SI2107-X-FMR [SILICON]

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44;
SI2107-X-FMR
型号: SI2107-X-FMR
厂家: SILICON    SILICON
描述:

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44

电信 电信集成电路
文件: 总94页 (文件大小:1241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si2107/08/09/10  
SATELLITE RECEIVER FOR DVB-S/DSS WITH  
QUICKLOCK AND QUICKSCAN  
Features  
Single-chip tuner, demodulator, Automatic acquisition and fade  
and LNB controller  
recovery  
DVB-S- and DSS-compliant Automatic gain control  
QPSK/BPSK demodulation  
Integrated step-up dc-dc  
On-chip blind scan accelerator  
with QuickScan (Si2109/10 only)  
converter for LNB power supply DiSEqC™ 2.2 support  
(Si2108/10 only)  
Power, C/N, and BER estimators  
Pin Assignments  
Input signal level:  
2
I C bus interface  
–82 to –10 dBm  
Si2107/08/09/10  
3.3/1.8 V supply, 3.3 V I/O  
Symbol rate range:  
Pb-free/RoHS-compliant  
1 to 45 MBaud  
package  
44 43 42 41 40 39 38 37 36  
1
VDD_LNA  
REXT  
35 XTAL1  
Applications  
2
3
4
5
6
7
8
9
GND  
34 XTAL2  
ADDR  
33 VDD_XTAL  
32 XTOUT  
VDD_MIX  
VDD_BB  
VDD_ADC  
VSEN/TDET  
LNB1/TGEN  
ISEN  
Set-top boxes  
Digital video recorders  
Digital televisions  
Satellite PC-TV  
SMATV trans-modulators  
(Satellite Master Antenna TV)  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
Top  
View  
28  
TS_VAL  
27 TS_SYNC  
26 SDA  
LNB2/DRC 10  
RESET 11  
PWM/DCS 12  
VDD_DIG18 13  
25 SCL  
Description  
24 TS_DATA[7]  
GND  
TS_DATA[6]  
23  
The Si2107/08/09/10 are a family of pin-compatible, complete front-end solutions  
for DSS and DVB-S digital satellite reception. The IC family incorporates a tuner,  
demodulator, and LNB controller into a single device resulting in significantly  
reduced board space and external component count. The device supports symbol  
rates of 1 to 45 MBaud over a 950 to 2150 MHz range. A full suite of features  
including automatic acquisition, fade recovery, blind scanning, performance  
monitoring, and DiSEqC Level 2.2 compliant signaling are supported. The Si2108/  
10 further add short circuit protection, overcurrent protection, and a step-up dc-dc  
controller to implement a low-cost LNB supply solution. Si2109/10 versions  
include a hardware channel scan accelerator for fast “blindscan”. The Si2107/08/  
09/10 family features new channel detection and acquisition technology:  
QuickLock for Si2107/08/09/10 and QuickScan for Si2109/10. QuickLock  
achieves fast channel acquisition and QuickScan, fast channel detection. An I2C  
bus interface is used to configure and monitor all internal parameters.  
14 15 16 17 18 19 20 21 22  
Functional Block Diagram  
Acquisition Control  
AGC  
TS_CLK  
TS_DATA[7:0]  
TS_VAL  
RS  
Decoder  
Viterbi  
Decoder  
Tuner  
Demodulator  
RFIP  
TS_SYNC  
TS_ERR  
VSEN/TDET  
LNB2/DRC  
ISEN/NC  
LNB1/TGEN  
PWM/DCS  
LNB Control  
I2C Interface  
SCL SDA  
RF Sythesizer  
INT/RLK/GPO  
XOUT  
Preliminary Rev. 0.81 6/06  
Copyright © 2006 by Silicon Laboratories  
Si2107/08/09/10  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si2107/08/09/10  
2
Preliminary Rev. 0.81  
Si2107/08/09/10  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Part Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.1. Tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.2. Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3. DVB-S/DSS Channel Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.4. On-Chip Blindscan Controller: QuickScan (Si2109/10 Only) . . . . . . . . . . . . . . . . . .21  
5.5. LNB Signaling Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.6. On-Chip LNB DC-DC Step-Up Controller (Si2108/10 Only) . . . . . . . . . . . . . . . . . . .21  
5.7. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
6. Operational Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.1. System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.2. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.3. Receiver Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6.4. Tuning Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6.5. Channel Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6.6. Automatic Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.7. LNB Signaling Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
6.8. On-Chip LNB DC-DC Step-Up Controller (Si2108/10 Only) . . . . . . . . . . . . . . . . . . .32  
6.9. On-Chip Blindscan Controller: QuickScan (Si2109/10 Only) . . . . . . . . . . . . . . . . . .32  
2
7. I C Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
10. Ordering Guide1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
11. Package Outline: 44-pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
12. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Preliminary Rev. 0.81  
3
Si2107/08/09/10  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient temperature  
Symbol  
Min  
0
Typ  
Max  
70  
Unit  
°C  
V
T
A
DC supply voltage, 3.3 V  
DC supply voltage, 1.8 V  
V
V
3.0  
1.71  
3.3  
1.8  
3.6  
3.3  
1.8  
1.89  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Table 2. Absolute Maximum Ratings1, 2  
Parameter  
Symbol  
Min  
–0.3  
–0.3  
–0.3  
–10  
–10  
–55  
Max  
3.9  
Unit  
V
DC supply voltage, 3.3 V  
DC supply voltage, 1.8 V  
Input voltage (pins 2, 3, 7, 9, 11_  
Input current (pins 2, 3, 7, 9, 11)  
Operating ambient temperature  
Storage temperature  
RF input level  
V
V
3.3  
1.8  
2.19  
V
V
V
+ 0.3  
3.3  
V
IN  
IN  
I
+10  
+70  
150  
10  
mA  
°C  
°C  
dBm  
kV  
T
OP  
T
STG  
ESD protection (pins 1–44)  
Notes:  
2
1. Permanent damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operations sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. The Si2107/08/09/10 is a high-performance RF integrated circuit. Handling and assembly of these devices should  
only be done at ESD-protected workstations.  
4
Preliminary Rev. 0.81  
Si2107/08/09/10  
Table 3. DC Characteristics  
(V3.3 = 3.3 V ±10%, V1.8 = 1.8 V ±10%, TA = 0–70 ºC)  
Parameter  
Symbol  
Test Condition  
45 Mbaud, CR 7/8  
20 Mbaud, CR 2/3  
45 Mbaud, CR 7/8  
20 Mbaud, CR 2/3  
Min  
2.3  
0
Typ  
313  
298  
292  
217  
Max  
Unit  
mA  
mA  
mA  
mA  
V
1
1
1
1
Supply Current, 3.3 V  
I
3.3  
Supply Current, 1.8 V  
I
1.8  
Input high voltage  
Input low voltage  
V
SCL(25), SDA(26)  
SCL(25), SDA(26)  
5.5  
0.8  
±10  
IH  
V
I
V
IL  
2
Input leakage  
SCL(25), SDA(26),  
RESET(11),  
µA  
I
XTAL1(35), VSEN/  
TDET(7)  
Output high voltage  
Output low voltage  
Output leakage  
Notes:  
V
2.4  
V
V
OH  
V
I
0.4  
±10  
OL  
µA  
OL  
1. LNB dc-dc converter disabled; LNB_EN (CEh[2]) = 0.  
2. ISEN(9) is not tested for leakage current.  
Table 4. RF Electrical Characteristics  
Parameter  
Input power, single channel  
Aggregate input power  
Input impedance, balanced  
Return Loss  
Symbol  
Test Condition  
Min  
+5  
Typ  
Max  
–10  
–7  
Unit  
dBm  
dBm  
1
P
–82  
i,ch  
P
i,agg  
Z
Z
= 75 Ω  
75  
in  
SOURCE  
–10  
75  
dB  
Dynamic voltage gain range  
Maximum voltage gain  
Noise figure  
dB  
GV  
G
55  
dB  
V(max)  
2
NF  
Max gain  
+9.5  
+15  
+12.5  
dB  
3
2
IP3  
IP3  
Min gain  
dBm  
dBm  
dBc/Hz  
dBc/Hz  
°rms  
LO leakage  
L
950 to 2150 MHz  
100 kHz offset  
1 MHz offset  
–70  
–94  
–94  
2.8  
LO  
–97  
–97  
2.1  
LO SSB phase noise  
N
N
LO  
LO  
LO DSB phase noise (integrated)  
10 kHz to 1/2 Baud  
Rate  
RF synthesizer spurious  
LO oscillator settling time  
Notes:  
At 20 MHz offset  
–40  
100  
dBc/Hz  
µs  
t
s,LO  
1. For a single channel with SR = 27.5 Mbaud, CR = 7/8, and no added noise. Input power range over which bit error rate  
is less than 2e-4 after Viterbi decoder.  
2. Max gain = 0hFFFF in AGC settings registers (25h–26h).  
Min gain = 0h0000 in AGC settings registers (25h–26h).  
3. IM3 can be calculated as follows: IM3 = 2 x (IP3 – Pin).  
Preliminary Rev. 0.81  
5
Si2107/08/09/10  
Table 5. Receiver Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Rf Input Frequency Range  
f
950  
2150  
MHz  
in  
Fine Tune Step Size  
f
1
12.2  
45  
kHz  
MBaud  
MHz  
step  
Symbol Rate Range  
R
S
Carrier Offset Correction Range  
f
±6  
car_off  
TQL  
Carrier Lock/Acquisition Times  
with QuickLock  
45 MBaud, CR = 7/8 Channel  
Offset = ±5 MHz*  
0.02  
Sec  
27.5 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
0.03  
0.04  
0.05  
0.08  
0.14  
0.25  
Sec  
Sec  
Sec  
Sec  
Sec  
Sec  
20 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
10 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
5 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
2 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
1 MBaud, CR = 7/8, Channel  
Offset = ±10 MHz*  
*Note: For signal with C/N = 8.5 dB Pin = –40 dBm, Channel frequency = 1560 MHz.  
6
Preliminary Rev. 0.81  
Si2107/08/09/10  
Table 6. LNB Supply Characteristics (Si2108/10 Only)  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
Min  
8
Typ  
12  
Max  
13.2  
290  
19.5  
19.0  
14.0  
14.0  
1
Unit  
V
V
LNB_IN  
Converter Switch Frequency  
237  
17.75  
17.0  
12.75  
12.5  
264  
kHz  
V
VHIGH = 1101  
VHIGH = 1000  
VLOW = 1101  
VLOW = 1100  
13 to 18 V  
18.625  
18.0  
13.375  
13.25  
Output HIGH voltage  
V
V
Output LOW voltage  
V
Low to High Transition Time  
High to Low Transition Time  
Line Regulation  
ms  
ms  
mV  
18 to 13 V  
1
V
= 8 to  
200  
CC  
13.2 V  
I = 500 mA  
o
Load Regulation  
I = 50 to  
200  
mV  
o
500 mA  
V
= 12 V  
CC  
Load Capacitance Tolerance  
Output current limiting  
DiSEqC 1.x  
DiSEqC 2.x  
ILIM = 00  
0.75  
0.25  
550  
650  
1.92  
24  
µF  
µF  
400  
500  
1.4  
20  
mA  
mA  
A
ILIM = 01  
Maximum LNB Supply Current  
Tone Frequency  
IMAX = 01  
1.6  
22  
650  
50  
6
f
kHz  
mV  
%
tone  
Tone Amplitude  
500  
40  
800  
60  
Tone Duty Cycle  
Tone Rise and Fall Time  
3
10  
µs  
Tone Detector Frequency Capture  
Range  
17.6  
26.4  
kHz  
Tone Detector Input Amplitude  
200  
1000  
mV  
pp  
Note: Specifications based on recommended schematics in Figure 8 and Figure 9.  
Preliminary Rev. 0.81  
7
Si2107/08/09/10  
Table 7. I2C Bus Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCL Clock Frequency  
f
SCL  
BUF  
Bus Free Time between START and  
STOP Condition  
t
1.3  
Hold Time (repeated) START Condition.  
(After this period, the first clock pulse is  
generated.)  
t
0.6  
µs  
HD, STA  
LOW Period of SCL Clock  
HIGH Period of SCL Clock  
Data Setup Time  
t
1.3  
0.6  
100  
0
µs  
µs  
ns  
µs  
ns  
µs  
LOW  
t
HIGH  
t
SU, DAT  
HD, DAT  
Data Hold Time  
t
0.9  
300  
SCL and SDA Rise and Fall Time  
t t  
r, f  
Setup Time for a Repeated START Con-  
dition  
t
0.6  
SU, STA  
Setup Time for STOP Condition  
Capacitive Load for each Bus Line  
t
0.6  
µs  
pF  
SU,STO  
C
400  
B
SDA  
tr  
tBUF  
tSU;DAT  
tf  
tf  
tLOW  
tr  
tHD;STA  
tSP  
SCL  
tSU;STO  
tHD;STA  
tHD;DAT  
tHIGH  
tSU;STA  
Sr  
S
P
S
2
Figure 1. I C Timing Diagram  
8
Preliminary Rev. 0.81  
Si2107/08/09/10  
Table 8. MPEG-TS Specifications (Rising Launch and Capture)  
Parameter  
Symbol  
Test Condition  
Serial mode  
Min  
11.3  
77  
Typ  
Max  
28.6  
8000  
6.9  
Unit  
ns  
Clock cycle time  
t
cycle  
Parallel mode  
ns  
Clock low time  
Clock high time  
Hold time  
t
Serial mode (TSSCR = 11)  
Serial mode (TSSCR = 00)  
Parallel mode  
5.1  
ns  
clow  
12.0  
39  
15.8  
4000  
ns  
ns  
t
Serial mode (TSSCR = 01)  
Serial mode (TSSCR = 11)  
Parallel mode  
5.1  
12.0  
39  
6.9  
15.8  
4000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
chigh  
t
Normal operation  
0
hold  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
Normal operation  
1.5  
–1.5  
Setup time  
t
t
t
– 1.5  
setup  
cycle  
cycle  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
– 3.0  
t
cycle  
Access time  
t
1.5  
access  
tcycle  
C
L
TS_CLK  
TS_DATA  
thold  
tsetup  
taccess  
Figure 2. MPEG-TS (Rising Launch and Capture) Timing Diagram  
Preliminary Rev. 0.81  
9
Si2107/08/09/10  
Table 9. MPEG-TS Specifications (Rising Launch, Falling Capture)  
Parameter  
Symbol  
Test Condition  
Serial mode  
Min  
11.3  
77  
Typ  
Max  
28.6  
8000  
6.9  
Unit  
ns  
Clock cycle time  
t
cycle  
Parallel mode  
ns  
Clock low time  
Clock high time  
Hold time  
t
Serial mode (TSSCR = 11)  
Serial mode (TSSCR = 00)  
Parallel mode  
5.1  
ns  
clow  
12.0  
39  
15.8  
4000  
ns  
ns  
t
Serial mode (TSSCR = 01)  
Serial mode (TSSCR = 11)  
Parallel mode  
5.1  
12.0  
39  
6.9  
15.8  
4000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
chigh  
t
Normal operation  
t
/2  
cycle  
hold  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
Normal operation  
t
t
t
/2 + 1.5  
/2 – 1.5  
/2 – 1.5  
/2 – 3.0  
cycle  
cycle  
cycle  
Setup time  
t
setup  
Data delayed (TSDD = 1)  
Clock Delayed (TSCD = 1)  
t
cycle  
t
/2  
cycle  
Access time  
t
1.5  
access  
tcycle  
C
L
L
TS_CLK  
TS_DATA  
thold  
tsetup  
taccess  
Figure 3. MPEG-TS (Rising Launch, Falling Capture) Timing Diagram  
10  
Preliminary Rev. 0.81  
Si2107/08/09/10  
8.5  
8
7.5  
7
975MHz  
1550MHz  
2150MHz  
1318MHz  
6.5  
6
5.5  
5
-100  
-80  
-60  
-40  
-20  
0
Input Power (dBm)  
Figure 4. Eb/No (QEF Operation) vs. Input Power for Si2107/08/09/10 (Typical)  
SR = 27.5 MBaud, CR = 7/8  
1
0.1  
0.01  
27.5Mbaud 1/2  
27.5Mbaud 2/3  
27.5Mbaud 3/4  
27.5Mbaud 5/6  
27.5Mbaud 7/8  
0.001  
0.0001  
0.00001  
0.000001  
0.0000001  
0.00000001  
2
4
6
8
10  
All tests performed with 1550 MHz, –40 dBm input  
Eb/No (dB)  
Figure 5. BER After Viterbi vs. Eb/No for Si2107/08/09/10  
Preliminary Rev. 0.81  
11  
Si2107/08/09/10  
Figure 6. Phase Noise Performance for Si2107/08/09/10 (Typical)  
0.3  
0.25  
0.2  
1 Mbaud  
2Mbaud  
5Mbaud  
10Mbaud  
20Mbaud  
35Mbaud  
45Mbaud  
0.15  
0.1  
0.05  
0
Test Conditions  
Pin = –40 dBm  
CR = 7/8  
f = 1560 MHz  
-10  
-5  
0
5
10  
Frequency Offset of Desired Channel (MHz)  
Figure 7. Frequency Offset vs. Carrier Lock/Acquisition Time for Various Baudrates Using QuickLock  
(Typical)  
12  
Preliminary Rev. 0.81  
Si2107/08/09/10  
2. Typical Application Schematics  
2
V D D _ L N A  
A L 1 X T  
A L 2 X T  
1
3 5  
3 4  
R E X T  
2
A D D R  
A L  
V D D _ X T  
3
3 3  
V D D _ M I X  
O U X T T  
4
3 2  
V D D _ P L L 3 3  
3 1  
/ R L K I N / G T P O  
V D D _ B B  
5
V D D _ A D C  
6
3 0  
T S _ E R R  
2 9  
/ V S E E T D N T  
7
1
/ L N N E B T G  
T S _ V A L  
2 8  
8
N C / I S E N  
D R C / L N B 2  
T S _ S Y N C  
9
2 7  
S D A  
1 0  
1 1  
1 2  
1 3  
2 6  
R E S E T  
S C L  
2 5  
D C S / P W M  
V D D _ D I G  
A 7  
A 6  
_ D S T A T  
2 4  
2 3  
1 8  
_ D S T A T  
Preliminary Rev. 0.81  
13  
Si2107/08/09/10  
Si2110 LNB Control  
14  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Si2110 LNB Control  
Preliminary Rev. 0.81  
15  
Si2107/08/09/10  
3. Bill of Materials  
Table 10. Si2107/08/09/10 Bill of Materials  
Component  
Description  
Vendor  
C1,C2,C4,C6,C10,C8,C9,C13,C14,  
C15,C16  
0.1 µF, X7R, ±20%  
C5  
0.01 µF, X7R, ±20%  
33 pF, 6 V, NP0, ±10%  
C3,C7,C11,C12  
C19,C36  
D4  
33 pF, 50 V, NP0, ±10%  
1
Transient voltage suppressor, 20 V  
Littlefuse SMCJ20CA  
Anaren B0922J7575A00  
Silicon Laboratories  
J1  
Connector, F-type, 75 , 950-2150 MHz  
4.53 k, 62.5 mW, ±1%  
Balun transformer  
R2  
X1  
2
TC1-5  
Tuning components  
Y1  
20 MHz, 20 pF, 50 ppm, 20 ESR  
Si2107/08/09/10  
U1  
Notes:  
1. Transient voltage suppression device should be selected to match the surge requirements of the application.  
2. Tuning component values depend on balun selected and layout. Please contact Silicon Laboratories for assistance  
reviewing layouts and selecting matching components.  
16  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Table 11. DiSEqC 1.x LNB Supply Bill of Materials (Si2108/10 Only)  
Component  
C30  
Description  
Vendor  
47 µF, 25 V, Electrolytic,± 20%  
0.47 µF, 25 V, X7R,± 20%  
22 nF, 25 V, X7R, ± 20%  
0.22 µF, 25 V, X7R, ± 20%  
4.7 µF, 25 V, X7R, ± 20%  
C31  
C32  
C33  
C34  
D1  
CMPSH1-4, 40 V, 1 A  
ZHCS750TA, 40 V, 750 mA  
Central Semiconductor  
Zetex  
D3  
L2  
MMBD1705, Dual diode, 20 V, 25 mA  
Fairchild  
DR78098, 33 µH, 1.2 A, 20%  
SD0705-330K-R-SL  
Datatronic  
ACT  
Q1  
ZXMN3B14  
FDN337N  
Zetex  
Fairchild  
Q2  
Q3,Q5,Q6  
Q4  
FMMT618  
Zetex  
Infineon  
Zetex  
MMBT3904  
FMMT718  
R5  
1.3 , 500 mW, ±5%  
33 , 250 mW, ±5%  
10 k, 62.5 mW, ±5%  
1 k, 250 mW, ±5%  
680 , 125 mW, ±5%  
0.22 , 1 W, ±5%  
22 k, 62.5 mW, ±1%  
20 k, 62.5 mW, ±5%  
33 , 62.5 mW, ±5%  
43 k, 62.5 mW, ±5%  
3 k, 100 mW, ±5%  
2 k, 250 mW, ±5%  
2.2 k, 62.5 mW, ±1%  
R6  
R7  
R8  
R9  
R10  
R11  
R12,R20  
R13  
R14  
R15  
R16  
R17  
Preliminary Rev. 0.81  
17  
Si2107/08/09/10  
Table 12. DiSEqC 2.x LNB Supply Bill of Materials (Si2108/10 Only)  
Component  
C17  
Description  
Vendor  
1200 pF, 25 V, X7R, ± 20%  
47 µF, 25 V, Electrolytic, ± 20%  
0.47 µF, 25 V, X7R,± 20%  
22 nF, 25 V, X7R, ± 20%  
0.22 µF, 25 V, X7R, ± 20%  
4.7 µF, 25 V, X7R, ± 20%  
C30  
C31,C35  
C32  
C33  
C34  
D1  
CMPSH1-4, 40 V, 1 A  
ZHCS750TA, 40 V, 750 mA  
Central Semiconductor  
Zetex  
D3  
L2  
MMBD1705, Dual diode, 20 V, 25 mA  
Fairchild  
DR78098, 33 µH, 1.2 A, 20%  
SD0705-330K-R-SL  
Datatronic  
ACT  
L3  
DR78097, 100 µH, 500 mA, 20%  
SD0504-101K-R-SL  
Datatronic  
ACT  
Q1  
ZXMN3B14  
FDN337N  
Zetex  
Fairchild  
Q2  
Q3,Q5,Q6  
Q4  
FMMT618  
Zetex  
Fairchild  
Zetex  
MMBT3904  
FMMT718  
R5  
1.3 , 500 mW, ±5%  
33 , 250 mW, ±5%  
10 k, 62.5 mW, ±5%  
1 k, 250 mW, ±5%  
680 , 125 mW, ±5%  
0.22 , 1W, ±5%  
R6  
R7  
R8  
R9  
R10  
R11  
22 k, 62.5 mW, ±1%  
20 k, 62.5 mW, ±5%  
33 , 62.5 mW, ±5%  
43 k, 62.5mW, ±5%  
3 k, 100 mW, ±5%  
2 k, 250 mW, ±5%  
2.2 k, 62.5 mW, ±1%  
16 , 250 mW, ±5%  
R12,R20  
R13  
R14  
R15  
R16  
R17  
R18  
18  
Preliminary Rev. 0.81  
Si2107/08/09/10  
4. Part Versions  
There are four pin- and software-compatible versions of  
this device. All versions include the L-band tuner, DVB-  
S/DSS demodulator and channel decoder, and LNB  
signaling controller. Furthermore, the Si2108 and  
Si2110 integrate an efficient LNB supply regulator while  
allowing operation with an external LNB supply  
regulator circuit. The LNB supply controller utilizes a  
step-up converter architecture. In case operation with  
an external regulator is desired, Si2107 and Si2109 can  
be used; these do not integrate the LNB step-up dc-dc  
controller.  
On the other hand, the Si2109 and Si2110 integrate an  
on-chip “blindscan” accelerator, QuickScan, which  
allows the implementation of a very fast channel scan,  
an important feature for end products targeted to free-  
to-air (FTA) applications in which channel locations are  
unknown. Si2107 and Si2108 do not integrate this  
accelerator and are a good fit when symbol rates and  
frequencies of satellite channels are known, as in the  
case of pay-TV receivers or for FTA receivers in which  
the embedded firmware contains the channel tuning  
information. Table 13 summarizes the differences  
between part versions.  
Table 13. Device Versions  
Part  
DVB-S/DSS  
LNB Supply QuickScan  
Number Integrated Tuner/  
Demodulator with  
Integrated LNB  
Regulator  
Messaging  
Si2110  
Si2109  
Si2108  
Si2107  
Y
Y
Y
Y
Y
N
Y
N
Y
Y
N
N
Preliminary Rev. 0.81  
19  
Si2107/08/09/10  
solution for the free-to-air (FTA) and common interface  
(CI) market. Automatic acquisition and fade recovery  
5. Functional Description  
The Si2107/08/09/10 is a family of highly-integrated sequencers are also included to reduce the required  
CMOS RF satellite receivers for DVB-S and DSS amount of software interaction and to simplify the  
applications. The device is an ideal solution for satellite overall design. The output of the demodulator is  
set-top boxes, digital video recorders, digital televisions, quantized into a 4-bit number by the soft-decision  
and satellite PC-TV. The IC incorporates a tuner, decoder. The use of soft-decision decoding improves  
demodulator, and LNB controller into a single device the error correction capabilities of the channel decoder.  
resulting in a significant reduction in board space and  
5.3. DVB-S/DSS Channel Decoder  
external component count. The device supports symbol  
rates of 1 to 45 Mbaud over a 950 to 2150 MHz range. The Si2107/08/09/10 integrates a full-channel decoder,  
A full suite of features including automatic acquisition, which can be configured in either DSS or DVB-S mode  
fade recovery, blind scanning, performance monitoring, and consists of a soft-decision Viterbi decoder, de-  
and DiSEqC™ Level 2.2 compliant signaling are interleaver, Reed-Solomon decoder, and energy-  
supported. The Si2110 and Si2108 further add short- dispersal descrambler.  
circuit protection, overcurrent protection, and a step-up  
5.3.1. Viterbi decoder  
dc-dc controller to implement a low-cost LNB supply.  
The Viterbi decoder performs maximum likelihood  
Furthermore, the Si2109 and Si2110 have an on-chip  
estimation of convolutional codes in compliance with  
DVB-S and DSS standards. The decoder is capable of  
detecting code rate, puncturing pattern phase, 90°  
phase rotation, and I/Q interchange. Supported code  
rates are listed in Table 14  
2
blindscan accelerator. An I C bus interface is used to  
configure and monitor all internal parameters.  
5.1. Tuner  
The tuner is designed to accept RF signals within a 950  
to 2150 MHz frequency range. The inputs are matched  
to a 75 coaxial cable in a single-ended configuration.  
The tuner block consists of a low-noise amplifier (LNA),  
variable gain attenuators, a local oscillator, quadrature  
downconverters, and anti-aliasing filters. The LNA and  
variable gain stages provide balance between the noise  
figure and linearity characteristics of the system. When  
all gain stages are combined, the device provides more  
than 80 dB of gain range. The desired tuning frequency  
can be adjusted in intervals of 12.2 kHz, without the aid  
of external varactors, using a unique two-stage tuning  
algorithm that is supplied with the software driver. The  
rapid settling time of the local oscillator improves  
channel acquisition and switching performance. The  
PLL loop filter has been completely integrated into the  
Table 14. Viterbi Code Rates  
DVB-S  
1/2  
DSS  
1/2  
2/3  
2/3  
3/4  
5/6  
6/7  
7/8  
device resulting in low tuner phase noise, improved The device allows monitoring of the Viterbi bit-error rate  
spurious response, and reduced BOM cost. An external (BER) over a finite or infinite measurement window.  
20 MHz crystal unit generates the reference frequency  
for the system.  
5.3.2. Convolutional De-Interleaver  
The deinterleaver disassembles the Reed-Solomon  
(RS) code words, which were interleaved by the  
modulator, to provide better resilience against burst  
errors. The Si2107/08/09/10 performs deinterleaving  
according to DVB-S and DSS standards.  
5.2. Demodulator  
The demodulator supports QPSK and BPSK  
demodulation of channels between 1 to 45 Mbaud. It  
incorporates the following functional blocks: analog-to-  
digital converters (ADCs), dc notch filters, I/Q imbalance  
5.3.3. Reed-Solomon Decoder  
corrector, decimation filters, matched filters, equalizer, The Si2107/08/09/10 supports RS codes in compliance  
digital automatic gain controls, and a soft-decision with DVB-S and DSS specifications. Both standards use  
decoder. The demodulator supports rapid channel a shortened Reed-Solomon code, which can correct up  
acquisition using an advanced carrier offset estimation to eight byte errors per information packet. DVB-S  
algorithm. When combined with the Si2109/10’s blind utilizes 204 byte codes. DSS utilizes 146 byte codes.  
scanning capabilities, the device becomes an ideal  
Preliminary Rev. 0.81  
20  
Si2107/08/09/10  
The device allows monitoring of correctable bit,  
correctable byte, and uncorrectable packet errors over a  
finite or infinite measurement window. The device also  
includes a total BER monitor, which compares received  
data from a modulated PRBS sequence against the  
same sequence generated from an on-chip PRBS  
generator.  
5.6. On-Chip LNB DC-DC Step-Up  
Controller (Si2108/10 Only)  
Next to the LNB message signaling controller, the  
device also integrates the LNB supply regulator  
controller. The supported LNB supply regulator  
architecture consists of a step-up dc-dc (boost)  
converter followed by an efficient filter, linefeed, and  
DiSEqC transmit/receive circuit, which implements a  
very power-efficient LNB supply solution. This facilitates  
a complete LNB supply circuit with only a minimal  
number of external components.  
5.3.4. Energy-Dispersal Descrambler  
The descrambler removes the energy dispersal  
scrambling introduced by the DVB-S process. The  
descrambler is automatically bypassed in DSS mode.  
5.4. On-Chip Blindscan Controller: Quick-  
Scan (Si2109/10 Only)  
5.7. Crystal Oscillator  
The crystal oscillator requires a crystal with a resonant  
The device includes on-chip QuickScan circuitry to fundamental frequency of 20 MHz to generate the  
facilitate extremely fast detection of available satellite reference frequency for the local oscillator. A single  
channels. For each valid DVB-S/DSS channel, the crystal can be shared between two devices by utilizing  
tuning frequency and symbol rate, which can be stored the master-slave configuration shown in Figure 11.  
by the host for subsequent tuning, are determined. On  
Si2107/08 devices, the host needs to provide the  
channel tuning frequency and symbol rate to the device.  
C11  
XTAL1  
XTAL1  
5.5. LNB Signaling Controller  
Y1  
The device supports several LNB signaling methods  
including dc voltage selection, continuous tone, tone  
burst, DiSEqC 1.x- and DiSEqC 2.x-compliant  
messaging, and several combinations of these to allow  
simultaneous operation with legacy tone/burst and  
DiSEqC-capable peripherals.  
XTAL2  
C12  
XTOUT  
2
Si2107/09 includes the capability to convert I C  
signaling commands to signals that interface to an  
external LNB supply regulator circuit. In the case of (bi-  
directional) DiSEqC operation, the device modulates  
(and demodulates) the PWK data to (and from) an  
internal message FIFO, which the host uses to write  
(and read) DiSEqC messages. In the case of  
transmission, the device can generate either the 22 kHz  
tone burst directly or generate a tone envelope for when  
an external LNB supply controller is used, which  
includes the 22 kHz oscillator.  
Figure 11. Master-Slave Crystal Sharing  
Preliminary Rev. 0.81  
21  
Si2107/08/09/10  
All signals on the MPEG-TS output interface can be  
individually tri-stated using bits TSE_OE, TSV_OE,  
6. Operational Description  
The following sections discuss the user-programmable TSS_OE, TSC_OE, and TSD_OE.  
functionality offered by the corresponding register map  
Transport stream data can be output in a parallel byte-  
sections. Refer to Table 19, “Register Summary,” on  
page 35 and detailed register descriptions starting on  
page 39.  
wide mode or a serial bit-wide mode for system-level  
flexibility. Selection of the interface mode is controlled  
via the TSM bit. In serial mode, data is output on  
TS_DATA[0] while TS_DATA[7:1] are held low. The  
direction of the serial data stream may be programmed  
to output in an MSB or LSB first direction using the  
TSDF bit. Parity data may be optionally zeroed by  
setting the TSPG bit. To support board-level timing  
modifications, the data stream may be delayed by  
setting TSDD.  
6.1. System Configuration  
The MPEG Transport Stream (TS) output interface  
carries the decoded satellite data to external devices for  
further processing. Both DVB-S and DSS receiver  
modes and associated output data packet formats are  
supported. Mode selection is controlled via the system  
mode register, SYSM. QPSK or BPSK demodulation is  
set via the modulation type (MOD) register.  
The transport stream clock can be programmed such  
that data is transitioning on its rising or falling edge  
using the TSCE bit. In both serial and parallel mode, the  
transport stream clock mode bit, TSCM, can be used to  
select either a gapped or continuous clock mode. In the  
gapped mode, the clock is active only when data is  
being output. For this, parity information is not  
considered data when the TSPG is set to output zero  
data during parity. In the continuous mode, the clock  
runs without regard to data being output, and the user  
will use TS_VAL as a data strobe. To support board-  
level timing modifications, the clock stream may be  
delayed by register bit TSCD.  
The MPEG-TS output interface consists of the following  
output pins:  
TS_DATA[7:0]  
TS_CLK  
Data  
Clock  
TS_SYNC  
TS_VAL  
Sync/Frame Start Indicator  
Valid Data Indicator  
Uncorrectable Packet Error  
TS_ERR  
The start of a TS frame is indicated by the TS_SYNC  
signal. The TS_SYNC signal is a pulse that is active  
during the sync byte in a DVB-S frame or during the first  
byte of a DSS frame and is active only while TS  
synchronization exists. In serial mode, the TS_SYNC  
pulse can be programmed to be active for the whole  
byte, or the first bit only, by setting the TSSL bit. The  
polarity of the TS_SYNC pulse can be programmed to  
be either active high or active low using the TSSP bit.  
In serial mode, the transport stream clock rate range is  
determined by the TSSCR register. The exact rate is  
determined during the acquisition process. The range  
that minimizes the difference between the effective  
transport stream data rate and the clock rate should be  
chosen. The recommended settings are listed in  
Table 15.  
The TS_VAL output is used to indicate when valid data  
is present. TS_VAL is active during the MPEG-TS frame  
packet data and inactive while parity data is being  
output or when there is no TS synchronization. The  
polarity of the TS_VAL output can be programmed to be  
active high or active low using the TSVP bit.  
Table 15. Serial MPEG-TS Clock Frequency  
TSSCR  
00  
Baud Rate  
40–50 Mbaud  
30–40 Mbaud  
19–30 Mbaud  
1–19 Mbaud  
Serial Clock Rate  
80–88.5 MHz  
The TS_ERR output indicates that an uncorrectable  
error has been detected in the RS decoding stage and  
that the current TS data packet contains uncorrectable  
errors. The TS_ERR output is active during the entire  
erred TS frame. The polarity of TS_ERR can be  
programmed to be active high or active low using the  
TSEP bit.  
01  
76.8–82.8 MHz  
54.9–59.2 MHz  
35–37.7 MHz  
10  
11  
Figure 12 illustrates parallel data modes. Figure 13  
illustrates serial data modes.  
Preliminary Rev. 0.81  
22  
Si2107/08/09/10  
Continuous Parallel Data Mode  
TS_CLK, rising edge  
TS_DATA[7:0]  
TS1 (sync)  
TS188  
TS2  
TS1 (sync)  
TS2  
RS1  
TS_SYNC active high  
TS_VAL active high  
TS_ERR active high  
Gapped Parallel Data Mode  
clk, falling edge+  
gapped  
data, parity  
TS1 (sync)  
TS2  
TS188  
RS1  
TS1 (sync)  
TS2  
start, active high  
valid, active high  
fail, active high  
Figure 12. MPEG-TS Parallel Mode  
Continuous Serial Data Mode  
TS_CLK rising edge  
TS1 (sync)  
TS2  
TS188  
RS1  
TS1 (sync)  
TS2  
TS_DATA[0]  
TS_SYNC, active low/1-bit wide  
TS_VAL active low  
TS_ERR, active low  
Gapped Serial Data Mode  
TS_CLK falling edge/ gapped  
TS1 (sync)  
RS1  
TS2  
TS188  
TS2  
TS1 (sync)  
TS_DATA[0]  
TS_SYNC active high  
TS_VAL active high  
TS_ERR active high  
Figure 13. MPEG-TS Serial Modes  
The device has one output pin (pin 30), which can be bit, RS_BP, and the convolutional de-interleaver bypass  
configured as either a receiver lock indicator, general bit, DI_BP. The use of these bypass options is defined  
purpose output, or interrupt output, using the pin select for the implementation of a BER test on a known  
register, PSEL. The receiver lock indicator provides a modulated PRBS data sequence as explained later in  
signal output for register bit RCVL. The general purpose "6.5. Channel Decoder" on page 27.  
output reflects the polarity of register bit GPO. The  
6.2. Interrupts  
interrupt output is discussed further in “6.2. Interrupts”.  
The device is equipped with several sticky interrupt bits  
The user can configure the device such that  
to provide precise event tracking and monitoring.  
components of the channel decoder are bypassed. This  
2
is controlled by the energy-dispersal descrambler Next to interrupts being signaled via the I C register  
bypass bit, DS_BP, the Reed-Solomon decoder bypass map, the user can program one of the device terminals  
Preliminary Rev. 0.81  
23  
Si2107/08/09/10  
(INT) as a dedicated interrupt pin via the pin select active high or active low using the interrupt polarity bit,  
register bit, PSEL. The device contains an extensive INTP. The interrupt signal type can be configured to be  
collection of interrupt sources that can be individually CMOS output or open-drain/source output using the  
masked from the INT pin using the corresponding interrupt type bit, INTT.  
interrupt enable register bits, labeled with suffix “_E”.  
Interrupt bits are set by the device to 1 when an  
Thus, the INT output is a logical-OR of all enabled  
interrupt occurs. The host clears an interrupt bit by  
interrupts. Generation of the channel interrupt on pin  
writing a 1 again, at which time the device resets the  
INT can be masked off by using the interrupt enable bit,  
interrupt bit to zero. Table 16 illustrates the interrupt  
INT_EN. Note that interrupt reporting in the register  
sources and their associated status, enable, and  
map is not affected by INT_EN.  
interrupt bits.  
The interrupt signal polarity can be configured to be  
Table 16. Events, Interrupts, and Status Bits  
Event  
Interrupt Bit  
RCVL_I  
Enable Bit  
RCVL_E  
RCVU_E  
AGCL_E  
Status Bit  
RCVL (0 –>1)  
RCVL (1 –> 0)  
AGCL (0 –> 1)  
AGCF (0->1)  
AGCTS (0 –> 1)  
CEL (0 –> 1)  
CEF(0->1)  
Receiver lock  
Receiver unlock  
AGC lock  
RCVU_I  
AGCL_I  
AGC failure  
AGC threshold  
AGCTS_I  
CEL_I  
AGCTS_E  
CEL_E  
Carrier estimation lock  
Carrier estimation failure  
Symbol rate est. lock  
Symbol rate est. failure  
Symbol timing lock  
SRL (0 –> 1)  
SRF (0->1)  
STL_I  
STU_I  
STL_E  
STU_E  
CRL_E  
CRU_E  
VTL_E  
STL (0 –> 1)  
STL (1 –> 0)  
CRL (0 –> 1)  
CRL (1 –> 0)  
VTL (0 –> 1)  
VTL (1 –> 0)  
FSL (0 –> 1)  
FSL (1 –> 0)  
AQF (0 –> 1)  
Symbol timing unlock  
Carrier recovery lock  
Carrier recovery unlock  
Viterbi lock  
CRL_I  
CRU_I  
VTL_I  
Viterbi unlock  
VTU_I  
VTU_E  
FSL_E  
Frame synchronizer lock  
Frame synchronizer unlock  
Acquisition fail  
FSL_I  
FSU_I  
FSU_E  
AQF_E  
CN_E  
AQF_I  
CN_I  
C/N measurement complete  
Viterbi BER measurement complete  
RS measurement complete  
Message FIFO empty  
Message FIFO full  
VTER_I  
RSER_I  
FE_I  
VTER_E  
RSER_E  
FE_E  
FF_I  
FF_E  
Message received  
MSGR_I  
MSGPE_I  
MSGTO_I  
SCD_I  
OCD_I  
BSDO_I  
BSDA_I  
MSGR_E  
MSGPE_E  
MSGTO_E  
SCD_E  
OCD_E  
BSDO_E  
BSDA_E  
Message parity error  
Message receive timeout  
Short-circuit detect  
Over current detect  
Blindscan done  
BSDO  
BSDA  
Blindscan data ready  
Preliminary Rev. 0.81  
24  
Si2107/08/09/10  
6.3. Receiver Status  
Acquisition Start  
During receive operation, the host can retrieve  
information on the status of AGC lock (AGCL), carrier  
estimation lock (CEL), symbol rate estimation lock  
(SRL), symbol timing lock (STL), carrier recovery lock  
(CRL), Viterbi decoder lock (VTL), frame sync lock  
(FSL), and overall receiver lock (RCVL).  
Calibration  
done  
LO Tuning  
done  
During channel acquisition, the host can retrieve  
information on error conditions due to: AGC search  
(AGCF), carrier estimation (CEF), symbol rate search  
(SRF), symbol timing search (STF), carrier recovery  
search (CRF), Viterbi code rate search (VTF), frame  
sync search (FSF), and overall receiver acquisition  
(AQF),  
Analog AGC Search  
done  
Stage fail  
Stage fail  
CFO Estimation1  
lock  
6.4. Tuning Control  
Symbol Rate Estimation1  
Stage fail but  
The Si2107/08/09/10 utilizes a unique two-stage tuning  
algorithm to provide optimal RF reception. The input  
signal is first mixed down to a low-IF frequency by a  
coarse tuning stage and then down to baseband by a  
fine-tune mixer. The user programs both coarse and  
fine-tuning frequencies using the CTF and FTF  
registers.  
Stage fail  
lock  
STL is locked  
Symbol Timing Loop1  
Stage fail  
and STL  
unlocked  
lock  
Carrier Frequency Loop1  
An algorithm (supplied with the reference software  
driver) is used to automatically calculate the required  
values. As part of the tuning process, the sample rate,  
fs, should also be programmed via the ADCSR register.  
Values between 192 and 207 MHz are supported. An  
algorithm is supplied with the reference software driver  
to automatically select the optimal sampling rate.  
Stage fail  
Stage fail  
Viterbi Search2  
Frame Search2  
Receiver locked  
6.4.1. Automatic Acquisition  
The receiver acquisition sequence consists of the  
following stages: Analog AGC Search, Carrier Offset  
Estimation, Symbol Rate Estimation, Symbol Timing  
Recovery, Carrier Recovery, Viterbi Search, and Frame  
Synchronization. For the receiver to lock, each stage  
must run to completion or declare lock as shown in  
Figure 14. If a given stage is unable to achieve lock  
1. Acquisition fail if stage fails n times in a row.  
2. Acquisition fail if stage completes parameter range  
without locking.  
Figure 14. Acquisition Sequence (Symbol Rate  
Estimation Available on Si2109/10 Only)  
6.4.2. Carrier Offset Estimation  
after exhausting  
a
parameter search range or  
The desired carrier frequency may be offset from its  
nominal position due to the imperfections and  
temperature dependencies of the LNB. The carrier  
offset estimator uses a search procedure to identify,  
track, and remove this frequency offset from the system.  
Carrier offset estimation supports two modes: legacy  
mode and QuickLock. QuickLock features decreased  
search times and enhanced search ranges. Silicon  
Laboratories highly recommends the use of Quicklock  
exceeding the timeout period, it asserts a fail signal.  
To initiate the acquisition sequence, the user should  
program the acquisition start bit, AQS. All search  
parameters must be specified before initiating the  
acquisition. Upon completion of the acquisition  
sequence, the AQS bit is automatically cleared. The  
acquisition sequence can be aborted at any time by  
clearing the AQS bit.  
The status of the acquisition sequence can be mode. Legacy mode is supported for backwards  
monitored via the registers in the receiver status register compatibility with revision C of Si2107/08.  
map section. A successful acquisition is reported by the  
The mode selection is programmed with the COEMS  
assertion of the receiver lock bit, RCVL. A failed  
bit.  
acquisition is reported by the assertion of the acquisition  
fail bit, AQF.  
Preliminary Rev. 0.81  
25  
Si2107/08/09/10  
In legacy mode, seven different carrier offset estimation incoming data signal. When lock is achieved, the  
search range scans can be programmed from 0.10 to symbol timing loop lock indicator, STL, is asserted. If  
~6.0 MHz with register CESR. This mode locates symbol timing lock is not achieved within a predefined  
frequency offsets when the carrier falls within the offset timeout period, the device declares symbol timing loop  
search range. Smaller search ranges result in faster failure by asserting the STF bit. The symbol timing  
search times.  
recovery loop commences under the control of the  
acquisition sequencer.  
In QuickLock mode, an eighth carrier offset estimation  
search range is added. Ranges from 0.10 to ~12.0 MHz 6.4.5. Automatic Fade Recovery  
can be programmed with register CESR. QuickLock  
The device is designed to automatically recover lock in  
mode locates frequency offsets when the 3dB  
bandwidth of the channel falls within the offset search  
range. When the search range is less than the channel  
bandwidth, QuickLock search times further decrease.  
When using QuickLock, set the Inband Power  
Threshold, 2 dB Bandwidth Threshold, and 3 dB  
Bandwidth Threshold registers to the QuickLock  
recommended default values before initiating an  
acquisition. Refer to Silicon Laboratories Application  
the event of a fade condition. Fade recovery is  
performed when any stage loses synchronization after  
receiver lock has been achieved. It is assumed that  
symbol rate, code rate, and puncturing pattern have not  
changed; so, these parameters remain fixed during the  
attempted reacquisition. The fade recovery sequence is  
shown in Figure 15.  
The fade recovery sequence continues until either  
receiver lock is achieved or a new acquisition is  
initiated.  
Note  
“AN298:  
Si2107/08/09/10  
Application  
Programming Interface Example Software" for the  
recommended default values. The recommended  
values are documented in the Signal Acquisition section  
of the application note.  
Calibration  
LO Tuning  
When carrier offset estimation is complete, the CEL bit  
is asserted. If an error is detected during carrier offset  
estimation, the CEF bit is set. Carrier offset estimation  
commences under the control of the acquisition  
sequencer.  
Analog AGC Search  
After the completion of a search, the estimated carrier  
offset is stored in the carrier frequency error register,  
CFER. If no signal is found, the CEF bit is asserted. The  
value contained in CFER may be optionally transferred  
to the CFO register to adjust the search center  
frequency and permit the utilization of a smaller search  
range for subsequent acquisitions. This relationship can  
be expressed by the following equation:  
Fail  
Done  
CFO Estimation  
Done  
Unlock  
Symbol Timing Loop  
lock  
Unlock  
Unlock  
fs  
215  
--------  
Carrier Frequency Loop  
Search center frequency = fdesired + CFO ×  
Hz  
lock  
6.4.3. Carrier Recovery Loop  
Viterbi Search  
(Limited)  
The carrier recovery loop is responsible for acquiring  
frequency and phase lock to the incoming signal. When  
lock is achieved, the carrier recovery lock indicator,  
CRL, is asserted. If carrier recovery lock is not achieved  
within a predefined timeout period, the device declares  
carrier recovery failure by asserting the CRF bit. The  
carrier recovery loop commences under the control of  
the acquisition sequencer.  
Unlock  
Unlock  
lock  
Frame Search  
lock  
Receiver locked  
6.4.4. Symbol Timing Loop  
Figure 15. Fade Recovery Sequence  
The symbol timing recovery loop is responsible for  
acquiring and tracking the symbol timing of the  
Preliminary Rev. 0.81  
26  
Si2107/08/09/10  
6.4.6. C/N Estimator  
6.5.3. Reed-Solomon Error Monitor  
A carrier-to-noise estimator is provided to aid in satellite The Reed-Solomon error monitor is capable of counting  
antenna positioning. The C/N measurement mode bit, bit, byte, and uncorrectable packet errors. The error  
CNM, controls whether the count is performed over a type to be counted is controlled by the Reed-Solomon  
fixed-length or infinite window. With a fixed-length error type register, RSERT. The Reed-Solomon error  
window, the window size is defined by register CNW. mode bit, RSERM, controls whether the count is to be  
Measurements are stored in a 16-bit saturating register, performed over a fixed length or infinite window. The  
CNL. Setting the C/N estimator start bit, CNS clears the window size is defined by RSERW. The BER count is  
CNL register and initiates the C/N measurement. When stored in a 16-bit saturating register, RSERC. Setting  
operating in the finite window mode, the CNS bit is the RS BER measurement start bit, RSERS, clears the  
automatically cleared when the measurement is RSERC register and initiates the measurement. When  
complete. The CNS bit must be cleared manually in the operating in the finite window mode, the RSERS bit is  
infinite mode to stop the count. An external lookup table automatically cleared when the measurement is  
is used to translate the measurement into a C/N complete. The RSERS bit must be cleared manually in  
estimate for a given setting of the C/N threshold, CNET, the infinite mode, to stop the count.  
and a given digital AGC setting.  
6.5.4. PRBS BER Tester  
To facilitate in-system pseudo random bit sequence  
(PRBS) BER testing, the device provides the ability to  
6.5. Channel Decoder  
6.5.1. Viterbi Decoder  
synchronize and track test sequences contained in the  
The Viterbi decoder performs maximum likelihood  
payload (i.e. not SYNC bytes) of the MPEG data  
estimation of convolutional codes in compliance with  
stream. The user can define the payload of each TS  
DVB-S and DSS standards. When lock is achieved, the  
packet to exclude a number of header bytes, as set by  
Viterbi lock indicator, VTL, is asserted. If Viterbi lock is  
PRBS_HEADER_SIZE,  
not achieved after exhausting the specified parameter  
A PRBS test pattern must be encoded, modulated, and  
space, the device declares Viterbi search failure by  
injected into the channel to be monitored. The device  
asserting the VTF bit. The Viterbi search commences  
supports a PRBS 223 - 1 bits long described by the  
under the control of the acquisition sequencer.  
following polynomial:  
The device can be programmed to attempt to  
automatically acquire Viterbi lock using all, one, or a  
G(x) = x23 + x18 + 1  
subset of the supported code rates using the VTCS  
To enable PRBS testing, the Reed-Solomon error type  
register.  
register, RSERT, must be appropriately programmed.  
If lock is achieved, the status of the search, including  
After the device has synchronized to the incoming  
code rate, puncturing pattern phase, 90-degree phase  
PRBS test pattern, as indicated by PRBS_SYNC, errors  
rotation, and I/Q swap, can be monitored in the Viterbi  
will be reported in the RSERC register.  
search status registers, VTRS, VTPS, and VTIQS.  
Measurements can be performed at the output of the  
Viterbi or Reed-Solomon decoder. To record errors at  
6.5.2. Viterbi BER Estimator  
The Viterbi BER estimator measures the frequency of  
bit errors at the input of the Viterbi decoder. The Viterbi  
BER mode bit, VTERM, controls whether the count is to  
be performed over a fixed length or infinite window. The  
window size is defined by VTERW. The BER count is  
stored in a 16-bit saturating register, VTERC. Setting  
the Viterbi BER measurement start bit, VTERS, will  
clear the VTERC register and initiate the measurement.  
When operating in the finite window mode, the VTERS  
bit will automatically be cleared when the measurement  
is complete. The VTERS bit must be cleared manually  
in the infinite mode to stop the count.  
the output of the Viterbi decoder, the Reed-Solomon  
decoder and interleaver must be bypassed by setting  
RS_BP and DI_BP in the “System Configuration”  
section of the register map. To record errors at the  
output of the Reed-Solomon block, the RS_BP bit must  
be cleared.  
6.5.5. Frame Synchronizer  
The output of the Viterbi decoder is aligned into bytes by  
detecting sync patterns within the data stream. In DVB-  
S systems, the sync byte, 47h, occurs during the first  
byte of a 204 byte RS code block. In DSS systems, a  
sync byte, 1Dh, is appended to the beginning of each  
RS encoded 146-byte block, resulting in 147-byte RS  
code blocks. In DSS mode, sync bytes are discarded  
before the byte stream is output to subsequent  
decoding stages. When lock is achieved, the frame  
Preliminary Rev. 0.81  
27  
Si2107/08/09/10  
synchronization lock bit, FSL, is asserted. If lock is not frequency can be described using the following  
achieved, the frame synchronizer fail bit, FSF, is equation, where fs equals the ADC sampling rate,  
asserted.  
ADCSR.  
The frame synchronizer commences under the control  
of the acquisition sequencer.  
fs  
-------------------  
AGCW  
AGC measurement frequency =  
Hz  
Following frame synchronization lock, the device  
examines the byte stream for a possible 180-degree When gain adjustments are made, the device allows up  
phase shift. If an inversion is detected, data are inverted to 100 µs for the gain changes to settle before  
prior to being output.  
beginning the next measurement.  
To facilitate a rapid initial acquisition, Si2107/08/09/10  
includes an acquisition mode wherein the measurement  
window size is reduced by a factor of 64 when  
compared to the normal tracking mode.  
6.6. Automatic Gain Control  
The Si2107/08/09/10 is equipped with the ability to  
adjust signal levels via an automatic gain control (AGC)  
loop. This ensures that the noise and linearity  
characteristics of the signal path are optimized at all  
times. AGC settings can be set at 4 points in the analog  
signal chain and 2 points in the digital signal chain.  
During the AGC search, the device is in acquisition  
mode, and the gain is adjusted until the measured  
signal power crosses the desired threshold or a limit is  
reached. If the signal power crosses the threshold  
before reaching a limit, the search completes, and the  
6.6.1. Analog AGC  
System gain is distributed into four independent stages AGCL bit is asserted. If a gain limit is reached, the  
as shown in Figure 16. The gain range of all stages device asserts both the AGCL bit and the AGCF bit.  
combined is over 80 dB. When the AGC search  
In the normal tracking mode, the device continuously  
completes, the AGCL bit is asserted. If an error is  
measures the input signal power according to the AGC  
encountered during the AGC search, the AGCF bit is  
measurement window size. If the absolute value of the  
also set. The AGC search commences under the  
difference between the AGCTH and AGCPWR exceeds  
the value of the AGC tracking threshold, AGCTR, the  
control of the acquisition sequencer.  
The AGC loop works to automatically adjust the gain of AGC loop adjusts gain settings until the AGCPWR level  
each stage to minimize the error between a measured matches AGCTH.  
signal power and a desired output level. Signal power is  
The AGC gain offset register, AGCO, provides the  
measured at the output of the ADC using an internal  
ability to apply a static gain offset to the input channel.  
rms power calculator. The result is stored in a 7-bit  
Silicon Laboratories will provide the recommended  
saturating register, AGCPWR. The desired output level  
values for this register. It is possible to read out the  
is stored in the AGC threshold register, AGCTH. Signal  
instantaneous settings of each of the four VGAs from  
power measurements occur at a frequency dictated by  
the AGC<n>, <n = 1..4>, registers.  
the AGC measurement window size, AGCW. This  
LPF  
OFFSET  
LNA  
VGA1  
VGA2  
MIXER  
A/D  
rms calculator  
AGC  
AGC Threshold  
Figure 16. Analog AGC Control Loop  
Preliminary Rev. 0.81  
28  
Si2107/08/09/10  
6.6.2. Digital AGC  
When an external LNB supply regulator is used, the  
DCS pin is driven high or low depending on the  
selection of high or low voltage.  
Downstream of the analog VGAs, after A/D conversion  
of the signal, there are two points at which the digital  
gain can be programmed. Digital AGC1 is used to 6.7.2. Tone Generation  
change signal power after removal of adjacent channels  
by the (digital) anti-aliasing filter.  
Tone-related information is communicated to external  
devices via the TGEN pin. The tone format select bit,  
By default, DAGC1 is enabled and periodically adjusts TFS, specifies whether the output of TGEN is an  
the gain of the I & Q data streams based on a internally-generated tone or a tone envelope. The  
comparison of the measured complex RMS level and a frequency of the internal tone generator is governed by  
target value. The target value can be selected with the the following equation:  
DAGC1T register. Two levels are provided to allow  
operation with additional headroom for signal peaks  
during signal acquisition. The gain function of DAGC1  
can be disabled using DAGC1_EN; then, no gain is  
applied to I & Q data streams. The signal measurement  
and gain adjustment normally operate continuously,  
allowing the gain to track the input level. The  
measurement window can be adjusted by register  
DAGC1W. The automatic updating of the gain can be  
frozen by register bit DAGC1HOLD. This holds the gain  
to the last setting. The value of the gain can be read  
from the DAGC1 register. It is possible to override the  
internal AGC algorithm and provide host-based control  
of AGC1 by appropriately programming register bit  
DAGC1HOST.  
100  
----------------------------------------------------------  
MHz  
ftone  
=
[32 × (TFQ[7:0] + 1)]  
Frequencies between 20 and 24 kHz are supported.  
The default value of TFQ results in a nominal tone  
frequency of 22 kHz. When tone envelope output is  
selected, a high signal on TGEN corresponds to "tone  
on" while a low signal corresponds to "tone off." When  
operating in the “Manual LNB messaging mode”, the TT  
bit directly controls the output of the tone or tone  
envelope.  
6.7.2.1. Continuous Tone  
A continuous tone is typically used to select between  
the high and low band of an incoming satellite signal.  
The LNBCT bit can be set to one to generate a  
continuous tone.  
Digital AGC2 (DAGC2) is intended to optimally scale the  
soft decision outputs of the demodulator prior to Viterbi  
decoding. This allows it to compensate for signal level  
variations after matched filtering and equalization.  
Normally, operation is continuous, but tracking can be  
disabled using register bit DAGC2_TDIS. This holds the  
gain to the last setting.  
6.7.2.2. Tone Burst  
The tone burst signaling method can be used to  
facilitate the control of a simple two-way switch. Two  
types of tone burst are available, as shown in Figure 17.  
An unmodulated tone burst persists for 12.5 ms. A  
modulated tone burst lasts for the same duration but  
consists of a sequence of nine 0.5 ms pulses and 1 ms  
gaps. Tone burst selection is controlled via the LNBB  
bit. The tone burst command can optionally be disabled  
to support systems that do not use tone burst signaling  
by setting the burst disable bit, BRST_DS, to one. This  
disables the tone/burst generation as part of the  
DiSEqC signaling sequence when the device uses  
“Automatic LNB messaging mode” as described below.  
During AGC operation, the average power of the signal  
is compared to a threshold set by register DAGC2T. The  
signal power is measured over a finite window specified  
by DAGC2W. The gain applied to the signal to make the  
input match the programmed threshold can be read  
from register DAGC2GA.  
6.7. LNB Signaling Controller  
All device versions provide LNB signaling capability.  
The device supports several LNB signaling methods  
including dc voltage selection, continuous tone, tone  
burst, DiSEqC 1.x- and DiSEqC 2.x-compliant  
messaging. A description of each method follows.  
'0' Tone Burst (Satellite A)  
Envelope  
Tone  
'1' Tone Burst (Satellite B)  
Envelope  
6.7.1. DC Voltage Selection  
A constant dc voltage of 18 or 13 V is typically used to  
switch the LNB between horizontal and vertical polarity  
or clockwise and counterclockwise polarization. The  
LNBV bit is used to select the desired voltage.  
Tone  
12.5 ms  
Figure 17. Tone Burst Modulation  
Preliminary Rev. 0.81  
29  
Si2107/08/09/10  
6.7.3. DiSEqC™  
6.7.3.2. DiSEqC 2.x Two-Way Communication  
The DiSEqC signaling method extends the functionality Two-way communication is supported via DiSEqC 2.x-  
of the legacy 22 kHz tone by superimposing a compliant messages. When the seventh bit in the  
command protocol and adding an optional return framing byte of an outgoing message is set to 1, the  
channel. A DiSEqC command normally consists of a device anticipates a response and monitors the line for  
framing byte, an address byte, a command byte, and, up to 150 ms for an incoming message. If no message  
optionally, one or more data bytes. This format is is detected during the 150 ms monitoring period, the  
illustrated in Figure 18.  
MSGTO bit is asserted to indicate the time-out  
condition. A DiSEqC reply message typically consists of  
a single framing byte and optionally one or more data  
bytes as shown in Figure 20.  
P
P
FRAMING  
ADDRESS  
P
P
COMMAND  
DATA  
Figure 18. DiSEqC Message Format  
The length of a message is specified by MSGL. When  
the message length is set to one byte, the message is  
modulated using tone burst modulation. When the  
message length is set to two or more bytes, the  
message is modulated using DiSEqC-compliant  
modulation, and the odd parity bit is automatically  
added. The DiSEqC modulation scheme is illustrated in  
Figure 19.  
DATA  
DATA  
FRAMING  
P
P
P
Figure 20. DiSEqC Reply Format  
When a complete message has been received (one or  
more bytes followed by 4 ms of silence), the MSGR bit  
is asserted. Should parity errors exist in the received  
message, the MSGPE flag is also asserted. If the  
received message is longer than 6 bytes, the FIFO full  
bit, FF, is asserted to indicate that a byte has been  
written to FIFO6. The LNB control module writes the  
next byte to FIFO1. The length of the received message  
is recorded in the MSGRL register.  
'1' Data Bit  
'0' Data Bit  
6.7.4. LNB Signaling Modes  
The LNB signaling modes are described in the following  
sections.  
1.0 ms  
0.5 ms  
1.0 ms  
0.5 ms  
6.7.4.1. Automatic LNB Messaging Mode  
Figure 19. DiSEqC Compliant Modulation  
The Si2107/08/09/10 LNB Signaling Controller can fully  
manage the generation and sequencing of all LNB  
commands. The device is configured in this mode by  
appropriately programming the LNB Messaging mode  
register, LNBM. To initiate a message sequence, the  
user should first program LNB voltage selection (LNBV),  
continuous tone enable (LNBCT), tone burst type  
(LNBB), and DiSEqC message parameters (MMSG,  
MSGL, and FIFO1..6). Subsequently, the LNB  
sequence start bit, LNBS, must be set to start the  
automated transmission sequence. The device  
automatically allocates the required delays between  
each signaling method. Prior dc voltage levels and  
continuous tones, if present, persist until the sequence  
is initiated. A typical sequence is shown in Figure 21.  
6.7.3.1. DiSEqC 1.x One-Way Communication  
Messages are programmed directly into the device  
using a message FIFO that consists of six byte wide  
registers, FIFO1–6. The messages must be written in a  
first-in-first-out manner such that the first byte of a  
message is stored in FIFO1; the second byte is stored  
in FIFO2, and so on. If messages are longer than six  
bytes, the device asserts the FIFO empty indicator, FE,  
as soon as the sixth byte has been read. The LNB  
control module then takes its next byte from FIFO1 and  
continues the process. The message length must also  
be reprogrammed to indicate how many more bytes  
remain to be sent. The interval between FIFO reads is  
typically 13.5 ms.  
Multiple messages can be sent in a sequential manner  
by setting the MMSG bit. When this bit is set, the LNB  
control module delays continuous tone and tone burst  
commands until all messages in the sequence have  
been sent. After the current message is transmitted, the  
MMSG bit is automatically cleared. The tone burst can  
be disabled as part of this sequence depending on the  
setting of BRST_DS.  
To support cascaded DiSEqC devices, it may be  
necessary to repeat commands. Repeated commands  
should be separated by at least 100 ms to ensure that  
the far-end device is connected to the signaling path. To  
facilitate the required 100 ms delay, a four byte  
command can be inserted between repeated  
commands.  
Preliminary Rev. 0.81  
30  
Si2107/08/09/10  
When the sequence has completed, the device clears modulation for a '00h' byte), no tone is generated. Also,  
the LNB sequence start bit, LNBS, automatically. Note the device does not expect a reply if FIFO1 is  
that, when operating in this mode, the DRC pin is high programmed to FFh; i.e., the assertion of bit7 is not  
while transmitting and low while receiving.  
considered a request for the peripheral to reply in step-  
by-step LNB messaging mode.  
6.7.4.2. Step-by-Step LNB Messaging Mode  
6.7.4.3. Manual LNB Messaging Mode  
By appropriately programming the LNB Messaging  
Mode register, LNBM, the device allows for individual The manual LNB messaging mode provides the  
control of each signaling method by the host. In this maximum level of signaling flexibility but at the expense  
mode, the LNB voltage, LNBV, and LNB continuous of increased software interaction. The device is  
tone enable, LNBCT, take effect once they are set configured in this mode by appropriately programming  
without waiting for the user to set the LNB sequence the LNBM register. The continuous tone, tone burst, and  
start bit, LNBS.  
messaging controls are not functional in this mode.  
When the tone format bit, TFS, is programmed for use  
of the internal oscillator, assertion of the TT bit  
modulates the output of the internal tone generator on  
the TGEN pin, and the TR bit records the envelope of a  
tone presented to the TDET pin.  
The DiSEqC message uses the LNBS bit to start  
transmission and behaves the same as in Automatic  
LNB Messaging Mode. However, the guard intervals  
between each signaling method (LNB voltage change,  
DiSEqC message, tone burst, and continuous tone  
resumption) are controlled by the host.  
When the tone format select bit, TFS, is programmed to  
use an external oscillator, the TT bit directly controls the  
output of the TGEN pin, and the TR bit directly reflects  
the input of the TDET pin. In this mode, the tone  
direction control bit, TDIR, directly controls the output of  
the DRC pin.  
In this mode, the tone burst should be implemented by  
using a 1-byte DiSEqC message of all 0s or all 1s  
programmed into FIFO1. The device uses appropriate  
modulation for the tone burst; i.e., when FIFO1 is  
programmed to 00h (rather than a DiSEqC-compliant  
End of continuous  
tone (if present)  
Change of voltage  
(if required)  
1st message (no  
reply requested)  
2nd message  
(reply requested)  
Reply to 2nd  
message  
Start of continuous  
tone (if present)  
Tone Burst  
> 15ms  
> 25ms  
< 150ms  
> 15ms  
> 15ms  
Figure 21. LNB Signaling Sequence  
Preliminary Rev. 0.81  
31  
Si2107/08/09/10  
The maximum current draw of the LNB supply can be  
set using the IMAX register. The overcurrent threshold  
of the LNB supply may be set via the ILIM register. If the  
output current exceeds this value, the external LNB  
power supply is automatically disabled, and the  
overcurrent detect bit, OCD, is asserted. The device  
attempts to restore normal operation after 1 s by  
supplying power to the line. During the recovery period,  
overcurrent detection is disabled for the time specified  
by the OLOT register.  
6.8. On-Chip LNB DC-DC Step-Up  
Controller (Si2108/10 Only)  
In addition to the LNB signaling controller present on all  
device versions, Si2108 and Si2110 devices contain an  
internal supply controller circuit. This internal dc-dc  
controller can be enabled via register bit LNB_EN. The  
internal circuit requires the connection of an external  
circuit with a specified bill-of-materials, and this  
combination generates the selected LNB voltage with  
superimposed one-way or two-way LNB signaling  
communications. Si2108/10 devices include short-  
circuit protection, overcurrent protection, and a step-up  
dc-dc controller to implement a low-cost LNB power  
supply using minimal external components. The  
required circuit for DiSEqC1.x operation is illustrated in  
Figure 9 on page 14. A circuit for DiSEqC2.x operation  
is shown in Figure 6 on page 12.  
Short circuit protection circuitry operates in conjunction  
with overcurrent detection to rapidly identify short-circuit  
conditions. If the output is shorted to ground, the  
external LNB power supply is automatically disabled,  
and the short-circuit detect bit, SCD, is asserted. The  
device attempts to restore normal operation after one  
second by supplying power to the line. During the  
recovery period, short-circuit detection is disabled for  
the time specified by the SLOT register.  
When the LNB supply circuit is populated, the Si2108/  
10 detects a connection to ground on the ISEN pin via  
R10 during reset and configures the LNB pins for dc-dc  
converter control instead of providing the interfaces to  
an external LNB supply regulator discussed in the  
previous section. See Table 17.  
The LNB supply circuit is protected from an overvoltage  
condition by design. In the event that the LNB supply  
circuit is accidentally connected to a voltage source  
greater than the intended output voltage, it remains  
operational. The LNB supply circuit resumes normal  
operation when the connection to the external voltage  
source has been removed.  
Table 17. LNB Pin Configuration  
Pin  
LNB Supply Circuit  
Connected Unconnected  
6.9. On-Chip Blindscan Controller:  
QuickScan (Si2109/10 Only)  
7
10  
9
VSEN  
LNB2  
ISEN  
LNB1  
PWM  
TDET  
DRC  
NC  
QuickScan is comprised of a two stage process: a  
blindscan stage and confirmation stage. It is an  
automated process whereby the minimum and  
maximum RF frequency and symbol rate limits are  
entered in the following registers BS_FMIN, BS_FMAX,  
SRMIN, and SRMAX. After blindscan is completed, the  
host may further use the resulting candidate channel  
information (channel center frequencies and baud  
rates) to try to actually acquire such channels by locking  
the receiver to them. Further information such as C/N,  
BER, channel program IDs, and etc. can be obtained  
once the receiver locks to a candidate channel. Through  
this confirmation process, any falsely identified  
channels can be rejected.  
8
TGEN  
DCS  
12  
The LNB supply controller is disabled by default. To use  
the supply, it must be enabled by setting the LNB enable  
bit, LNB_EN. If the LNB supply circuit is connected, the  
TFS bit is ignored; the internal LNB supply controller  
uses its internal oscillator to generate the 22 kHz tone.  
The TFQ setting can still be used to modify the nominal  
frequency as explained earlier.  
Selection of high or low voltage outputs the  
corresponding PWM control signal for the boost  
converter. To compensate for long cable lengths, a 1 V  
boost can be applied to both levels by setting the COMP  
bit.  
6.9.1. Programming Sequence  
If QuickScan is conducted whereby the symbol rate  
search range is above 12.5 MBaud (for example  
SRMIN = 2 MBaud and SRMAX = 20 MBaud) Silicon  
Laboratories recommends that blindscan is performed  
twice to ensure the most favorable estimates of channel  
The nominal level of both the low- and high-output  
voltages can be further fine-tuned using the VLOW and frequencies and symbol rates.  
VHIGH registers. Register bit LNBV selects whether to  
output high or low dc voltage to the LNB. During  
operation, the voltage level of the line can be monitored  
via the VMON register.  
The programming sequence is as follows:  
1. Program the frequency range (BS_FMIN, BS_FMAX) and  
symbol rate range (SRMIN, SRMAX) values over which to  
perform blindscan.  
Preliminary Rev. 0.81  
32  
Si2107/08/09/10  
a. Default values  
i. SRMIN = 0 MBaud  
Important: These bits should be returned to their  
default settings (allowing host control) if the user wants  
to tune to individual channels following blindscan for  
single channel acquisition.  
ii. SRMAX = 0 MBaud  
iii. BS_FMIN = 825 MHz  
iv. BS_MAX= 2087 MHz  
4. Set BS_START in the Blind Scan Control Register. This  
initiates the blindscan process.  
The default values for the minimum and maximum  
symbol rates are zero. Enter minimum and maximum  
symbol rates.  
5. Wait for either BSDA (or interrupt BSDA_I) or BSDO (or  
interrupt BSDO_I) to be set.  
6. Take the following actions depending on which condition is  
present:  
Recommended values are SRMIN = 1 MBaud and  
SRMAX = 45 MBaud for discovery of all possible DVB-  
S channels.  
a. When BSDA (or BSDA_I) is set: the device has found  
a potential DVB-S or DSS (depending on the part's  
operating mode) channel. The host can read out:  
2. Program the following registers with the following  
parameters.  
i. BS_CTF, BS_FTF, CFER, and BS_ADCSR  
to determine the channel's RF frequency  
from the following formula:  
a. LSA Control Register 1. The length of the time  
averaging window is set by setting AVG_WIN. The  
averaging removes uncorrelated noise from the  
spectrum.  
RF(MHz) = BS_CTF x 10 + {BS_FTF(decimal) + CFER  
(decimal)} x BS_ADCSR  
b. Tilt Correction Threshold Register. A correction can be  
applied to the spectrum to compensate for "tilts" in the  
spectrum due to frequency dependent attenuation  
such as poor cables for example.  
Note: The registers BS_FTF with a fixed  
format of <15,14> and CFER with a fixed  
format of <16,15> are 2's complement  
numbers which need to be converted into  
decimal numbers first.  
c. Reference Noise Level Margin Threshold Register.  
This sets the power level threshold for the detection of  
channels.  
ii. SREST to determine the channel's symbol  
rate estimate from the following formula:  
d. 1 dB Bandwidth Threshold Register. This sets the  
tolerance level for determination of the 1 dB  
bandwidth for a detected channel.  
Symbol Rate (MBaud) = SREST x BS_FS / 2^23  
e. 2 dB Bandwidth Threshold Register. This sets the  
tolerance level for determination of the 2 dB  
bandwidth for a detected channel.  
Where BS_FS = BS_ADCSR x 1 MHz  
iii. Upon reading these registers, the host  
should clear the BSDA & BSDA_I bits. Go  
back to Step 6.  
f. 3 dB Bandwidth Threshold Register. This sets the  
tolerance level for determination of the 3 dB  
bandwidth for a detected channel.  
b. When BSDO (or BSDO_I) is set: the blindscan  
operation is complete within the RF and symbol rate  
search ranges. The device automatically clears  
BS_START.  
g. Inband Power Threshold Register. This sets the  
threshold for determining the drop in power in a  
detected channel to determine the channel bandwidth.  
7. Repeat Steps 1 through 6 with the change in values for the  
following parameters if the Symbol Rate search range is  
below 12.5 MBaud.  
Important: It is highly recommended that the registers  
in Step 2 be programmed with default values provided  
by Silicon Laboratories. Refer to “AN298: Si2107/08/09/  
10 Application Programming Interface Example  
Software”, for the recommended values. The values are  
documented in the QuickScan section of the application  
note. Silicon Laboratories has tested QuickScan under  
real world conditions in a number of countries and the  
recommended values provide the best performance.  
a. Set SRMIN to 12.5 MBaud.  
b. Keep SRMAX the same value from the first pass.  
c. Set Inband Power Threshold Register to the second  
recommended default value.  
d. Set 2 dB Bandwidth Threshold Register to the second  
recommended default value.  
3. Clear the following Host Control Register bits.  
a. SR_CTRL_HOST  
8. End of blindscan operation. The final set of estimates for  
RF center frequencies and associated symbol rates can  
be used by the host to lock to the detected channels to  
obtain channel information such as Channel ID for  
example. Also at this point channels falsely identified  
during blindscan can be rejected upon failure to lock.  
b. ADCSR_CTRL_HOST  
c. CTF_CTRL_HOST  
d. FTF_CTRL_HOST  
Preliminary Rev. 0.81  
33  
Si2107/08/09/10  
master. During a write, data is sent from the bus master  
to the device. The field labeled “DATA (ADR)” must  
contain the 8-bit address of the target register. The data  
to be transferred to or from the target register must be  
placed in the following 8-bit “DATA” field. When the  
auto-increment feature is enabled, INC_DS, the target  
register address, is automatically incremented for  
subsequent data transfers until a STOP condition ends  
the operation.  
7. I2C Control Interface  
2
The I C bus interface is provided for configuration and  
monitoring of all internal registers. The Si2107/08/09/10  
supports the 7-bit addressing procedure and is capable  
of operating at rates up to 400 kbps. Individual data  
2
transfers to and from the device are 8-bits. The I C bus  
consists of two wires: a serial clock line (SCL) and a  
serial data line (SDA). The device always operates as a  
bus slave. Read and write operations are performed in  
Some registers in the device are larger than the 8-bit  
2
2
DATA field permitted by I C. These registers are split  
accordance with the I C-bus specification and the  
into 8-bit addressable chunks that are uniquely  
identified by a positional suffix. The suffix L indicates the  
low-byte; the suffix M indicates the middle-byte (for 24-  
bit registers only), and the suffix H indicates the high-  
byte.  
following sequences.  
The first byte after the START condition consists of the  
slave address (SLAVE ADR, 7-bits) of the target device.  
The slave address is configured during a hard reset by  
setting the voltage on the ADDR pin. Possible slave  
addresses and their corresponding ADDR voltages are  
listed in Table 18.  
To read a multibyte register as a single unit, the low byte  
must be read first. This forces the device to sample and  
hold the contents of the remaining bytes until the  
multibyte read is complete. If a STOP condition occurs  
before the operation is complete, the buffered data is  
discarded.  
Table 18. I2C Slave Address Selection  
Fixed Address  
11010  
LSBs  
00  
ADDR Voltage (V)  
(pullup)  
To write a multibyte register as a single unit, the low  
byte must be written first. All bytes must be transferred  
to the device before the multibyte value is recorded. If a  
STOP condition occurs before the operation is  
complete, the buffered data is discarded.  
V
3.3  
11010  
01  
2/3 x V ±10%  
3.3  
11010  
10  
1/3 x V ±10%  
3.3  
The slave address consists of a fixed part and a  
programmable part. The voltage of the ADDR pin is  
used to set the two least significant bits of the address  
during device power-up according to the table below.  
This enables up to four devices to share the same I C  
bus.  
11010  
11  
0 (pulldown)  
Four addresses are available, allowing up to four  
devices to share the same I C bus. The R/W bit  
determines the direction of data transfer. During a read  
operation, data is sent from the device to the bus  
2
2
Read Operation  
S
SLAVE ADR  
W
W
A
A
DATA (ADR)  
DATA (ADR)  
A
A
Sr or P  
SLAVE ADR  
SLAVE ADR  
R
A
A
DATA  
A/A  
A/A  
P
P
n bytes + ack  
Write Operation  
SLAVE ADR  
S
Sr or P  
W
DATA  
n bytes + ack  
Master  
Slave  
A = Acknowledge  
R = Read (1)  
S = START condition  
P = STOP condition  
W= Write (0)  
Sr = Repeated START condition  
2
Figure 22. I C Interface Protocol  
Preliminary Rev. 0.81  
34  
Si2107/08/09/10  
8. Control Registers  
The control registers can be divided into three main classes: Initialization, Run-time, and Status. Initialization  
registers (“I”) need only be programmed once following device power-up. Run-time registers (“RT”) are the primary  
registers for device control. Status registers (“S”) provide device state information. The corresponding category of  
each register is indicated in the rightmost column of Table 19.  
Unused register bits of a register byte are reserved, Their bit values should not be changed from the default values,  
as identified below under the description of each individual register byte.  
Table 18 lists all registers available in Si2110; some registers may not be available in other part versions, as  
identified below under the description of each individual register byte.  
Table 19. Register Summary  
I2C  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
System Configuration  
Device ID  
System Mode  
TS Ctrl 1  
00h  
01h  
02h  
03h  
DEV[3:0]  
INC_DS  
REV[3:0]  
S
I
MOD[1:0]  
SYSM[2:0]  
TSDF  
TSEP  
TSVP  
TSSP  
TSPCS  
INTP  
TSSL  
TSCD  
TSCM  
TSDD  
TSCE  
TSPG  
TSM  
I
TS Ctrl 2  
TSSCR[1:0]  
I
Pin Ctrl 1  
Pin Ctrl 2  
Bypass  
04h INT_EN  
INTT  
TSE_OE TSV_OE  
TSS_OE  
GPO  
TSC_OE  
TSD_OE  
I
05h  
06h  
PSEL[1:0]  
I
DS_BP  
CEL_E  
RS_BP  
DI_BP  
I
Interrupts  
Int En 1  
Int En 2  
Int En 3  
Int En 4  
Int Stat 1  
Int Stat 2  
Int Stat 3  
Int Stat 4  
07h RCVL_E  
AGCL_E  
STL_E  
VTU_E  
FE_E  
CRL_E  
FSU_E  
FF_E  
VTL_E  
FSL_E  
AQF_E  
MSGTO_E  
OCD_E  
FSL_I  
I
I
08h RCVU_E AGCTS_E STU_E  
CRU_E  
09h  
0Ah  
CN_E  
VTER_E RSER_E MSGPE_E  
BSDO_E BSDA_E  
MSGR_E  
SCD_E  
VTL_I  
I
I
0Bh RCVL_I  
AGCL_I  
CEL_I  
STU_I  
STL_I  
VTU_I  
FE_I  
CRL_I  
FSU_I  
FF_I  
S
S
S
S
0Ch RCVU_I AGCTS_I  
CRU_I  
AQF_I  
0Dh  
0Eh  
CN_I  
VTER_I  
BSDO_I  
RSER_I MSGPE_I  
BSDA_I  
MSGR_I  
SCD_I  
MSGTO_I  
OCD_I  
Receiver Status  
Lock Stat 1  
Lock Stat 2  
Acq Stat  
0Fh  
10h  
11h  
AGCL  
AGCF  
CEL  
CEF  
SRL  
STL  
STF  
CRL  
CRF  
VTL  
BSDA  
VTF  
FSL  
BSDO  
FSF  
S
S
S
RCVL  
AQF  
SRF  
Preliminary Rev. 0.81  
35  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
I2C  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
Tuning Control  
Acq Ctrl 1  
ADC SR  
14h  
15h  
16h  
17h  
18h  
29h  
36h  
37h  
38h  
39h  
3Fh  
40h  
41h  
7Ch  
7Dh  
7Eh  
7Fh  
AQS  
RT  
RT  
RT  
RT  
RT  
I
ADCSR[7:0]  
CTF[7:0]  
Coarse Tune  
Fine Tune L  
Fine Tune H  
CE Ctrl  
FTF[7:0]  
FTF[14:8]  
CESR[2:0]  
CE Offset L  
CE Offset H  
CE Err L  
CFO[7:0]  
CFO[15:8]  
CFER[7:0]  
CFER[15:8]  
SR[7:0]  
RT  
RT  
RT  
RT  
RT  
RT  
RT  
I
CE Err H  
Sym Rate L  
Sym Rate M  
Sym Rate H  
CN Ctrl  
SR[15:8]  
SR[23:16]  
CNS  
CNM  
CNW[1:0]  
CN TH  
CNET[7:0]  
CNL[7:0]  
I
CN L  
RT  
RT  
CN H  
CNL[15:8]  
Channel Decoder  
VT Ctrl 1  
VT Ctrl 2  
A0h  
A2h  
A3h  
ABh  
ACh  
B0h  
B1h  
B2h  
B3h  
B5h  
VTCS[5:0]  
VTERM  
I
VTERS  
VTERW[1:0]  
RT  
S
VT Stat  
VTRS[2:0]  
VTPS  
VTIQS  
VT BER Cnt L  
VT BER Cnt H  
RS Err Ctrl  
RS Err Cnt L  
RS Err Cnt H  
DS Ctrl  
VTERC[7:0]  
VTERC[15:8]  
RSERM  
RT  
RT  
RT  
RT  
RT  
I
RSERS  
RSERW  
RSERT[1:0]  
RSERC[7:0]  
RSERC[15:8]  
DST_DS  
DSO_DS  
PRBS Ctl  
PRBS_  
START  
PRBS_  
INVERT  
PRBS_  
SYNC  
PRBS_HEADER_SIZE  
RT  
36  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
I2C  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
Automatic Gain Control  
AGC Ctrl 1  
AGC Ctrl 2  
AGC 1–2 Gain  
AGC 3–4 Gain  
AGC TH  
23h  
24h  
25h  
26h  
27h  
28h  
75h  
76h  
77h  
78h  
79h  
7Ah  
7Bh  
AGCW[1:0]  
I
I
AGCTR[3:0]  
AGCO[3:0]  
AGC2[3:0]  
AGC4[3:0]  
AGC1[3:0]  
AGC3[3:0]  
I
I
AGCTH[6:0]  
I
AGC PL  
AGCPWR[6:0]  
S
I
DAGC 1 Ctrl  
DAGC1 L  
DAGC1_EN  
DAGC1W[1:0]  
DAGC2[3:0]  
DAGC1T DAGC1HOLD DAGC1HOST  
DAGC1[7:0]  
I
DAGC1 H  
DAGC1[15:8]  
I
DAGC2 Ctrl  
DAGC2 TH  
DAGC2Lvl L  
DAGC2Lvl H  
DAGC2W[1:0]  
DAGC2TDIS  
I
DAGC2T[7:0]  
I
DAGC2GA[7:0]  
I
DAGC2GA[15:8]  
I
LNB Supply Controller  
LNB Ctrl 1  
LNB Ctrl 2  
LNB Ctrl 3  
LNB Ctrl 4  
LNB Stat  
C0h  
C1h  
C2h  
C3h  
C4h  
C5h  
C6h  
C7h  
C8h  
C9h  
CAh  
CBh  
CCh  
CDh  
CEh  
CFh  
LNBS  
LNBV  
TT  
LNBCT  
LNBB  
MMSG  
MSGL[2:0]  
TFS  
RT  
RT  
RT  
RT  
S
LNBM[1:0]  
BRST_DS  
TDIR  
FE  
TR  
TFQ[7:0]  
MSGTO  
FF  
MSGPE  
MSGR  
MSGRL[2:0]  
Msg FIFO 1  
Msg FIFO 2  
Msg FIFO 3  
Msg FIFO 4  
Msg FIFO 5  
Msg FIFO 6  
LNB S Ctrl1  
LNB S Ctrl2  
LNB S Ctrl3  
LNB S Ctrl4  
LNB S Stat  
FIFO1[7:0]  
FIFO2[7:0]  
FIFO3[7:0]  
FIFO4[7:0]  
FIFO5[7:0]  
FIFO6[7:0]  
RT  
RT  
RT  
RT  
RT  
RT  
I
VLOW[3:0]  
VHIGH[3:0]  
ILIM[1:0]  
IMAX[1:0]  
SLOT[1:0]  
OLOT[1:0]  
I
VMON[7:0]  
LNB_EN  
S
LNBL  
COMP  
LNBMD  
OCD  
I
SCD  
S
Preliminary Rev. 0.81  
37  
Si2107/08/09/10  
Table 19. Register Summary (Continued)  
I2C  
Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Addr.  
QuickScan  
Host Ctrl  
1Ch  
SR_  
ADCSR_  
CTF_CTRL_ FTF_CTRL_  
I
CTRL_ CTRL_HOST  
HOST  
HOST  
HOST  
RS Est L  
RS Est M  
31h  
32h  
33h  
3Ah  
SREST[7:0]  
RT  
RT  
RT  
I
SREST[15:8]  
SREST[23:16]  
RS Est H  
SR Est Ctrl 2  
FALSE_ALA  
RM_PROC_  
EN  
SR Max  
SR Min  
BS Ctrl  
42h  
43h  
80h  
SRMAX[7:0]  
SRMIN[7:0]  
I
I
BS_  
BSDA  
COESM  
RT  
START  
BS MinFreq L  
BS MinFreq M  
BS MinFreq H  
BS MaxFreq L  
BS MaxFreq M  
BS MaxFreq H  
BS CoarseFreq  
BS FineFreq L  
BS FineFreq H  
BS PLL Div  
81h  
82h  
83h  
84h  
85h  
86h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
BS_FMIN[7:0]  
BS_FMIN[15:8]  
I
I
BS_FMIN[17:16}  
I
BS_FMAX[7:0]  
BS_FMAX[15:8]  
I
I
BS_FMAX[17:16}  
I
BS_CTF[7:0]  
BS_FTF[7:0]  
RT  
RT  
RT  
RT  
I
BS_FTF[14:8]  
BS_ADCSR[7:0]  
LSA Ctrl 1  
AVG WIN[6:5]  
Spectrum Tilt  
Correction  
Threshold  
SPEC_TILT_CORREC[7:0]  
I
1dB BW  
Threshold  
90h  
91h  
92h  
93h  
94h  
BW_1dB[7:0]  
BW_2dB[7:0]  
I
I
I
I
I
2dB BW  
Threshold  
3dB BW  
Threshold  
BW_3dB[7:0]  
Inband Power  
Threshold  
INBAND_THRESHOLD[7:0]  
REF_NOISE_MARGIN[7:0]  
Noise Level  
Margin Threshold  
38  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 00h. Device ID Register  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
REV[3:0]  
D1  
D0  
Name  
DEV[3:0]  
Bit  
Name  
Function  
7:4  
DEV[3:0]  
REV[3:0]  
Device ID.  
0h = Si2110  
1h = Si2109  
2h = Si2108  
3h = Si2107  
3:0  
Revision.  
Current revision = 4h  
Register 01h. System Mode  
Bit  
D7  
D6  
D5  
INC_DS  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
MOD[1:0]  
SYSM[2:0]  
Bit  
7:6  
5
Name  
Function  
Reserved  
INC_DS  
Program as shown above.  
2
I C Automatic Address Increment Disable.  
0 = Enabled (default)  
1 = Disabled  
4:3  
2:0  
MOD[1:0]  
Modulation Selection.  
00 = BPSK Demodulation  
01 = QPSK Demodulation (default)  
10 = Reserved  
11 = Reserved  
SYSM[2:0]  
System Mode.  
000 = DVB-S (default)  
001 = DSS  
010–111 = Reserved  
Preliminary Rev. 0.81  
39  
Si2107/08/09/10  
Register 02h. Transport Stream Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
TSEP  
TSVP  
TSSP  
TSSL  
TSCM  
TSCE  
TSDF  
TSM  
Bit  
Name  
Function  
7
TSEP  
TSVP  
TSSP  
TSSL  
Transport Stream Error Polarity.  
0 = Active high (default)  
1 = Active low  
6
5
4
Transport Stream Valid Polarity.  
0 = Active high (default)  
1 = Active low  
Transport Stream Sync Polarity.  
0 = Active high (default)  
1 = Active low  
Transport Stream Start Length.  
0 = Byte wide (default)  
1 = Bit wide  
Note: This bit is ignored in parallel mode.  
3
2
1
TSCM  
TSCE  
TSDF  
Transport Stream Clock Mode.  
0 = Gapped mode (default)  
1 = Continuous mode  
Transport Stream Clock Edge.  
0 = Data transitions on rising edge (default)  
1 = Data transitions on falling edge  
Transport Stream Serial Data Format.  
0 = MSB first (default)  
1 = LSB first  
Note: This bit is ignored in parallel mode  
0
TSM  
Transport Stream Mode.  
0 = Serial (default)  
1 = Parallel  
40  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 03h. Transport Stream Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
TSPCS  
TSCD  
TSDD  
TSPG  
TSSCR[1:0]  
Bit  
7:6  
5
Name  
Function  
Reserved  
TSPCS  
Program as shown above.  
Transport Stream Parallel Clock Smoother.  
Smoothens TS_CLK to ~50% duty cycle.  
0 = Smoothing disabled  
1 = Smoothen clock to ~50% duty cycle (default)  
4
3
TSCD  
TSDD  
Transport Stream Clock Delay.  
Adds delay to TS_CLK to adjust clock-data timing relationship.  
0 = Normal operation (default)  
1 = Delay clock relative to data  
Transport Stream Data Delay.  
Adds delay to TS_DATA, TS_SYNC, TS_VAL, TS_ERR output to adjust  
clock-data timing relationship.  
0 = Normal operation (default)  
1 = Delay data relative to clock  
2
TSPG  
Transport Stream Parity Gate.  
0 = Normal operation (default)  
1 = Zero data lines during parity  
1:0  
TSSCR[1:0]  
Transport Stream Serial Clock Rate.  
00 = 80–88.5 MHz (default)  
01 = 76.8–82.8 MHz  
10 = 54.8–59.2 MHz  
11 = 34.9–37.7 MHz  
The user should select a setting such that the corresponding minimum  
clock output frequency is higher than the expected output bit rate.  
Preliminary Rev. 0.81  
41  
Si2107/08/09/10  
Register 04h. Pin Control 1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
INT_EN  
INTT  
INTP  
TSE_OE  
TSV_OE  
TSS_OE  
TSC_OE  
TSD_OE  
Name  
Bit  
Name  
Function  
7
INT_EN  
Interrupt Pin Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
1
0
INTT  
Interrupt Pin Type.  
0 = CMOS (default)  
1 = Open drain/source  
INTP  
Interrupt Polarity.  
0 = Active low (default)  
1 = Active high  
TSE_OE  
TSV_OE  
TSS_OE  
TSC_OE  
TSD_OE  
Transport Stream Error Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Valid Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Sync Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Clock Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
Transport Stream Data Output Enable.  
0 = Enabled  
1 = Tri-state (default)  
42  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 05h. Pin Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
1
0
0
GPO  
PSEL[1:0]  
Bit  
7:3  
2
Name  
Function  
Reserved  
GPO  
Program as shown above.  
General Purpose Output Control.  
Controls output of pin 30 when PSEL = 10  
0 = Output logic zero. (default)  
1 = Output logic 1.  
1:0  
PSEL[1:0]  
Pin Select (Pin 30).  
00 = Interrupt (default)  
01 = Receiver lock indicator  
10 = General Purpose Output  
11 = Reserved  
Register 06h. Bypass  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
DS_BP  
RS_BP  
DI_BP  
0
0
0
Bit  
7:6  
5
Name  
Reserved  
DS_BP  
Function  
Program as shown above.  
Descrambler Bypass.  
0 = Normal operation (default)  
1 = Bypass  
Note: This bit is ignored in DSS mode; the descrambler is automatically  
bypassed.  
4
3
RS_BP  
DI_BP  
Reed-Solomon Bypass.  
0 = Normal operation (default)  
1 = Bypass  
Deinterleaver Bypass.  
0 = Normal operation (default)  
1 = Bypass  
2:0  
Reserved  
Program as shown above.  
Preliminary Rev. 0.81  
43  
Si2107/08/09/10  
Register 07h. Interrupt Enable 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVL_E  
AGCL_E  
CEL_E  
0
STL_E  
CRL_E  
VTL_E  
FSL_E  
Bit  
Name  
Function  
7
RCVL_E  
AGCL_E  
CEL_E  
Receiver Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
AGC Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Carrier Estimator Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
4
3
Reserved  
STL_E  
Program as shown above.  
Symbol Timing Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
2
1
0
CRL_E  
VTL_E  
FSL_E  
Carrier Recovery Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Frame Sync Lock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
44  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 08h. Interrupt Enable 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVU_E  
AGCTS_E  
STU_E  
CRU_E  
VTU_E  
FSU_E  
0
AQF_E  
Bit  
Name  
Function  
7
RCVU_E  
AGCTS_E  
STU_E  
Receiver Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
AGC Tracking Threshold Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Symbol Timing Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
CRU_E  
VTU_E  
Carrier Recovery Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
FSU_E  
Frame Sync Unlock Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
1
0
Reserved  
AQF_E  
Program as shown above.  
Acquisition Fail Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Preliminary Rev. 0.81  
45  
Si2107/08/09/10  
Register 09h. Interrupt Enable 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
CN_E  
VTER_E  
RSER_E  
MSGPE_E  
FE_E  
FF_E  
MSGR_E  
MSGTO_E  
Bit  
Name  
Function  
7
CN_E  
C/N Estimator Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
6
5
4
3
2
1
0
VTER_E  
RSER_E  
MSGPE_E  
FE_E  
Viterbi BER Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Reed-Solomon Error Measurement Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Message Parity Error Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Transmit FIFO Empty Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
FF_E  
LNB Receive FIFO Full Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
MSGR_E  
MSGTO_E  
LNB Receive Message Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
LNB Receive Timeout Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
46  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 0Ah. Interrupt Enable 4  
Bit  
D7  
0
D6  
0
D5  
0
D4  
Si2107/8  
D3  
0
D2  
0
D1  
D0  
Part  
Name  
Part  
0
SCD_E  
SCD_E  
OCD_E  
OCD_E  
Si2109/10  
Name  
0
BSDO_E  
BSDA_E0  
0
0
0
Bit  
7
Name  
Function  
Reserved  
BSDO_E  
Program as shown above.  
6
Blindscan Done Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
5
BSDA_E  
Blindscan Data Ready Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
4:2  
1
Reserved  
SCD_E  
Program as shown above.  
Short Circuit Detect Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
0
OCD_E  
Over Current Detect Interrupt Enable.  
0 = Disabled (default)  
1 = Enabled  
Preliminary Rev. 0.81  
47  
Si2107/08/09/10  
Register 0Bh. Interrupt Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
RCVL_I  
AGCL_I  
CEL_I  
0
STL_I  
CRL_I  
VTL_I  
FSL_I  
Bit  
Name  
Function  
7
RCVL_I  
AGCL_I  
CEL_I  
Receiver Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
6
5
AGC Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Carrier Estimator Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
4
3
Reserved  
STL_I  
Program as shown above.  
Symbol Timing Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
2
1
0
CRL_I  
VTL_I  
FSL_I  
Carrier Recovery Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Viterbi Search Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
Frame Sync Lock Interrupt.  
0 = Disabled (default)  
1 = Enabled  
48  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 0Ch. Interrupt Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
RCVU_I  
AGCTS_I  
STU_I  
CRU_I  
VTU_I  
FSU_I  
0
AQF_I  
Name  
Bit  
7
Name  
RCVU_I  
AGCTS_I  
Function  
Receiver Unlock Interrupt.  
6
AGC Tracking Threshold Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
5
4
3
2
STU_I  
CRU_I  
VTU_I  
FSU_I  
Symbol Timing Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Carrier Recovery Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Viterbi Search Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Frame Sync Unlock Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
1
0
Reserved  
AQF_I  
Program as shown above.  
Acquisition Fail Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Preliminary Rev. 0.81  
49  
Si2107/08/09/10  
Register 0Dh. Interrupt Status 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
CN_I  
VTER_I  
RSER_I MSGPE_I  
FE_I  
FF_I  
MSGR_I  
MSGTO_I  
Bit  
Name  
Function  
7
CN_I  
C/N Estimator Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
6
5
4
3
2
1
0
VTER_I  
RSER_I  
MSGPE_I  
FE_I  
Viterbi BER Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Reed-Solomon Error Measurement Complete Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Message Parity Error Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Transmit FIFO Empty Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
FF_I  
LNB Receive FIFO Full Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
MSGR_I  
MSGTO_I  
LNB Receive Message Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
LNB Receive Timeout Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
50  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 0Eh. Interrupt Status 4  
Bit  
D7  
0
D6  
0
D5  
0
D4  
Si2107/8  
D3  
0
D2  
0
D1  
D0  
Part  
Name  
Part  
0
SCD_I  
SCD_I  
OCD_I  
OCD_I  
Si2109/10  
Name  
0
BSDO_I  
BSDA_I  
0
0
0
Bit  
7
Name  
Function  
Reserved  
BSDO_I  
Program to zero.  
6
Blindscan Done Interrupt.  
0 = Normal operation (default)  
1 = Blindscan done over the specified frequency range  
5
BSDA_I  
Blindscan Data Ready Interrupt.  
0 = Normal operation (default)  
1 = Blindscan data can be read from registers:  
BS_CTF, BS_FTF, CFER, SREST, BS_ADCSR.  
4:2  
1
Reserved  
SCD_I  
Program as shown above.  
Short Circuit Detect Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
0
OCD_I  
Over Current Detect Interrupt.  
0 = Normal operation (default)  
1 = Event recorded  
Preliminary Rev. 0.81  
51  
Si2107/08/09/10  
Register 0Fh. Lock Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
AGCL  
CEL  
SRL  
STL  
CRL  
VTL  
FSL  
Name  
Bit  
7
Name  
Reserved  
AGCL  
Function  
Program as shown above.  
6
AGC Lock Status.  
0 = Pending (default)  
1 = Complete  
5
4
CEL  
SRL  
Carrier Estimation Status.  
0 = Pending (default)  
1 = Complete  
Symbol Rate Estimation Status.  
0 = Pending (default)  
1 = Complete  
Note: Available on Si2109/10 only.  
3
2
1
0
STL  
CRL  
VTL  
FSL  
Symbol Timing Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Carrier Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Viterbi Lock Status.  
0 = Unlocked (default)  
1 = Locked  
Frame Sync Lock Status.  
0 = Unlocked (default)  
1 = Locked  
52  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 10h. Lock Status 2  
Bit  
D7  
D6  
0
D5  
0
D4  
Si2107/8  
D3  
0
D2  
0
D1  
0
D0  
0
Part  
Name  
Part  
RCVL  
RCVL  
0
Si2109/10  
Name  
0
0
0
0
0
BSDA  
BSDO  
Bit  
Name  
Function  
7
RCVL  
Receiver Lock Status.  
0 = Unlocked (default)  
1 = Locked  
6:2  
1
Reserved  
BSDA  
Program as shown above.  
Blindscan Data Ready (LSA stage)  
0 = Normal operation (default)  
1 = Raw carrier and symbol rate ready for readout by host.  
0
BSDO  
Blindscan Done.  
0 = Normal operation (default)  
1 = Blindscan sequence complete over the specified frequency range.  
Preliminary Rev. 0.81  
53  
Si2107/08/09/10  
Register 11h. Acquisition Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
AQF  
AGCF  
CEF  
SRF  
STF  
CRF  
VTF  
FSF  
Bit  
Name  
Function  
7
AQF  
Receiver Acquisition Status.  
0 = Normal operation (default)  
1 = Acquisition failed  
6
5
4
AGCF  
CEF  
AGC Search Status.  
0 = Normal operation (default)  
1 = Gain control limit reached  
Carrier Estimation Search Status.  
0 = Normal operation (default)  
1 = Carrier offset not found  
SRF  
Symbol Rate Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Note: Available on Si2109/10 only.  
3
2
1
0
STF  
CRF  
VTF  
FSF  
Symbol Timing Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Carrier Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Viterbi Search Status.  
0 = Normal operation (default)  
1 = Search failed  
Frame Sync Search Status.  
0 = Normal operation (default)  
1 = Search failed  
54  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 14h. Acquisition Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AQS  
0
0
0
0
0
0
0
Bit  
Name  
Function  
Automatic Acquisition Start.  
7
AQS  
Writing a one to this bit initiates the acquisition sequence. This bit is  
automatically cleared when the acquisition sequence completes.  
6:0  
Reserved  
Program as shown above.  
Register 15h. ADC Sampling Rate  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
ADCSR[7:0]  
Bit  
Name  
ADCSR[7:0]  
Function  
7:0  
ADC Sampling Rate.  
f = ADCSR x 1 MHz  
s
Default: C8h (200 MHz)  
Register 16h. Coarse Tune Frequency  
Bit  
D7  
D6  
D5  
D4  
CTF[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CTF[7:0]  
Function  
7:0  
Coarse Tune Frequency.  
Calculation of the coarse tune value is determined by the reference  
software driver.  
f
= CTF x 10 MHz  
coarse  
Default: 00h  
Preliminary Rev. 0.81  
55  
Si2107/08/09/10  
Register 17h. Fine Tune Frequency L  
Bit  
D7  
D6  
D5  
D4  
FTF[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
FTF[7:0]  
Function  
Fine Tune Frequency (Low Byte).  
7:0  
fs  
214  
--------  
ffine = FTF ×  
where FTF is stored as a 2s complement value.  
Calculation of the fine tune value is determined by the reference soft-  
ware driver.  
Default: 00h  
Register 18h. Fine Tune Frequency H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
FTF[14:8]  
Bit  
7
Name  
Function  
Reserved  
FTF[14:8]  
Program as shown above.  
6:0  
Fine Tune Frequency (High Byte).  
See Register 17h.  
56  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 1Ch. Host Control Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
SR_ CTRL_  
HOST  
ADCSR_CTRL_ CTF_CTRL_ FTF_CTRL_  
HOST  
HOST  
HOST  
Bit  
7:4  
3
Name  
Function  
Reserved  
Program as shown above.  
SR_CTRL_HOST  
Symbol Rate Host Control  
0 = control by chip (during BSC)  
1 = control from host (during normal operation) (default)  
2
1
0
ADCSR_CTRL_HOST  
CTF_CTRL_HOST  
FTF_CTRL_HOST  
ADC Sampling Rate Host Control.  
0 = Control by chip (during BSC)  
1 = Control by host (during normal operation) (default)  
Coarse Tune Frequency Host Control.  
0 = Control by chip (during BSC)  
1 = Control by host (during normal operation) (default)  
Fine Tune Frequency Host Control.  
0 = Control by chip (during BSC)  
1 = Control by host (during normal operation) (default)  
Register 23h. Analog AGC Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
AGCW[1:0]  
0
0
0
0
Bit  
7:6  
5:4  
Name  
Function  
Reserved  
AGCW[1:0]  
Program as shown above.  
AGC Measurement Window.  
Acquisition  
00 = 1024 (default)  
01 = 2048  
Tracking  
65536 samples (default)  
131072 samples  
10 = 4096  
262144 samples  
11 = 8192  
524288 samples  
3:0  
Reserved  
Program as shown above.  
Preliminary Rev. 0.81  
57  
Si2107/08/09/10  
Register 24h. AGC Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGCTR[3:0]  
AGCO[3:0]  
Bit  
Name  
Function  
7:4  
AGCTR[3:0]  
AGC Tracking Threshold.  
Specifies the maximum difference between AGCPWR (28h) and  
AGCTH (27h) before making a gain adjustment.  
Default: 1000.  
3:0  
AGCO[3:0]  
AGC Gain Offset.  
Minimum value for gain stage 4.  
0000 = +0 dB (default)  
0001 = +1 dB  
1110 = +14 dB  
1111 = +15 dB  
Register 25h. Analog AGC 1–2 Gain  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGC2[3:0]  
AGC1[3:0]  
Bit  
Name  
Function  
7:4  
AGC2[3:0]  
Analog Gain stage 2 setting.  
Default: 0h  
3:0  
AGC1[3:0]  
Analog Gain stage 1 setting.  
Default: 0h  
Register 26h. Analog AGC 3–4 Gain  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
AGC4[3:0]  
AGC3[3:0]  
Bit  
Name  
Function  
7:4  
AGC4[3:0]  
Analog Gain stage 4 setting  
Default: 0h  
3:0  
AGC3[3:0]  
Analog Gain stage 3 setting  
Default: 0h  
58  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 27h. AGC Threshold  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
AGCTH[6:0]  
Bit  
7
Name  
Function  
Reserved  
Program as shown above.  
6:0  
AGCTH[6:0]  
Analog AGC Threshold.  
The value specified in this register corresponds to the desired analog  
AGC power level. The AGC loop adjusts the gain of the system to drive  
the AGC power level to this value.  
Default: 20h.  
Register 28h. AGC Power Level  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
0
AGCPWR[6:0]  
Name  
Bit  
7
Name  
Function  
Reserved  
Program as shown above.  
6:0  
AGCPWR[6:0]  
AGC Power Level.  
Represents the measured input power level after the ADC in rms format.  
The measurement window is set by AGCW. This register saturates at full  
scale.  
Default: 00h.  
Preliminary Rev. 0.81  
59  
Si2107/08/09/10  
Register 29h. Carrier Estimation Control  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
0
0
0
0
1
CESR[2:0]  
Name  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Program as shown above.  
CESR[2:0]  
Carrier Estimation Search Range.  
000 = ± f /16  
(± 12.0 MHz typ.) Exclusive to QuickLock.  
(± 6.3 MHz typ.) (default)  
(± 3.1 MHz typ.)  
s
001 = ± f /32  
s
010 = ± f /64  
s
011 = ± f /128  
(± 1.6 MHz typ.)  
s
100 = ± f /256  
(± 0.8 MHz typ.)  
s
101 = ± f /512  
(± 0.4 MHz typ.)  
s
110 = ± f /1024  
(± 0.2 MHz typ.)  
s
111 = ± f /2048  
(± 0.1 MHz typ.)  
s
Register 31h. Symbol Rate Estimator Register L (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SREST[7:0]  
Bit  
Name  
SREST[7:0]  
Function  
Symbol Rate Estimate (Low Byte).  
7:0  
Result of blindscan symbol rate estimator.  
Symbol rate = SREST x sampling_rate / 2^23.  
sampling_rate is the ADC sampling rate as calculated from BS_ADCSR.  
Default: 00h  
Register 32h. Symbol Rate Estimator Register M (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SREST[15:8]  
Bit  
Name  
SREST[15:8]  
Function  
7:0  
Symbol Rate Estimate (Mid Byte).  
See register 31h.  
Default: 00h  
60  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 33h. Symbol Rate Estimator Register H (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SREST[23:16]  
Bit  
Name  
SREST[23:16]  
Function  
7:0  
Symbol Rate Estimate (High Byte).  
See register 31h.  
Default: 00h  
Register 36h. Carrier Estimator Offset L  
D7  
D6  
D5  
D4  
CFO[7:0]  
D3  
D2  
D1  
D0  
Bit  
Name  
Bit  
Name  
CFO[7:0]  
Function  
Carrier Frequency Offset (Low Byte).  
7:0  
Designed to store a residual carrier frequency offset for future acquisi-  
tions. Used during carrier offset estimation to adjust the center fre-  
quency.  
fs  
215  
--------  
Search center frequency = fdesired + CFO ×  
Hz  
Note: CFO is a 16-bit two’s complement number.  
Default: 00h  
Preliminary Rev. 0.81  
61  
Si2107/08/09/10  
Register 37h. Carrier Estimator Offset H  
D7  
D6  
D5  
D4  
CFO[15:8]  
D3  
D2  
D1  
D0  
Bit  
Name  
Bit  
Name  
CFO[15:8]  
Function  
7:0  
Carrier Frequency Offset (High Byte).  
See register 36h.  
Register 38h. Carrier Frequency Offset Error L  
D7  
D6  
D5  
D4  
CFER[7:0]  
D3  
D2  
D1  
D0  
Bit  
Name  
Bit  
Name  
CFER[7:0]  
Function  
Carrier Frequency Offset Error (Low Byte).  
7:0  
Stores the carrier frequency offset that is identified during the carrier  
offset estimation stage.  
fs  
--------  
Offset = –CFER ×  
Hz  
215  
Note: CFER is a 16-bit two’s complement number.  
Default: 00h  
Register 39h. Carrier Frequency Offset Error H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CFER[15:8]  
Bit  
Name  
CFER[15:8]  
Function  
7:0  
Carrier Frequency Offset Error (High Byte).  
See register 38h.  
62  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 3Ah. Symbol Rate Estimator Control 2 Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
0
0
0
0
0
0
0
FALSE_ALARM_PROC_EN  
Name  
Bit  
7:1  
0
Name  
Function  
Reserved  
Program as shown above.  
FALSE_ALARM_PROC_EN  
Enable the SRE to check for false symbol rate alarms  
Default: 01h  
Register 3Fh. Symbol Rate L  
Bit  
D7  
D6  
D5  
D4  
SR[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
SR[7:0]  
Function  
7:0  
Symbol Rate (Low Byte).  
Symbol rate = SR ×  
fs  
224  
--------  
Hz  
Sampling_rate is the ADC sampling rate as calculated from  
BS_ADCSR.  
Default: 00h.  
Register 40h. Symbol Rate M  
D7  
D6  
D5  
D4  
SR[15:8]  
D3  
D2  
D1  
D0  
Bit  
Name  
Bit  
Name  
SR[15:8]  
Function  
7:0  
Symbol Rate (Mid Byte).  
See register 3Fh.  
Preliminary Rev. 0.81  
63  
Si2107/08/09/10  
Register 41h. Symbol Rate H  
Bit  
D7  
D6  
D5  
D4  
SR[23:16]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
SR[23:16]  
Function  
7:0  
Symbol Rate (High Byte).  
See register 3F.  
Register 42h. Symbol Rate Maximum (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SRMAX[7:0]  
Bit  
Name  
SRMAX[7:0]  
Function  
Symbol Rate Estimation Maximum.  
Max symbol rate = SRMX ×  
7:0  
fs  
216  
--------  
Hz  
Sampling_rate is the ADC sampling rate as calculated from  
BS_ADCSR.  
Default: 00h.  
Register 43h. Symbol Rate Minimum (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
SRMIN[7:0]  
Bit  
Name  
SRMIN[7:0]  
Function  
Symbol Rate Estimation Minimum.  
7:0  
fs  
216  
--------  
Min symbol rate = SRMN ×  
Hz  
Sampling_rate is the ADC sampling rate as calculated from  
BS_ADCSR.  
Default: 00h.  
64  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 75h. Digital AGC 1 Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
DAGC1_EN  
DAGC1W[1:0]  
DAGC1T DAGC1HOLD  
DAGC1HOST  
0
Bit  
Name  
Function  
7
Reserved  
Program as shown above (device may change the value of this bit  
during operation)  
6
DAGC1_EN  
Enable digital AGC 1  
0 = Disabled  
1 = Enabled (default)  
5:4  
DAGC1W[1:0]  
Digital AGC Measurement Window  
00 = 256 samples  
01 = 512 samples  
10 = 1024 samples (default)  
11 = 2048 samples  
3
2
1
DAGC1T  
Select AGC threshold  
0 = –15 dBFS (default)  
1 = –9 dBFS  
DAGC1HOLD  
DAGC1HOST  
Hold previous computed gain value on DAGC1  
0 = Update gain after each calculation (default)  
1 = Do not update gain value  
Host-controlled DAGC1  
Enable host control of holding of gain.  
0 = control internal to chip (default)  
1 = host control via registers DAGC1HOLD and DAGC1T  
0
Reserved  
Program as shown above.  
Register 76h. Digital AGC 1 Gain L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC1[7:0]  
Bit  
Name  
DAGC1[7:0]  
Function  
7:0  
Gain of digital AGC 1 (low-byte).  
Default: 00h  
Preliminary Rev. 0.81  
65  
Si2107/08/09/10  
Register 77h. Digital AGC 1 Gain H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC1[15:8]  
Bit  
Name  
DAGC1[15:8]  
Function  
7:0  
Gain of digital AGC 1 (high-byte).  
Default: 00h  
Register 78h. Digital AGC 2 Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DAGC2TDIS  
Name  
Reserved  
DAGC2[3:0]  
DAGC2W[1:0]  
Bit  
Name  
Reserved  
Function  
7
Program as shown above. (device may change the value of this bit  
during operation)  
6:3  
2:1  
DAGC2[3:0]  
Digital AGC2 gain factor  
Default: 0h  
DAGC2W[1:0]  
Digital AGC2 Measurement window  
Acquisition  
Tracking  
00 = 16 samples (default)  
01 = 32 samples  
10 = 64 samples  
11 = 128 samples  
1024 samples (default)  
2048 samples  
4096 samples  
8192 samples  
0
DAGC2TDIS  
Digital AGC2 Automatic Tracking Disable  
1 = Disable automatic tracking. Freeze applied to gain.  
0 = Enable automatic tracking. (default)  
Register 79h. Digital AGC 2 Threshold  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2T[7:0]  
Bit  
Name  
DAGC2T[7:0]  
Function  
7:0  
Digital AGC2 Threshold.  
Default: B5h  
66  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 7Ah. Digital AGC 2 Level L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2GA[7:0]  
Bit  
Name  
DAGC2GA[7:0]  
Function  
7:0  
Digital AGC2 Gain Auto (low byte).  
Digital AGC2 gain applied to meet threshold  
Default: 00h  
Register 7Bh. Digital AGC 2 Level H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DAGC2GA[15:8]  
Bit  
Name  
DAGC2GA[15:8]  
Function  
7:0  
Digital AGC2 Gain Auto (high byte).  
See register 7Ah.  
Default: 00h  
Register 7Ch. C/N Estimator Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CNS  
0
0
0
CNM  
CNW[1:0]  
0
Bit  
Name  
Function  
7
CNS  
C/N Estimator Start.  
Writing a one to this bit initiates an C/N estimator and clears the result  
stored in CNL. This bit is automatically cleared to zero when the mea-  
surement period elapses.  
6:3  
2
Reserved  
CNM  
Program as shown above.  
C/N Estimator Mode.  
0 = Finite window  
1 = Infinite window (default)  
1:0  
CNW[1:0]  
C/N Measurement Window.  
00 = 1024 samples  
01 = 4096 samples (default)  
10 = 16384 samples  
11 = 65536 samples  
Preliminary Rev. 0.81  
67  
Si2107/08/09/10  
Register 7Dh. C/N Estimator Threshold0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CNET[7:0]  
Bit  
Name  
CNET[7:0]  
Function  
7:0  
C/N Estimator Threshold.  
This value defines a noise threshold for the C/N estimator.  
Default 13h.  
Register 7Eh. C/N Estimator Level L  
Bit  
D7  
D6  
D5  
D4  
CNL[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CNL[7:0]  
Function  
C/N Estimator Level (Low Byte).  
7:0  
The value in this register is to be used with an external lookup table to  
estimate the C/N of the input signal.  
Default: 00h.  
Register 7Fh. C/N Estimator Level H  
Bit  
D7  
D6  
D5  
D4  
CNL[15:8]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
CNL[15:8]  
Function  
7:0  
C/N Estimator Level (High Byte).  
See Register 7Eh.  
68  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 80h. Blindscan Control Register  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
BS_START  
Name  
0
BSDA  
0
0
0
0
COESM  
Bit  
Name  
Function  
7
BS_START  
Blindscan Start.  
0 = normal operation (default)  
1 = start blindscan.  
6
5
Reserved  
BSDA  
Program as shown above.  
Blindscan Data Ready.  
0 = Cleared by host. Indicates host has read the valid channel  
information from the register bank and the device can write new  
values for the next channel.  
1 = Set by the device. Remains set as long as the host has not read  
the channel information from the register bank. The blindscan  
operation waits for the host to clear the bit before writing values for the  
next channel.  
4:1  
0
Reserved  
COESM  
Program as shown above.  
Carrier Offset Estimation Selection Mode.  
0 = Legacy Mode (default)  
1 = QuickLock  
Register 81h. Blindscan Controller Minimum Frequency Register L (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
BS_FMIN[7:0]  
Bit  
Name  
BS_FMIN[7:0]  
Function  
7:0  
Lower RF frequency limit for QuickScan range:  
14  
Minimum Frequency (MHz)  
-----------------------------------------------------------------------  
BS_FMIN =  
× 2  
BS_ADCSR (MHz)  
Default: 14h  
Preliminary Rev. 0.81  
69  
Si2107/08/09/10  
Register 82h. Blindscan Controller Minimum Frequency Register M (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BS_FMIN[15:8]  
Function  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
BS_FMIN[15:8]  
7:0  
See register 81h.  
Default: 08h  
Register 83h. Blindscan Controller Minimum Frequency Register H (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
BS_FMIN[17:16]  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
Program as shown above.  
See register 81h.  
Default: 01h  
BS_FMIN[17:16]  
Register 84h. Blindscan Controller Maximum Frequency Register L (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
BS_FMAX[7:0]  
Bit  
Name  
BS_FMAX[7:0]  
Function  
7:0  
Higher RF frequency limit for QuickScan range:  
14  
Maximum Frequency (MHz)  
-------------------------------------------------------------------------  
BS_FMAX =  
× 2  
BS_ADCSR (MHz)  
Default: F6h  
70  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 85h. Blindscan Controller Maximum Frequency Register M (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BS_FMAX[15:8]  
Function  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
BS_FMAX[15:8]  
7:0  
See register 84h.  
Default: 9Bh  
Register 86h. Blindscan Controller Maximum Frequency Register H (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
BS_FMAX[17:16]  
Bit  
7:2  
1:0  
Name  
Reserved  
BS_FMAX[17:16]  
Function  
Program as shown above.  
See register 84h.  
Default: 02h  
Register 89h. Blindscan Controller Coarse Tuning Frequency Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
BS_CTF[7:0]  
Bit  
Name  
BS_CTF[7:0]  
Function  
7:0  
Coarse frequency of identified channel = 10 MHz x BS_CTF.  
Default: 00h  
Register 8Ah. Blindscan Controller Fine Tuning Frequency Register L (Si2109 and Si2110 only)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
BS_FTF[7:0]  
Name  
Bit  
Name  
BS_FTF[7:0]  
Function  
7:0  
Fine frequency of identified channel, low byte.  
Fine frequency = BS_Fs/16384 x BS_FTF  
Default: 00h  
Preliminary Rev. 0.81  
71  
Si2107/08/09/10  
Register 8Bh. Blindscan Controller Fine Tuning Frequency Register H (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
BS_FTF[14:8]  
Bit  
7
Name  
Function  
Reserved  
Program as shown above.  
6:0  
BS_FTF[14:8]  
Fine frequency of identified channel, high byte.  
See register 8Ah.  
Default: 00h  
Register 8Ch. Blindscan Controller ADC Sampling Rate Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BS_ADCSR[7:0]  
Function  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
BS_ADCSR[7:0]  
7:0  
Blindscan ADC Sampling Rate used for the identified channel.  
BS_Fs = BS_ADCSR x 1 MHz  
Default: 00h  
Register 8Dh. LSA Control 1 Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
AVG_WIN[6:5]  
02h  
01h  
02h  
Bit  
7
Name  
Function  
Reserved  
Program as shown above.  
6:5  
AVG_WIN[6:5]  
Length of the time averaging window for computation for LSA in blind scan mode.  
Refer to Silicon Laboratories application note AN298 for recommended default val-  
ues for QuickLock/QuickScan operation.  
4:3  
2
Reserved  
Reserved  
Reserved  
Program as shown above.  
Program as shown above.  
Program as shown above.  
1:0  
72  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register 8Eh. Spectrum Tilt Correction Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
SPEC_TILT_CORREC[7:0]  
Function  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
7:0 SPEC_TILT_CORREC[7:0] Correction to be applied for spectrum tilt.  
Refer to Silicon Laboratories application note AN298 for recommended  
default values for QuickLock/QuickScan operation.  
Register 90h. 1dB Bandwidth Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BW_1dB  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
BW_1dB[7:0]  
Function  
Threshold used to determine 1 dB bandwidth for a detected channel.  
7:0  
Refer to Silicon Laboratories application note AN298 for recommended  
default values for QuickLock/QuickScan operation.  
Register 91h. 2dB Bandwidth Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BW_2dB  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
Function  
7:0  
BW_2dB[7:0]  
Threshold used to determine 2 dB bandwidth for a detected channel.  
Refer to Silicon Laboratories application note AN298 for recommended default val-  
ues for QuickLock/QuickScan operation.  
Register 92h. 3dB Bandwidth Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
BW_3dB  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
BW_3dB[7:0]  
Function  
Threshold used to determine 3 dB bandwidth for a detected channel.  
7:0  
Refer to Silicon Laboratories application note AN298 for recommended  
default values for QuickLock/QuickScan operation.  
Preliminary Rev. 0.81  
73  
Si2107/08/09/10  
Register 93h. Inband Power Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INBAND_THRESHOLD  
Bit  
Name  
Function  
Threshold for determining the drop in power in a channel as the LSA scans a  
7:0  
INBAND_  
THRESHOLD[7:0] detected channel to determine the channel bandwidth.  
Refer to Silicon Laboratories application note AN298 for recommended default val-  
ues for QuickLock/QuickScan operation.  
Register 94h. Noise Level Margin Threshold Register (Si2109 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
REF_NOISE_MARGIN[7:0]  
Function  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
7:0 REF_NOISE_MARGIN[7:0] Power level threshold for the detection of channels.  
Refer to Silicon Laboratories application note AN298 for recommended  
default values for QuickLock/QuickScan operation.  
Register A0h. Viterbi Search Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
VTCS[5:0]  
Name  
Bit  
Name  
Function  
7:6  
5:0  
Reserved  
VTCS[5:0]  
Program as shown above.  
Viterbi Code Rate Search Parameter Enable.  
The code rates to be used in the Viterbi search are selected by writing a  
one into the appropriate bit position. The list below illustrates the rela-  
tionship between bit position and code rate.  
Bit 5 = 7/8 code rate (MSB)  
Bit 4 = 6/7 code rate  
Bit 3 = 5/6 code rate  
Bit 2 = 3/4 code rate  
Bit 1 = 2/3 code rate  
Bit 0 = 1/2 code rate (LSB)  
Default: All code rates selected (3Fh).  
74  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register A2h. Viterbi Search Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
VTERS  
VTERM  
VTERW[1:0]  
Bit  
7:4  
3
Name  
Function  
Reserved  
VTERS  
Program as shown above.  
Viterbi BER Measurement Start  
Writing a 1 to this bit initiates the Viterbi BER measurement.  
2
VTERM  
Viterbi BER Measurement Mode  
0 = finite window (default)  
1 = infinite window  
1:0  
VTERW[1:0]  
Viterbi BER Measurement Window  
13  
00 = 2 bits (default)  
17  
01 = 2 bits  
21  
10 = 2 bits  
25  
11 = 2 bits  
Register A3h. Viterbi Search Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
VTRS[2:0]  
0
VTPS  
VTIQS  
Name  
0
0
Bit  
Name  
Function  
7:5  
VTRS[2:0]  
Viterbi Current Code Rate Status.  
000 = 1/2 code rate (default)  
001 = 2/3 code rate  
010 = 3/4 code rate  
011 = 5/6 code rate  
100 = 6/7 code rate  
101 = 7/8 code rate  
11x = Undefined  
4:2  
1
Reserved  
VTPS  
Program as shown above.  
Viterbi Constellation Rotation Phase Status.  
0 = Not rotated (default)  
1 = Rotated by 90 degrees  
Viterbi I/Q Swap Status.  
0
VTIQS  
0 = Not swapped (default)  
1 = Swapped  
Preliminary Rev. 0.81  
75  
Si2107/08/09/10  
Register ABh. Viterbi BER Count L  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VTERC[7:0]  
Bit  
Name  
VTERC[7:0]  
Function  
7:0  
Viterbi BER Counter (Low Byte).  
Stores the number of the Viterbi bit errors detected within the specified  
measurement window. This register saturates when it reaches the limit  
of its range.  
Default: 00h  
Register ACh. Viterbi BER Count H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VTERC[15:8]  
Bit  
Name  
VTERC[15:8]  
Function  
7:0  
Viterbi BER Counter (High Byte).  
See Register ABh.  
76  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register B0h. Reed-Solomon BER Error Monitor Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
RSERS  
RSERM  
RSERW  
RSERT[1:0]  
Bit  
7:5  
4
Name  
Function  
Reserved  
RSERS  
Program as shown above.  
Reed-Solomon BER Measurement Start.  
Writing a 1 to this bit initiates the Reed-Solomon BER measurement.  
3
2
RSERM  
RSERW  
Reed-Solomon Measurement Mode.  
0 = Finite window (default)  
1 = Infinite window  
Reed-Solomon Measurement Window.  
12  
0 = 2 frames (default)  
16  
1 = 2 frames  
1:0  
RSERT[1:0]  
Reed-Solomon Error Type.  
00 = Corrected bit errors (default)  
01 = Corrected byte errors  
10 = Uncorrected packets  
11 = PRBS errors  
Register B1h. Reed-Solomon Error Monitor Count L  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Bit  
RSERC[7:0]  
Name  
Bit  
Name  
RSERC[7:0]  
Function  
7:0  
Reed-Solomon Error Counter (Low Byte).  
Stores the number of RS or PRBS errors detected within the specified  
window. This register saturates when it reaches the limit of its range.  
Default: 00h  
Preliminary Rev. 0.81  
77  
Si2107/08/09/10  
Register B2h. Reed-Solomon Error Monitor Count H  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
RSERC[15:8]  
Bit  
Name  
RSERC[15:8]  
Function  
7:0  
Reed-Solomon Error Counter (High Byte).  
See Register B1h.  
Register B3h. Descrambler Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
DST_DS  
DSO_DS  
Bit  
7:2  
1
Name  
Function  
Reserved  
DST_DS  
Program as shown above.  
Descrambler Transport Error Insertion Disable.  
0 = Enabled (default)  
1 = Disabled  
0
DSO_DS  
Descrambler Inverted SYNC Overwrite Disable.  
0 = Enabled (default)  
1 = Disabled  
78  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register B5h. PRBS Control  
Bit D7  
Name PRBS_START PRBS_INVERT PRBS_SYNC  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
PRBS_HEADER_SIZE[1:0]  
Bit  
Name  
Function  
7
PRBS_START  
Start PRBS Synchronization.  
1 = Start PRBS synchronization  
Default = 0  
6
5
PRBS_INVERT  
PRBS_SYNC  
Invert PRBS Output.  
1 = PRBS inverted.  
Default = 0  
Synchronization Achieved for PRBS Test.  
0 = Not synchronized.  
1 = Synchronized  
Default = 0  
4:2  
1:0  
Reserved  
Read returns zero.  
PRBS_HEADER_SIZE  
Packet Header Size.  
This signals the number of bytes at the start of a TS packet that are con-  
sidered TS header, and that are not occupied by PRBS data in PRBS  
test mode.  
DVB-Smode  
00 = 1  
DSS mode  
0 (Default)  
01 = 2  
10 = 3  
11 = 4  
1
2
3
Preliminary Rev. 0.81  
79  
Si2107/08/09/10  
Register C0h. LNB Control 1  
Bit  
D7  
D6  
0
D5  
D4  
Si2107/9  
LNBB  
Si2108/10  
LNBB  
D3  
D2  
D1  
D0  
Part  
LNBS  
LNBS  
LNBCT  
LNBCT  
MMSG  
MSGL[2:0]  
MSGL[2:0]  
Name  
Part  
LNBV  
MMSG  
Name  
Bit  
Name  
Function  
7
LNBS  
LNB Start.  
Writing a 1 to this bit initiates an LNB signaling sequence. This bit is automatically  
cleared to zero when the sequence is complete.  
Note: Not available in manual LNB mode.  
6
5
LNBV  
LNB DC Voltage Selection.  
0 = 13 V (default)  
1 = 18 V  
LNBCT  
Continuous Tone Selection.  
0 = Normal operation (default)  
1 = Send continuous tone  
Note: Not available in manual LNB mode.  
4
3
LNBB  
Tone Burst Selection.  
0 = Unmodulated tone burst (default)  
1 = Modulated tone burst  
Note: For use in automatic LNB mode only. Use a 1-byte DiSEqC message for tone burst  
implementation in step-by-step LNB mode.  
MMSG  
More Messages.  
0 = Normal operation (default)  
1 = Indicates more DiSEqC messages to be sent  
This bit is automatically cleared to zero when the sequence is complete.  
Note: For use in automatic LNB mode only.  
2:0  
MSGL[2:0] Message Length.  
000 = No message (default)  
001 = One byte  
010 = Two bytes  
011 = Three bytes  
100 = Four bytes  
101 = Five bytes  
110 = Six bytes  
111 = Longer than six bytes.  
Notes:  
1. When message length is set to one byte, tone burst modulation is used. When message  
length is set to two or more bytes, DiSEqC modulation is used.  
2. Not available in manual LNB mode.  
80  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register C1h. LNB Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LNBM[1:0]  
0
0
0
BRST_DS  
TFS  
0
Bit  
Name  
Function  
7:6  
LNBM[1:0]  
LNB Signaling Mode.  
00 = Automatic (default)  
01 = Step-by-step  
10 = Manual  
11 = Reserved  
5:3  
2
Reserved  
BRST_DS  
Program as shown above.  
Tone Burst Disable.  
0 = Enabled (default)  
1 = Disabled  
Note: For use in automatic LNB mode only, in conjunction with LNBB (C0h[4])  
1
0
TFS  
Tone Format Select.  
0 = Tone generation/detection (default)  
1 = Envelope generation/detection  
Reserved  
Program as shown above.  
Register C2h. LNB Control 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
TDIR  
TT  
TR  
0
0
0
0
0
Bit  
Name  
Function  
7
TDIR  
Tone Direction Control.  
Controls output of DRC pin.  
0 = Low (logic zero) (default)  
1 = High (logic one)  
Note: This bit is only active in manual LNB mode.  
6
5
TT  
TR  
Tone Transmit.  
Controls output of TGEN pin.  
0 = Tone off / Low (logic zero) (default)  
1 = Tone on / High (logic one)  
Note: This bit is only active in manual LNB mode.  
Tone Receive.  
Detects input on TDET pin.  
0 = No tone or low signal detected (default)  
1 = Tone or high signal detected  
Note: This bit is only active in manual LNB mode.  
4:0  
Reserved  
Program as shown above.  
Preliminary Rev. 0.81  
81  
Si2107/08/09/10  
Register C3h. LNB Control 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D1  
Name  
TFQ[7:0]  
Bit  
Name  
TFQ[7:0]  
Function  
LNB Tone Frequency Control.  
7
Used to set the frequency of the LNB tone according to the following  
equation:  
Frequency = 100 MHz/[32 x (TFQ+1)]  
00000000–01111011 = Reserved  
01111100–10011011 = valid range  
10011100–11111111 = Reserved  
Default: 8Dh = 22 kHz  
82  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register C4h. LNB Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
FE  
FF  
MSGPE  
MSGR  
MSGTO  
MSGRL[2:0]  
Bit  
Name  
Function  
Message FIFO Empty.  
7
FE  
0 = Normal operation (default)  
1 = Message FIFO empty  
Message FIFO Full.  
6
FF  
0 = Normal operation (default)  
1 = Message FIFO full  
Message Parity Error.  
5
MSGPE  
MSGR  
0 = Normal operation (default)  
1 = Parity error detected  
Message Received.  
4
0 = Normal operation (default)  
1 = Message received  
Message Timeout.  
3
MSGTO  
0 = Normal operation (default)  
1 = Message reply not received within 150 ms  
Received Message Length.  
2:0  
MSGRL[2:0]  
000 = No message (default)  
001 = One byte  
010 = Two bytes  
011 = Three bytes  
100 = Four bytes  
101 = Five bytes  
110 = Six bytes  
111 = Longer than six bytes  
Preliminary Rev. 0.81  
83  
Si2107/08/09/10  
Register C5-CAh. Message FIFO 1–6  
Bit  
D7  
D6  
D5  
D4  
FIF0x[7:0]  
D3  
D2  
D1  
D0  
Name  
Bit  
Name  
FIFO1–6[7:0]  
Function  
7:0  
Message FIFO.  
Contains message to be transmitted or message received  
Register CBh. LNB Supply Control 1 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VLOW[3:0]  
VHIGH[3:0]  
Bit  
Name  
Function  
7:4  
VLOW[3:0]  
LNB Supply Low Voltage.  
Low voltage = Vlow_nom + VLOW[3:0] x 0.0625V + Vboost, where  
Vlow_nom is determined by the LNBV(C0h[6]) register bit, and Vboost  
is determined by the COMP(CEh[2]) register bit.  
Default: Low voltage = Vlow_nom + 0.0 V + Vboost.  
3:0  
VHIGH[3:0]  
LNB Supply High Voltage.  
High voltage = Vhigh_nom + VHIGH[3:0] x 0.0625V + Vboost, where  
Vhigh_nom is determined by the LNBV(C0h[6]) register bit, and  
Vboost is determined by the COMP(CEh[2]) register bit.  
Default: High voltage = Vhigh_nom + 0.0 V + Vboost.  
84  
Preliminary Rev. 0.81  
Si2107/08/09/10  
Register CCh. LNB Supply Control 2 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
SLOT[1:0]  
Function  
D2  
D1  
D0  
Name  
ILIM[1:0]  
IMAX[1:0]  
OLOT[1:0]  
Bit  
Name  
7:6  
ILIM[1:0]  
IMAX[1:0]  
SLOT[1:0]  
Average Current Limit.  
00 = 400 – 550 mA (default)  
01 = 500 – 650 mA  
10 = 650 – 850 mA  
11 = 800 – 1000 mA  
5:4  
3:2  
Peak Current Limit.  
00 = 1.2 A (default)  
01 = 1.6 A  
10 = 2.4 A  
11 = 3.2 A  
Short Circuit Lockout Time.  
00 = 15 µs initial; 240 µs secondary  
01 = 20 µs initial; 320 µs secondary (default)  
10 = 40 µs initial; 480 µs secondary  
11 = 20 µs  
Overcurrent Lockout Time.  
00 = 2.5 ms  
1:0  
OLOT[1:0]  
01 = 3.75 ms  
10 = 5.0 ms (default)  
11 = 7.5 ms  
Note: This register byte is read-only if LNBL=1.  
Register CDh. LNB Supply Control 3 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
VMON[7:0]  
Bit  
Name  
VMON[7:0]  
Function  
7:0  
LNB Voltage Monitor (read only).  
LNB output voltage = VMON x 0.0625 + 6 V  
Preliminary Rev. 0.81  
85  
Si2107/08/09/10  
Register CEh. LNB Supply Control 4 (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LNBL  
0
0
0
LNB_EN  
COMP  
0
LNBMD  
Bit  
Name  
Function  
7
LNBL  
LNB Supply Lock.  
Writing a one to this bit locks the contents of Register CCh. This bit  
can only be cleared by a device reset.  
6:4  
3
Reserved  
LNB_EN  
Program as shown above.  
LNB Supply Enable.  
0 = Disabled (default)  
1 = Enabled  
2
COMP  
LNB Cable Compensation Boost.  
0 = Normal operation (default)  
1 = LNB output voltage increased +1 V  
1
0
Reserved  
LNBMD  
Program as shown above.  
LNB Mode Detect.  
Detected supply mode (read-only)  
0 = External LNB supply circuit  
1 = Internal LNB supply circuit  
Register CFh. LNB Supply Status (Si2108 and Si2110 only)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
0
0
0
0
0
0
SCD  
OCD  
Bit  
Name  
Function  
7:2  
1
Reserved  
SCD  
Program as shown above.  
Short-Circuit Detect Flag.  
0 = Normal operation (default)  
1 = Short-circuit detected  
0
OCD  
Overcurrent Detect Flag.  
0 = Normal operation (default)  
1 = Overcurrent detected.  
86  
Preliminary Rev. 0.81  
Si2107/08/09/10  
9. Pin Descriptions  
Si2108/10  
Si2107/09  
44 43 42 41 40 39 38 37 36  
44 43 42 41 40 39 38 37 36  
1
2
3
4
5
6
7
8
9
VDD_LNA  
REXT  
1
2
3
4
5
6
7
8
9
35 XTAL1  
VDD_LNA  
REXT  
35 XTAL1  
XTAL2  
GND  
GND  
34 XTAL2  
34  
ADDR  
33 VDD_XTAL  
32 XTOUT  
ADDR  
33 VDD_XTAL  
32 XTOUT  
VDD_MIX  
VDD_BB  
VDD_ADC  
VSEN/TDET  
LNB1/TGEN  
ISEN  
VDD_MIX  
VDD_BB  
VDD_ADC  
TDET  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
31 VDD_PLL33  
30 INT/RLK/GPO  
29 TS_ERR  
Top  
View  
Top  
View  
TGEN  
28  
27  
28  
TS_VAL  
TS_VAL  
NC  
27 TS_SYNC  
26 SDA  
TS_SYNC  
LNB2/DRC 10  
RESET 11  
DRC 10  
11  
26 SDA  
RESET  
25 SCL  
25 SCL  
PWM/DCS  
DCS 12  
12  
24 TS_DATA[7]  
24 TS_DATA[7]  
GND  
GND  
TS_DATA[6]  
23  
TS_DATA[6]  
23  
VDD_DIG18 13  
VDD_DIG18 13  
14 15 16 17 18 19 20 21 22  
14 15 16 17 18 19 20 21 22  
Pin #  
Name  
I/O  
Description  
Supply Voltage.  
1
VDD_LNA  
I
LNA power supply. Connect to 3.3 V.  
External Reference Resistor.  
Connect 4.53 kto GND.  
2
3
4
REXT  
ADDR  
I
I
I
2
I C Address Select.  
Supply Voltage.  
Mixer power supply. Connect to 3.3 V  
Supply Voltage.  
Baseband power supply. Connect to 1.8 V.  
Supply Voltage.  
ADC power supply. Connect to 3.3 V.  
Voltage Sense/Tone Detect.  
VDD_MIX  
5
6
VDD_BB  
I
I
VDD_ADC  
7
8
9
VSEN/TDET  
LNB1/TGEN  
ISEN  
I
O
I
VSEN (Si2108/10 only)—Line voltage of LNB supply circuit.  
TDET—Detect input of external tone or tone envelope.  
LNB Control 1/Tone Generation.  
LNB1 (Si2108/10 only)—Required connection to LNB supply circuit.  
TGEN—Outputs tone or tone envelope.  
Current Sense (Si2108/10 only).  
Monitors current of LNB supply circuit. When LNB supply circuit is not populated or  
when using Si2107/09, leave pin unconnected.  
LNB Control 2/Direction Control.  
LNB2 (Si2108/10 only)—required connection to LNB supply circuit.  
DRC—Outputs signal to indicate message transmission (HIGH) or reception  
(LOW).  
10  
11  
LNB2/DRC  
RESET  
O
I
Device Reset.  
Active low.  
Preliminary Rev. 0.81  
87  
Si2107/08/09/10  
Pin #  
Name  
I/O  
Description  
PWM/DC Voltage Select.  
PWM (Si2108/10 only)—Connected to gate of power MOSFET for LNB supply cir-  
12  
PWM/DCS  
O
cuit.  
DCS—Outputs signal to indicate 18 V (HIGH) or 13 V (LOW) LNB supply voltage  
selection.  
Supply voltage.  
13  
VDD_DIG18  
TS_DATA[7:0]  
VDD_DIG33  
I
O
I
Digital power supply. Connect to 1.8 V.  
Transport Stream Data Bus.  
Serial data is output on TS_DATA[0].  
Supply Voltage.  
14–17,  
21–24  
18, 20  
Digital power supply. Connect to 3.3 V.  
19  
25  
26  
27  
28  
29  
TS_CLK  
SCL  
O
I
Transport Stream Clock.  
2
I C Clock.  
2
SDA  
I/O I C Data.  
TS_SYNC  
TS_VAL  
TS_ERR  
O
O
O
Transport Stream Sync.  
Transport Stream Valid.  
Transport Stream Error.  
Multi Purpose Output Pin.  
This pin can be configured to one of the following outputs using the Pin Ctrl 2 (05h)  
register.  
INT = Interrupt  
INT/RLK/  
GPO  
30  
O
RLK = Receiver lock indicator  
GPO = General purpose output  
Supply Voltage.  
Analog PLL power supply. Connect to 3.3 V.  
31  
32  
VDD_PLL33  
XTOUT  
I
No Connect/Crystal oscillator output.  
If this device is to be used as the clock master in a multi-channel design, this pin  
should be connect to the XTAL1 pin of a clock slave device. (Otherwise, this pin  
should be left unconnected.)  
O
Supply Voltage.  
Crystal Oscillator power supply. Connect to 3.3 V.  
Crystal Oscillator.  
Connect to 20 MHz crystal unit.  
Crystal Oscillator.  
Connect to 20 MHz crystal unit.  
Supply Voltage.  
Synth power supply. Connect to 3.3 V.  
Supply Voltage.  
Local Oscillator power supply. Connect to 3.3 V.  
Ground.  
33  
34  
VDD_XTAL  
XTAL2  
I
O
I
35  
XTAL1  
36  
VDD_SYNTH  
VDD_LO  
GND  
I
37  
I
38,41,44  
I
Reference ground.  
RF Input.  
39, 43 RFIP1, RFIP2  
40, 42 RFIN1, RFIN2  
I
These pins must be connected together on the board.  
RF Input.  
These pins must be connected together on the board.  
Ground.  
I
ePad  
GND  
I
Reference ground.  
88  
Preliminary Rev. 0.81  
Si2107/08/09/10  
10. Ordering Guide1,2  
Ordering Part #  
Description  
Temperature  
Si2110-X-FM  
Si2109-X-FM  
Si2108-X-FM  
Si2107-X-FM  
Satellite receiver for DVB-S/DSS with LNB step-up dc-dc controller  
and on-chip blindscan accelerator, Pb-free and RoHS Compliant  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
Satellite receiver for DVB-S/DSS with on-chip blindscan accelerator,  
Pb-free and RoHS Compliant  
Satellite receiver for DVB-S/DSS with step-up dc-dc controller, Pb-  
free and RoHS Compliant  
Satellite receiver for DVB-S/DSS, Pb-free and RoHS Compliant  
Notes:  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
Preliminary Rev. 0.81  
89  
Si2107/08/09/10  
11. Package Outline: 44-pin QFN  
Figure 23 illustrates the package details for the Si2110. Table 20 lists the values for the dimensions shown in the  
illustration.  
Figure 23. 44-Pin QFN  
Table 20. Package Diagram Dimensions  
Millimeters  
Nom  
Millimeters  
Nom  
Dimension  
Dimension  
Min  
Max  
Min  
Max  
A
0.80  
0.00  
0.18  
0.90  
0.02  
1.00  
0.05  
0.30  
E2  
L
6.00  
0.45  
0.03  
6.10  
0.55  
0.05  
0.10  
0.10  
0.08  
0.10  
6.20  
0.65  
0.08  
A1  
b
0.25  
L1  
D
D2  
6.00 BSC.  
2.80  
aaa  
bbb  
ccc  
ddd  
2.70  
2.90  
e
0.50 BSC.  
8.00 BSC.  
E
Notes:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VJLD.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for small body Components.  
4. The pin 1 I.D. pad is for component orientation only and is not to be soldered to the PCB.  
90  
Preliminary Rev. 0.81  
Si2107/08/09/10  
12. PCB Land Pattern  
Figure 24. PCB Land Pattern  
Preliminary Rev. 0.81  
91  
Si2107/08/09/10  
Table 21. PCB Land Pattern Dimensions  
Dimension  
Min  
Max  
e
E
0.50 BSC  
7.51 REF  
5.51 REF  
D
E2  
D2  
GE  
GD  
X
6.00  
2.70  
6.71  
4.71  
6.20  
2.90  
--  
--  
0.28  
Y
0.80 REF  
ZE  
ZD  
8.31  
6.31  
Notes - General:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
Notes - Solder Mask Design:  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between  
the solder mask and the metal pad is to be 60 m minimum, all the way around  
the pad.  
Notes - Stencil Design:  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter  
pads.  
4. A 3x6 array of 0.70mm square openings on 0.95mm pitch should be used for  
the center ground pad.  
Notes - Card Assembly:  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C  
specification for Small Body Components.  
92  
Preliminary Rev. 0.81  
Si2107/08/09/10  
DOCUMENT CHANGE LIST  
Revision 0.4 to Revision 0.5  
Package dimensions changed to 6 x 8 mm.  
Updated pin numbering and pin descriptions.  
Schematics updated.  
2
I C interface description added.  
MPEG-TS timing specifications added.  
Revision 0.5 to revision 0.6  
Data sheet for Si2107/08/09/10.  
Added detailed operational description.  
Register map changed for Rev. C silicon.  
Various editorial changes and corrections.  
Revision 0.6 to revision 0.7  
Updated application diagram and BOM.  
2
Added table for multi-device I C address support.  
Revision 0.7 to revision 0.8  
Added detailed operational description of QuickScan  
functionality in "6.9. On-Chip Blindscan Controller:  
QuickScan (Si2109/10 Only)" on page 32.  
Added graphs of performance illustrating typical  
performance.  
Figure 4, “Eb/No (QEF Operation) vs. Input Power for  
Si2107/08/09/10 (Typical) SR = 27.5 MBaud, CR = 7/8,”  
on page 11.  
Figure 5, “BER After Viterbi vs. Eb/No for Si2107/08/09/  
10,” on page 11.  
Figure 6, “Phase Noise Performance for Si2107/08/09/  
10 (Typical),” on page 12.  
Updated “2. Typical Application Schematics”.  
Figure 8, “Si2107/08/09/10 Schematic,” on page 13  
Figure 9, “DiSEqC 1.x LNB Supply Circuit,” on page 14  
Figure 10, “DiSEqC 2.x LNB Supply Circuit,” on page  
15.  
Updated "3. Bill of Materials" on page 16.  
Added "12. PCB Land Pattern" on page 91.  
Revision 0.8 to revision 0.81  
Updated documentation on Quicklock and  
QuickScan details.  
Added Figure 7, “Frequency Offset vs. Carrier Lock/  
Acquisition Time for Various Baudrates Using  
QuickLock (Typical),” on page 12.  
Preliminary Rev. 0.81  
93  
Si2107/08/09/10  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: DBSinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
94  
Preliminary Rev. 0.81  

相关型号:

SI2107_06

SATELLITE RECEIVER FOR DVB-S/DSS WITH QUICKLOCK AND QUICKSCAN
SILICON

SI2108

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2108-D-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2108-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2108-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2109

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2109-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2109-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

SI2110

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2110-X-FM

SATELLITE RECEIVER FOR DVB-S/DSS
SILICON

SI2110-X-FMR

Telecom Circuit, 1-Func, CMOS, ROHS COMPLIANT, QFN-44
SILICON

Si2111

Digital TV Receiver for DVB-T/C
SILICON