estimator.  
Default 13h.  
Register 7Eh. C/N Estimator Level L  
Bit  
D7  
D6  
D5  
D4  
CNL[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CNL[7:0]  
Function  
C/N Estimator Level (Low Byte).  
7:0  
The value in this register is to be used with an external lookup table to  
estimate the C/N of the input signal.  
Default: 00h.  
Register 7Fh. C/N Estimator Level H  
Bit  
D7  
D6  
D5  
D4  
CNL[15:8]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CNL[15:8]  
Function  
7:0  
C/N Estimator Level (High Byte).  
See Register 7Eh.  
Preliminary Rev. 0.7  
61  
Si2107/08/09/10  
Register A0h. Viterbi Search Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
VTCS[5:0]  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VTCS[5:0]  
Program to zero.  
Viterbi Code Rate Search Parameter Enable.  
The code rates to be used in the Viterbi search are selected by writing a  
one into the appropriate bit position. The list below illustrates the rela-  
tionship between bit position and code rate.  
Bit 5 = 7/8 code rate (MSB)  
Bit 4 = 6/7 code rate  
Bit 3 = 5/6 code rate  
Bit 2 = 3/4 code rate  
Bit 1 = 2/3 code rate  
Bit 0 = 1/2 code rate (LSB)  
Default: All code rates selected (3Fh).  
Register A2h. Viterbi Search Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Reserved  
VTERS  
VTERM  
VTERW[1:0]  
Bit  
Name  
Function  
Viterbi BER Measurement Start  
3
VTERS  
Writing a 1 to this bit initiates the Viterbi BER measurement.  
2
VTERM  
Viterbi BER Measurement Mode  
0 = finite window (default)  
1 = infinite window  
1:0  
VTERW[1:0]  
Viterbi BER Measurement Window  
13  
00 = 2 bits (default)  
17  
01 = 2 bits  
21  
10 = 2 bits  
25  
11 = 2 bits  
62  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register A3h. Viterbi Search Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VTRS[2:0]  
Reserved  
VTPS  
VTIQS  
Bit  
Name  
Function  
7:5  
VTRS[2:0]  
Viterbi Current Code Rate Indicator.  
000 = 1/2 code rate (default)  
001 = 2/3 code rate  
010 = 3/4 code rate  
011 = 5/6 code rate  
100 = 6/7 code rate  
101 = 7/8 code rate  
11x = Undefined  
4:2  
1
Reserved  
VTPS  
Program to 0.  
Viterbi Constellation Rotation Phase Status.  
0 = Not rotated (default)  
1 = Rotated by 90 degrees  
Viterbi I/Q Swap Status.  
0
VTIQS  
0 = Not swapped (default)  
1 = Swapped  
Register ABh. Viterbi BER Count L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VTBRC[7:0]  
Bit  
Name  
VTBRC[7:0]  
Function  
Viterbi BER Counter (Low Byte).  
7:0  
Stores the number of the Viterbi bit errors detected within the specified  
measurement window. This register saturates when it reaches the limit  
of its range.  
Default: 00h  
Preliminary Rev. 0.7  
63  
Si2107/08/09/10  
Register ACh. Viterbi BER Count H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VTBRC[15:8]  
Bit  
Name  
VTBRC[15:8]  
Function  
7:0  
Viterbi BER Counter (High Byte).  
See Register ABh.  
Register B0h. Reed-Solomon BER Error Monitor Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
RSERW  
Function  
D1  
D0  
Name  
Reserved  
RSERS  
RSERM  
RSERT[1:0]  
Bit  
7:5  
4
Name  
Reserved  
RSERS  
Program to zero.  
Reed-Solomon BER Measurement Start.  
Writing a 1 to this bit initiates the Reed-Solomon BER measurement.  
3
2
RSERM  
RSERW  
Reed-Solomon Measurement Mode.  
0 = Finite window (default)  
1 = Infinite window  
Reed-Solomon Measurement Window.  
12  
0 = 2 frames (default)  
16  
1 = 2 frames  
1:0  
RSERT[1:0]  
Reed-Solomon Error Type.  
00 = Corrected bit errors (default)  
01 = Corrected byte errors  
10 = Uncorrected packets  
11 = PRBS errors  
64  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register B1h. Reed-Solomon Error Monitor Count L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
RSERC[7:0]  
Bit  
Name  
RSERC[7:0]  
Function  
Reed-Solomon Error Counter (Low Byte).  
7:0  
Stores the number of RS or PRBS errors detected within the specified  
window. This register saturates when it reaches the limit of its range.  
Default: 00h  
Register B2h. Reed-Solomon Error Monitor Count H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
RSERC[15:8]  
Bit  
Name  
RSERC[15:8]  
Function  
7:0  
Reed-Solomon Error Counter (High Byte).  
See Register B1h.  
Register B3h. Descrambler Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DSO_DS  
Name  
0
0
0
0
0
0
DST_DS  
Bit  
7:2  
1
Name  
Function  
Reserved  
DST_DS  
Program to zero.  
Descrambler Transport Error Insertion Disable.  
0 = Enabled (default)  
1 = Disabled  
0
DSO_DS  
Descrambler Inverted SYNC Overwrite Disable.  
0 = Enabled (default)  
1 = Disabled  
Preliminary Rev. 0.7  
65  
Si2107/08/09/10  
Register B5h. PRBS Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name PRBS_START PRBS_INVERT PRBS_SYNC  
0
0
0
PRBS_HEADER_SIZE  
Bit  
Name  
Function  
7
PRBS_START  
Start PRBS synchronization.  
1 = Start PRBS synchronization  
Default = 0  
6
5
PRBS_INVERT  
PRBS_SYNC  
Invert PRBS output.  
1 = PRBS inverted.  
Default = 0  
Synchronization achieved for PRBS test.  
0 = Not synchronized.  
1 = Synchronized  
Default = 0  
4:2  
1:0  
Reserved  
Read returns zero.  
PRBS_HEADER_SIZE  
Packet header size (DVB-S/DSS)  
00 = 1/0 (Default)  
01 = 2/1  
10 = 3/2  
11 = 4/3  
66  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register C0h. LNB Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LNBS  
LNBV  
LNBCT  
LNBB  
MMSG  
MSGL[2:0]  
Bit  
Name  
Function  
7
LNBS  
LNB Start.  
Writing a 1 to this bit initiates an LNB signaling sequence. This bit is  
automatically cleared to zero when the sequence is complete.  
Note: Not available in manual LNB mode.  
6
LNBV  
LNB DC Voltage Selection.  
0 = 11/13 V (Japan/R.O.W.) (default)  
1 = 15/18 V (Japan/R.O.W.)  
Selection between Japan and R.O.W. LNB supply levels via register  
LNBLVL(CEh[1])  
Note: Available on Si2108/10 only.  
5
4
LNBCT  
LNBB  
Continuous Tone Selection.  
0 = Normal operation (default)  
1 = Send continuous tone  
Note: Not available in manual LNB mode.  
Tone Burst Selection.  
0 = Unmodulated tone burst (default)  
1 = Modulated tone burst  
Note: For use in automatic LNB mode only. Use a 1-byte DiSEqC message for  
tone burst implementation in step-by-step LNB mode.  
3
MMSG  
More Messages.  
0 = Normal operation (default)  
1 = Indicates more DiSEqC messages to be sent  
This bit is automatically cleared to zero when the sequence is complete.  
Note: For use in automatic LNB mode only.  
2:0  
MSGL[2:0]  
Message Length.  
000 = No message (default)  
001 = One byte  
010 = Two bytes  
011 = Three bytes  
100 = Four bytes  
101 = Five bytes  
110 = Six bytes  
111 = Longer than six bytes.  
Notes:  
1. When message length is set to one byte, tone burst modulation is used.  
When message length is set to two or more bytes, DiSEqC modulation is  
used.  
2. Not available in manual LNB mode.  
Preliminary Rev. 0.7  
67  
Si2107/08/09/10  
Register C1h. LNB Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LNBM[1:0]  
0
0
0
BRST_DS  
TFS  
0
Bit  
Name  
Function  
7:6  
LNBM[1:0]  
LNB Signaling Mode.  
00 = Automatic (default)  
01 = Step-by-step  
10 = Manual  
11 = Reserved  
5:3  
2
Reserved  
BRST_DS  
Program to zero.  
Tone Burst Disable.  
0 = Enabled (default)  
1 = Disabled  
Note: For use in automatic LNB mode only, in conjunction with LNBB (C0h[4])  
1
0
TFS  
Tone Format Select.  
0 = Tone generation/detection (default)  
1 = Envelope generation/detection  
Reserved  
Program to zero.  
Register C2h. LNB Control 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
TDIR  
TT  
TR  
0
0
0
0
0
Bit  
Name  
Function  
7
TDIR  
Tone Direction Control.  
Controls output of DRC pin.  
0 = Low (logic zero) (default)  
1 = High (logic one)  
Note: This bit is only active in manual LNB mode.  
6
5
TT  
TR  
Tone Transmit.  
Controls output of TGEN pin.  
0 = Tone off / Low (logic zero) (default)  
1 = Tone on / High (logic one)  
Note: This bit is only active in manual LNB mode.  
Tone Receive.  
Detects input on TDET pin.  
0 = No tone or low signal detected (default)  
1 = Tone or high signal detected  
Note: This bit is only active in manual LNB mode.  
4:0  
Reserved  
Program to zero.  
68  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register C3h. LNB Control 4  
Bit  
D7  
D6  
D5  
D4  
D3  
TFQ[7:0]  
D2  
D1  
D1  
Name  
Bit  
Name  
TFQ[7:0]  
Function  
7
LNB Tone Frequency Control.  
Used to set the frequency of the LNB tone according to the following  
equation:  
Frequency = 100 MHz/[32 x (TFQ+1)]  
00000000–01111011 = Reserved  
01111100–10011011 = valid range  
10011100–11111111 = Reserved  
Default: 8Dh = 22 kHz  
Preliminary Rev. 0.7  
69  
Si2107/08/09/10  
Register C4h. LNB Status  
Bit  
D7  
FE  
D6  
FF  
D5  
D4  
D3  
D2  
D1  
D0  
MSGPE  
MSGR  
MSGTO  
MSGRL[2:0]  
Name  
Bit  
Name  
Function  
7
FE  
Message FIFO Empty.  
0 = Normal operation (default)  
1 = Message FIFO empty  
6
FF  
Message FIFO Full  
0 = Normal operation (default)  
1 = Message FIFO full  
5
MSGPE  
MSGR  
Message Parity Error  
0 = Normal operation (default)  
1 = Parity error detected  
4
Message Received  
0 = Normal operation (default)  
1 = Message received  
3
MSGTO  
Message Timeout  
0 = Normal operation (default)  
1 = Message reply not received within 150 ms  
2:0  
MSGRL[2:0]  
Received Message Length  
000 = No message (default)  
001 = One byte  
010 = Two bytes  
011 = Three bytes  
100 = Four bytes  
101 = Five bytes  
110 = Six bytes  
111 = Longer than six bytes  
Register C5-CAh. Message FIFO 1–6  
Bit  
D7  
D6  
D5  
D4  
FIF0x[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
FIFO1–6[7:0]  
Function  
7:0  
Message FIFO  
Contains message to be transmitted or message received  
70  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register CBh. LNB Supply Control 1 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VLOW[3:0]  
VHIGH[3:0]  
Bit  
Name  
Function  
7:4  
VLOW[3:0]  
LNB Supply Low Voltage  
Low voltage = Vlow_nom + VLOW[3:0] x 0.0625V + Vboost, where  
Vlow_nom is determined by the LNBLVL(CEh[1]) register bit, and  
Vboost is determined by the COMP(CEh[2]) register bit.  
Default: 8h resulting in low voltage = Vlow_nom + 0.5 V + Vboost.  
3:0  
VHIGH[3:0]  
LNB Supply High Voltage  
High voltage = Vhigh_nom + VHIGH[3:0] x 0.0625V + Vboost, where  
Vhigh_nom is determined by the LNBLVL(CEh[1]) register bit, and  
Vboost is determined by the COMP(CEh[2]) register bit.  
Default: 8h resulting in High voltage = Vhigh_nom + 0.5 V + Vboost.  
Preliminary Rev. 0.7  
71  
Si2107/08/09/10  
Register CCh. LNB Supply Control 2 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
SLOT[1:0]  
Function  
D2  
D1  
D0  
Name  
ILIM[1:0]  
IMAX[1:0]  
OLOT[1:0]  
Bit  
Name  
7:6  
ILIM[1:0]  
IMAX[1:0]  
SLOT[1:0]  
Average Current Limit.  
00 = 400 – 550 mA (default)  
01 = 500 – 650 mA  
10 = 650 – 850 mA  
11 = 800 – 1000 mA  
5:4  
3:2  
Peak Current Limit.  
00 = 1.2 A (default)  
01 = 1.6 A  
10 = 2.4 A  
11 = 3.2 A  
Short Circuit Lockout Time.  
00 = 15 µs  
01 = 20 µs (default)  
10 = 30 µs  
11 = 40 µs  
Overcurrent Lockout Time.  
00 = 2.5 ms  
1:0  
OLOT[1:0]  
01 = 3.75 ms  
10 = 5.0 ms (default)  
11 = 7.5 ms  
Note: Register CCh is lockable via LNBL (CEh[7]). When locked, this register is read-only.  
Register CDh. LNB Supply Control 3 (Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VMON[7:0]  
Bit  
Name  
VMON[7:0]  
Function  
7:0  
LNB Voltage Monitor.  
LNB output voltage = VMON x 0.0625 + 6 V  
72  
Preliminary Rev. 0.7  
Si2107/08/09/10  
Register CEh. LNB Supply Control 4 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LNBL  
Reserved  
LNB_EN  
COMP  
LNBLVL  
LNBMD  
Bit  
Name  
Function  
7
LNBL  
LNB Supply Lock.  
Writing a one to this bit locks the contents of Register CCh. This bit  
can only be cleared by a device reset.  
6:4  
3
Reserved  
LNB_EN  
Program to zero.  
LNB Supply Enable.  
0 = Disabled (default)  
1 = Enabled  
2
1
COMP  
LNB Cable Compensation Boost.  
0 = Normal operation (default)  
1 = LNB output voltage increased +1 V  
LNBLVL  
Select LNB supply levels for Japan or R.O.W.  
0 = high voltage levels for R.O.W. i.e. Vhigh_nom = 17.5 V &  
Vlow_nom = 11.5 V (default)  
1 = low voltage levels for Japan i.e.  
Vhigh_nom = 14.5 V & Vlow_nom = 11.5 V.  
Note: The resulting nominal output voltages are: 12/15 V (Japan) and  
13/18 V (R.O.W.) when using the default settings for the VLOW  
(CBh[7:4]) and VHIGH (CBh[3:0]) register bits.  
0
LNBMD  
LNB Mode Detect.  
Detected supply mode (read-only)  
0 = External LNB supply circuit  
1 = Internal LNB supply circuit  
Preliminary Rev. 0.7  
73  
Si2107/08/09/10  
Register CFh. LNB Supply Status (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
SCD  
OCD  
Bit  
Name  
Reserved  
SCD  
Function  
7:2  
1
Program to zero.  
Short-Circuit Detect Flag.  
0 = Normal operation (default)  
1 = Short-circuit detected  
0
OCD  
Overcurrent Detect Flag.  
0 = Normal operation (default)  
1 = Overcurrent detected.  
74  
Preliminary Rev. 0.7  
Si2107/08/09/10  
9. Pin Descriptions  
Si2108/10  
Si2107/09  
44 43 42 41 40 39 38 37 36  
44 43 42 41 40 39 38 37 36  
1
2
3
4
5
6
7
8
9
VDD_LNA  
REXT  
1
2
3
4
5
6
7
8
9
35 XTAL1  
VDD_LNA  
REXT  
35 XTAL1  
XTAL2  
GND  
GND  
34 XTAL2  
34  
ADDR  
33 VDD_XTAL  
32 XTOUT  
ADDR  
33 VDD_XTAL  
32 XTOUT  
VDD_MIX  
VDD_BB  
VDD_ADC  
VSEN/TDET  
LNB1/TGEN  
ISEN  
VDD_MIX  
VDD_BB  
VDD_ADC  
TDET  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
Top  
View  
Top  
View  
TGEN  
28  
27  
28  
TS_VAL  
TS_VAL  
NC  
27 TS_SYNC  
26 SDA  
TS_SYNC  
LNB2/DRC 10  
RESET 11  
DRC 10  
11  
26 SDA  
RESET  
25 SCL  
25 SCL  
PWM/DCS  
DCS 12  
12  
24 TS_DATA[7]  
24 TS_DATA[7]  
GND  
GND  
TS_DATA[6]  
23  
TS_DATA[6]  
23  
VDD_DIG18 13  
VDD_DIG18 13  
14 15 16 17 18 19 20 21 22  
14 15 16 17 18 19 20 21 22  
Pin  
Name  
I/O  
Description  
Number  
Supply Voltage.  
1
VDD_LNA  
I
LNA power supply. Connect to 3.3 V.  
External Reference Resistor.  
Connect 4.53 kΩ to GND.  
2
3
4
REXT  
ADDR  
I/O  
I/O I2C Address Select.  
Supply Voltage.  
Mixer power supply. Connect to 3.3 V  
VDD_MIX  
I
Supply Voltage.  
Baseband power supply. Connect to 1.8 V.  
5
6
VDD_BB  
I
Supply Voltage.  
ADC power supply. Connect to 3.3 V.  
VDD_ADC  
I
Voltage Sense/Tone Detect.  
7
8
9
VSEN/TDET  
LNB1/TGEN  
ISEN  
I
O
I
VSEN (Si2108/10 only)—Line voltage of LNB supply circuit.  
TDET—Detect input of external tone or tone envelope.  
LNB Control 1/Tone Generation.  
LNB1 (Si2108/10 only)—Required connection to LNB supply circuit.  
TGEN—Outputs tone or tone envelope.  
Current Sense (Si2108/10 only).  
Monitors current of LNB supply circuit. When LNB supply circuit is not populated or  
when using Si2107/09, leave pin unconnected.  
LNB Control 2/Direction Control.  
LNB2 (Si2108/10 only)—required connection to LNB supply circuit.  
DRC—Outputs signal to indicate message transmission (HIGH) or reception  
(LOW).  
10  
11  
LNB2/DRC  
RESET  
I/O  
I
Device Reset.  
Active low.  
Preliminary Rev. 0.7  
75  
Si2107/08/09/10  
PWM/DC Voltage Select.  
PWM (Si2108/10 only)—Connected to gate of power MOSFET for LNB supply cir-  
12  
PWM/DCS  
O
cuit.  
DCS—Outputs signal to indicate 18 V (HIGH) or 13 V (LOW) LNB supply voltage  
selection.  
Supply voltage.  
13  
VDD_DIG18  
TS_DATA[7:0]  
VDD_DIG33  
I
O
I
Digital power supply. Connect to 1.8 V.  
Transport Stream Data Bus.  
Serial data is output on TS_DATA[0].  
Supply Voltage.  
Digital power supply. Connect to 3.3 V.  
Transport Stream Clock.  
I2C Clock.  
14–17,  
21–24  
18, 20  
19  
25  
26  
27  
28  
29  
TS_CLK  
SCL  
O
I
SDA  
I/O I2C Data.  
TS_SYNC  
TS_VAL  
TS_ERR  
O
O
O
Transport Stream Sync.  
Transport Stream Valid.  
Transport Stream Error.  
Multi Purpose Output Pin.  
This pin can be configured to one of the following outputs using the Pin Ctrl 2 (05h)  
register.  
INT = Interrupt  
INT / RLK /  
GPO  
30  
O
RLK = Receiver lock indicator  
GPO = General purpose output  
Supply Voltage.  
Analog PLL power supply. Connect to 3.3 V.  
31  
32  
VDD_PLL33  
XTOUT  
I
No Connect/Crystal oscillator output.  
If this device is to be used as the clock master in a multi-channel design, this pin  
should be connect to the XTAL1 pin of a clock slave device. (Otherwise, this pin  
should be left unconnected.)  
O
Supply Voltage.  
Crystal Oscillator power supply. Connect to 3.3 V.  
Crystal Oscillator.  
Connect to 20 MHz crystal unit.  
Crystal Oscillator.  
Connect to 20 MHz crystal unit.  
Supply Voltage.  
Synth power supply. Connect to 3.3 V.  
Supply Voltage.  
Local Oscillator power supply. Connect to 3.3 V.  
Ground.  
33  
34  
VDD_XTAL  
XTAL2  
I
O
I
35  
XTAL1  
36  
VDD_SYNTH  
VDD_LO  
GND  
I
37  
I
38,41,44  
I
Reference ground.  
RF Input.  
39, 43 RFIP1, RFIP2  
40, 42 RFIN1, RFIN2  
I
These pins must be connected together on the board.  
RF Input.  
These pins must be connected together on the board.  
Ground.  
I
ePad  
GND  
I
Reference ground.  
76  
Preliminary Rev. 0.7  
Si2107/08/09/10  
10. Ordering Guide1,2  
Ordering Part #  
Description  
Temperature  
Si2110-X-FM  
Si2109-X-FM  
Si2108-X-FM  
Si2107-X-FM  
Satellite receiver for DVB-S/DSS with LNB step-up dc-dc controller  
and on-chip blindscan accelerator, Lead-free and RoHS Compliant  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
Satellite receiver for DVB-S/DSS with on-chip blindscan accelerator,  
Lead-free and RoHS Compliant  
Satellite receiver for DVB-S/DSS with step-up dc-dc controller, Lead-  
free and RoHS Compliant  
Satellite receiver for DVB-S/DSS, Lead-free and RoHS Compliant  
Notes:  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
Preliminary Rev. 0.7  
77  
Si2107/08/09/10  
11. Package Outline: 44-pin QFN  
Figure 18 illustrates the package details for the Si2110. Table 20 lists the values for the dimensions shown in the  
illustration.  
Figure 18. 44-Pin QFN  
Table 20. Package Diagram Dimensions  
Millimeters  
Nom  
Millimeters  
Nom  
Dimension  
Dimension  
Min  
Max  
Min  
Max  
A
0.80  
0.00  
0.18  
0.90  
0.02  
1.00  
0.05  
0.30  
E2  
L
6.00  
0.45  
0.03  
6.10  
0.55  
0.05  
0.10  
0.10  
0.08  
0.10  
6.20  
0.65  
0.08  
A1  
b
0.25  
L1  
D
D2  
6.00 BSC.  
2.80  
aaa  
bbb  
ccc  
ddd  
2.70  
2.90  
e
0.50 BSC.  
8.00 BSC.  
E
Notes:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VJLD.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for small body Components.  
4. The pin 1 I.D. pad is for component orientation only and is not to be soldered to the PCB.  
78  
Preliminary Rev. 0.7  
Si2107/08/09/10  
DOCUMENT CHANGE LIST  
Revision 0.4 to Revision 0.5  
Package dimensions changed to 6 x 8 mm.  
Updated pin numbering and pin descriptions.  
Schematics updated.  
I2C interface description added.  
MPEG-TS timing specifications added.  
Revision 0.5 to revision 0.6  
Data sheet for Si2107/08/09/10.  
Added detailed operational description.  
Register map changed for Rev. C silicon.  
Various editorial changes and corrections.  
Revision 0.6 to revision 0.7  
Updated application diagram and BOM.  
Added table for multi-device I2C address support.  
Preliminary Rev. 0.7  
79  
Si2107/08/09/10  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: DBSinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
80  
Preliminary Rev. 0.7  

相关型号:

SI2107-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2107-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2107_06

SATELLITE RECEIVER FOR DVB-S/DSS WITH QUICKLOCK AND QUICKSCAN
SILICON

SI2108

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2108-D-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2108-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2108-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2109

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2109-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2109-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2110

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2110-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON