SI3010-F-FS [SILICON]

V.22BIS ISOMODEM㈢ WITH INTEGRATED GLOBAL DAA; 与全球综合DAA的V.22bis ISOMODEM⑩
SI3010-F-FS
型号: SI3010-F-FS
厂家: SILICON    SILICON
描述:

V.22BIS ISOMODEM㈢ WITH INTEGRATED GLOBAL DAA
与全球综合DAA的V.22bis ISOMODEM⑩

文件: 总76页 (文件大小:999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si2401  
®
V.22BIS ISOMODEM WITH INTEGRATED GLOBAL DAA  
Features  
„ Data modem formats  
z 2400 bps: V.22bis  
„ Integrated third-generation DAA  
z Fewer external components required  
z Over 5000 V capacitive isolation  
z Parallel phone detect  
z 1200 bps: V.22, V.23, Bell 212A  
z 300 bps: V.21, Bell 103  
z Fast connect and V.23 reversing  
z SIA and other security protocols  
„ 27 MHz CLKIN support  
„ Caller ID detection and decoding  
„ UART with flow control  
z Globally-compliant line interface  
„ AT command set support  
„ Call progress support  
„ 3.3 V Power  
Ordering Information  
„ Lead-free, RoHS-compliant  
See page 72.  
packages  
Applications  
Pin Assignments  
Si2401  
„ Set-top boxes  
„ Point-of-sale  
„ ATM terminals  
„ Security systems  
„ Medical monitoring  
„ Power meters  
1
16 GPIO1/EOFR  
15 GPIO2/CD  
14 GPIO3/ESC  
CLKIN/XTALI  
XTALO  
Description  
2
3
The Si2401 ISOmodem® is a complete, two-chip 2400 bps modem integrating  
Silicon Labs’ third-generation direct access arrangement (DAA), which provides a  
globally-programmable telephone line interface with an unprecedented level of  
integration. Available in two 16-pin SOIC packages, this compact solution  
eliminates the need for a separate DSP data pump, modem controller, codec,  
isolation transformer, relay, opto-isolators, and 2–4 wire hybrid. The Si2401  
provides conventional data formats at connect rates of up to 2400 bps with full-  
duplex operation over the Public Switched Telephone Network (PSTN).  
Additionally, the Si2401 is fully-programmable to meet global standards with a  
single design. Other features include fast connect times for electronic point-of-  
sale (EPOS) applications and alarm protocols for security systems. The device is  
ideal for embedded modem applications due to its small size, low external  
component count, and low power consumption.  
GPIO5/RI  
VD  
4
5
6
7
8
13  
12  
VA  
GND  
RXD  
TXD  
CTS  
11 GPIO4/INT/AOUT  
10 C1A  
9
C2A  
RESET  
Si3010  
1
16  
DCT2  
QE  
2
3
DCT  
15 IGND  
14 DCT3  
RX  
IB  
4
5
6
7
8
13  
12  
QB  
QE2  
C1B  
C2B  
Functional Block Diagram  
11 SC  
VREG  
10 VREG2  
9
RNG2  
RNG1  
Si2401  
Si3010  
RX  
RXD  
TXD  
µ Controller  
(AT Decoder,  
Call Progress)  
U.S. Patent #5,870,046  
U.S. Patent #6,061,009  
Other patents pending  
IB  
SC  
CTS  
Hybrid, AC  
and DC  
Terminations  
DCT  
VREG  
RESET  
VREG2  
DCT2  
DCT3  
Isolation  
Interface  
EOFR/GPIO1  
DSP  
(Data Pump)  
CD/GPIO2  
ESC/GPIO3  
INT/GPIO4  
RI/GPIO5  
Control  
Interface  
RNG1  
RNG2  
QB  
QE  
QE2  
Ring Detect  
Off-Hook  
XTALI  
XOUT  
Clock  
Interface  
Rev. 1.0 12/05  
Copyright © 2005 by Silicon Laboratories  
Si2401  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si2401  
2
Rev. 1.0  
Si2401  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3. Bill of Materials: Si2401/10 Chipset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.1. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.2. Configurations and Data Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.3. Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.4. Global DAA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.5. Parallel Phone Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.6. Interrupt Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.7. V.23 Operation/V.23 Reversing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.8. V.42 HDLC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9. Fast Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.10. Clock Generation Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. AT Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.1. Command Line Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.2. <CR> End-Of-Line Character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.3. AT Command Set Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.4. Alarm Industry AT Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.5. Modem Result Codes and Call Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6. Low Level DSP Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6.1. DSP Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6.2. Call Progress Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
7. S Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8. Pin Descriptions: Si2401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
9. Pin Descriptions: Si3010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
11. Package Outline: 16-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
Rev. 1.0  
3
Si2401  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
2
2
Symbol  
Test Condition  
Typ  
Unit  
Parameter  
Min  
Max  
70  
Ambient Temperature  
Si2401 Supply Voltage, Digital  
Notes:  
T
F-Grade  
0
25  
°C  
V
A
3
V
3.0  
3.3  
3.6  
D
1. The Si2401 specifications are guaranteed when the typical application circuit (including component tolerance) and Si2401  
and Si3010 are used. See "2. Typical Application Schematic" on page 10.  
2. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical  
values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
3. The digital supply, V , operates from 3.0 to 3.6 V. The Si2401 interface supports 5 V logic (CLKIN/XTALI supports 3.3 V  
D
logic only).  
4
Rev. 1.0  
Si2401  
Table 2. Loop Characteristics  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C for F-Grade, see Figure 1 on page 6)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Termination Voltage  
V
V
V
V
V
V
V
I = 20 mA, ILIM = 0  
DCV = 00, MINI = 11, DCR = 0  
6.0  
V
TR  
TR  
TR  
TR  
TR  
TR  
TR  
L
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
I = 120 mA, ILIM = 0  
9
V
V
V
V
V
V
L
DCV = 00, MINI = 11, DCR = 0  
I = 20 mA, ILIM = 0  
9
7.5  
L
DCV = 11, MINI = 00, DCR = 0  
I = 120 mA, ILIM = 0  
L
DCV = 11, MINI = 00, DCR = 0  
I = 20 mA, ILIM = 1  
40  
7.5  
L
DCV = 11, MINI = 00, DCR = 0  
I = 60 mA, ILIM = 1  
L
DCV = 11, MINI = 00, DCR = 0  
I = 50 mA, ILIM = 1  
40  
L
DCV = 11, MINI = 00, DCR = 0  
On-Hook Leakage Current  
Operating Loop Current  
Operating Loop Current  
DC Ring Current  
I
I
I
V
= –48 V  
TR  
10  
10  
5
120  
60  
3
µA  
mA  
mA  
µA  
LK  
LP  
LP  
MINI = 00, ILIM = 0  
MINI = 00, ILIM = 1  
dc current flowing through ring  
detection circuitry  
1.5  
*
Ring Detect Voltage  
V
V
RT = 0  
RT = 1  
12  
18  
15  
15  
21  
18  
25  
68  
0.2  
V
RD  
RD  
RMS  
RMS  
*
Ring Detect Voltage  
V
Ring Frequency  
F
Hz  
R
Ringer Equivalence Number  
REN  
*Note: The ring signal is guaranteed to not be detected below the minimum. The ring signal is guaranteed to be detected  
above the maximum.  
Rev. 1.0  
5
Si2401  
Table 3. DC Characteristics*  
(VD = 3.0 to 3.6 V, TA = 0 to 70°C for F-Grade)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
V
2.0  
100  
10  
8
0.8  
V
V
IH  
Low Level Input Voltage  
V
IL  
High Level Output Voltage  
V
I = –2 mA  
2.4  
V
OH  
O
Low Level Output Voltage  
V
V
I = 1 mA  
0.35  
0.6  
10  
V
OL  
OL  
O
Low Level Output Voltage, GPIO1–4  
Input Leakage Current  
I = 10 mA  
V
O
I
–10  
50  
µA  
kΩ  
mA  
mA  
mA  
µA  
L
Pullup Resistance Pins 5, 7, 11, 14  
Power Supply Current, Digital  
Power Supply Current, DSP Powerdown  
Power Supply Current, Wake-On-Ring  
Power Supply Current, Total Powerdown  
R
200  
15  
PU  
I
I
I
I
V pin  
D
D
D
D
D
V pin  
12  
D
V pin  
7
10  
D
V pin  
100  
D
*Note: Measurements are taken with inputs at rails and no loads on outputs.  
TIP  
+
600 Ω  
Si3010  
VTR  
IL  
10 µF  
RING  
Figure 1. Test Circuit for Loop Characteristics  
6
Rev. 1.0  
Si2401  
Table 4. AC Characteristics  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C for F-Grade, Fs = 8 kHz)  
Parameter  
Sample Rate  
Symbol  
Test Condition  
Min  
Typ  
8
Max  
Unit  
kHz  
Fs  
Clock Input Frequency  
Clock Input Frequency  
F
default  
4.9152  
27  
MHz  
MHz  
XTL  
XTL  
F
<10 kΩ resistor between DCD  
and GND  
Receive Frequency Response  
Receive Frequency Response  
Low –3 dBFS Corner, FILT = 0  
Low –3 dBFS Corner, FILT = 1  
5
Hz  
Hz  
200  
1.1  
1.1  
80  
1
Transmit Full Scale Level  
V
V
PEAK  
FS  
FS  
1,2  
Receive Full Scale Level  
V
V
PEAK  
DR  
ILIM = 0, DCV = 11, MINI = 00  
dB  
3
Dynamic Range  
DCR = 0, I = 100 mA  
L
DR  
ILIM = 0, DCV = 00, MINI = 11  
80  
80  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
3
Dynamic Range  
DCR = 0, I = 20 mA  
L
DR  
ILIM = 1, DCV = 11, MINI = 00  
3
Dynamic Range  
DCR = 0, I = 50 mA  
L
Transmit Total Harmonic  
THD  
THD  
THD  
THD  
ILIM = 0, DCV = 11, MINI = 00  
–72  
–78  
–78  
–78  
50  
4
Distortion  
DCR = 0, I = 100 mA  
L
Transmit Total Harmonic  
ILIM = 0, DCV = 00, MINI = 11  
4
Distortion  
DCR = 0, I = 20 mA  
L
Receive Total Harmonic  
ILIM = 0, DCV = 00, MINI = 11  
4
Distortion  
DCR = 0, I = 20 mA  
L
Receive Total Harmonic  
ILIM = 1,DCV = 11, MINI=00  
4
Distortion  
DCR = 0, I = 50 mA  
L
Dynamic Range (Caller ID Mode)  
DR  
VIN = 1 kHz, –13 dBm  
CID  
Notes:  
1. Measured at TIP and RING with 600 Ω termination at 1 kHz, as shown in Figure 1 on page 6.  
2. Receive full scale level produces –0.9 dBFS at DTX.  
3. DR = 20 x log |Vin| + 20 x log (rms signal/rms noise). Applies to both transmit and receive paths. Vin = 1 kHz, –3 dBFS.  
4. Vin = 1 kHz, –3 dBFS. THD = 20 x log (rms distortion/rms signal).  
Rev. 1.0  
7
Si2401  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
–0.5 to 4.1  
±10  
Unit  
V
DC Supply Voltage  
V
D
Input Current, Si2401 Digital Input Pins  
Digital Input Voltage  
I
mA  
V
IN  
V
–0.3 to 5.3  
IND  
CLKIN/XTALI Input Voltage  
Operating Temperature Range  
Storage Temperature Range  
V
–0.3 to (V + 0.3)  
V
XIND  
D
T
–10 to 100  
–40 to 150  
°C  
°C  
A
T
STG  
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
8
Rev. 1.0  
Si2401  
Table 6. Switching Characteristics  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C for F-Grade)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Baud Rate Accuracy  
CTS Active to Start Bit↓  
RESET Pulse Width  
RESET to TXD ↓  
–1  
10  
1
1
%
ns  
t
csb  
t
ms  
ms  
rl  
t
3
rs  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = 2.0 V, VIL = 0.8 V  
Receive Timing  
RXD  
8-Bit Data  
Mode (Default)  
Start  
Start  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
Stop  
RXD  
9-Bit Data  
Mode  
D8  
Stop  
Transmit Timing  
TXD  
8-Bit Data  
Mode (Default)  
Start  
Start  
D0  
D0  
D1  
D1  
D2  
D3  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
Stop  
D8  
TXD  
9-Bit Data  
Mode  
D2  
D3  
D4  
Stop  
tcsb  
tsbc  
CTS  
RESET  
trl  
TXD  
trs  
Note: Baud rates (programmed through register SE0) are as follows: 300,1200, 2400, 9600, 19200,  
38400, 115200, and 307200 Hz.  
Figure 2. Asynchronous UART Serial Interface Timing Diagram  
Rev. 1.0  
9
Si2401  
2. Typical Application Schematic  
+
S C  
1 1  
1 5  
I G N D  
1
2
V A  
1 3  
1 2  
D
G N  
V D  
4
10  
Rev. 1.0  
Si2401  
3. Bill of Materials: Si2401/10 Chipset  
Component  
C1, C2  
C3  
Value  
33 pF, Y2, X7R, ±20%  
10 nF, 250 V, X7R, ±20%  
1.0 µF, 50 V, Tant/Elect, ±20%  
0.1 µF, 16 V, X7R, ±20%  
2.7 nF, 50 V, X7R, ±20%  
680 pF, Y2, X7R, ±10%  
0.01 µF, 16 V, X7R, ±20%  
33 pF, 16 V, NP0, ±5%  
0.22 µF, 16 V, X7R, ±20%  
Dual Diode, 225 mA, 300 V, CMPD2004S  
Ferrite Bead, BLM21AG601SN1  
NPN, 300 V, MMBTA42  
PNP, 300 V, MMBTA92  
NPN, 80 V, 330 mW, MMBTA06  
Sidactor, 275 V, 100 A  
1.07 kΩ, 1/2 W, 1%  
Supplier(s)  
Panasonic, Murata, Vishay  
Venkel, SMEC  
C4  
Venkel, SMEC  
C5, C6, C50  
C7  
Venkel, SMEC  
Venkel, SMEC  
C8, C9  
C10  
Panasonic, Murata, Vishay  
Venkel, SMEC  
1
C40, C41  
Venkel, SMEC  
C51  
Venkel, SMEC  
2
D1, D2  
Central Semiconductor  
Murata  
FB1, FB2  
Q1, Q3  
Q2  
OnSemi, Fairchild  
OnSemi, Fairchild  
Q4, Q5  
RV1  
OnSemi, Fairchild  
Teccor, Protek, ST Micro  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Silicon Labs  
R1  
R2  
150 Ω, 1/16 W, 5%  
R3  
3.65 kΩ, 1/2 W, 1%  
R4  
2.49 kΩ, 1/2 W, 1%  
R5, R6  
R7, R8  
R9  
100 kΩ, 1/16 W, 5%  
20 MΩ, 1/16 W, 5%  
1 MΩ, 1/16 W, 1%  
R10  
536 Ω, 1/4 W, 1%  
R11  
73.2 Ω, 1/2 W, 1%  
R12, R13  
56 Ω, 1/16 W, 1%  
3
R15, R16  
0 Ω, 1/16 W  
U1  
U2  
Si2401  
Si3010  
Silicon Labs  
1,4  
Y1  
4.9152 MHz, 20 pF, 100 ppm, 150 Ω ESR  
Zener Diode, 43 V, 1/2 W, BZT52C43  
ECS Inc., Siward  
Z1  
On Semi  
Notes:  
1. In STB applications, C40, C41, and Y1 can be removed when using the 27 MHz clock input feature. See  
"4.10. Clock Generation Subsystem" on page 23.  
2. Several diode bridge configurations are acceptable. For example, a single DF04S or four 1N4004 diodes may be  
used.  
3. Murata BLM21AG601SN1 may be substituted for R15–R16 (0 Ω) to decrease emissions.  
4. To ensure compliance with ITU specifications, frequency tolerance must be less than 100 ppm including initial  
accuracy, 5-year aging, 0 to 70 °C, and capacitive loading. 50 ppm initial accuracy crystals typically satisfy this  
requirement.  
Rev. 1.0  
11  
Si2401  
can be programmed using the Si3010 to meet  
worldwide PTT specifications for ac termination, dc  
4. Functional Description  
The Si2401 is a complete modem chipset with termination, ringer impedance, and ringer threshold.  
integrated direct access arrangement (DAA) that The DAA can also monitor line status for parallel  
provides a programmable line interface to meet global handset detection and overcurrent conditions.  
telephone line requirements. Available in two 16-pin  
small-outline packages, this solution includes a DSP  
existing modem applications. The device interfaces  
data pump, modem controller, codec, and DAA.  
The Si2401 is designed for rapid assimilation into  
directly through a UART to a microcontroller. The  
The modem accepts simple modem AT commands and Si2401URT-EVB evaluation board connects directly to a  
provides connect rates up to 2400 bps full-duplex over standard RS-232 interface. This allows for evaluation of  
the Public Switched Telephone Network (PSTN) with the modem immediately upon powerup via  
V.42 hardware support through HDLC framing. To HyperTerminal or any standard terminal software.  
minimize handshake times, the Si2401 can implement a  
V.22-based fast connect. The modem also supports the  
international telephone line interface requirements with  
V.23 reversing protocol and standard alarm formats  
The chipset can be fully programmed to meet  
full compliance to FCC, TBR21, JATE, and other  
country-specific PTT specifications. In addition, the  
including SIA.  
This device is ideal for embedded modem applications Si2401 has been designed to meet the most stringent  
due to its small board space, low power consumption, worldwide requirements for out-of-band energy, billing-  
and global compliance. The Si2401 solution integrates a tone immunity, high-voltage surges, and safety  
silicon DAA using Silicon Laboratories’ proprietary third- requirements.  
generation DAA technology. This highly-integrated DAA  
Table 7. Selectable Configurations  
Carrier  
Frequency (Hz)  
Data Rate  
(bps)  
Standard  
Compliance  
Configuration  
Modulation  
V.21  
V.22  
FSK  
DPSK  
QAM  
1080/1750  
1200/2400  
1200/2400  
1300/2100  
1300/1700  
1170/2125  
1200/2400  
300  
1200  
Full  
Full  
*
*
V.22bis  
V.23  
2400  
No retrain  
1200/75  
600/75  
300  
Full; plus reversing  
(Europe)  
FSK  
V.23  
Bell 103  
FSK  
DPSK  
DTMF  
Pulse  
FSK  
Full  
Full  
Bell 212A  
Security  
1200  
40  
Full  
SIA—Pulse  
SIA Format  
Low  
Full  
1170/2125  
300 half-duplex  
300 bps only  
*Note: The Si2401 only adjusts its DCE rate from 2400 bps to 1200 bps if it is connecting to a V.22-only (1200 bps only)  
modem. Because the V.22bis specification does not outline a fallback procedure, the host should implement a  
fallback mechanism consisting of hanging up and connecting at a lower baud rate. Retraining to accommodate  
changes in line conditions that occur during a call must be implemented by terminating the call and redialing.  
12  
Rev. 1.0  
Si2401  
4.1. Serial Interface  
Table 9. Modem Configuration Examples  
(S07[7] (HDEN) = 0, S07[6] (BD) = 0)  
The Si2401 has a universal asynchronous receiver/  
transmitter (UART) serial interface compatible with  
standard microcontroller serial interfaces. After powerup  
or reset, the speed of the serial (Data Terminal  
Equipment—DTE) interface is set by default to  
2400 bps with the 8-bit, no parity, and one-stop bit (8N1)  
format described below.  
Modem Protocol  
V.22bis  
Register S07 Values  
0x06  
0x02  
0x03  
0x00  
0x01  
0x16  
0x26  
0x10  
0x20  
V.22  
V.21  
Bell 212A  
The serial interface DTE rate can be modified by writing  
SE0[2:0] (SD) with the value corresponding to the  
desired DTE rate. (See Table 8.) This is accomplished  
with the command, ATSE0=xx, where xx is the  
hexadecimal value of the SE0 register.  
Bell 103  
V.23 (1200 tx, 75 rx)  
V.23 (75 tx, 1200 rx)  
V.23 (600 tx, 75 rx)  
V.23 (75 tx, 600 rx)  
Table 8. DTE Rates  
DTE Rate (bps)  
300  
SE0[2:0] (SD)  
As shown in Figure 3, 8-bit and 9-bit data modes refer to  
the DTE format over the UART. Line data formats are  
configured through registers S07 (MF1) and S15 (MLC).  
If the number of bits specified by the format differs from  
the number of bits specified by the DCE data  
communications equipment or line (DTE) format, the  
MSBs are either dropped or bit-stuffed, as appropriate.  
For example, if the DTE format is 9 data bits (9N1), and  
the line data format is 8 data bits (8N1), the MSB from  
the DTE is dropped as the 9-bit word is passed from the  
DTE side to the DCE (line) side. In this case, the  
dropped ninth bit can then be used as an escape  
mechanism. However, if the DTE format is 8N1, and the  
line data format is 9N1, an MSB equal to 0 is added to  
the 8-bit word as it is passed from the DTE side to the  
DCE side.  
000  
001  
010  
011  
100  
101  
110  
111  
1200  
2400  
9600  
19200  
38400  
115200  
307200  
Immediately after the ATSE0=xx string is sent, the host  
UART must be reprogrammed to the new DTE rate in  
order to communicate with the Si2401.  
The carriage return character following the ATSE0=xx  
string must be sent at the new DTE rate to observe the  
“O” response code. See Table 12 on page 24 for the  
response code summary.  
The Si2401 UART does not continuously check for stop  
bits on the incoming digital data. Therefore, if the TXD  
pin is not high, the RXD pin may echo meaningless  
characters to the host UART. This requires the host  
UART to flush its receiver FIFO upon initialization.  
4.2. Configurations and Data Rates  
The Si2401 can be configured to any of the Bell and  
CCITT operation modes listed in Table 9. When  
configured for V.22bis, the modem connects at  
1200 bps if the far end modem is configured for V.22.  
This device also supports SIA and other protocols for  
the security industry. Table 7 provides the modulation  
method, carrier frequencies, data rate, baud rate, and  
notes on standard compliance for each modem  
configuration of the Si2401. Table 9 shows example  
register settings (S07) for some of the modem  
configurations.  
Si2401  
Si3010  
TXD  
RXD  
RJ11  
DTE Interface  
Data Rate: SE0[2:0] (SD)  
Data Format: SE0[3] (ND)  
DCE (Line) Interface  
Data Rate: S07 (MF1)  
Data Format: S15 (MLC)  
Figure 3. Link and Line Data Formats  
Rev. 1.0  
13  
Si2401  
4.2.1. Command/Data Mode  
After the middle of the stop bit time, the Si2401 begins  
looking for a logic 1 to logic 0 transition signaling the  
start of the next character on TXD to be sent to the line  
(remote modem).  
Upon reset, the modem is in command mode and  
accepts AT-style commands. An outgoing modem call  
can be made using the “ATDT#” (tone dial) or “ATDP#”  
(pulse dial) command after the device is configured. If 4.2.3. 9-Bit Data Mode (9N1)  
the handshake is successful, the modem responds with  
The 9-bit data mode is set by SE0[3] (ND) = 1. It is  
the “c”, “d”, or “v” string and enters data mode. (The  
byte following the “c”, “d”, or “v” is the first data byte.) At  
this point, AT-style commands are not accepted. There  
are three methods that may be used to return the  
Si2401 to command mode:  
asynchronous, full duplex, and uses a total of 11 bits  
including a start bit (logic 0), 9 data bits, and a stop bit  
(logic 1). Data received from the line (remote modem) is  
transferred from the Si2401 to the host on the RXD pin.  
Data transfer to the host begins when the Si2401  
asserts a logic 0 start bit on RXD. Data is shifted out of  
the Si2401 LSB first at the DTE rate determined by the  
SE0[2:0] (SD) setting and terminates with a stop bit.  
„ Use the ESC pin—To program the GPIO3 pin to  
function as an ESCAPE input, set GPIO3  
SE2[5:4] = 11. In this setting, a positive edge  
detected on this pin returns the modem to command Data from the host for transmission to the line (remote  
mode. The “ATO” string can be used to reenter data modem) is shifted to the Si2401 on TXD beginning with  
mode.  
a start bit, LSB, first at the DTE rate determined by the  
S-Register SE0[2:0] (SD) setting, and terminates with a  
stop bit. After the middle of the stop bit time, the Si2401  
begins looking for a logic 1 to logic 0 transition signaling  
the start of the next character on TXD to be sent to the  
line (remote modem).  
„ Use 9-bit data mode—If 9-bit data format with  
escape is programmed, a 1 detected on bit 9 returns  
the modem to command mode. (See Figure 2 on  
page 9.) This is enabled by setting SE0[3] (ND) = 1  
and S15[0] (NBE) = 1. The ATO string can be used  
to reenter data mode. Ninth bit escape does not  
work in the security modes.  
The ninth data bit may be used to indicate an escape by  
setting S15[0] (NBE) = 1. In this mode, the ninth data bit  
is normally set to 0 when the modem is online. When  
the ninth data bit is set to 1, the modem goes offline into  
command mode, and the next frame is interpreted as an  
AT command. Data mode can be reentered using the  
ATO command.  
„ Use “+++”—The escape sequence is a sequence of  
three escape characters that are set in S-register  
®
S0F (“+” characters by default). If the ISOmodem  
chipset detects the “+++” sequence and detects no  
activity on the UART before or after the “+++”  
sequence for a time period set by S-register S10, it  
returns to command mode. To disable this escape  
sequence, set S-register S10 = FF. To remove the  
time-dependent behavior, set S-register S10 = 00.  
4.2.4. Flow Control  
No flow control is needed if the DTE rate and DCE rate  
are the same. If the serial link (DTE) data rate is set  
higher than the line (DCE) rate of the modem, flow  
control is required to prevent loss of data to the  
transmitter.  
Whether using an escape method or not, when the  
carrier is lost, the modem automatically returns to  
command mode and reports “N”.  
To control data flow, the clear-to-send (CTS) pin is used.  
When CTS is asserted, the Si2401 is ready to accept a  
character. While CTS is negated, no data should be  
sent to the Si2401 on TXD. To simplify flow control, the  
Si2401 has an integrated ten character transmit FIFO  
and allows for two different CTS reporting methods. By  
default, the CTS pin is negated as soon as a start bit is  
detected on the TXD pin and remains negated until the  
modem is ready to accept another character (see  
Figure 2 on page 9.) By setting SFC7[7] = 1 (CTSM),  
CTS is negated when the FIFO is 70% full and is  
reasserted when the FIFO is 30% full.  
4.2.2. 8-Bit Data Mode (8N1)  
The 8-bit data mode is the default mode after powerup  
or reset and is set by SE0[3] (ND) = 0 . It is  
b
asynchronous, full duplex, and uses a total of 10 bits  
including a start bit (logic 0), eight data bits, and a stop  
bit (logic 1). Data received from the remote modem is  
transferred from the Si2401 to the host on the RXD pin.  
Data transfer to the host begins when the Si2401  
asserts a logic 0 start bit on RXD. Data is shifted out of  
the Si2401 LSB first at the DTE rate determined by the  
SE0[2:0] (SD) setting and terminates with a stop bit.  
Data from the host for transmission to the remote  
modem is shifted to the Si2401 on TXD beginning with a  
start bit, LSB, first at the DTE rate determined by the  
SE0[2:0] setting, and terminates with a stop bit.  
14  
Rev. 1.0  
Si2401  
(WOR) = 1 (WOR = 0 by default).  
4.3. Low Power Modes  
b
„ Total Powerdown. Setting SF1[5] = 1 and SF1[6] = 1  
places the Si2401 into a total powerdown mode. All  
logic is powered down including the crystal oscillator  
and clock-out pin. Only a hardware reset can restart  
the Si2401.  
The Si2401 has three low-power modes:  
„ DSP Powerdown. The DSP processor can be  
powered down by setting register  
SEB[3] (PDDE) = 1.  
In this mode, the serial interface still functions, and  
the modem detects ringing and intrusion. However,  
no modem modes or tone detection features  
function.  
4.4. Global DAA Operation  
The Si2401 chipset contains an integrated silicon direct  
access arrangement (silicon DAA) that provides a  
programmable line interface to meet international  
telephone line requirements. Table 10 gives the DAA  
register settings required to meet various country PTT  
standards.  
„ Wake-Up-On-Ring. By issuing the ATz command,  
the Si2401 goes into a low-power mode where both  
the microcontroller and DSP are powered down.  
Only an incoming ring, a low TXD signal, or a total  
reset will power up the chip again. Return from  
wake-on-ring triggers the INT pin if S09[6]  
Table 10. Country-Specific Register Settings  
Si2401 Register  
Country  
SF5  
ILIM  
SF6  
OHS  
RZ  
RT MINI[1:0] DCV[1:0] ACT[3:0]  
AT Command  
String  
Algeria  
Argentina  
Armenia  
10  
00  
00  
01  
10  
00  
10  
00  
10  
00  
00  
00  
10  
00  
00  
00  
00  
00  
00  
1
0
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
10  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
10  
10  
10  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0011  
0000  
0000  
0011  
0011  
0000  
0011  
0000  
0011  
0000  
0000  
0000  
0011  
0000  
0000  
0000  
0000  
0000  
0000  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=10SF6=93  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
Australia  
Austria (EU)  
Bahamas  
Bahrain  
Belarus  
Belgium (EU)  
Bermuda  
Brazil  
Brunei  
Bulgaria  
Canada  
Caribbean  
Chile  
China - People's Republic  
Colombia  
Costa Rica  
Rev. 1.0  
15  
Si2401  
Table 10. Country-Specific Register Settings  
Si2401 Register  
SF5  
ILIM  
SF6  
Country  
OHS  
RZ  
RT MINI[1:0] DCV[1:0] ACT[3:0]  
AT Command  
String  
Croatia  
Cyprus (EU)  
Czech Republic (EU)  
Denmark (EU)  
Dominican Republic  
Dubai  
10  
10  
10  
10  
00  
00  
00  
10  
00  
10  
10  
10  
00  
10  
10  
10  
10  
00  
00  
10  
10  
00  
00  
10  
10  
10  
00  
00  
00  
1
1
1
1
0
0
0
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
01  
00  
10  
10  
00  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
10  
01  
01  
10  
0011  
0011  
0011  
0011  
0000  
0000  
0000  
0011  
0000  
0011  
0011  
0011  
0000  
0011  
0011  
0011  
0011  
0000  
0000  
0011  
0011  
0000  
0000  
0011  
0011  
0011  
0000  
0000  
0000  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=20SF6=53  
ATSF5=28SF6=23  
ATSF5=00SF6=90  
ATSF5=00SF6=90  
ATSF5=00SF6=20  
Equador  
Egypt  
El Salvador  
Estonia (EU)  
Finland (EU)  
France (EU)  
Georgia  
Germany (EU)  
Ghana  
Greece (EU)  
Guadeloupe  
Guam  
Hong Kong  
Hungary (EU)  
Iceland (CTR-21)  
India  
Indonesia  
Ireland (EU)  
Israel  
Italy (EU)  
Japan  
Jordan  
Kazakhstan  
16  
Rev. 1.0  
Si2401  
Table 10. Country-Specific Register Settings  
Si2401 Register  
Country  
SF5  
ILIM  
SF6  
OHS  
RZ  
RT MINI[1:0] DCV[1:0] ACT[3:0]  
AT Command  
String  
Korea  
Kuwait  
00  
00  
00  
10  
10  
00  
10  
10  
10  
00  
00  
10  
10  
00  
00  
10  
10  
00  
10  
10  
00  
00  
00  
00  
00  
10  
10  
10  
00  
0
0
0
1
1
0
1
1
1
0
0
1
1
0
0
1
1
0
1
1
0
0
0
0
0
1
1
1
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
10  
00  
00  
00  
00  
00  
00  
00  
00  
00  
10  
10  
00  
00  
10  
00  
00  
00  
00  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
01  
10  
10  
01  
10  
10  
10  
10  
0000  
0000  
0000  
0011  
0011  
0011  
0011  
0011  
0011  
0000  
0000  
0011  
0011  
0000  
0000  
0011  
0011  
0100  
0011  
0011  
0000  
0000  
0000  
0000  
0000  
0011  
0011  
0011  
0000  
ATSF5=04SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=04SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=90  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=24  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=90  
ATSF5=00SF6=90  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=90  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
Kyrgyzstan  
Latvia (EU)  
Lebanon  
Lesotho  
Liechtenstein (CTR-21)  
Lithuania (EU)  
Luxembourg (EU)  
Macao  
Malaysia  
Malta (EU)  
Martinique  
Mexico  
Moldova  
Morocco  
Netherlands (EU)  
New Zealand  
Nigeria  
Norway (CTR-21)  
Oman  
Pakistan  
Paraguay  
Peru  
Philippines  
Poland (EU)  
Polynesia (French)  
Portugal (EU)  
Puerto Rico  
Rev. 1.0  
17  
Si2401  
Table 10. Country-Specific Register Settings  
Si2401 Register  
SF5  
ILIM  
SF6  
Country  
OHS  
RZ  
RT MINI[1:0] DCV[1:0] ACT[3:0]  
AT Command  
String  
Qatar  
Reunion  
00  
10  
10  
00  
00  
00  
10  
10  
00  
10  
00  
10  
10  
00  
00  
00  
00  
10  
00  
00  
10  
00  
00  
00  
00  
00  
10  
0
1
1
0
0
0
1
1
0
1
0
1
1
0
0
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
10  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
10  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
01  
10  
10  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
01  
10  
01  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
0000  
0011  
0011  
0000  
0000  
0000  
0011  
0011  
0011  
0011  
0000  
0011  
0011  
0000  
0000  
0000  
0000  
0011  
0000  
0000  
0011  
0000  
0000  
0000  
0000  
0000  
0011  
ATSF5=00SF6=90  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=10  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=04SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=28SF6=23  
ATSF5=00SF6=90  
ATSF5=00SF6=20  
ATSF5=00SF6=10  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=00SF6=20  
ATSF5=28SF6=23  
Romania  
Russia  
Saudi Arabia  
Singapore  
Slovakia (EU)  
Slovenia (EU)  
South Africa  
Spain (EU)  
Sri Lanka  
Sweden (EU)  
Switzerland (CTR-21)  
Syria  
Taiwan  
Thailand  
Tunisia  
Turkey  
UAE  
Ukraine  
United Kingdom (EU)  
Uruguay  
USA  
Uzbekistan  
Venezuela  
Yemen  
Zambia  
18  
Rev. 1.0  
Si2401  
directly through the LCS register. Upon detecting an  
intrusion, an "i" result code is sent to the host if it is in  
the call negotiation stage or command mode.  
Otherwise, the modem can be programmed to generate  
an interrupt to notify the host of the intrusion.  
4.5. Parallel Phone Detection  
®
The ISOmodem chipset is able to detect when another  
telephone, modem, or other device is using the phone  
line. This allows the host to avoid interrupting another  
phone call when the phone line is already in use and to  
intelligently handle an interruption when the ISOmodem  
chipset is using the phone line.  
The off-hook intrusion algorithm monitors the value of  
LCS (SF3) at a sample rate determined by the DGSR  
(SDF, bits 6:0) register (40 ms units). The algorithm  
compares each LCS sample to the reference value in  
the ACL register (S12). If LCS is lower than ACL by an  
amount greater than DCL (S11, bits 4:0), the algorithm  
waits for another LCS sample, and if the next LCS  
sample is also lower than ACL by an amount greater  
than DCL, an interrupt occurs. This helps the  
ISOmodem chipset avoid a false parallel phone  
detection (PPD) interrupt due to glitches on the phone  
line. The ACL is continually updated with the value of  
LCS as outlined below. The algorithm can be outlined  
as follows:  
4.5.1. On-Hook Intrusion Detection  
When the ISOmodem chipset is sharing the telephone  
line with other devices, it is important that it not interrupt  
a call in progress. To detect when another device is  
using the shared telephone line, the host can use the  
ISOmodem chipset to monitor the TIP-RING dc voltage  
with the LVS[7:0] bits (SDB). The LVS[7:0] bits have a  
resolution of 1 V per bit with an accuracy of  
approximately ±10%. Bits 0 through 6 of this 8-bit signed  
2s complement number indicate the value of the line  
voltage, and the sign bit (bit 7) indicates the polarity of  
TIP and RING.  
If LCS(t) = LCS(t – 40 ms x DGSR)  
When all devices on a particular telephone line are on-  
hook, there is no loop current flowing through TIP and  
RING. Therefore, the voltage across TIP and RING is at  
and  
LCS(t) – ACL > DCL  
a maximum. (On most telephone lines, this on-hook then ACL = LCS(t)  
voltage is a minimum of 40 V.) Once a device goes off-  
If (ACL – LCS[t – 40 ms x DGSR]) > DCL)  
hook, current flows through TIP and RING on that  
device, and the TIP-RING voltage drops appreciably.  
(On most telephone lines, this off-hook voltage is a  
maximum of 20 V.)  
and  
(ACL – LCS[t]) > DCL)  
Then, an intrusion is sent to the host.  
If the host checks the TIP-RING voltage via LVS before The very first sample of LCS the algorithm uses after  
causing the ISOmodem chipset to dial out or go off- going off-hook does not have any previous samples for  
hook, the host can determine if another device is using comparison. If LCS was measured during a previous  
the telephone line. One way to do this is to verify that call, this value of LCS may be used as an initial  
the voltage represented in LVS is above some fixed reference. ACL may be written by the host with this  
threshold, such as 30 V.  
known value of LCS. If ACL is non-zero, the ISOmodem  
chipset uses ACL as the first valid LCS sample in the  
off-hook intrusion algorithm. If ACL is 0 (default after  
reset), the ISOmodem chipset ignores the register and  
does not begin operating the algorithm until two LCS  
samples have been received. Additionally, immediately  
after a modem call, ACL is updated automatically with  
the last valid LCS value before a parallel phone  
detection (PPD) intrusion or going back on-hook.  
4.5.2. Off-Hook Intrusion Detection  
After it has been determined that it is safe to use the  
phone line without interrupting a call, the host can  
instruct the ISOmodem chipset to begin a call or go off-  
hook. However, once the call has begun and the  
ISOmodem chipset is in data mode, the serial port is  
used for modem data making it difficult for the host to  
monitor registers. Therefore, when the ISOmodem  
chipset is off-hook, an algorithm is implemented to  
automatically monitor the TIP-RING loop current via the  
LCS register (SF3). Because the TIP-RING voltage  
drops significantly when off-hook, TIP-RING current is a  
better indicator of another device using the phone line.  
The LCS[7:0] bits have a resolution of 1.1 mA per bit.  
An LCS register value of 0x00 indicates less than the  
required loop current is present, and a value of 0xFF  
indicates excessive current draw (>120 mA if ILIM = 0  
or >60 mA if ILIM = 1). The user can read these bits  
The off-hook intrusion algorithm does not begin to  
operate immediately after going off-hook. This is to  
avoid triggering an interrupt due to transients resulting  
from the ISOmodem chipset itself going from on-hook to  
off-hook. The time that elapses between the ISOmodem  
chipset going off-hook and the intrusion algorithm  
starting defaults to one second and may be adjusted via  
the IST register (S82, bits 7:4). If ACL is written to a  
non-zero value before going off-hook, a parallel phone  
intrusion that occurs during this IST interval and  
Rev. 1.0  
19  
Si2401  
sustains through the end of the interval triggers an S09[1] interrupt status. As long as GPIO4 is  
interrupt.  
programmed as INT and the overcurrent mask bit is  
enabled by setting S08[1](OCDM) = 1, INT asserts  
during an overcurrent situation. The host may then  
check S09[1] (OCD) via the AT:I command to confirm  
that an overcurrent condition occurred.  
The off-hook intrusion algorithm may additionally be  
disabled for a period of time after dialing begins via the  
IB register (S82, bits 2:1). This avoids triggering an  
interrupt due to pulse dialing, open-switch intervals, or  
line transients from central office switching. Intrusion 4.6.4. Caller ID Decoding Operation  
may be disabled from the start of dialing to the end of  
The Si2401 supports full caller ID detection and decode  
dialing (IB = 01 ), from the start of dialing to the timeout  
b
for US Bellcore and UK standards. To use the caller ID  
decoding feature, the following configuration is  
necessary:  
of the IS (S29, bits 7:0) by setting IB = 10 (IB = 2), or  
b
from the start of dialing to carrier detect by setting  
IB = 11b. The off-hook intrusion algorithm is only  
suspended (not disabled) during this IB interval.  
Therefore, any intrusion that occurs during the IB  
interval and sustains through the end of the interval  
triggers a PPD interrupt.  
1. Set SE0[3] (ND) = 0 (set modem to 8N1  
b
configuration).  
2. Set S0C[6:5] (CIDM) = 01 (set modem to Bellcore  
type caller ID) or S13[2] (CIDB) = 1 (set modem to  
UK type caller ID).  
4.6. Interrupt Detection  
4.6.5. Caller ID Monitor/Bellcore Caller ID  
The INT interrupt pin can be programmed to alert the  
host of loss of carrier, loss of phone line voltage/current,  
parallel phone detection, and other interrupts listed in  
the interrupt status mask (S08). After the host receives  
an interrupt via the INT pin, the host should issue the  
AT:I command. This command causes a read-clear of  
the WOR, PPD, NLD, RI, OCD, and REV bits of the S09  
register and raises (deactivates) the INT pin. All the  
interrupt status bits in register S09 remain high after  
being set until cleared by the AT:I command.  
The Si2401 continuously monitors the phone line for the  
caller ID mark signals. This can be useful in systems  
that require detection of caller ID data before the ring  
signal, voice mail indicator signals, and Type II caller ID  
monitor support. To force the Si2401 into caller ID  
monitor mode, set SOC[6:5] (CIDM) = 11.  
Note: CIDM should be disabled before going off-hook.  
4.6.6. UK Caller ID Operation  
The Si2401 starts searching for the Idle State Tone Alert  
Signal. When this signal has been detected, the Si2401  
transmits an “a” to the host. After the Idle State Tone  
Alert Signal is completed, the Si2401 applies the  
wetting pulse for the required 15 ms by quickly going  
off-hook and on-hook. From this point on, the algorithm  
is identical to that of Bellcore in that it searches for the  
channel seizure signal and the marks before echoing an  
“m” and then reports the decoded caller ID data.  
4.6.1. Loop Current Detection  
In addition to monitoring parallel phone intrusion, it is  
possible to monitor the loss of loop current. This feature  
can be enabled by setting S08[4] (NLDM) = 1. This  
feature is disabled by default. If the loop current is too  
low for normal DAA operation, S09[4] (NLD) is set.  
During this event, if the NLR result code is enabled by  
setting S62[1](NLR) = 1, the “l” result code is sent. Once  
the loop current returns to a normal current state, the “L”  
result code is sent. The INT pin is also asserted if  
enabled.  
4.7. V.23 Operation/V.23 Reversing  
The Si2401 supports full V.23 operation including the  
V.23 reversing procedure. V.23 operation is enabled by  
4.6.2. Loss-of-Carrier Detection  
setting S07 (MF1) = xx10x110 or xx01x110 . If  
b
b
S07[5] (V23R) = 1 , the Si2401 transmits data at 75 bps  
and receives data at 600 or 1200 bps. If  
The Si2401 has two methods of implementing a loss-of-  
carrier function. If GPIO4 is programmed as INT, and if  
S08[7](CDM) = 1, INT asserts in data mode when a  
loss-of-carrier is detected. The carrier detect function  
may also be implemented on GPIO2 by setting SE2[3:2]  
(GPIO2) = 01 and SOC[7](CDE) = 1.  
b
S07[4] (V23T) = 1 , the Si2401 receives data at 75 bps  
b
and transmits data at 600 or 1200 bps. S07[2] (BAUD)  
is the 1200 or 600 bps indicator. BAUD = 1 enables the  
b
1200/600 V.23 channel to run at 1200 bps, while  
BAUD = 0 enables 600 bps operation.  
b
4.6.3. Overcurrent Detection  
When a V.23 connection is successfully established, the  
modem responds with a “c” character if the connection  
is made with the modem transmitting at 1200/600 bps  
and receiving at 75 bps. The modem responds with a  
“v” character if a V.23 connection is established with the  
The Si2401 has an integrated overcurrent detection  
feature. The Si2401 begins monitoring for an  
overcurrent condition at a programmable time set by  
S32 (OCDT) after going off-hook (default = 20 ms). If an  
overcurrent condition is detected, the Si2401 sets  
20  
Rev. 1.0  
Si2401  
modem transmitting at 75 bps and receiving at 1200/ Successful completion of a turnaround procedure in  
600 bps.  
master or slave mode automatically updates  
S07[4] (V23T) and S07[5] (V23R) to indicate the new  
status of the V.23 connection.  
The Si2401 supports the V.23 turnaround procedure.  
This allows a modem that is transmitting at 75 bps to  
initiate a “turnaround” procedure so that it can begin  
transmitting data at 1200/600 bps and receiving data at  
75 bps. The modem is defined as being in V.23 master  
mode if it is transmitting at 75 bps, and it is defined as  
being in slave mode if the modem is transmitting at  
1200/600 bps. The following paragraphs give a detailed  
description of the V.23 turnaround procedure.  
To avoid using the INT pin, the host may also be notified  
of the INT condition by using 9-bit data mode. Setting  
S15[0] (NBE) = 1 and S0C[3] (9BF) = 0 configures  
b
b
the ninth bit on the Si2401 TXD path to function exactly  
as the INT pin has been described.  
4.8. V.42 HDLC Mode  
The Si2401 supports V.42 through hardware HDLC  
framing in all modem data modes. Frame packing and  
unpacking including opening and closing flag generation  
and detection, CRC computation and checking, zero  
insertion and deletion, and modem data transmission  
and reception are all performed by the Si2401. V.42  
error correction and V.42bis data compression must be  
performed by the host.  
4.7.1. Modem in Master Mode  
To perform a direct turnaround once a modem  
connection is established, the master host goes into  
online-command-mode by sending an escape  
command (Escape pin activation, TIES, or ninth bit  
escape) to the master modem.  
Note: The host can initiate a turnaround only if the Si2401 is  
the master.  
The digital link interface in this mode uses the same  
UART interface (8-bit data and 9-bit data formats) as in  
the asynchronous modes, and the ninth data bit may be  
The host then sends the ATRO command to the Si2401  
to initiate a V.23 turnaround and return to the online  
(data) mode.  
used as an escape by setting S15[0] (NBE) = 1 . When  
b
The Si2401 then changes its carrier frequency (from  
390 Hz to 1300 Hz) and waits to detect a 390 Hz carrier  
for 440 ms. If the modem detects more than 40 ms of a  
390 Hz carrier in a time window of 440 ms, it echoes the  
“c” response character. If the modem does not detect  
more than 40 ms of a 390 Hz carrier in a time window of  
440 ms, it hangs up and echoes the “N” (no carrier)  
character as a response.  
using HDLC in 9-bit data mode, if the ninth bit is not  
used as an escape, it is ignored.  
To use the HDLC feature on the Si2401, the host must  
enable HDLC operation by setting S13[1] (HDEN) = 1 .  
b
The host may initiate the call or answer the call using  
either the “ATDT#”, the “ATA” command or the auto-  
answer mode. (The auto-answer mode is implemented  
by setting register S00 (NR) to a non-zero value.) When  
the call is connected, a “c”, “d”, or “v” is echoed to the  
host controller. The host may now send/receive data  
across the UART using either the 8-bit data or 9-bit data  
formats with flow control.  
4.7.2. Modem in Slave Mode  
Configure GPIO4 as INT (SE2[7:6] [GPIO4] = 11 ). The  
b
Si2401 performs a reverse turnaround when it detects a  
carrier drop longer than 20 ms. The Si2401 then  
reverses (changes its carrier from 1300 Hz to 390 Hz)  
and waits to detect a 1300 Hz carrier for 400 ms. If the  
Si2401 detects more than 40 ms of a 1300 Hz carrier in  
a time window of 400 ms, it sets the S09[7] bit, and the  
next character echoed by the Si2401 is a “v”.  
At this point, the Si2401 begins framing data into the  
HDLC format. On the transmit side, if no data is  
available from the host, the HDLC flag pattern is sent  
repeatedly. When data is available, the Si2401  
computes the CRC code throughout the frame, and the  
data is sent with the HDLC zero-bit insertion algorithm.  
If the Si2401 does not detect more than 40 ms of the  
1300 Hz carrier in a time window of 400 ms, it reverses  
again and waits to detect a 390 Hz carrier for 440 ms.  
Then, if the Si2401 detects more than 40 ms of a  
390 Hz carrier in a time window of 220 ms, it sets the  
S09[7] bit, and the next character echoed by the Si2401  
is a “c”.  
HDLC flow control operates in a similar manner to  
normal asynchronous flow control across the UART and  
is shown in Figure 4. To operate flow control (using the  
CTS pin to indicate when the Si2401 is ready to accept  
a character), a DTE rate higher than the line rate should  
be selected.  
At this point, if the Si2401 does not detect more than  
40 ms of the 390 Hz carrier in a time window of 440 ms,  
it hangs up, sets the S09[7] bit, and the next character  
echoed by the Si2401 is an “N” (no carrier).  
Rev. 1.0  
21  
Si2401  
The method of transmitting HDLC frames is as follows:  
2. When the Si2401 detects the stop flag, it sends the  
last data word in the frame as well as the two CRC  
bytes and determines if the CRC checksum  
matches. Thus, the last two bytes are not frame data  
but are the CRC bytes, which can be discarded by  
the host. If the checksum matches, the Si2401  
echoes “G” (good). If the checksum does not match,  
the Si2401 echoes “e” (error). Additionally, if the  
Si2401 detects an abort (seven or more contiguous  
ones), it echoes an “A”.  
1. After the call is connected, the host should begin  
sending the frame data to the Si2401 using the CTS  
flow control to ensure data synchronicity.  
2. When the frame is complete, the host should simply  
stop sending data to the Si2401. Since the Si2401  
does not yet recognize the end-of-frame, it expects  
an extra byte and asserts CTS as shown in  
Figure 4A. If CTS is used to cause a host interrupt,  
this final interrupt should be ignored by the host.  
When the “G”, “e”, or “A” (referred to as a frame  
result word) is sent, the Si2401 raises the EOFR  
(end of frame receive) pin (see Figure 4B). The  
GPIO1 pin must be configured as EOFR by setting  
3. When the Si2401 is ready to send the next byte, if it  
has not yet received any data from the host, it  
recognizes this as an end-of-frame, raises CTS,  
calculates the final CRC code, transmits the code,  
and begins transmitting stop flags.  
SE4[3] (GPE) = 1 . In addition to using the EOFR  
b
pin to indicate that the byte is a frame result word, if  
4. After transmitting the first stop flag, the Si2401  
lowers CTS indicating that it is ready to receive the  
next frame from the host. At this point, the process  
repeats as in Step 1.  
in 9-bit data mode (set S15[0] (NBE) = 1 ), the ninth  
bit is raised if the byte is a frame result word. To  
b
program this mode, set S0C[3] (9BF) = 1 and  
b
SE0[3] (ND) = 1.  
The method of receiving HDLC frames is as follows:  
3. When the next frame of data is detected, EOFR is  
lowered, and the process repeats at Step 1 .  
b
1. After the call is connected, the Si2401 searches for  
flag data. Then, once the first non-flag word is  
detected, the CRC is continuously computed, and  
the data is sent across the UART (8-bit data or 9-bit  
data mode) to the host after removing the HDLC  
zero-bit insertion. The DTE rate of the host must be  
at least as high as that of data transmission. HDLC  
mode only works with 8-bit data words; the ninth bit  
is used only for escape on TXD and end-of-frame  
received (EOFR) on RXD.  
To summarize, when receiving HDLC frames, the host  
begins receiving data asynchronously from the Si2401.  
When each byte is received, the host should check the  
EOFR pin (or the ninth bit). If the EOFR pin (or the ninth  
bit) is low, the data is valid frame data. If the EOFR pin  
(or the ninth bit) is high, the data is a frame result word.  
Host begins frame N  
Host finished sending frame N  
Stop  
Host begins frame N + 1  
Start  
TXD  
Start  
Frame N  
Frame N + 1  
Si2401 detects end of frame N.  
(CTS used as normal flow control.)  
Si2400 ready for byte 1 of frame N  
Si2401 ready for byte 1  
of frame N + 1.  
CTS  
Note: Figure not to scale.  
A. Frame Transmit  
RXD  
Start  
Receive Data  
Stop  
Start  
CRC Byte 1  
Stop  
Start  
CRC Byte 2  
Stop  
Start  
Frame Result Word Stop  
EOFR  
(or bit 9)  
B. Frame Receive  
Figure 4. HDLC Timing  
22  
Rev. 1.0  
Si2401  
4.9. Fast Connect  
4.10. Clock Generation Subsystem  
In modem applications that require fast connection The Si2401 contains an on-chip clock generator. Using  
times, it is possible to reduce the length of the a single master clock input, the Si2401 can generate all  
handshake.  
modem sample rates necessary to support V.22bis,  
V.22/Bell212A, and V.21/Bell103 standards and a  
9.6 kHz rate for audio playback. Either a 27 MHz or  
4.9152 MHz clock on XTALI or a 4.9152 MHz crystal  
across XTALI and XTALO form the master clock for the  
Si2401. This clock source is sent to an internal phase-  
locked loop (PLL) that generates all necessary internal  
system clocks. The PLL has a settling time of ~1 ms.  
Data on RXD should not be sent to the device prior to  
settling of the PLL. By default, the Si2401 assumes a  
4.9152 MHz clock input. If a 27 MHz clock on XTALI is  
used, a pulldown resistor <10 kΩ must be placed  
between GPIO4 (Si2401, pin 11) and GND.  
Additional modem handshaking control can be adjusted  
through the registers shown in Table 11. These registers  
are most useful if the user has control of both the  
originating and answering modems.  
When the fast connect settings are used, there may be  
unintended data received initially. The host must  
tolerate these bytes.  
Table 11. V.22/Bell212 Handshaking Control Registers  
Register Name  
Function  
Units  
Default  
Fast  
Connect  
S1E  
S1F  
S20  
S21  
S22  
S23  
S24  
S34  
TATL Transmit Answer Tone Length  
1 s  
0x03  
0x2D  
0x5D  
0x09  
0xA2  
0xCB  
0x08  
0x5A  
00  
00  
00  
00  
00  
00  
00  
F0  
ATTD Answer Tone to Transmit Delay  
UNL Unscrambled Ones Length—V.22  
TSOD Transmit Scrambled Ones Delay—V.22  
TSOL Transmit Scrambled Ones Length—V.22  
VDDL V.22/22b Data Delay Low  
5/3 ms  
5/3 ms  
53.3 ms  
5/3 ms  
5/3 ms  
VDDH V.22/22b Data Delay High  
(256) 5/3 ms  
5/3 ms  
TASL Answer Tone Length  
(only used in S1E [TATL] = 0x00)  
S35  
RSOL Receive V.22 Scrambled Ones Length  
5/3 ms  
0xA2  
00  
Rev. 1.0  
23  
Si2401  
are no characters between AT and <CR>, the modem  
responds with “O” after the carriage return.  
5. AT Command Set  
The controller provides several vital functions including  
AT command parsing, DAA control, connect sequence  
5.1. Command Line Execution  
control, DCE protocol control, intrusion detection, The characters in a command line are executed one at  
parallel phone off-hook detection, escape control, caller a time. Unexpected command characters are ignored,  
ID control and formatting, ring detect, DTMF control, call but unexpected data characters may be interpreted  
progress monitoring, and HDLC framing. The controller incorrectly.  
also writes to the control registers that configure the  
After the modem has executed a command line, the  
modem. Virtually all interaction between the host and  
result code corresponding to the last command  
the modem is done via the controller. The controller  
executed is returned to the terminal or host. In addition  
uses AT (ATtention) commands and S-Registers to  
to the “ATH” and “ATZ” commands, the commands that  
warrant a response (e.g., “ATSR?” or “ATI”) must be the  
configure and control the modem.  
The modem has two modes of operation: command last in the string and followed by a <CR>. All other  
mode and data mode. The Si2401 is asynchronous in commands may be concatenated on a single line. To  
both command mode and data mode. The modem is in echo command line characters, set the Si2401 to echo  
command mode at powerup, after a reset, before a mode using the E1 command.  
connection is made, after a connection is dropped, and  
All numeric arguments, including the address and value  
during a connection after successfully “Escaping” from  
of an S-register, are in hexidecimal format, and two  
the data mode back to the command mode using one of  
digits must always be entered.  
the methods previously described. The following section  
5.2. <CR> End-Of-Line Character  
describes the AT command set available in command  
This character is typed to end a command line. The  
value of the <CR> character is 13 in decimal, the ASCII  
carriage return character. When the <CR> character is  
entered, the modem executes the commands in the  
command line.  
mode.  
The Si2401 supports a subset of the typical modem AT  
command set since it is intended for use with a  
dedicated microcontroller instead of general terminal  
applications. AT commands begin with the letters AT  
and are followed directly (no space) by the command.  
(These commands are also case-sensitive.) All AT  
commands must be entered in upper case including AT,  
except w##, r#, m#, q#, and z (wakeup-on-ring).  
Note: Commands that do not require a response are exe-  
cuted immediately and do not need a <CR>.  
Table 12. AT Command Set Summary  
AT commands can be divided into two groups: control  
commands and configuration commands. Control  
commands, such as ATD, cause the modem to perform  
an action (going off-hook and dialing). The value of this  
type of command is changed at a particular time to  
Command  
Function  
Answer line immediately with modem  
Tone dial number  
A
DT#  
DP#  
E
perform  
a
particular action. For example, the  
Pulse dial number  
ATDT1234<CR> command causes the modem to go  
off-hook and dial the number, 1234, via DTMF. This  
action exists only during a connection attempt. No  
enduring change in the modem configuration exists  
after the connection or connection attempt has ended.  
Local echo on/off  
H0  
H1  
I
Go on-hook (hang up modem)  
Go off-hook  
Chip revision  
Configuration  
commands  
change  
modem  
:I  
Interrupt read and clear  
Speaker control options  
Return online  
characteristics until they are modified or reversed by a  
subsequent configuration command or the modem is  
reset. Modem configuration status can be determined  
with the use of “ATSR?<CR>” where “R” is the two-  
character hexadecimal address of an S-register.  
M
O
RO  
S
V.23 reverse  
Read/write S-Registers  
Write S-Register in binary  
Read S-Register in binary  
Monitor S-Register in binary  
A command line is defined as a string of characters  
starting with AT and ending with an end-of-line  
character, <CR> (13 decimal). Command lines may  
contain several commands, one after another. If there  
w##  
r#  
m#  
24  
Rev. 1.0  
Si2401  
character is interpreted as an abort, and the Si2401  
returns to command mode ready to accept AT  
commands. A line feed character immediately following  
the <CR> is treated as an “extra character” and aborts  
the call.  
Table 12. AT Command Set Summary  
q#  
V0  
V1  
Read S-Register in binary  
Result code with no carriage return  
Result code with added carriage  
returns  
If the modem does not have to dial (i.e., “ATDT<CR>” or  
“ATDP<CR>” with no dial string), the Si2401 assumes  
the call was manually established and attempts to make  
a connection.  
Z
z
Software reset  
Wakeup on ring  
5.3.1. Automatic Tone/Pulse Dialing  
5.3. AT Command Set Description  
The Si2401 can be configured to attempt DTMF dialing  
and automatically revert to pulse dialing if it determines  
that the line is not DTMF-capable. This feature is best  
explained by the following example.  
A
Answer  
The “A” command makes the modem go off-hook and  
respond to an incoming call. This command is to be  
executed after the Si2401 has indicated a ring has If it is desired that the telephone number, 12345, be  
occurred. (The Si2401 indicates an incoming ring by dialed, it is normally accomplished through either the  
echoing an “R”.)  
ATDT12345 or the ATDP12345 command. In the force  
pulse dialing mode of operation, the following string  
should be issued instead: ATDT1,p12345  
This command is aborted if any other character is  
transmitted to the Si2401 before the answer process is  
completed.  
If the result code returned is “t,”, this indicates that the  
dialing was accomplished using DTMF dialing. If the  
result code returned is “tt,”, it indicates that the dialing  
was accomplished using pulse dialing.  
Auto answer mode is entered by setting S00 (NR) to a  
non-zero value. NR indicates the number of rings before  
answering the line.  
In the above example, the Si2401 dials the first digit “1”  
using DTMF dialing. The “,” is used to pause in order to  
ensure that the central office has had time to accept the  
DTMF digit “1”. When the Si2401 processes the “p”  
command, it attempts to detect a dial tone. If a dial tone  
is detected, the DTMF digit “1” was not effective; hence,  
the line does not support DTMF dialing. Conversely, if  
the dial tone is not detected, the DTMF digit “1” was  
effective, and the line supports DTMF dialing. The  
character after the “p” may or may not be dialed  
depending on whether the DTMF digit “1” was effective.  
If the “1” was effective (DTMF mode), the character after  
the “p” is skipped. The next DTMF digit to be dialed is  
“2”. Subsequent digits are all DTMF. If the “1” was not  
effective, the first character after the “p” (the “1”) is  
pulse-dialed, and subsequent digits are all pulse-dialed.  
Upon answering, the modem communicates by  
whatever protocol has been determined via the modem  
control registers in S07 (MF1).  
If no transmit carrier signal is received from the calling  
modem within the time specified in S39 (CDT), the  
modem hangs up and enters the idle state.  
D
Dial  
DT#  
DP#  
Tone Dial Number.  
Pulse Dial Number.  
The D commands make the modem dial a telephone  
call according to the digits and dial modifiers in the dial  
string following the command. A maximum of 64 digits is  
allowed. A DT command performs tone dialing, and a  
DP command performs pulse dialing.  
The ATH1 command can be used to go off-hook without  
detecting a dial tone or dialing.  
E
Command Mode Echo  
Tells the Si2401 whether or not to echo characters sent  
from the terminal.  
The dial string must contain only the digits “0–9”, “*”, “#”,  
“A”, “B”, “C”, “D”, or the modifiers “;”, “/”, or “,”. Other  
characters are interpreted incorrectly. The modifier “,”  
EO  
causes a two-second delay (added to the spacing value Does not echo characters sent from the terminal.  
in S04) in dialing. The modifier “/” causes a 125 ms  
delay (added to the spacing value in S04) in dialing. The  
modifier “;” returns the device to command mode after  
dialing and must be the last character.  
E1  
Echoes characters sent from the terminal.  
H0  
Hang up and go into command mode (go offline).  
Off-hook  
Go off-hook and remain in command mode.  
Hangup  
If any character is received by the Si2401 between the  
ATDT#<CR> (or ATDP#<CR>) command and when the H1  
connection is made (“c” or “d” is echoed), the extra  
Rev. 1.0  
25  
Si2401  
Note: Two digits must always be entered for R.  
w## Write S Register in Binary  
I
Chip Identification  
This command causes the modem to echo the chip  
revision for the Si2401 device.  
This command writes a register in binary format. The  
first byte following the “w” is the address in binary  
format, and the second byte is the data in binary format.  
This is a more rapid method to write registers than the  
“SR=N” command and is recommended for use by a  
host microcontroller.  
A = Revision A  
B = Revision B  
C = Revision C, etc.  
I6  
®
Display the ISOmodem model number.  
r#  
Read S Register in Binary  
This command reads a register in binary format. The  
byte following the “r” is the address in binary format.  
The modem echoes the contents of this register in  
binary format. This is a more rapid method to read  
registers than the “SR?” command and is  
recommended for use by a host microcontroller. Modem  
result codes should be disabled to avoid confusing a  
result code with the value being read. (S62 = 40).  
“2401” = Si2401.  
:I  
Interrupt Read  
This command causes the ISOmodem chipset to report  
the contents of the interrupt status register (S09). The  
WOR, PPD, NLD, RI, OCD, and REV bits are also  
cleared, and the INT is deactivated on this read.  
M
Speaker On/Off Options  
These options are used to control AOUT for use with a  
call progress monitor speaker.  
Notes:  
1. w## and r# are not required to be on separate lines (i.e.,  
no <CR> between them). Also, the result of an r# is  
returned immediately without waiting for a <CR> at the end  
of the AT command line.  
M0  
Speaker always off.  
M1  
2. Once a <CR> is encountered, “AT” is again required to  
begin the next “AT” command.  
Speaker on until carrier established. The modem sets  
SF4[3:2] (ARL) = 11 and SF4[1:0] (ATL) = 11 after a  
connection is established.  
b
b
m#  
Monitor S Register in Binary  
This command monitors a register in binary format. The  
byte following the “m” is the address in binary format.  
The Si2401 constantly transmits the contents of the  
register at the set baud rate until a new byte is  
transmitted to the device. The new byte is ignored and  
viewed as a stop command. The modem result codes  
should be disabled (as described above in r#) before  
M2  
Speaker always on.  
M3  
Speaker on after last digit dialed, off at carrier detect.  
Return to Online Mode  
O
This command returns the modem to the online mode. It using this command.  
is frequently used after an escape sequence to resume  
communication with the remote modem.  
q#  
Read S Register in Binary  
This command is exactly the same as the r# command;  
however, the response from the Si2401 is formatted as  
0x55 followed by the contents of the register in binary.  
This guarantees that the register contents are always  
preceded by 0x55 and allows the result codes to remain  
enabled.  
RO  
Turn-Around  
This command initiates a V.23 “direct turnaround”  
sequence and returns online.  
S
S Register Control  
SR=N  
V
Result Code Options  
Write an S register. This command writes the value “N”  
to the S-register specified by “R”. “R” is a hexidecimal  
number, and “N” must also be a hexadecimal number  
from 00–FF. This command does not wait for a carriage  
return <CR> before taking effect.  
V0  
Result codes reported according to Table 14.  
V1  
Result codes reported with an additional carriage return  
and line feed (default).  
Note: Two digits must always be entered for both “R” and “N”.  
SR?  
Read an S register. This command causes the Si2401  
to echo the value of the S-register specified by R in hex  
format. R must be a hexidecimal number.  
26  
Rev. 1.0  
Si2401  
Z
Software Reset  
5.4.1. !1  
The “Z” command initiates a software reset causing all Dial number and follow the DTMF security protocol.  
registers, with the exception of E0, which controls the  
DTE settings, to default to their powerup value.  
ATDT<phone number>!1<message 1><CR>  
The hardware reset pin, RESET (Si2401, pin 8), is used  
The format for this command is as follows:  
K
to reset the Si2401 to factory default settings.  
!<message 2><CR>  
z
Wakeup on Ring (lower-case z)  
K
The Si2401 enters a low-power mode in which the DSP  
and microcontroller are powered down. In this mode,  
only the line-side device (Si3010) and the isolation  
capacitor communication link are functional. An  
incoming ring signal or line transient causes the Si2401  
to power up and echo an “R”. Any character received on  
the RXD pin also causes the Si2401 to exit the wakeup-  
on-ring state. Return from wake-on-ring can also be set  
!<message 3><CR>  
K
K
!<message n><CR>  
The modem dials the phone number and echoes “r”  
(ring), “b” (busy), and “c” (connect) as appropriate. “c”  
echoes only after the Si2401 detects the Handshake  
Tone. After a 250 ms delay, the modem sends the  
DTMF tones containing the first message data and  
listens for a Kissoff Tone. If a Kissoff Tone shorter than  
or equal to the value stored in S36(KTL)  
(default = 480 ms) is detected, the Si2401 echoes a “K”.  
A “k” is echoed if the length of the Kissoff Tone is longer  
than the S36(KTL) value. The controller can then send  
the next message. All messages must be preceded by a  
“!” and followed by a <CR> and received by the Si2401  
within 250 ms after the “K” is echoed. Setting  
to trigger the INT pin by setting S08[6] (WORM) = 1 .  
b
5.4. Alarm Industry AT Commands  
The Si2401 supports a complete set of commands  
necessary for making connections in security industry  
systems. The Si2401 is configurable in two modes for  
these applications. The first mode uses DTMF  
messaging and is selected with the “!1” command. The  
second mode uses FSK transmit with  
acknowledgement and is selected with “!2”.  
a
tone  
The following are a few general comments about the  
use of “!” commands. Specific details for each command  
are given below. The first instance of the “!” must be on  
the same line as the ATDT or ATDP command. DRT  
S0C[0] (MCH) = 1 causes a “.” to be echoed when the  
b
DTMF tone is turned on and a “/” character to be  
echoed when the DTMF tone is turned off. This helps  
the host monitor the status of the message being sent.  
The previous message can be resent if the host  
responds with a “~” after the Si2401 echoes a “K”. Any  
character other than a “!” or a “~” sent to the modem  
immediately after the “K” causes the modem to escape  
to the command mode and remain off-hook. Any  
character except “!” and “~” sent during the transmission  
of a message causes the message to be aborted and  
the modem to return to the command mode.  
must be set to data mode (SE4[5:4] (DRT) = 0 ) before  
b
attempting to send tones after a “!” command. The three  
data-mode escape sequences (“+++”, “escape” pin, and  
“ninth-bit”) function in “!2” mode. However, using the  
“+++” or “ninth-bit” is not recommended because  
characters could be sent to and misinterpreted by the  
remote modem. Only the “escape pin” (Si2401, pin 14)  
is recommended for use in the “!2” mode. The “!1” mode  
has a special escape provision described below. The AT  
commands for Alarm Industry applications are  
described in Table 13.  
If the Kissoff Tone is not received within 1.25 seconds,  
the modem echoes a “^”. A “~” from the host causes the  
last message to be resent. Any character other than a  
“!” or a “~” sent to the modem immediately after the “^”  
causes the modem to escape to the command mode  
and remain off-hook.  
Table 13. AT Command Set Extensions  
for the Alarm Industry  
Command  
Function  
5.4.2. !2  
!1  
Dial and switch to DTMF security  
mode  
Dial the number and follow the “SIA Format” protocol for  
Alarm System Communications.  
!2  
X1  
X2  
Dial and switch to “SIA Format”  
SIA half-duplex mode search  
SIA half-duplex return online as  
transmitter  
The modem dials the phone number and echoes “r”  
(ring), “b” (busy), and “c” (connect) as appropriate. “c”  
echoes only after the Si2401 detects the Handshake  
Tone and the speed synchronization signal is sent. The  
signaling is at 300 bps, half-duplex FSK. The host can  
X3  
SIA half-duplex return online as  
receiver  
Rev. 1.0  
27  
Si2401  
send the first SIA block after the “c” is received. Once  
the block is transmitted, the modem can monitor for the  
acknowledge tone by completing the following  
sequence:  
Table 14. Modem Result Codes  
Command Function  
1. Place the Si2401 in command mode by pulsing the  
ESCAPE pin (Si2401 pin 14). The “+++” and “ninth-  
bit” escape modes operate in the “!2” mode but are  
not recommended because they can send unwanted  
characters to the remote modem.  
a
British Telecom Caller ID Idle Tone  
Alert Detected  
b
c
d
Busy Tone Detected  
Connect  
2. Issue the “ATX1” command to turn the modem  
transmitter off and begin monitoring for the  
acknowledgment tones.  
Connect 1200 bps (when pro-  
grammed as V.22bis modem)  
f
Hookswitch Flash or Battery Reversal  
Detected  
3. Monitor for a positive (negative) acknowledgment “P”  
(“N”) after the tone has been detected for at least  
400 ms.  
H
Modem Automatically Hanging Up in  
!2, !1  
4. The modem, still in command mode, can be placed  
online as a transmitter by issuing the “ATX2”  
command or a receiver by issuing the “ATX3”  
command. If tonal acknowledgement is not used, the  
host can toggle the ESCAPE pin to place the Si2401  
in the command mode and issue an “ATX2” or an  
“ATX3” command to reverse data direction.  
Intrusion Completed (parallel phone  
back on-hook)  
I
i
Intrusion Detected (parallel phone off-  
hook on the line)  
K
k
Kissoff Tone Detected  
Contact ID Kissoff Tone too long (!1)  
Phone Line Detected  
This sequence can be repeated for long messages.  
L
l
5.5. Modem Result Codes and Call  
Progress  
No Phone Line Detected  
Caller ID Mark Signal Detected  
No Carrier Detected  
m
N
n
Table 14 shows the modem result codes that can be  
used in call progress monitoring. All result codes are a  
single character to speed up communication and ease  
host processing.  
No Dial tone (time-out set by CW  
[S02])  
O
R
r
Modem OK Response  
Incoming Ring Signal Detected  
Ringback Tone Detected  
Dial Tone  
t
v
Connect 75 bps TX (V.23 originate  
only)  
x
Overcurrent State Detected After an  
Off-Hook Event  
^
,
Kissoff tone detection required  
Dialing Complete  
28  
Rev. 1.0  
Si2401  
5.5.1. Automatic Call Progress Detection  
The call progress biquad filters can be programmed to  
have a custom frequency response and detection level  
(as described in "6. Low Level DSP Control" on page  
31).  
The Si2401 has the ability to detect dial, busy, and  
ringback tones automatically. The following is a  
description of the algorithms that have been  
implemented for these three tones.  
Four dedicated user-defined frequency detectors can  
be programmed to search for individual tones. The four  
detectors have center frequencies that can be set by  
registers UDFD1–4 (see Table 18). SE5[6] [TDET]  
[SE8 = 0x02] Read Only Definition can be monitored,  
along with TONE, to detect energy at these user-  
defined frequencies. The default trip-threshold for  
UDFD1–4 is –43 dBm but can be modified with the DSP  
register, UDFSL.  
„ Dial Tone. The dial tone detector looks for a dial  
tone after going off-hook and before dialing is  
initiated. This can be bypassed by enabling blind  
dialing (set S07[6] (BD) = 1 ). After going off-hook,  
b
the Si2401 waits the number of seconds in S01  
(DW) before searching for the dial tone.  
In order for a dial tone to be detected, it must be  
present for the length of time programmed in S1C  
(DTT). Once the dial tone is detected, dialing  
commences. If a dial tone is not detected within the  
time programmed in S02 (CW), the Si2401 hangs up  
and echoes an “n” to the user.  
By issuing the “ATDT;” command, the modem goes off-  
hook and returns to command mode. The user can then  
put the DSP into call progress monitoring by first setting  
SE8 = 0x02. Next, set SE5 (DSP2) = 0x00 so that no  
tones are transmitted, and set SE6 (DSP3) to the  
appropriate code, depending on which types of tones  
are to be detected.  
„ Busy/Ringback Tone. After dialing has completed,  
the Si2401 monitors for Busy/Ringback and modem  
answer tones. The busy and ringback tone detectors  
both use the call progress energy detector. The  
registers that set the cadence for busy and ringback  
are listed in Table 15. Si2401 register settings for  
global cadences for busy and ringback tones are  
listed in Table 16.  
At this point, users may program their own algorithm to  
monitor the detected tones. If the host wishes to dial, it  
should do so by blind dialing, setting the dial timeout  
S01 (DW)  
to  
0
seconds,  
and  
issuing  
an  
“ATDT<Phone Number>;<CR>”  
immediately causes the ISOmodem chipset to dial and  
return to command mode.  
command.  
This  
®
Table 15. Busy and Ringback Cadence  
Registers  
Once the host has detected an answer tone using  
manual call progress, the host should immediately  
execute the “ATDT” command in order to make a  
connection. This causes the Si2401 to search for the  
modem answer tone and begin the correct connect  
sequence.  
Register Name  
Function  
Units  
10 ms  
10 ms  
10 ms  
S16  
S17  
S18  
S19  
BTON  
BTOF  
BTOD  
Busy tone on time  
Busy tone off time  
Busy tone delta time  
In manual call progress, the DSP can be programmed  
to detect specific tones. The result of the detection is  
reported in SE5 (SE8 = 0x2) as explained above. The  
output is priority-encoded such that if multiple tones are  
detected, the one with the highest priority whose  
detection is also enabled is reported (see SE5 [SE8=02]  
Read Only.)  
RTON Ringback tone on time  
53.333  
ms  
S1A  
S1B  
RTOF Ringback tone off time  
53.333  
ms  
RTOD Ringback tone delta time 53.333  
ms  
In manual call progress, the DSP can be programmed  
to generate specific tones (see SE5[2:0] (TONC)  
(SE8 = 02) Write Only). For example, setting  
5.5.2. Manual Call Progress Detection  
Because other call progress tones beyond those  
described above may exist, the Si2401 supports manual  
call progress. This requires the host to read and write  
the low-level DSP registers and may require real time  
control by the host. Manual call progress may be  
required for detection of application-specific ringback,  
dial tone, and busy signals. The section on DSP low-  
level control should be read before attempting manual  
call progress detection.  
SE5[2:0] (TONC) = 110 generates the user-defined  
b
tone (as indicated by UFRQ in Table 18) with an  
amplitude of TGNL.  
Table 17 shows the mappings of Si2401 DTMF values,  
keyboard equivalents, and the related dual tones.  
Rev. 1.0  
29  
Si2401  
Table 16. Si2401 Global Ringer and Busy Tone Cadence Settings  
Country  
RTON  
S19  
RTOF  
S1A  
RTOD  
S1B  
BTON  
S16  
BTOF  
S17  
BTOD  
S18  
Australia  
Austria  
Belgium  
Brazil  
0x07  
0x12  
0x12  
0x12  
0x12  
0x12  
0x1C  
0x12  
0x0E  
0x0E  
0x1C  
0x12  
0x07  
0x12  
0x07  
0x17  
0x16  
0x07  
0x07  
0x12  
0x03  
0x5D  
0x38  
0x4B  
0x4B  
0x4B  
0x38  
0x4B  
0x8C  
0x5D  
0x41  
0x4B  
0x03  
0x4B  
0x03  
0x46  
0x58  
0x03  
0x03  
0x4B  
0x01  
0x0A  
0x06  
0x08  
0x08  
0x08  
0x06  
0x08  
0x0F  
0x0A  
0x07  
0x08  
0x01  
0x08  
0x01  
0x0F  
0x09  
0x01  
0x01  
0x08  
0x25  
0x1E  
0x32  
0x19  
0x14  
0x23  
0x32  
0x18  
0x19  
0x1E  
0x32  
0x32  
0x25  
0x1E  
0x32  
0x1E  
0x19  
0x4B  
0x32  
0x32  
0x25  
0x1E  
0x32  
0x19  
0x32  
0x23  
0x32  
0x24  
0x19  
0x1E  
0x32  
0x32  
0x25  
0x1E  
0x32  
0x1E  
0x19  
0x4B  
0x32  
0x32  
0x04  
0x03  
0x05  
0x03  
0x05  
0x04  
0x05  
0x0A  
0x03  
0x03  
0x05  
0x05  
0x04  
0x03  
0x05  
0x03  
0x03  
0x08  
0x05  
0x05  
Bulgaria  
China  
Cyprus  
Czech Republic  
Denmark  
Finland  
France  
Germany  
Great Britain  
Greece  
Hong Kong, New Zealand  
Hungary  
Iceland  
India  
Ireland  
Italy, Netherlands, Norway, Thai-  
land, Switzerland, Israel  
Japan, Korea  
Luxembourg  
Malaysia  
0x12  
0x12  
0x07  
0x00  
0x12  
0x12  
0x12  
0x07  
0x1C  
0x12  
0x12  
0x25  
0x25  
0x4B  
0x03  
0x00  
0x4B  
0x4B  
0x5D  
0x03  
0x38  
0x5D  
0x25  
0x4B  
0x04  
0x08  
0x01  
0x00  
0x08  
0x10  
0x0A  
0x01  
0x06  
0x0A  
0x04  
0x08  
0x32  
0x30  
0x23  
0x00  
0x19  
0x32  
0x32  
0x4B  
0x14  
0x19  
0x32  
0x32  
0x32  
0x30  
0x41  
0x00  
0x19  
0x32  
0x32  
0x4B  
0x14  
0x19  
0x32  
0x32  
0x05  
0x05  
0x07  
0x00  
0x03  
0x05  
0x05  
0x08  
0x02  
0x03  
0x05  
0x05  
Malta  
Mexico  
Poland  
Portugal  
Singapore  
Spain  
Sweden  
Taiwan  
U.S., Canada (default)  
30  
Rev. 1.0  
Si2401  
6. Low Level DSP Control  
Table 17. DTMF Values  
Contact  
Although not necessary for most applications, the DSP  
low-level control functions are available for users with  
very specific applications requiring direct DSP control.  
Tones  
Low High  
DTMF  
Code  
Keyboard  
ID  
Equivalent  
Digit  
6.1. DSP Registers  
0
1
0
1
2
3
4
5
6
7
8
9
D
*
0
941  
697  
697  
697  
770  
770  
770  
852  
852  
852  
941  
941  
941  
697  
770  
852  
1336  
1209  
1336  
1477  
1209  
1336  
1477  
1209  
1336  
1477  
1633  
1209  
1477  
1633  
1633  
1633  
Several DSP registers are accessible through the  
Si2401 microcontroller via S-registers SE5, SE6, and  
SE8. SE5 and SE6 are used as conduits to write data to  
specific DSP registers and read status. SE8 defines the  
function of SE5 and SE6 depending on whether they  
are being written to or read from. Care must be  
exercised when writing to DSP registers. DSP registers  
can only be written while the Si2401 is on-hook and in  
the command mode. Writing to any register address not  
listed in Tables 18 and 19 or writing out-of-range values  
is likely to cause the DSP to exhibit unpredictable  
behavior.  
1
2
2
3
3
4
4
5
5
6
6
The DSP register address is 16-bits wide, and the DSP  
data field is 14-bits wide. DSP register addresses and  
data are written in hexadecimal. To write a value to a  
DSP register, the register address is written, and then  
the data is written. When SE8 = 0x00, SE5(DADL) is  
written with the low bits [7:0] of the DSP register  
address, and SE6 (DADH) is written with the high bits  
[15:8] of the DSP address. When SE8 = 0x01,  
SE5 (DDL) is written with the low bits [7:0] of the DSP  
data word corresponding to the previously written  
address, and SE6 (DDH) is written with the high bits  
[15:8] of the data word corresponding to the previously  
written address. Example 1 illustrates the proper  
procedure for writing to DSP registers.  
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
B
C
D
E
F
#
A
B
C
Example1: The user would like to program call  
progress filter coefficient A2_k0 (0x15) to be 309  
(0x135).  
Host Command:  
ATSE8=00SE6=00SE5=15SE8=01SE6=01SE5=35SE8=00  
In this command, ATSE8=00 sets up registers SE5 and  
SE6 as DSP address registers. SE6=00 sets the high  
bits of the address, and SE5=15 sets the low bits.  
SE8=01 sets up registers SE5 and SE6 as DSP data  
registers for the previously-written DSP address (0x15).  
SE6=01 sets the six high bits of the 14-bit data word,  
and SE5=35 sets the eight low bits of the 14-bit data  
word.  
Rev. 1.0  
31  
Si2401  
Table 18. Low-Level DSP Parameters  
Description  
Name  
Function  
Default  
(dec)  
DSP Reg. Addr.  
0x0002  
XMTL DAA modem full-scale transmit level,  
default = –10 dBm.  
Level = 20log (XTML/4096)  
–10 dBm  
4096  
4868  
3277  
10  
0x0003  
0x0004  
DTML DTMF high-tone transmit level,  
default = –5.5 dBm.  
Level = 20log (DTML/4868)  
10  
–5.5 dBm  
DTMT DTMF twist ratio (low/high),  
default = –2 dBm.  
Level = 20log (DTMT/3277) –  
10  
2 dB  
0x0005  
0x0006  
0x0007  
0x0008  
0x0009  
0x000A  
0x000B  
UFRQ User-defined transmit tone frequency. See f = (9600/512) UFRQ (Hz)  
register SE5 (SE8=0x02 (Write Only)).  
91  
CPDL Call progress detect level (see Figure 5), Level = 20log (4096/CPDL)  
4096  
4987  
536  
10  
default = –43 dBm.  
–43 dBm  
UDFD1 User-defined frequency detector 1. Center UDFD1 = 8192 cos (2π f/9600)  
frequency for detector 1.  
UDFD2 User-defined frequency detector 2. Center UDFD2 = 8192 cos (2π f/9600)  
frequency for detector 2.  
UDFD3 User-defined frequency detector 3. Center UDFD3 = 8192 cos (2π f/9600)  
4987  
536  
frequency for detector 3.  
UDFD4 User-defined frequency detector 4. Center UDFD4 = 8192 cos (2π f/9600)  
frequency for detector 4.  
TGNL Tone generation level associated with  
Level = 20log (TGNL/2896)  
2896  
10  
TONC (SE5 (SE8 = 0x02) Write Only Defi- – 10 dBm  
nition), default = –10 dBm.  
0x000E  
0x0024  
0x0025  
0x0026  
0x0027  
UDFSL Sensitivity setting for UDFD1–4 detectors, Sensitivity = 10log (UDFSL/  
4096  
2620  
3300  
67  
10  
default = –43 dBm.  
4096) –43 dBm  
CONL Carrier ON level. Carrier is valid once it  
reaches this level.  
Level = 20log (2620/CONL) –  
43 dBm  
10  
COFL Carrier OFF level. Carrier is invalid once it Level = 20log (3300/COFL) –  
10  
falls below this level.  
45.5 dBm  
AONL Answer ON level. Answer tone is valid  
once it reaches this level.  
Level = 10log (AONL/107) –  
43 dBm  
10  
AOFL Answer OFF level. Answer tone is invalid Level = 10log (AOFL/58) –  
37  
10  
once it falls below this level.  
45.5 dBm  
32  
Rev. 1.0  
Si2401  
Table 19 defines the relationship between SE5, SE6, and SE8.  
Table 19. SE5, SE6, and SE8 Relationship  
SE8  
SE6  
Description  
SE5  
Description  
R/W  
W
Name  
DADH  
DDH  
Name  
DADL  
DDL  
0x00  
0x01  
0x02  
DSP register address bits [7:0]  
DSP register data bits [7:0]  
DSP register address bits [15:8]  
DSP register data bits [15:8]  
W
R
DSP1  
7 = DSP data available  
6 = Tone detected  
5 = Reserved  
4:0 = Tone type  
0x02  
W
DSP3  
DSP2  
7 = Reserved  
6:3 = DTMF tone to transmit  
2:0 = Tone type  
7 = Enable squaring function  
6 = Call progress cascade disable  
5 = Reserved  
4 = User tone 3 and 4 reporting  
3 = User tone 1 and 2 reporting  
2 = V.23 tone reporting  
1 = Answer tone reporting  
0 = DTMF tone reporting  
6.2. Call Progress Filters  
The programmable call progress filter coefficients are located in DSP address locations 0x0010 through 0x0023.  
There are two independent 4th order filters, A and B, each consisting of two biquads, for a total of 20 coefficients.  
Coefficients are 14 bits (–8192 to 8191) and are interpreted as, for example, b0 = value/4096, thus giving a floating  
point value of approximately –2.0 to 2.0. Output of each biquad is calculated as follows:  
w[n] = k0 × x[n] + a1 × w[n 1] + a2 × w[n 2]  
y[n] = w[n] + b1 × w[n 1] + b2 × w[n 2]  
The output of the filters is input to an energy detector and then compared to a fixed threshold with hysteresis (DSP  
register CPDL). Defaults shown are a bandpass filter from 290–630 Hz (–3 dB). These registers are located in the  
DSP and, thus, must be written in the same manner described in “DSP Registers”.  
The filters may be configured in either parallel or cascade through SE6[6] (CPCD) with SE8 = 0x02, and the output  
of filter B may be squared by selecting SE6[7] (CPSQ) = 1. Figure 5 shows a block diagram of the call progress  
filter structure.  
Table 20. Call Progress Filters  
DSP Register  
Coefficient Default (dec)  
Address  
0x0010  
0x0011  
0x0012  
0x0013  
0x0014  
0x0015  
A1_k0  
A1_b1  
A1_b2  
A1_a1  
A1_a2  
A2_k0  
256  
–8184  
4096  
7737  
–3801  
1236  
Rev. 1.0  
33  
Si2401  
Table 20. Call Progress Filters  
0x0016  
0x0017  
0x0018  
0x0019  
0x001A  
0x001B  
0x001C  
0x001D  
0x001E  
0x001F  
0x0020  
0x0021  
0x0022  
0x0023  
A2_b1  
A2_b2  
A2_a1  
A2_a2  
B1_k0  
B1_b1  
B1_b2  
B1_a1  
B1_a2  
B2_k0  
B2_b1  
B2_b2  
B2_a1  
B2_a2  
133  
4096  
7109  
–3565  
256  
–8184  
4096  
7737  
–3801  
1236  
133  
4096  
7109  
–3565  
0
CPCD  
1
Filter Input  
Energy  
Detect  
Filter B  
0
2
y = x  
1
0
B
A
A
B
Max  
(A,B)  
Hysteresis  
TDET  
A > B?  
1
0
CPCD  
CPSQ  
Energy  
Detect  
Filter A  
20log10(4096/CPDL) –43 dBm  
Figure 5. Programmable Call Progress Filter Architecture  
34  
Rev. 1.0  
Si2401  
7. S Registers  
Any register not documented here is reserved and should not be written. Bold selection in bit-mapped registers  
indicates default values.  
Table 21. S-Register Summary  
“S”  
Register  
Name Function  
Reset  
Register Address  
(hex)  
S00  
S01  
0x00  
0x01  
NR  
Number of rings before answer; 0 suppresses auto answer.  
0x00  
0x02  
DW  
Number of seconds modem waits before dialing after going off-  
hook (maximum of 109 seconds).  
S02  
S03  
0x02  
0x03  
CW  
CLW  
TD  
Number of seconds modem waits for a dial tone before hang-up  
added to time specified by DW (maximum of 109 seconds).  
0x03  
0x0E  
Duration that the modem waits (53.33 ms units) after loss of car-  
rier before hanging up.  
S04  
S05  
S06  
S07  
S08  
S09  
S0C  
S0D  
S0E  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0C  
0x0D  
0x0E  
Both duration and spacing (5/3 ms units) of DTMF dialed tones.  
0x30  
0x18  
0x24  
0x06  
0x00  
0x00  
0x00  
0x00  
0x46  
OFFPD Duration of off-hook time (5/3 ms units) for pulse dialing.  
ONPD Duration of on-hook time (5/3 ms units) for pulse dialing.  
*
MF1  
INTM  
INTS  
MF2  
MF3  
DIT  
This is a bit-mapped register.  
This is a bit-mapped register.  
This is a bit-mapped register.  
This is a bit-mapped register.  
This is a bit-mapped register.  
*
*
*
*
Pulse dialing Interdigit time (10 ms units added to a minimum  
time of 64 ms).  
S0F  
S10  
S11  
S12  
0x0F  
0x10  
0x11  
0x12  
TEC  
TDT  
OFHI  
ACL  
TIES escape character. Default = +.  
TIES delay time (53.33 ms units).  
0x2B  
0x13  
0x04  
0x00  
*
This is a bit-mapped register.  
Absolute Current Level. When S13[4] (OFHD) = 0 , ACL  
b
represents the absolute current threshold used by the off-hook  
intrusion algorithm (1 mA units.)  
*
S13  
S15  
S16  
0x13  
0x15  
0x16  
MF4  
MLC  
This is a bit-mapped register.  
0x10  
0x04  
0x32  
*
This is a bit-mapped register.  
BTON Busy tone on. Time that the busy tone must be on (10 ms units)  
for busy tone detector.  
S17  
0x17  
BTOF Busy tone off. Time that the busy tone must be off (10 ms units)  
for busy tone detector.  
0x32  
*Note: These registers are explained in detail in the following section.  
Rev. 1.0  
35  
Si2401  
Table 21. S-Register Summary (Continued)  
Name Function  
“S”  
Register  
Reset  
Register Address  
(hex)  
S18  
0x18  
BTOD Busy tone delta time (10 ms units). A busy tone is detected to be  
valid if (BTON – BTOD < on time < BTON + BTOD) and (BTOF –  
BTOD < off time < BTOF + BTOD).  
0x0F  
S19  
S1A  
S1B  
0x19  
0x1A  
0x1B  
RTON Ringback tone on. Time that the ringback tone must be on  
(53.333 ms units) for ringback tone detector.  
0x26  
0x4B  
0x07  
RTOF Ringback tone off. Time that the ringback tone must be off  
(53.333 ms units) for ringback tone detector.  
RTOD Detector time delta (53.333 ms units). A ringback tone is deter-  
mined to be valid if (RTON – RTOD < on time < RTON + RTOD)  
and (RTOF – RTOD < off time < RTOF + RTOD).  
S1C  
0x1C  
DTT  
Dial tone detect time. The time that the dial tone must be valid  
before being detected  
0x0A  
(10 ms units).  
S1E  
S1F  
S20  
0x1E  
0x1F  
0x20  
TATL  
Transmit answer tone length. Answer tone length in seconds  
when answering a call (1 s units).  
0x03  
0x2D  
0x5D  
ARM3 Answer tone to transmit delay. Delay between answer tone end  
and transmit data start (5/3 ms units).  
UNL  
Unscrambled ones length. Minimum length of time required for  
detection of unscrambled binary ones during V.22 handshaking  
by a calling modem (5/3 ms units).  
S21  
0x21  
TSOD Transmit scrambled ones delay. Time between unscrambled  
binary one detection and scrambled binary one transmission by  
a call mode V.22 modem (53.3 ms units).  
0x09  
S22  
S23  
0x22  
0x23  
TSOL Transmit scrambled ones length. Length of time scrambled ones  
are sent by a call mode V.22 modem (5/3 ms units).  
0xA2  
0xCB  
VDDL V.22X data delay low. Delay between handshake complete and  
data connection for a V.22X call mode modem (5/3 ms units  
added to the time specified by VDDH).  
S24  
0x24  
VDDH V.22X data delay high. Delay between handshake complete and  
data connection for a V.22X call mode modem (256 x 5/3 ms  
units added to the time specified by VDDL).  
0x08  
S25  
S26  
0x25  
0x26  
SPTL S1 pattern time length. Amount of time the unscrambled S1 pat-  
tern is sent by a call mode V.22bis modem (5/3 ms units).  
0x3C  
0x0C  
VTSO V.22bis 1200 bps scrambled ones length. Minimum length of  
time for transmission of 1200 bps scrambled binary ones by a  
call mode V.22bis modem after the end of pattern S1 detection  
(53.3 ms).  
S27  
0x27  
VTSOL V.22bis 2400 bps scrambled ones length low. Minimum length of  
time for transmission of 2400 bps scrambled binary ones by a  
call mode V.22bis modem (5/3 ms units).  
0x78  
*Note: These registers are explained in detail in the following section.  
36  
Rev. 1.0  
Si2401  
Table 21. S-Register Summary (Continued)  
Name Function  
“S”  
Register  
Reset  
Register Address  
(hex)  
S28  
0x28  
VTSOH V.22bis 2400 bps scrambled ones length high. Minimum length  
0x08  
of time for transmission of 2400 bps scrambled binary ones by a  
call mode V.22bis modem (256 x 5/3 ms units added to the time  
specified by VTSOL).  
S29  
S2A  
0x29  
0x2A  
IS  
Intrusion suspend. When S82[2:1] (IB) = 10 , this register sets  
the length of time from when dialing begins that the off-hook  
intrusion algorithm is blocked (suspended) (500 ms units).  
0x00  
0xD2  
b
RSO  
Receive scrambled ones V.22bis (2400 bps) length.  
Minimum length of time required for detection of scrambled  
binary ones during V.22bis handshaking by the answering  
modem after S1 pattern conclusion (5/3 ms units).  
S2B  
S2C  
S2D  
S2E  
S2F  
S30  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
DTL  
V.23 direct turnaround carrier length. Minimum length of time that  
a master mode V.23 modem must detect carrier when searching  
for a direct turnaround sequence (5/3 ms units).  
0x18  
0x08  
0x0C  
0xF0  
0x3C  
0x00  
DTTO V.23 direct turnaround timeout. Length of time that the modem  
searches for a direct turnaround carrier (5/3 ms units added to a  
minimum time of 426.66 ms).  
SDL  
V.23 slave carrier detect loss. Minimum length of time that a  
slave mode V.23 modem must lose carrier before searching  
for a reverse turnaround sequence (5/3 ms units).  
RTCT V.23 reverse turnaround carrier timeout. Amount of time a slave  
mode V.23 modem searches for carriers during potential reverse  
turnaround sequences (5/3 ms units).  
FCD  
FSK connection delay low. Amount of time delay added  
between end of answer tone handshake and actual modem  
connection for FSK modem connections (5/3 ms units).  
FCDH FSK connection delay high. Amount of time delay added  
between end of answer tone handshake and actual modem con-  
nection for FSK modem connections (256 x 5/3 ms units).  
S31  
S32  
S34  
S35  
0x31  
0x32  
0x34  
0x35  
RATL Receive answer tone length. Minimum length of time required  
for detection of a CCITT answer tone (5/3 ms units).  
0x3C  
0x0C  
0x5A  
0xA2  
OCDT The time after going off-hook when the loop current sense bits  
are checked for overcurrent status (5/3 ms units).  
TASL  
Answer tone length when answering a call (5/3 ms units). This  
register is only used if TATL (1E) has a value of zero.  
RSOL Receive scrambled ones V.22 length (5/3 ms units). Minimum  
length of time that an originating V.22 (1200 bps) modem must  
detect 1200 bps scrambled ones during a V.22 handshake.  
S36  
0x36  
ARM1 Second kissoff tone detector length. The security modes, A1 and  
!1, echo a “k” if a kissoff tone longer than the value stored in  
SKDTL is detected (10 ms units).  
0x30  
*Note: These registers are explained in detail in the following section.  
Rev. 1.0  
37  
Si2401  
Table 21. S-Register Summary (Continued)  
Name Function  
“S”  
Register  
Reset  
Register Address  
(hex)  
S37  
0x37  
CDR  
Carrier detect return. Minimum length of time that a carrier must  
return and be detected in order to be recognized after a carrier  
loss is detected  
0x20  
(5/3 ms units).  
S39  
S3A  
0x39  
0x3A  
CDT  
ATD  
Carrier detect timeout. Amount of time modem waits for carrier  
detect before aborting call (1 second units).  
0x3C  
0x29  
Delay between going off-hook and answer tone generation when  
in answer mode (53.33 ms units).  
*
S3C  
S62  
S82  
SDB  
0x3C  
0x62  
0x82  
0xDB  
CIDG This is a bit-mapped register.  
0x01  
0x41  
0x08  
*
RC  
IST  
LVS  
This is a bit-mapped register.  
This is a bit-mapped register.  
*
Line Voltage Status. Eight bit signed, 2s complement number  
representing the tip-ring voltage. Each bit represents 1 volt.  
Polarity of the voltage is represented by the MSB (sign bit).  
0000_0000 = Measured voltage is < 3 V.  
*
SDF  
SE0  
SE1  
SE2  
SE3  
SE4  
SE5  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
DGSR This is a bit-mapped register.  
0x0C  
0x22  
0x0E  
0x00  
*
*
*
*
*
CF1  
This is a bit-mapped register.  
GPIO1 This is a bit-mapped register.  
GPIO2 This is a bit-mapped register.  
GPD  
CF5  
This is a bit-mapped register.  
This is a bit-mapped register.  
0x00  
DADL (SE8 = 0x00) Write only definition. DSP register address lower  
*
bits [7:0].  
SE5  
0xE5  
DDL  
(SE8 = 0x01) Write only definition. DSP data word lower bits  
[7:0].  
*
1
1
SE5  
SE5  
SE6  
0xE5  
0xE5  
0xE6  
DSP1 (SE8 = 0x02) Read only definition. This is a bit-mapped register.  
DSP2 (SE8 = 0x02) Write only definition. This is a bit-mapped register.  
DADH (SE8 = 0x00) Write only definition. DSP register address upper  
bits [15:8].  
SE6  
0xE6  
DDH  
(SE8 = 0x01) Write only definition. DSP data word upper bits  
[13:8]  
1
SE6  
SE8  
SEB  
0xE6  
0xE8  
0xEB  
DSP3 (SE8 = 0x02) Write only definition. This is a bit-mapped register.  
DSPR4 Set the mode to define E5 and E6 for low-level DSP control.  
*
TPD  
This is a bit-mapped register.  
0x00  
*Note: These registers are explained in detail in the following section.  
38  
Rev. 1.0  
Si2401  
Table 21. S-Register Summary (Continued)  
Name Function  
“S”  
Register  
Reset  
Register Address  
(hex)  
*
SEC  
SED  
SEE  
SF0  
SF1  
SF2  
SF3  
0xEC  
0xED  
0xEE  
0xF0  
0xF1  
0xF2  
0xF3  
RV1  
RV2  
RV3  
This is a bit-mapped register.  
This is a bit-mapped register.  
This is a bit-mapped register.  
0x88  
0x19  
0x16  
0x40  
0x0C  
*
*
*
*
*
DAA0 This is a bit-mapped register.  
DAA1 This is a bit-mapped register.  
DAA2 This is a bit-mapped register.  
DAA3  
Line Current Status. Eight-bit value returning the loop current.  
Each bit represents 1.1 mA of loop current.  
0x00  
Accuracy is not guaranteed if the loop current is less than  
required for normal operation.  
*
SF4  
SF5  
SF6  
SF7  
SF8  
SF9  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
DAA4 This is a bit-mapped register.  
DAA5 This is a bit-mapped register.  
DAA6 This is a bit-mapped register.  
DAA7 This is a bit-mapped register.  
DAA8 This is a bit-mapped register.  
DAA9 This is a bit-mapped register.  
0x0F  
0x00  
0xF0  
0x00  
*
*
*
*
*
0x20  
*Note: These registers are explained in detail in the following section.  
Rev. 1.0  
39  
Si2401  
Table 22. Bit-Mapped Register Summary  
“S”  
Register Register Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
Binary  
Register Address Name  
(hex)  
S07  
S08  
S09  
S0C  
S0D  
S11  
0x07  
0x08  
0x09  
0x0C  
0x0D  
0x11  
0x13  
0x15  
0x3C  
0x62  
0x82  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE5  
0xE6  
0xEB  
0xEC  
0xED  
0xEE  
0xF0  
0xF1  
0xF2  
MF1  
INTM  
INTS  
MF2  
BD  
V23R  
V23T  
BAUD CCITT  
FSK  
0000_0110  
CDM WORM PPDM NVDM  
RIM  
RI  
CIDM OCDM REVM 0000_0000  
CD  
WOR  
PPD  
NVD  
RBTS  
OFHD  
CID  
BDL  
EHB  
OCD  
MLB  
EHI  
REV 0000_0000  
0000_0000  
CDE  
CIDM[1:0]  
9BF  
EHR  
MF3  
RI  
INTP  
EHE 0000_0000  
0000_0100  
OFHI  
MF4  
DCL[3:0]  
S13  
S15  
S3C  
S62  
S82  
SDF  
SE0  
SE1  
SE2  
SE3  
SE4  
SE5  
SE5  
SE6  
SEB  
SEC  
SED  
SEE  
SF0  
SF1  
SF2  
BTID  
CIDB HDEN  
BDA[1:0]  
0001_0000  
MLC  
ATPRE VCTE FHGE EHGE  
STB  
NBE 0000_0100  
0000_0001  
CIDG  
RC  
CIDG[2:0]  
OCR  
IR  
NLR  
IB[1:0]  
RR  
0100_0001  
0000_1000  
0000_1100  
0010_0010  
IST  
IST[3:0]  
LCLD  
DGSR[6:0]  
ND  
DGSR  
CF1  
ICTS  
SD[2:0]  
GPIO1  
GPIO2  
GPD  
CF5  
GPD5 GPIO5 0000_1110  
GPIO4[1:0]  
GPIO3[1:0]  
GPIO2[1:0]  
GPIO1[1:0]  
0000_0000  
N/A  
GPD4 GPD3 GPD2 GPD1  
NBCK SBCK  
DDAV TDET  
DRT  
GPE  
xx00_0000  
N/A  
DSP1  
DSP2  
DSP3  
TPD  
TONE[4:0]  
TONC[2:0]  
DTM[3:0]  
N/A  
CPSQ CPCD  
RNGV  
USEN2 USEN1 V23E ANSE DTMFE 0000_0000  
PDDE  
0000_0000  
1000_1000  
0001_1001  
0001_0110  
0100_0000  
0000_1100  
xxxx_1xxx  
RVC1  
RVC2  
RVC3  
DAA0  
DAA1  
DAA2  
RDLY[2:0]  
RCC[2:0]  
RAS[5:0]  
RMX[3:0]  
RTO[3:0]  
FOH[1:0]  
BTE PDN  
LM[1:0]  
PDL  
LVFD  
HBE  
FDT  
40  
Rev. 1.0  
Si2401  
Table 22. Bit-Mapped Register Summary (Continued)  
“S”  
Register Register Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
Binary  
Register Address Name  
(hex)  
SF4  
SF5  
SF6  
SF8  
SF9  
SFC  
0xF4  
0xF5  
0xF6  
0xF8  
0xF9  
0xFC  
DAA4  
DAA5  
DAA6  
DAA8  
DAA9  
ARL[1:0]  
ATL[1:0]  
RT  
0000_1111  
0000_0000  
1111_0000  
N/A  
OHS[1:0]  
ILIM  
RZ  
MINI[1:0]  
DCV[1:0]  
ACT[3:0]  
LRV[3:0]  
DCR  
ROV  
BTD  
OVL  
0010_0000  
N/A  
DAAFC CTSM  
Rev. 1.0  
41  
Si2401  
S07 (MF1). Modem Functions 1  
Bit  
D7  
D6  
BD  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
V23R  
R/W  
V23T  
R/W  
BAUD  
R/W  
CCITT  
R/W  
FSK  
R/W  
R/W  
Reset settings = 0000_0110 (0x06)  
Bit  
7
Name  
Reserved  
BD  
Function  
Read returns zero.  
6
Blind Dialing.  
0 = Disable.  
1 = Enable (Blind dialing occurs immediately after “ATDT#” command).  
5
4
V23R  
V23T  
V.23 Receive.*  
V.23 75 bps send/600 (BAUD = 0) or 1200 (BAUD = 1) bps receive.  
0 = Disable.  
1 = Enable.  
V.23 Transmit.*  
V.23 600 (BAUD = 0) or 1200 (BAUD = 1) bps send/75 bps receive.  
0 = Disable.  
1 = Enable.  
3
2
Reserved  
BAUD  
Read returns zero.  
2400/1200 Baud Select.*  
2400/1200 baud select (V23R = 0 and V23T = 0).  
0 = 1200  
1 = 2400  
600/1200 baud select (V23R = 1 and V23T = 1).  
0 = 600  
1 = 1200  
1
0
CCITT  
FSK  
CCITT/Bell Mode.*  
0 = Bell.  
1 = CCITT.  
300 bps FSK.*  
0 = Disable.  
1 = Enable.  
*Note: See Table 9 on page 13 for proper setting of modem protocols.  
42  
Rev. 1.0  
Si2401  
S08 (INTM). Interrupt Mask  
Bit  
D7  
D6  
WORM  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CDM  
R/W  
PPDM  
R/W  
NVDM  
R/W  
RIM  
R/W  
CIDM  
R/W  
OCDM  
R/W  
REVM  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Function  
7
CDM  
Carrier Detect Mask.  
0 = Change in CD does not affect INT.  
1 = A high to low transition in CD (S09, bit 7), which indicates loss of carrier, activates  
INT.  
6
5
4
3
2
1
0
WORM  
PPDM  
NVDM  
RIM  
Wake-on-Ring Mask.  
0 = Change in CD does not affect INT.  
1 = A low to high transition in WOR (S09, bit 6) activatesINT.  
Parallel Phone Detect Mask.  
0 = Change in PPD does not affect INT.  
1 = A low to high transition in PPD (S09, bit 5) activates INT.  
No Phone Line Detect Mask.  
0 = Change in NLD does not affect INT.  
1 = A low to high transition in NLD (S09, bit 4) activates INT.  
Ring Indicator Mask.  
0 = Change in RI does not affect INT.  
1 = A low to high transition in RI (S09, bit 3) activates INT.  
CIDM  
OCDM  
REVM  
Caller ID Mask.  
0 = Change in CID does not affect INT.  
1 = A low to high transition in CID (S09, bit 2) activates INT.  
Overcurrent Detect Mask.  
0 = Change in OCD does not affect INT.  
1 = A low to high transition in OCD (S09, bit 1) activates INT.  
V.23 Reversal Detect Mask.  
0 = Change in REV does not affect INT.  
1 = A low to high transition in REV (S09, bit 0) activates INT.  
Rev. 1.0  
43  
Si2401  
S09 (INTS). Interrupt Status  
Bit  
D7  
CD  
D6  
D5  
D4  
D3  
RI  
D2  
CID  
R/W  
D1  
D0  
Name  
Type  
WOR  
R/W  
PPD  
R/W  
NVD  
R/W  
OCD  
R/W  
REV  
R/W  
R/W  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Function  
7
CD  
Carrier Detect (sticky).  
Active high bit indicates carrier detected (equivalent to inverse of CD pin). Clears on :1  
read.  
6
5
4
3
WOR  
PPD  
NVD  
RI  
Wake-on-Ring (sticky).  
Wake-on-ring has occurred. Clears on :I read.  
Parallel Phone Detect (sticky).  
Parallel phone detected since last off-hook event. Clears on :I read.  
No Phone Line Detect (sticky).  
No line phone detected. Clears on :I read.  
Ring Indicator (sticky).  
Active high bit when the Si2403 is on-hook, indicates ring event has occurred. Clears on  
:I read.  
2
1
0
CID  
OCD  
REV  
Caller ID (sticky).  
Caller ID preamble has been detected; data soon follows. Clears on :I read.  
Overcurrent Detect (sticky).  
Overcurrent condition has occurred. Clears on :I read.  
V.23 Reversal Detect (sticky).  
V.23 reversal condition has occurred. Clears on :I read.  
44  
Rev. 1.0  
Si2401  
S0C (MF2). Modem Functions 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CDE  
R/W  
CIDM[1:0]  
9BF  
R/W  
BDL  
R/W  
MLB  
R/W  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Function  
CDE  
7
Carrier Detect Enable.  
0 = Disable.  
1 = Enable GPI02 as an active low carrier detect pin (must also set SE2[3:2]  
[GPIO2] = 01).  
6:5  
CIDM[1:0]  
Caller ID Monitor.  
00 = Caller ID monitor disabled.  
01 = Caller ID monitor enabled. Si2401 must detect channel seizure signal followed by  
marks in order to report caller ID data. (Normal Bellcore caller ID)  
10 = Reserved.  
11 = Caller ID monitor enabled. Si2401 must only detect marks in order to report caller ID  
data.  
4
3
Reserved  
9BF  
Read returns zero.  
Ninth Bit Function.  
Only valid if the ninth bit escape is set S15[0] (NBE).  
0 = Ninth bit equivalent to ALERT.  
1 = Ninth bit equivalent to HDLC EOFR.  
2
1
0
BDL  
MLB  
Blind Dialing.  
0 = Blind dialing disabled.  
1 = Enables blind dialing after dial timeout register S02 (CW) expires.  
Modem Loopback.  
0 = Not swapped.  
1 = Swaps frequency bands in modem algorithm to do a loopback in a test mode.  
Reserved  
Read returns zero.  
Rev. 1.0  
45  
Si2401  
S0D (MF3). Modem Functions 3  
Bit  
Name  
Type  
D7  
D6  
RI  
D5  
D4  
D3  
D2  
D1  
EHI  
R/W  
D0  
INTP  
R/W  
RBTS  
R/W  
EHR  
R/W  
EHB  
R/W  
EHE  
R/W  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Reserved Read returns zero.  
Function  
7
6
RI  
Ring Indicator.  
Specifies the functionality of pin3.  
0 = Pin 3 functions as GPIO5 controlled by register SE1.  
1 = Pin 3 functions as RI. RI asserts during a ring and negates when no  
ring is present.  
5
4
3
2
1
0
INTP  
RBTS  
EHR  
EHB  
EHI  
INT Polarity.  
Specifies the polarity of the INT function on pin 11.  
0 = An interrupt forces pin 11 low.  
1 = An interrupt forces pin 11 high.  
Ringback Tone Selector  
Controls the unit step size for registers S19, S1A and S1B.  
0 = 53.33 ms units. Necessary for detecting a ringback tone.  
1 = 10 ms units. Necessary for detecting a reorder tone.  
Enable Hangup on Reorder.  
Modem is placed on-hook if a ringback or reorder tone is detected. See S0D[4].  
0 = Disable.  
1 = Enable.  
Enable Hangup on Busy.  
Modem is placed on-hook if a busy signal is detected.  
0 = Disable.  
1 = Enable.  
Enable Hangup on Intrusion.  
Modem is placed on-hook if parallel intrusion is detected.  
0 = Disable.  
1 = Enable.  
EHE  
Enable Hangup on Escape.  
Modem is placed on-hook if a ESC signal is detected.  
0 = Disable.  
1 = Enable.  
46  
Rev. 1.0  
Si2401  
S11 (OFHI). Off-Hook Intrusion  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
DCL[3:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0100 (0x04)  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
DCL[3:0]  
Read returns zero.  
Differential Current Level.  
Differential current level to detect intrusion event (1 mA units).  
S13 (MF4). Modem Functions 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BTID  
R/W  
OFHD  
R/W  
CIDB  
R/W  
HDEN  
R/W  
R/W  
Reset settings = 0001_0000 (0x10)  
Bit  
7
Name  
Reserved  
BTID  
Function  
Read returns zero.  
6
BT Caller ID Wetting Pulse.  
0 = Enable.  
1 = Disable.  
5
4
Reserved  
OFHD  
Read returns zero.  
Off-Hook Intrusion Detect Method.  
0 = Absolute.  
1 = Differential.  
3
2
Reserved  
CIDB  
Read returns zero.  
British Telecom Caller ID Decode.  
0 = Disable.  
1 = Enable.  
When set, SOC[6:5] is overwritten by the modem, as needed.  
1
0
HDEN  
HDLC Framing.  
0 = Disable.  
1 = Enable.  
Reserved  
Read returns zero.  
Rev. 1.0  
47  
Si2401  
S15 (MLC). Modem Link Control  
Bit  
D7  
ATPRE  
R/W  
D6  
D5  
D4  
D3  
D2  
BDA[1:0]  
R/W  
D1  
D0  
Name  
Type  
VCTE  
R/W  
FHGE  
R/W  
EHGE  
R/W  
STB  
R/W  
NBE  
R/W  
Reset settings = 0000_0100 (0x04)  
Bit  
Name  
Function  
7
ATPRE  
Answer Tone Phase Reversal.  
0 = Disable.  
1 = Enable answer tone phase reversal.  
6
5
VCTE  
FHGE  
EHGE  
STB  
V.25 Calling Tone.  
0 = Disable.  
1 = Enable V.25 calling tone.  
550 Hz Guardtone.  
0 = Disable.  
1 = Enable 550 Hz guardtone.  
4
1800 Hz Guardtone.  
0 = Disable.  
1 = Enable 1800 Hz guardtone.  
3
Stop Bits.  
0 = 1 stop bit.  
1 = 2 stop bits.  
2:1  
BDA[1:0]  
Bit Data.  
00 = 6 bit data.  
01 = 7 bit data.  
10 = 8 bit data.  
11 = 9 bit data.  
0
NBE  
Ninth Bit Enable.  
0 = Disable.  
1 = Enable ninth bit as Escape and ninth bit function (register C).  
48  
Rev. 1.0  
Si2401  
S3C (CIDG). Caller ID Gain  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CIDG[2:0]  
R/W  
Reset settings = 0000_0001 (0x01)  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
CIDG[2:0]  
Read returns 0.  
Caller ID Gain.  
The Si2400 dynamically sets the On-Hook Analog Receive Gain SF4[6:4] (ARG) to  
CIDG during a caller ID event (or continuously if S0C[6:5] (CIDM = 11 ). This field should  
b
be set prior to caller ID operation.  
000 = 0 dB  
001 = 3 dB  
010 = 6 dB  
011 = 9 dB  
100 = 12 dB  
Rev. 1.0  
49  
Si2401  
S62 (RC). Result Codes Override  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
IR  
D1  
D0  
RR  
Name  
Type  
OCR  
R/W  
NLR  
R/W  
R/W  
R/W  
Reset settings = 0100_0001 (0x41)  
Bit  
7
Name  
Reserved  
OCR  
Function  
Read returns zero.  
6
Overcurrent Result Code (“x”).  
0 = Enable.  
1 = Disable.  
5:3  
2
Reserved  
IR  
Read returns zero.  
Intrusion Result Code (“I” and “i”).  
0 = Disable.  
1 = Enable.  
1
0
NLR  
RR  
No Phone Line Result Code (“L” and “l”).  
0 = Disable.  
1 = Enable.  
Ring Result Code (“R”).  
0 = Disable.  
1 = Enable.  
50  
Rev. 1.0  
Si2401  
S82 (IST). Intrusion  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IST[3:0]  
R/W  
LCLD  
R/W  
IB[1:0]  
R/W  
Reset settings = 0000_1000 (0x08)  
Bit  
Name  
Function  
7:4  
IST[3:0]  
Intrusion Settling Time.  
0000 = IST equals 1 second.  
Delay between when the ISOmodem chipset goes off-hook and the off-hook intrusion  
algorithm begins (250 ms units).  
®
3
LCLD  
Loop Current Loss Detect.  
0 = Disable.  
1 = Enables the reporting of “I” and “L” result codes while off-hook. Asserts INT if  
GPIO4 (SE2[7:6]) is enabled as INT.  
2:1  
IB[1:0]  
Intrusion Blocking.  
This feature only works when SDF 0x00. Defines the method used to block the off-hook  
intrusion algorithm from operating after dialing has begun.  
00 = No intrusion blocking.  
01 = Intrusion disabled from start of dial to end of dial.  
10 = Intrusion disabled from start of dial to register S29 time out.  
11 = Intrusion disabled from start of dial to carrier detect or to “N” or “n” result code.  
0
Reserved  
Read returns zero.  
Rev. 1.0  
51  
Si2401  
SDF (DGSR). Intrusion Deglitch  
Bit  
D7  
D6  
D5  
D4  
D3  
DGSR[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1100 (0x0C)  
Bit  
7
Name  
Function  
Reserved  
DGSR[6:0]  
Read returns zero.  
Deglitch Sample Rate.  
6:0  
Sets the sample rate for the deglitch algorithm and the off-hook intrusion algorithm  
(40 ms units).  
0000000 = Disables the deglitch algorithm, and sets the off-hook intrusion sample rate to  
200 ms and delay between compared samples to 800 ms.  
SE0 (CF1). Chip Functions 1  
Bit  
D7  
D6  
D5  
D4  
D3  
ND  
D2  
D1  
D0  
Name  
Type  
ICTS  
R/W  
SD[2:0]  
R/W  
R/W  
Reset settings = 0010_0010 (0x22)  
Bit  
7:6  
5
Name  
Reserved  
ITCS  
Function  
Read returns zero.  
Invert CTS pin.  
0 = Inverted (CTS).  
1 = Normal (CTS).  
4
3
Reserved  
ND  
Read returns zero.  
0 = 8N1.  
1 = 9N1 (hardware UART only).  
2:0  
SD[2:0]  
Serial Dividers.  
000 = 300 bps serial link.  
001 = 1200 bps serial link.  
010 = 2400 bps serial link.  
011 = 9600 bps serial link.  
100 = 19200 bps serial link.  
101 = 38400 bps serial link  
110 = 115200 bps serial link.  
111 = 307200 bps serial link.  
52  
Rev. 1.0  
Si2401  
SE1 (GPIO1). General Purpose Input/Output 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
GPD5  
R/W  
GPIO5  
R/W  
Reset settings = 0000_1110 (0x0E)  
Bit  
7:2  
1
Name  
Reserved  
GPD5  
Function  
Read returns zero.  
GPIO5 Data.  
Data = 0.  
Data = 1.  
0
GPIO5  
GPIO5.  
0 = Digital input.  
1 = Digital output (relay drive).  
SE2 (GPIO2). General Purpose Input/Output 2  
Bit  
D7  
GPIO4[1:0]  
R/W  
D6  
D5  
GPIO3[1:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
GPIO2[1:0]  
R/W  
GPIO1[1:0]  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit Name  
7:6 GPIO4[1:0] GPIO4.  
00 = Digital input.  
Function  
01 = Digital output (relay drive).  
10 = AOUT.  
11 = INT function defined by S08.  
5:4 GPIO3[1:0] GPIO3.  
00 = Digital input.  
01 = Digital output (relay drive).  
10 = Reserved.  
11 = ESC function (digital input).  
3:2 GPIO2[1:0] GPIO2.  
00 = Digital input.  
01 = Digital output (relay drive; also used for CD function).  
10 = Reserved.  
11 = Digital input.  
1:0 GPIO1[1:0] GPIO1*.  
00 = Digital input.  
01 = Digital output (relay drive).  
10 = Reserved.  
11 = Reserved.  
*Note: To be used as a GPIO pin; SE4[3] (GPE) must equal zero.  
Rev. 1.0  
53  
Si2401  
SE3 (GPD). GPIO Data  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
GPD4  
R/W  
GPD3  
R/W  
GPD2  
R/W  
GPD1  
R/W  
Reset settings N/A  
Bit  
7:4  
3
Name  
Reserved  
GPD4  
Function  
Read returns zero.  
GPIO4 Data.  
Data = 0  
Data = 1  
2
GPD3  
GPIO3 Data.  
Data = 0  
Data = 1  
1
0
GPD2  
GPD1  
GPIO2 Data.  
Data = 0  
Data = 1  
GPIO1 Data.  
Data = 0  
Data = 1  
SE4 (CF5). Chip Functions 5  
Bit  
D7  
NBCK  
R
D6  
SBCK  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRT  
R/W  
GPE  
R/W  
Reset settings = xx00_0000 (0x00)  
Bit  
7
Name  
NBCK  
SBCK  
DRT  
Function  
9600 Baud Clock (Read Only).  
600 Baud Clock (Read Only).  
Data Routing.  
6
5
0 = Data mode, DSP output transmitted to line, line received by DSP input.  
1 = Loopback mode, TXD through microcontroller (DSP) to RXD.  
4
3
Reserved  
GPE  
Read returns zero.  
GPIO1 Enable.  
0 = Disable.  
1 = Enable GPIO1 to be HDLC end-of-frame flag.  
Read returns zero.  
2:0  
Reserved  
54  
Rev. 1.0  
Si2401  
SE5 (DSP1). (SE8 = 0x02) Read Only Definition  
Bit  
D7  
DDAV  
R
D6  
TDET  
R
D5  
D4  
D3  
D2  
TONE[4:0]  
R
D1  
D0  
Name  
Type  
Reset settings N/A  
Bit  
7
Name  
DDAV  
TDET  
Function  
DSP Data Available.  
Tone Detected.  
6
Indicates a TONE (any of type 0–25 below) has been detected.  
0 = Not detected.  
1 = Detected.  
5
Reserved  
TONE[4:0]  
Read returns zero.  
4:0  
Tone Type Detected.  
When TDET goes high, TONE indicates which tone has been detected from the following:  
TONE  
Tone Type  
Priority  
1
00000–01111 DTMF 0–15 (DTMFE = 1) See Table 17 on page 31.  
1
2
2
3
3
4
4
6
5
5
6
2
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
Answer tone detected 2100 Hz (ANSE = 1)  
Bell 103 answer tone detected 2225 Hz (ANSE = 1)  
V.23 forward channel mark 1300 Hz (V23E = 1)  
V.23 backward channel mark 390 Hz (V23E = 1)  
User defined frequency 1 (USEN1 = 1)  
User defined frequency 2 (USEN1 = 1)  
Call progress filter A detected  
User defined frequency 3 (USEN2 = 1)  
User defined frequency 4 (USEN2 = 1)  
Call progress filter B detected  
3
4
5
Notes:  
1. SE6[0] (DTMFE) SE8 = 0x02.  
2. SE6[1] (ANSE) SE8 = 0x02.  
3. SE6[2] (V23E) SE8 = 0x02.  
4. SE6[3] (USEN1) SE8 = 0x02.  
5. SE6[4] (USEN2) SE8 = 0x02.  
Rev. 1.0  
55  
Si2401  
SE5 (DSP2). (SE8 = 0x02) Write Only Definition  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TONC[2:0]  
W
D0  
Name  
Type  
DTM[3:0]  
W
Reset settings N/A  
Bit  
Name  
Function  
7
Reserved  
DTM[3:0]  
Always write zero.  
Tone Type Generated.  
6:3  
DTMF tone (0–15) to transmit when selected by TONC = 001. See Table 17 on page 31.  
2:0  
TONC[2:0]  
DTMF Tone Selector.  
ToneTone Type  
000  
001  
010  
011  
100  
101  
110  
Mute  
DTMF  
2225 Hz Bell mode answer tone with phase reversal  
2100 Hz CCITT mode answer tone with phase reversal  
2225 Hz Bell mode answer tone without phase reversal  
2100 Hz CCITT mode answer tone without phase reversal  
User-defined programmable frequency tone (UFRQ)  
(see Table 18 on page 32, default = 1700 Hz)  
1300 Hz V.25 calling tone  
111  
56  
Rev. 1.0  
Si2401  
SE6 (DSP3). (SE8 = 0x02) Write Only Definition  
Bit  
D7  
CPSQ  
W
D6  
CPCD  
W
D5  
D4  
USEN2  
W
D3  
USEN1  
W
D2  
V23E  
W
D1  
ANSE  
W
D0  
DTMFE  
W
Name  
Type  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Function  
7
CPSQ  
Call Progress Squaring Filter.  
0 = Disable.  
1 = Enables a squaring function on the output of filter B before the input to A (cascade  
only).  
6
CPCD  
Call Progress Cascade Disable.  
0 = Call progress filter B output is input into call progress filter A. Output from fil-  
ter A is used in the detector.  
1 = Cascade disabled. Two independent fourth order filters available (A and B). The  
largest output of the two is used in the detector.  
5
4
Reserved  
USEN2  
User Tone Reporting Enable 2.  
0 = Disable.  
1 = Enable the reporting of user defined frequency tones 3 and 4 through TONE.  
3
2
1
0
USEN1  
V23E  
User Tone Reporting Enable 1.  
0 = Disable.  
1 = Enable the reporting of user defined frequency tones 1 and 2.  
V.23 Tone Reporting Enable.  
0 = Disable.  
1 = Enable the reporting of V.23 tones, 390 Hz and 1300 Hz.  
ANSE  
Answering Tone Reporting Enable.  
0 = Disable.  
1 = Enable the reporting of answer tones.  
DTMFE  
DTMF Tone Reporting Enable.  
0 = Disable.  
1 = Enable the reporting of DTMF tones.  
Rev. 1.0  
57  
Si2401  
SEB (TPD). Timer and Powerdown  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PDDE  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
7:4  
3
Name  
Reserved  
PDDE  
Function  
Read returns zero.  
Powerdown DSP Engine.  
0 = Power on.  
1 = Powerdown.  
2:0  
Reserved  
Read returns zero.  
58  
Rev. 1.0  
Si2401  
SEC (RVC1). Ring Validation Control 1  
Bit  
D7  
D6  
D5  
RDLY[2:0]  
R/W  
D4  
D3  
D2  
RCC[2:0]  
R/W  
D1  
D0  
Name  
Type  
RNGV  
R/W  
Reset settings = 1000_1000 (0x88)  
Bit  
Name  
Function  
7
RNGV  
Ring Validation Enable.  
0 = Ring validation feature is disabled.  
1 = Ring validation feature is enabled in both normal operating mode and low-  
power mode.  
6:4  
RDLY[2:0]  
Ring Delay.  
These bits set the amount of time between when a ring signal is validated and when a  
valid ring signal is indicated.  
RDLY[2:0]  
Delay  
0 ms  
256 ms  
512 ms  
000  
001  
010  
.
.
.
111  
1792 ms  
3:1  
RCC[2:0]  
Ring Confirmation Count.  
These bits set the amount of time that the ring frequency must be within the tolerances  
set by the RAS[5:0] bits and the RMX[3:0] bits to be classified as a valid ring signal.  
RCC[2:0]  
000  
001  
010  
011  
100  
101  
110  
111  
Ring Confirmation Count Time  
100 ms  
150 ms  
200 ms  
256 ms  
384 ms  
512 ms  
640 ms  
1024 ms  
0
Reserved  
This bit must always be written to zero.  
Rev. 1.0  
59  
Si2401  
SED (RVC2). Ring Validation Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RAS[5:0]  
R/W  
Reset settings = 0001_1001 (0x19)  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
RAS[5:0]  
Read returns zero.  
Ring Assertion Time.  
These bits set the minimum ring frequency for a valid ring signal. During ring qualification,  
a timer is loaded with the RAS[5:0] field upon a TIP/RING event and decrements at a reg-  
ular rate. If a second or subsequent TIP/RING event occurs after the timer has timed out,  
the frequency of the ring is too low, and the ring is invalidated. The difference between  
RAS[5:0] and RMX[5:0] identifies the minimum duration between TIP/RING events to qual-  
ify as a ring, in binary-coded increments of 2.0 ms (nominal). A TIP/RING event typically  
occurs twice per ring tone period. At 20 Hz, TIP/RING events would occur every  
1/(2 x 20 Hz) = 25 ms. To calculate the correct RAS[5:0] value for a frequency range  
[f_min, f_max], the following equation should be used: RAS[5:0] = 1 / (2 x f_min).  
60  
Rev. 1.0  
Si2401  
SEE (RVC3). Ring Validation Control 3  
Bit  
D7  
D6  
RTO[3:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RMX[3:0]  
R/W  
Reset settings = 0001_0110 (0x16)  
Bit  
Name  
Function  
7:4  
RTO[3:0]  
Ring Timeout.  
These bits set when a ring signal is determined to be over after the most recent ring  
threshold crossing.  
RTO[3:0]  
0000  
Ring Timeout  
80 ms  
0001  
128 ms  
0010  
256 ms  
.
.
.
1111  
1920 ms  
3:0  
RMX[3:0]  
Ring Assertion Maximum Count.  
These bits set the maximum ring frequency for a valid ring signal. During ring qualification,  
a timer is loaded with the RAS[5:0] field upon a TIP/RING event and decrements at a reg-  
ular rate. When a subsequent TIP/RING event occurs, the timer value is compared to the  
RMX[3:0] field, and if it exceeds the value in RMX[3:0], the frequency of the ring is too  
high, and the ring is invalidated. The difference between RAS[5:0] and RMX[3:0] identifies  
the minimum duration between TIP/RING events to qualify as a ring, in binary-coded incre-  
ments of 2.0 ms (nominal). A TIP/RING event typically occurs twice per ring tone period.  
At 20 Hz, TIP/RING events would occur every 1/(2 x 20 Hz) = 25 ms. To calculate the cor-  
rect RMX[3:0] value for a frequency range [f_min, f_max], the following equation should be  
used: RMX[3:0] x 2 ms = RAS[5:0] – 2 ms – (1/(2 x f_max)).  
Rev. 1.0  
61  
Si2401  
SF0 (DAA0). DAA Low Level Functions 0  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOH[1:0]  
R/W  
LM[1:0]  
R/W  
R/W  
Reset settings = 0100_0000 (0x40)  
Bit  
Name  
FOH[1:0] Fast Off-Hook Selection.  
Function  
7:6  
These bits determine the length of the off-hook counter. The default setting is 128 ms.  
00 = 512 ms  
01 = 128 ms  
10 = 64 ms  
11 = 8 ms  
5:2 Reserved Read returns zero.  
1:0  
LM[1:0]  
Line Mode.  
These bits determine the line status of the Si2401.*  
00 = On-hook  
01 = Off-hook  
10 = On-hook line monitor mode  
11 = Reserved  
*Note: Under normal operation, the Si2401 internal microcontroller automatically sets these bits appropriately.  
62  
Rev. 1.0  
Si2401  
SF1 (DAA1). DAA Low Level Functions 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BTE  
R/W  
PDN  
R/W  
PDL  
R/W  
LVFD  
R/W  
HBE  
R/W  
Reset settings = 0000_1100 (0x0C)  
Bit  
Name  
Function  
7
BTE  
Billing Tone Enable.  
When the line-side device detects a billing tone, SF9[3] (BTD) is set.  
0 = Disable.  
1 = Enable.  
6
5
4
PDN  
PDL  
Powerdown.  
0 = Normal operation.  
1 = Powers down the Si2401.  
Powerdown Line-Side Chip (typically only used for board level debug.)  
0 = Normal operation. Program the clock generator before clearing this bit.  
1 = Places the line-side device in lower power mode.  
LVFD  
Line Voltage Force Disable.  
0 = Normal operation.  
1 = The circuitry that forces the LVS register to all 0s at 3 V or less is disabled. This reg-  
ister may display unpredictable values at voltages between 0 to 2 V. All 0s are displayed  
if the line voltage is 0 V.  
3
2
Reserved  
HBE  
Do not modify.  
Hybrid Transmit Path Connect.  
0 = Disable.  
1 = Enable.  
1:0  
Reserved  
Do not modify.  
Rev. 1.0  
63  
Si2401  
SF2 (DAA2). DAA Low Level Functions 2  
Bit  
D7  
D6  
D5  
D4  
D3  
FDT  
R
D2  
D1  
D0  
Name  
Type  
Reset settings = xxxx_1xxx  
Bit  
7:4  
3
Name  
Reserved  
FDT  
Function  
Read only.  
Frame Detect (Typically only used for board-level debug).  
1 = Indicates isolation capacitor frame lock has been established.  
0 = Indicates isolation capacitor frame lock has not been established.  
2:0  
Reserved  
Reserved  
SF4 (DAA4). DAA Low Level Functions 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ARL[1:0]  
R/W  
ATL[1:0]  
R/W  
Reset settings = 0000_1111 (0x0F)  
Bit  
7:4  
3:2  
Name  
Function  
Reserved  
ARL[1:0]  
Read returns zero.  
AOUT Receive—Path Level.  
DAA receive path signal AOUT gain.  
00 = 0 dB  
01 = –6 dB  
10 = –12 dB  
11 = Mute  
1:0  
ATL[1:0]  
AOUT Transmit—Path Level.  
DAA transmit path signal AOUT gain.  
00 = –18 dB  
01 = –24 dB  
10 = –30 dB  
11 = Mute  
64  
Rev. 1.0  
Si2401  
SF5 (DAA5). DAA Low Level Functions 5  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
RZ  
D1  
D0  
RT  
Name  
Type  
OHS[1:0]  
R/W  
ILIM  
R/W  
R/W  
R/W  
Reset settings = 0000_0000 (0x00)  
Bit  
Name  
Function  
7:6  
5:4  
Reserved  
OHS[1:0]  
Read returns zero.  
On-Hook Speed.  
These bits set the amount of time for the line-side device to go on-hook. The on-hook  
speeds specified are measured from the time the register is written until loop current  
equals zero.  
OHS[1:0]  
Mean On-Hook Speed  
00  
01  
1X  
Less than 0.5 ms  
3 ms ±10% (Meets ETSI standard)  
20 ms ±10% (Meets Australian spark quenching spec)  
3
2
ILIM  
RZ  
Current Limiting Enable.  
0 = Current limiting mode disabled.  
1 = Current limiting mode enabled. This mode limits loop current to a maximum of 60 mA  
per the TBR21 standard.  
Ringer Impedance.  
0 = Maximum (high) ringer impedance.  
1 = Synthesized ringer impedance used to satisfy a maximum ringer impedance specifi-  
cation in countries, such as Poland, South Africa, and Slovenia.  
1
0
Reserved  
RT  
Do not modify.  
Ringer Threshold Select.  
Used to satisfy country requirements on ring detection. Signals below the lower level do  
not generate a ring detection; Signals above the upper level are guaranteed to generated  
a ring detection.  
0 = 13.5 to 16.5 V  
RMS  
1 = 19.35 to 23.65 V  
RMS  
Rev. 1.0  
65  
Si2401  
SF6 (DAA6). DAA Low Level Functions 6  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MINI[1:0]  
R/W  
DCV[1:0]  
R/W  
ACT[3:0]  
R/W  
Reset settings = 1111_0000 (0xF0)  
Bit  
Name  
Function  
7:6  
MINI[1:0]  
Minimum Operational Loop Current.  
Adjusts the minimum loop current at which the DAA can operate. Increasing the mini-  
mum operational loop current can improve signal headroom at a lower TIP/RING volt-  
age.  
MINI[1:0] Min Loop Current  
00  
01  
10  
11  
10 mA  
12 mA  
14 mA  
16 mA  
5:4  
DCV[1:0]  
TIP/RING Voltage Adjust.  
These bits adjust the voltage on the DCT pin of the line-side device, which affects the  
TIP/RING voltage on the line. Low voltage countries should use a lower TIP/RING volt-  
age. Raising the TIP/RING voltage can improve signal headroom.  
DCV[1:0] DCT Pin Voltage  
00  
01  
10  
11  
3.1 V  
3.2 V  
3.35 V  
3.5 V  
3:0  
ACT[3:0]  
AC Termination Select.  
ACT[3:0] AC Termination  
0000  
Real 600 Ω termination that satisfies the impedance requirements  
of FCC part 68, JATE, and other countries.  
0011  
Global complex impedance. Complex impedance that satisfies global  
impedance requirements EXCEPT New Zealand. May achieve higher  
return loss for countries requiring complex ac termination.  
[220 Ω + (820 Ω || 120 nF) and 220 Ω + (820 Ω || 115 nF)].  
0100  
1111  
Complex impedance for use in New Zealand.  
[370 Ω + (620 Ω || 310 nF)]  
Complex impedance that satisfies global impedance requirements.  
66  
Rev. 1.0  
Si2401  
SF8 (DAA8). DAA Low Level Functions 8  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LRV[3:0]  
R
DCR  
R/W  
Reset settings vary with line-side vision  
Bit  
Name  
Function  
7:4  
LRV[3:0]  
Line-Side Device Revision Number.  
0011 = Si3010 Rev C  
0100 = Si3010 Rev D  
0101 = Si3010 Rev E  
0110 = Si3010 Rev F  
3:2  
1
Reserved  
DCR  
Read returns an indeterministic value.  
DC Impedance Selection.  
0 = 50 Ω dc termination is selected. This mode should be used for all standard  
applications.  
1 = 800 Ω dc termination is selected.  
0
Reserved  
Do not modify.  
SF9 (DAA9). DAA Low Level Functions 9 Read Only  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
OVL  
R
D1  
D0  
Name  
Type  
BTD  
R/W  
ROV  
R/W  
Reset settings = 0010_0000 (0x20)  
Bit  
7:4  
3
Name  
Reserved  
BTD  
Function  
Do not modify.  
Billing Tone Detect (sticky).  
0 = No billing tone detected.  
1 = Billing tone detected.  
2
1
OVL  
ROV  
Receive overload.  
Same as ROV, except not sticky.  
Receive Overload (sticky).  
0 = No excessive level detected.  
1 = Excessive input level detected.  
0
Reserved  
Do not modify.  
Rev. 1.0  
67  
Si2401  
SFC (DAAFC). DAA Low Level Functions  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CTSM  
R/W  
Reset settings N/A  
Bit  
Name  
Function  
7
CTSM  
Clear-to-Send (CTS) Mode.  
0 = CTS pin is negated as soon as a start bit is detected and reasserted when the  
transmit FIFO is empty.  
1 = CTS pin is negated when the FIFO is > 70% full and reasserted when the FIFO is <  
30% full.  
6:0  
Reserved  
Read value indeterminate.  
68  
Rev. 1.0  
Si2401  
8. Pin Descriptions: Si2401  
1
16 GPIO1/EOFR  
15 GPIO2/CD  
CLKIN/XTALI  
XTALO  
2
3
14  
13  
12  
11  
GPIO3/ESC  
GPIO5/RI  
VD  
4
5
6
7
8
VA  
GND  
RXD  
TXD  
CTS  
GPIO4/INT/AOUT  
10 C1A  
9
C2A  
RESET  
Pin #  
Pin Name  
CLKIN/XTALI XTALI—Crystal Oscillator Pin.  
Description  
1
These pins provide support for parallel resonant AT cut crystals. XTALI also acts as an  
input in the event that an external clock source is used in place of a crystal. A  
4.9152 MHz crystal is required or a 4.9152 or 27 MHz clock on XTALI.  
2
3
XTALO  
XTALO—Crystal Oscillator Pin.  
Serves as the output of the crystal amplifier.  
GPI05/RI  
General Purpose Input/RI.  
This pin can be either a GPIO pin (digital in, digital out) or the RI pin. Default is digital  
in. When programmed as RI, it indicates the presence of an ON segment of a ring  
signal on the telephone line.  
4
5
6
7
V
Supply Voltage.  
D
Provides the 3.3 V supply voltage to the Si2401.  
RXD  
TXD  
CTS  
Receive Data.  
Serial communication data from the Si2401.  
Transmit Data.  
Serial communication data to the Si2401.  
Clear to Send.  
Clear to send output used by the Si2401 to signal that the device is ready to receive  
more digital data on the TXD pin.  
8
RESET  
Reset Input.  
An active low input that is used to reset all control registers to a defined, initialized  
state. Also used to bring the Si2401 out of sleep mode.  
9
C2A  
C1A  
Isolation Capacitor 2A.  
Connects to one side of the isolation capacitor C2.  
10  
Isolation Capacitor 1A.  
Connects to one side of the isolation capacitor C1.  
Rev. 1.0  
69  
Si2401  
Pin #  
Pin Name  
Description  
11  
GPIO4/INT/  
AOUT  
General Purpose Input/INT.  
This pin can be either a GPIO pin (digital in, digital out) or the INT pin. Default is digital  
in. When programmed as INT, this pin provides five functions. While the modem is  
connected, it asserts if the carrier is lost, a wake-on ring (using the “ATZ” command)  
event is detected, a loss of loop current event is detected, V.23 reversal is detected, or  
if an intrusion event has been detected. The INT pin is sticky and stays asserted until  
the host clears it by writing to the correct S register. (See register SE2[7:6].)  
12  
13  
GND  
Ground.  
Connects to the system digital ground.  
V
Regulator Voltage Reference.  
A
This pin connects to an external capacitor and serves as the reference for the internal  
voltage regulator.  
14  
GPIO3/ESC  
GPIO2/CD  
General Purpose Input/Escape.  
This pin can be either a GPIO pin (digital in, digital out) or the ESC pin. Default is digi-  
tal in. When programmed as ESC, a positive edge on this pin causes the modem to go  
from online (connected) mode to the offline (command) mode.  
15  
16  
General Purpose Input/CD.  
This pin can be either a GPIO pin (digital in, digital out) or the CD pin. Default is digital  
in. When programmed as CD, it is the active low carrier detect pin.  
GPIO1/EOFR General Purpose Input/EOFR.  
This pin can be either a GPIO pin (digital in, digital out) or the EOFR pin. Default is  
digital in. This pin can also be programmed to function as the EOFR (end-of-frame  
receive) signal for HDLC framing.  
70  
Rev. 1.0  
Si2401  
9. Pin Descriptions: Si3010  
1
16  
DCT2  
QE  
DCT  
2
3
15 IGND  
14 DCT3  
RX  
IB  
13  
4
5
6
7
8
QB  
QE2  
SC  
12  
11  
C1B  
C2B  
VREG  
10 VREG2  
RNG2  
9
RNG1  
Table 23. Si3010 Pin Descriptions  
Description  
Pin #  
Pin Name  
1
QE  
Transistor Emitter.  
Connects to the emitter of Q3.  
DC Termination.  
2
3
4
5
6
7
8
DCT  
RX  
Provides dc termination to the telephone network.  
Receive Input.  
Serves as the receive side input from the telephone network.  
Internal Bias 1.  
IB  
Provides Internal Bias.  
Isolation Capacitor 1B.  
C1B  
Connects to one side of isolation capacitor C1 and communicates with the Si2401.  
Isolation Capacitor 2B.  
C2B  
Connects to one side of isolation capacitor C2 and communicates with the Si2401.  
Voltage Regulator.  
Connects to an external capacitor to provide bypassing for an internal power supply.  
Ring 1.  
VREG  
RNG1  
Connects through a capacitor to the RING lead of the telephone line. Provides the ring  
and caller ID signals to the Si2401.  
9
RNG2  
Ring 2.  
Connects through a capacitor to the TIP lead of the telephone line. Provides the ring  
and caller ID signals to the Si2401.  
10  
11  
12  
13  
14  
15  
16  
VREG2  
SC  
Voltage Regulator 2.  
Connects to an external capacitor to provide bypassing for an internal power supply.  
Circuit Enable.  
Enables transistor network.  
Transistor Emitter 2.  
QE2  
Connects to the emitter of Q4.  
Transistor Base.  
QB  
Connects to the base of transistor Q3. Used to go on- and off-hook.  
DC Termination 3.  
DCT3  
IGND  
DCT2  
Provides the dc termination to the telephone network.  
Isolated Ground.  
Connects to ground on the line-side interface.  
DC Termination 2.  
Provides dc termination to the telephone network.  
Rev. 1.0  
71  
Si2401  
10. Ordering Guide  
Chipset  
Region  
Digital  
Line  
Lead-Free  
Temperature  
Si2401  
Global  
Si2401-FS  
Si3010-F-FS  
Yes  
0 to 70 °C  
72  
Rev. 1.0  
Si2401  
11. Package Outline: 16-Pin SOIC  
Figure 6 illustrates the package details for the Si2401 and Si3010. Table 24 lists the values for the dimensions  
shown in the illustration.  
16  
9
h
bbb B  
E
H
-B-  
θ
1
8
L
B
aaa C A B  
Detail F  
-A-  
D
C
A
-C-  
A1  
e
See Detail F  
γ
Seating Plane  
Figure 6. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 24. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
1.35  
.10  
Max  
1.75  
.25  
A
A1  
B
.33  
.51  
C
.19  
.25  
D
E
9.80  
3.80  
10.00  
4.00  
e
1.27 BSC  
H
h
5.80  
.25  
6.20  
.50  
L
.40  
1.27  
γ
0.10  
θ
0º  
8º  
aaa  
bbb  
0.25  
0.25  
Rev. 1.0  
73  
Si2401  
DOCUMENT CHANGE LIST  
Revision 0.7 to Revision 0.9  
„
Updated Table 5, “Absolute Maximum Ratings,” on  
page 8.  
„
„
„
Updated "3. Bill of Materials: Si2401/10 Chipset" on  
page 11.  
Updated SF3 description in Table 21, “S-Register  
Summary,” on page 35.  
Updated SE4 description in Register SE4 (CF5).,  
“Chip Functions 5,” on page 54.  
„
„
Updated "8. Pin Descriptions: Si2401" on page 69.  
Removed Appendix A and Appendix B. This  
information can be found in “AN94: Si2401 Modem  
Designer’s Guide”.  
Revision 0.9 to Revision 1.0  
„
„
„
„
„
Updated features list to include lead-free, RoHS  
compliant packages.  
Updated ring detect voltage values in Table 2 on  
page 5.  
Updated transmit and receive values in Table 4 on  
page 7.  
Updated "3. Bill of Materials: Si2401/10 Chipset" on  
page 11.  
Updated country-specific register settings in  
Table 10 on page 15.  
„
„
Updated reset values in Table 21 on page 35.  
Updated default binary values in Table 22 on page  
40.  
„
„
Updated "10. Ordering Guide" on page 72.  
Updated "11. Package Outline: 16-Pin SOIC" on  
page 73.  
74  
Rev. 1.0  
Si2401  
NOTES:  
Rev. 1.0  
75  
Si2401  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ISOmodem are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders  
76  
Rev. 1.0  

相关型号:

SI3010-F-FSR

暂无描述
SILICON

SI3010-F-GS

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-F-GSR

暂无描述
SILICON

SI3010-FS

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-FSR

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-GS

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-GSR

Consumer Circuit, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI3010-KS

Consumer Circuit, PDSO16, SOIC-16
SILICON

SI3010-KSR

Consumer Circuit, PDSO16, SOIC-16
SILICON

SI3010-X-FS

GLOBAL SERIAL INTERFACE DIRECT ACCESS ARRANGEMENT
SILICON

SI3010-X-FSR

暂无描述
SILICON

SI3011-F-FM

PROGRAMMABLE VOICE DAA SOLUTIONS
SILICON