SI3210M-GMR [SILICON]

SLIC, CMOS, PQCC38,;
SI3210M-GMR
型号: SI3210M-GMR
厂家: SILICON    SILICON
描述:

SLIC, CMOS, PQCC38,

电池 电信 电信集成电路
文件: 总130页 (文件大小:1670K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3210/Si3211  
PROSLIC® PROGRAMMABLE CMOS SLIC/CODEC WITH  
RINGING/BATTERY VOLTAGE GENERATION  
Features  
Performs all BORSCHT functions  
Software-programmable internal  
balanced ringing up to 90 VPK  
(5 REN up to 4 kft, 3 REN up to 8 kft)  
Integrated battery supply with dynamic  
voltage output (Si3210)  
Software-programmable signal  
generation and audio processing:  
DTMF generation and decoding  
12 kHz/16 kHz pulse metering  
generation  
Phase-continuous FSK (caller ID)  
generation  
On-chip dc-dc converter continuously  
minimizes power in all operating modes  
Entire solution can be powered from a  
single 3.3 V or 5 V supply  
Dual audio tone generators  
Smooth and abrupt polarity reversal  
µ-Law/A-Law and 16-bit linear PCM  
audio  
Ordering Information  
See page 123.  
3.3 to 35 V dc input range  
Dynamic 0 to –94.5 V output  
Low-cost inductor and high-efficiency  
transformer versions supported  
Extensive test and diagnostic  
features  
TSSOP Pin Assignments  
Multiple voice loopback test modes  
Real-time dc linefeed measurement  
GR-909 line test capabilities  
Software-programmable linefeed  
parameters:  
Si3210/11  
SPI and PCM bus digital interfaces  
Extensive programmable interrupts  
100% software configurable global  
solution  
Ringing frequency, amplitude, cadence,  
and waveshape  
38  
37  
1
2
CS  
INT  
2-wire ac impedance and hybrid  
Constant current feed (20 to 41 mA)  
Loop closure and ring trip thresholds and Ideal for customer premise  
SCLK  
SDI  
PCLK  
DRX  
36 SDO  
3
4
35  
SDITHRU  
filtering  
equipment applications  
Lead-free and RoHS-compliant  
packages available  
34  
DTX  
FSYNC  
RESET  
SDCH/DIO1  
SDCL/DIO2  
VDDA1  
DCDRV/DCSW  
5
6
7
8
33 DCFF/DOUT  
32  
31  
30  
TEST  
GNDD  
VDDD  
Applications  
9
29 ITIPN  
28  
27  
10  
11  
12  
13  
14  
Voice-over-broadband systems:  
DSL, codec, wireless  
PBX/IP-PBX/key telephone systems  
Terminal adapters:  
ISDN, Ethernet, USB  
IREF  
CAPP  
QGND  
CAPM  
ITIPP  
VDDA2  
26 IRINGP  
25  
24  
23  
22  
21  
20  
IRINGN  
IGMP  
GNDA  
IGMN  
SRINGAC  
STIPAC  
Description  
STIPDC 15  
SRINGDC 16  
The ProSLIC is a low-voltage CMOS device that provides a complete analog  
telephone interface ideal for customer premise equipment (CPE) applications.  
The ProSLIC integrates subscriber line interface circuit (SLIC), codec, and battery  
generation functionality into a single CMOS integrated circuit. The integrated  
battery supply continuously adapts its output voltage to minimize power and  
enables the entire solution to be powered from a single 3.3 V (Si3210M/Si3211M  
only) or 5 V supply. The ProSLIC controls the phone line through Silicon Labs’  
Si3201 Linefeed Interface Chip. Si3210 features include software-configurable  
5 REN internal ringing up to 90 VPK, DTMF generation and decoding, and a  
comprehensive set of telephony signaling capabilities for operation with only one  
hardware solution. The ProSLIC is packaged in a 38-pin QFN and TSSOP, and  
the Si3201 is packaged in a thermally-enhanced 16-pin SOIC.  
STIPE  
SVBAT 18  
19  
17  
SRINGE  
U.S. Patent #6,567,521  
U.S. Patent #6,812,744  
Other patents pending  
Functional Block Diagram  
INT  
RESET  
Si3210/11  
Line  
Status  
CS  
SCLK  
SDO  
Control  
Interface  
DTMF  
Decode  
SDI  
Gain/  
Attenuation/  
Filter  
A/D  
D/A  
TIP  
DTX  
Line  
Feed  
Control  
Linefeed  
Interface  
Prog.  
Hybrid  
Tone  
Generators  
PCM  
Interface  
DRX  
RING  
Gain/  
Attenuation/  
Filter  
ZS  
FSYNC  
PCLK  
DC-DC Converter Controller  
(Si3210 only)  
Discrete  
Components  
PLL  
Rev. 1.43 8/05  
Copyright © 2005 by Silicon Laboratories  
Si3210  
Si3210/Si3211  
2
Rev. 1.43  
Si3210/Si3211  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.1. Linefeed Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.2. Battery Voltage Generation and Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.3. Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
2.4. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
2.5. Pulse Metering Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
2.6. DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
2.7. Audio Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2.8. Two-Wire Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.9. Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.10. Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.11. Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
2.12. PCM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
2.13. Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
4. Indirect Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
4.1. DTMF Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
4.2. Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
4.3. Digital Programmable Gain/Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
4.4. SLIC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
4.5. FSK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
5. Pin Descriptions: Si3210/11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
6. Pin Descriptions: Si3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123  
8. Package Outline: 38-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
9. Package Outline: 38-Pin TSSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126  
10. Package Outline: 16-Pin ESOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130  
Rev. 1.43  
3
Si3210/Si3211  
1. Electrical Specifications  
1
Table 1. Absolute Maximum Ratings and Thermal Information  
Parameter  
Symbol  
Si3210/11  
Value  
Unit  
DC Supply Voltage  
V
, V  
, V  
DDA2  
–0.5 to 6.0  
±10  
V
mA  
V
DDD  
DDA1  
Input Current, Digital Input Pins  
Digital Input Voltage  
I
IN  
V
–0.3 to (V  
+ 0.3)  
DDD  
IND  
2
Operating Temperature Range  
T
–40 to 100  
C
A
Storage Temperature Range  
T
–40 to 150  
C
STG  
TSSOP-38 Thermal Resistance, Typical  
QFN-38 Thermal Resistance, Typical  
θ
70  
35  
C/W  
C/W  
W
JA  
JA  
θ
2
Continuous Power Dissipation  
P
0.7  
D
Si3201  
DC Supply Voltage  
V
–0.5 to 6.0  
–104  
V
V
DD  
Battery Supply Voltage  
V
BAT  
Input Voltage: TIP, RING, SRINGE, STIPE pins  
Input Voltage: ITIPP, ITIPN, IRINGP, IRINGN pins  
V
(V  
– 0.3) to (V + 0.3)  
V
INHV  
BAT  
DD  
V
–0.3 to (V + 0.3)  
V
IN  
DD  
2
Operating Temperature Range  
T
–40 to 100  
–40 to 150  
55  
C
A
Storage Temperature Range  
T
C
STG  
3
SOIC-16 Thermal Resistance, Typical  
θ
C/W  
W
JA  
2
o
Continuous Power Dissipation  
P
0.8 at 70 C  
D
o
0.6 at 85 C  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. Operation above 125 oC junction temperature may degrade device reliability.  
3. Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.  
4
Rev. 1.43  
Si3210/Si3211  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min*  
Typ  
Max*  
Unit  
°
Ambient Temperature  
Ambient Temperature  
Si3210/11 Supply Voltage  
T
K-grade  
B-grade  
0
25  
25  
70  
85  
C
A
°
T
–40  
3.13  
C
A
V
,V  
3.3/5.0  
5.25  
V
DDD DDA1  
,V  
DDA2  
Si3201 Supply Voltage  
Si3201 Battery Voltage  
V
3.13  
–96  
3.3/5.0  
5.25  
–10  
V
V
DD  
V
V
= V  
BATH BAT  
BAT  
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 oC unless otherwise stated.  
Product specifications are only guaranteed when the typical application circuit (including component tolerances) is  
used.  
Table 3. AC Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance  
Overload Level  
Single Frequency Distortion  
THD = 1.5%  
2.5  
V
PK  
1
2-wire – PCM or  
PCM – 2-wire:  
200 Hz–3.4 kHz  
–45  
dB  
2
Signal-to-(Noise + Distortion) Ratio  
200 Hz to 3.4 kHz  
D/A or A/D 8-bit  
Active off-hook, and OHT,  
any ZAC  
Figure 1  
45  
Audio Tone Generator  
0 dBm0, Active off-hook,  
and OHT, any Zac  
dB  
2
Signal-to-Distortion Ratio  
Intermodulation Distortion  
0
–45  
0.5  
0.5  
dB  
dB  
dB  
2
Gain Accuracy  
2-wire to PCM, 1014 Hz  
PCM to 2-wire, 1014 Hz  
–0.5  
–0.5  
0
Gain Accuracy Over Frequency  
Group Delay Over Frequency  
Figure 3,4  
Figure 5,6  
3
Gain Tracking  
1014 Hz sine wave, refer-  
ence level –10 dBm  
signal level:  
3 to –37 dB  
–37 to –50 dB  
–50 to –60 dB  
at 1000 Hz  
–0.25  
–0.5  
0.25  
0.5  
dB  
dB  
dB  
µs  
–1.0  
1.0  
Round-Trip Group Delay  
Gain Step Accuracy  
1100  
–6 to +6 dB  
–0.017  
0.017  
dB  
Rev. 1.43  
5
Si3210/Si3211  
Table 3. AC Characteristics (Continued)  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Gain Variation with Temperature  
Gain Variation with Supply  
2-Wire Return Loss  
All gain settings  
–0.25  
–0.1  
30  
35  
0.25  
0.1  
dB  
dB  
dB  
dB  
V
= V  
= 3.3/5 V ±5%  
DDA  
DDA  
200 Hz to 3.4 kHz  
300 Hz to 3.4 kHz  
Noise Performance  
C-Message Weighted  
Psophometric Weighted  
3 kHz flat  
Transhybrid Balance  
30  
4
Idle Channel Noise  
40  
40  
40  
15  
–75  
18  
dBrnC  
dBmP  
dBrn  
dB  
PSRR from VDDA  
PSRR from VDDD  
PSRR from VBAT  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
Longitudinal Performance  
dB  
dB  
Longitudinal to Metallic or PCM  
Balance  
200 Hz to 3.4 kHz, β  
56  
60  
dB  
Q1,Q2  
150, 1% mismatch  
5
β
= 60 to 240  
43  
53  
53  
40  
60  
60  
60  
dB  
dB  
dB  
dB  
Q1,Q2  
5
β
= 300 to 800  
Q1,Q2  
Using Si3201  
Metallic to Longitudinal Balance  
Longitudinal Impedance  
200 Hz to 3.4 kHz  
200 Hz to 3.4 kHz at TIP or  
RING  
Register selectable  
ETBO/ETBA  
00  
01  
10  
33  
17  
17  
Longitudinal Current per Pin  
Active off-hook  
200 Hz to 3.4 kHz  
Register selectable  
ETBO/ETBA  
4
8
8
mA  
mA  
mA  
00  
01  
10  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking performance  
in the signal range of 3 dB to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM sampling rate.  
4. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
5. Assumes normal distribution of betas.  
6
Rev. 1.43  
Si3210/Si3211  
Figure 1. Transmit and Receive Path SNDR  
9
8
7
6
Fundamental  
Acceptable  
5
Output Power  
Region  
(dBm0)  
4
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 2. Overload Compression Performance  
Rev. 1.43  
7
Si3210/Si3211  
Typical Response  
Typical Response  
Figure 3. Transmit Path Frequency Response  
8
Rev. 1.43  
Si3210/Si3211  
Figure 4. Receive Path Frequency Response  
Rev. 1.43  
9
Si3210/Si3211  
Figure 5. Transmit Group Delay Distortion  
Figure 6. Receive Group Delay Distortion  
10  
Rev. 1.43  
Si3210/Si3211  
Table 4. Linefeed Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70°C for K-Grade, –40 to 85°C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Loop Resistance Range  
R
See note.  
0
160  
10  
4
%
V
LOOP  
DC Loop Current Accuracy  
I
= 29 mA, ETBA = 4 mA  
–10  
–4  
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance  
R
I
< I  
LIM  
–4  
160  
4
V
DO  
LOOP  
DC Open Circuit Voltage—  
Ground Start  
V
R
I
<I ; V  
wrt ground  
RING  
= 48 V  
OCTO  
ROTO  
RING LIM  
V
OC  
DC Output Resistance—  
Ground Start  
I
<I ; RING to ground  
160  
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
150  
–20  
–10  
kΩ  
%
%
TOTO  
Loop Closure/Ring Ground  
Detect Threshold Accuracy  
I
= 11.43 mA  
= 40.64 mA  
20  
10  
THR  
THR  
Ring Trip Threshold  
Accuracy  
I
Ring Trip Response Time  
User Programmable Register 70  
and Indirect Register 36  
Ring Amplitude  
V
R
5 REN load; sine wave;  
44  
V
rms  
TR  
R
= 160 Ω, V  
= –75 V  
LOOP  
BAT  
Ring DC Offset  
Programmable in Indirect  
Register 19  
0
V
OS  
Trapezoidal Ring Crest  
Factor Accuracy  
Crest factor = 1.3  
–.05  
1.35  
.05  
1.45  
Sinusoidal Ring Crest  
Factor  
R
CF  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
Calibration Time  
f = 20 Hz  
–1  
–50  
1
%
ms  
ms  
%
Accuracy of ON/OFF Times  
CAL to CAL Bit  
50  
600  
25  
Power Alarm Threshold  
Accuracy  
At Power Threshold = 300 mW  
–25  
Note: DC resistance round trip; 160 corresponds to 2 kft 26 gauge AWG.  
Rev. 1.43  
11  
Si3210/Si3211  
Table 5. Monitor ADC Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Nonlinearity  
(6-bit resolution)  
DNLE  
–1/2  
1/2  
LSB  
Integral Nonlinearity  
(6-bit resolution)  
INLE  
–1  
1
LSB  
Gain Error (voltage)  
Gain Error (current)  
10  
20  
%
%
Table 6. Si321x DC Characteristics, VDDA = VDDD = 5.0 V  
(VDDA,VDDD = 4.75 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
IH  
DDD  
V
0.3 x V  
V
IL  
DD  
D
DIO1,DIO2,SDITHRU:IO = –4 mA  
SDO, DTX:IO = –8 mA  
High Level Output Voltage  
V
V
V
– 0.6  
– 0.8  
V
OH  
DDD  
DOUT: IO = –40 mA  
V
V
DDD  
DIO1,DIO2,DOUT,SDITHRU:  
IO = 4 mA  
SDO,INT,DTX:IO = 8 mA  
Low Level Output Voltage  
Input Leakage Current  
V
0.4  
OL  
I
–10  
10  
µA  
L
Table 7. Si321x DC Characteristics, VDDA = VDDD = 3.3 V  
(VDDA,VDDD = 3.13 to 3.47 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
IH  
DDD  
V
0.3 x V  
V
IL  
DD  
D
DIO1,DIO2,SDITHRU: IO =–2 mA  
SDO, DTX:IO = –4 mA  
High Level Output Voltage  
V
V
V
– 0.6  
– 0.8  
V
OH  
DDD  
DOUT: IO = –40 mA  
V
V
DDD  
DIO1,DIO2,DOUT,SDITHRU:  
IO = 2 mA  
SDO,INT,DTX:IO = 4 mA  
Low Level Output Voltage  
Input Leakage Current  
12  
V
0.4  
OL  
I
–10  
10  
µA  
L
Rev. 1.43  
Si3210/Si3211  
Table 8. Power Supply Characteristics  
(VDDA,VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
1
2
Parameter  
Symbol  
I + I  
Test Condition  
Max  
Unit  
Typ  
Typ  
Sleep (RESET = 0)  
Open  
0.1  
33  
37  
0.13  
42.8  
53  
0.3  
49  
68  
mA  
mA  
mA  
A
D
Active on-hook  
ETBO = 4 mA, codec and Gm  
amplifier powered down  
Active OHT  
ETBO = 4 mA  
Active off-hook  
ETBA = 4 mA, I  
Power Supply Current,  
Analog and Digital  
57  
72  
83  
mA  
mA  
= 20 mA  
73  
36  
88  
47  
99  
55  
LIM  
Ground-start  
mA  
Ringing  
mA  
µA  
µA  
µA  
mA  
Sinewave, REN = 1, V = 56 V  
45  
55  
65  
PK  
I
Sleep mode, RESET = 0  
Open (high impedance)  
100  
VDD  
100  
110  
1
Active on-hook standby  
V
Supply Current (Si3201)  
DD  
Forward/reverse active off-hook, no  
I
, ETBO = 4 mA, V  
= –24 V  
LOOP  
BAT  
Forward/reverse OHT, ETBO = 4 mA,  
= –70 V  
1
mA  
V
BAT  
I
Sleep (RESET = 0)  
Open (DCOF = 1)  
Active on-hook  
0
0
mA  
mA  
BAT  
mA  
mA  
V
= 48 V, ETBO = 4 mA  
3
OC  
Active OHT  
ETBO = 4 mA  
11  
3
V
Supply Current  
BAT  
Active off-hook  
ETBA = 4 mA, I  
mA  
mA  
= 20 mA  
30  
2
LIM  
Ground-start  
Ringing  
V
mA  
= 56 V  
,
PK  
5.5  
PK_RING  
sinewave ringing, REN = 1  
V
Supply Slew Rate  
When using Si3201  
10  
V/µs  
BAT  
Notes:  
1. VDDD, VDDA = 3.3 V.  
2. VDDD, VDDA = 5.25 V.  
3. IBAT = current from VBAT (the large negative supply). For a switched-mode power supply regulator efficiency of 71%,  
the user can calculate the regulator current consumption as IBAT x VBAT/(0.71 x VDC).  
Rev. 1.43  
13  
Si3210/Si3211  
Table 9. Switching Characteristics—General Inputs  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF)  
Parameter  
Symbol  
Min  
Typ  
Max  
20  
Unit  
ns  
Rise Time, RESET  
RESET Pulse Width  
t
r
t
100  
ns  
rl  
Note: All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are VIH = VD –  
0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
14  
Rev. 1.43  
Si3210/Si3211  
Table 10. Switching Characteristics—SPI  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Cycle Time SCLK  
t
0.062  
25  
25  
20  
20  
µs  
ns  
ns  
ns  
ns  
c
Rise Time, SCLK  
t
r
Fall Time, SCLK  
t
f
Delay Time, SCLK Fall to SDO Active  
t
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
t
t
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
25  
20  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
20  
h1  
t
25  
su2  
t
20  
h2  
Delay Time between Chip Selects  
(Continuous SCLK)  
t
440  
cs  
cs  
d4  
Delay Time between Chip Selects  
(Non-continuous SCLK)  
t
220  
4
ns  
ns  
SDI to SDITHRU Propagation Delay  
t
10  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
tthru  
tr  
tr  
tc  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
Figure 7. SPI Timing Diagram  
Rev. 1.43  
15  
Si3210/Si3211  
Table 11. Switching Characteristics—PCM Highway Serial Interface  
VD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
1
1
1
Symbol  
Units  
Min  
Typ  
Max  
1/t  
0.256  
0.512  
0.768  
1.024  
1.536  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
c
PCLK Frequency  
PCLK Duty Cycle Tolerance  
PCLK Period Jitter Tolerance  
Rise Time, PCLK  
t
40  
50  
60  
120  
25  
%
ns  
ns  
ns  
ns  
ns  
dty  
t
–120  
jitter  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
2
Delay Time, PCLK Rise to DTX Tri-state  
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
Notes:  
t
25  
20  
25  
20  
20  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
h1  
t
su2  
t
h2  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O –0.4V, VIL = 0.4 V  
2. Spec applies to PCLK fall to DTX tri-state when that mode is selected (TRI = 0).  
tr  
tf  
tc  
PCLK  
th1  
tsu1  
FSYNC  
tsu2  
th2  
DRX  
DTX  
td2  
td1  
td3  
Figure 8. PCM Highway Interface Timing Diagram  
16  
Rev. 1.43  
Si3210/Si3211  
VCC  
R1  
200k  
15  
20  
38  
37  
STIPDC  
STIPAC  
SCLK  
SDI  
C24  
0.1 µ F  
C3  
220 nF  
SPI Bus  
VCC  
R8  
470  
36  
SDO  
CS  
1
6
3
C18  
4.7 µF  
C19  
4.7 µ F  
FSYNC  
PCLK  
DRX  
PCM  
Bus  
VCC  
15  
29  
ITIPN  
IRINGN  
ITIPP  
4
ITIPN  
13  
16  
14  
11  
10  
25  
28  
26  
17  
19  
5
IRINGN  
ITIPP  
DTX  
1
3
TIP  
R322  
10k  
TIP  
C5  
22nF  
IRINGP  
STIPE  
IRINGP  
STIPE  
SRINGE  
Protection  
Circuit  
2
7
R2  
196k  
INT  
Note 2  
C6  
22nF  
RESET  
R4  
196k  
R262  
40.2k  
RING  
RING  
SRINGE  
24  
22  
IGMP  
IGMN  
R15  
243  
R7  
4.02k  
R6  
4.02k  
18  
SVBAT  
11  
12  
14  
R5  
200k  
IREF  
CAPP  
CAPM  
C4  
220 nF  
R9  
470  
R14  
40.2k  
C2  
10 µ F  
C1  
10 µ F  
21  
16  
SRINGAC  
SRINGDC  
13  
Notes:  
QGND  
R3  
1.  
Values and configurations for these  
components can be derived from Table 19  
or from App Note 45.  
200k  
C26  
0.1 µ F  
GND  
2.  
3.  
Only one component per system needed.  
Q9  
R21  
15  
2N2222  
All circuit ground should have a single-  
point connection to the ground plane.  
L2  
47 µH  
VCC  
VDDA1 VDDA2  
VDDD  
R291  
R281  
4. Si3201 bottom-side exposed pad should  
be electrically and thermally connected  
to bulk ground plane.  
VDC  
C31  
10 µF  
10 V  
C15  
0.1 µF  
C16  
0.1 µF 0.1 µ F  
C17  
C30  
10 µF  
Note 1  
VBAT DC-DC Converter  
VDC  
Circuit  
Figure 9. Si3210/Si3210M Application Circuit Using Si3201  
Table 12. Si3210/Si3210M + Si3201 External Component Values  
Component(s)  
Value  
10 µF, 6 V Ceramic or 16 V Low Leakage Electrolytic, ±20%  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
Supplier  
Murata, Nichicon URL1C100MD  
C1,C2  
C3,C4  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C5,C6  
C15,C16,C17,C24  
C18,C19  
C26  
0.1 µF, 6 V, Y5V, ±20%  
4.7 µF, ceramic, 6 V, X7R, ±20%  
0.1 µF, 100 V, X7R, ±20%  
10 µF, 10 V, Electrolytic, ±20%  
47 µH, 150 A  
C30,C31  
L2  
Coilcraft  
R1,R3,R5  
R2,R4  
200 k, 1/10 W, ±1%  
196 k, 1/10 W, ±1%  
R6,R7  
4.02 k, 1/10 W, ±1%  
R8,R9  
470 , 1/10 W, ±1%  
R14,R26*  
R15  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R21  
15 , 1/4 W, ±5%  
R28,R29  
R32*  
1/10 W, 1% (See AN45 or Table 19 for value selection)  
10 k, 1/10 W, ±5%  
Q9  
60 V, General Purpose Switching NPN  
ON Semi MMBT2222ALT1; Central  
Semi CMPT2222A; Zetex FMMT2222  
*Note: Only one component per system needed.  
Rev. 1.43  
17  
Si3210/Si3211  
VDC  
F1  
SDCH  
SDCL  
R191  
C252  
10uF  
C142  
0.1uF  
R181  
Note 1  
R201  
C10  
0.1 µF  
R16  
200  
Q7  
FZT953  
DCFF  
Q8  
D1  
ES1D  
2N2222  
VBAT  
C9  
10uF  
R17  
L1  
DCDRV  
Note 1  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 21 or from “AN45: Design Guide for the Si3210 DC-DC  
Converter”.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 10. Si3210 BJT/Inductor DC-DC Converter Circuit  
Table 13. Si3210 BJT/Inductor DC-DC Converter Component Values  
Component(s)  
Value  
10 µF, 100 V, Electrolytic, ±20%  
0.1 µF, 50 V, X7R, ±20%  
Supplier  
Panasonic  
C9  
C10  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C14*  
C25*  
R16  
0.1 µF, X7R, ±20%  
10 µF, Electrolytic, ±20%  
200 , 1/10 W, ±5%  
R17  
1/10 W, ±5% (See AN45 or Table 21 for value selection)  
1/4 W, ±5% (See AN45 or Table 21 for value selection)  
1/10 W, ±1% (See AN45 or Table 21 for value selection)  
Fuse  
R18  
R19,R20  
F1  
Belfuse SSQ Series  
D1  
Ultra Fast Recovery 200 V, 1A Rectifier  
General Semi ES1D; Central Semi  
CMR1U-02  
L1  
1A, Shielded Inductor (See AN45 or  
Table 21 for value selection)  
API Delevan SPD127 series, Sumida  
CDRH127 series, Datatronics DR340-1  
series, Coilcraft DS5022, TDK  
SLF12565  
Q7  
Q8  
120 V, High Current Switching PNP  
60 V, General Purpose Switching NPN  
Zetex FZT953, FZT955, ZTX953,  
ZTX955; Sanyo 2SA1552  
ON Semi MMBT2222ALT1, MPS2222A;  
Central Semi CMPT2222A; Zetex  
FMMT2222  
*Note: Voltage rating of this device must be greater than VDC  
.
18  
Rev. 1.43  
Si3210/Si3211  
VDC  
F1  
SDCH  
SDCL  
R191  
Note 1  
R201  
C252  
10uF  
C142  
0.1uF  
R181  
1
2
3
4
R22  
22  
C27  
470pF  
D1  
ES1D  
VBAT  
6
DCFF  
M1  
IRLL014N  
C9  
10uF  
10  
T11  
Note 1  
R17  
200k  
DCDRV  
NC  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 20 or from App Note 45.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 11. Si3210M MOSFET/Transformer DC-DC Converter Circuit  
Table 14. Si3210M MOSFET/Transformer DC-DC Converter Component Values  
Component(s)  
Value  
Supplier  
Panasonic  
C9  
10 µF, 100 V, Electrolytic, ±20%  
0.1 µF, X7R, ±20%  
C14*  
C25*  
C27  
R17  
R18  
Murata, Johanson, Novacap, Venkel  
Panasonic  
10 µF, Electrolytic, ±20%  
470 pF, 100 V, X7R, ±20%  
200 k, 1/10 W, ±5%  
Murata, Johanson, Novacap, Venkel  
1/4 W, ±5% (See “AN45: Design Guide for the Si3210  
DC-DC Converter” or Table 20 for value selection)  
R19,R20  
1/10 W, ±1% (See AN45 or Table 20  
for value selection)  
R22  
F1  
22 , 1/10 W, ±5%  
Fuse  
Belfuse SSQ Series  
General Semi ES1D; Central Semi  
CMR1U-02  
D1  
Ultra Fast Recovery 200 V, 1 A Rectifier  
Coiltronic CTX01-15275;  
Datatronics SM76315;  
Midcom 31353R-02  
T1  
Power Transformer  
Intl Rect. IRLL014N; Intersil  
HUF76609D3S; ST Micro  
STD5NE10L, STN2NE10L  
M1  
100 V, Logic Level Input MOSFET  
*Note: Voltage rating of this device must be greater than VDC  
.
Rev. 1.43  
19  
Si3210/Si3211  
VCC  
R1  
200k  
15  
20  
38  
37  
STIPDC  
STIPAC  
SCLK  
SDI  
C24  
0.1 µF  
SPI Bus  
PCM  
VCC  
C3  
220 nF  
R8  
470  
36  
1
SDO  
CS  
C18  
4.7 µF  
C19  
4.7 µF  
6
3
4
FSYNC  
PCLK  
DRX  
15  
29  
25  
ITIPN  
ITIPN  
Bus  
VCC  
13  
IRINGN  
IRINGN  
5
DTX  
1
3
16  
14  
28  
26  
ITIPP  
ITIPP  
TIP  
R321  
10k  
TIP  
C5  
22 nF  
Protection  
Circuit  
C6  
IRINGP  
IRINGP  
2
7
INT  
R2  
196k  
Note 1  
17  
19  
RESET  
11  
10  
22 nF  
STIPE  
STIPE  
R4  
196k  
R261  
40.2k  
RING  
RING  
24  
22  
SRINGE  
SRINGE  
IGMP  
IGMN  
R15  
243  
R7  
4.02k  
R6  
4.02k  
18  
SVBAT  
11  
12  
14  
IREF  
CAPP  
CAPM  
R5  
200k  
C2  
10 µF  
C1  
10 µF  
R14  
40.2k  
R9  
470  
C4  
220 nF  
21  
16  
SRINGAC  
SRINGDC  
13  
QGND  
Notes:  
1. Only one component per system needed.  
R3  
200k  
2. All circuit grounds should have a single-point  
connection to the ground plane.  
L2  
VDDA1 VDDA2  
47 µH  
NC NC  
NC  
VDDD  
C9  
0.1 µF  
3. Si3201 bottom-side exposed pad should be  
electrically and thermally connected to bulk  
ground plane.  
GND  
C31  
10 µF  
10 V  
C15  
0.1 µF  
C16  
0.1 µF 0.1 µ F  
C17  
C30  
10 µF  
Q8  
5551  
D1  
4003  
Q7  
5401  
R16  
200k  
R18  
1.8k  
VBATL  
VBATH  
Figure 12. Si3211 Typical Application Circuit Using Si3201  
Table 15. Si3211 + Si3201 External Component Values  
Component(s)  
Value  
Supplier  
C1,C2  
10 µF, 6 V Ceramic or 16 V, Low-Leakage Electrolytic,  
±20%  
Murata, Nichicon URL1C100MD  
C3,C4  
C5,C6  
C9  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
0.1 µF, 100 V, X7R, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
4.7 µF Ceramic, 6 V, X7R, ±20%  
10 µF, 10 V, Electrolytic, ±20%  
47 µH, 150 A  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C15,C16,C17,C24  
C18,C19  
C30,C31  
L2  
Coilcraft  
D1  
200 V, 1 A Rectifier  
ON Semi: MRA4003, IN4003  
ON Semi: 2N5401  
Q7  
120 V, PNP, BJT  
Q8  
120 V, NPN, BJT  
ON Semi: 2N5551  
R1,R3,R5,R16  
R2,R4  
R6,R7  
R18  
200 k, 1/10 W, ±1%  
196 k, 1/10 W, ±1%  
4.02 k, 1/10 W, ±1%  
1.8 k, 1/10 W, ±5%  
10 k, 1/10 W, ±5%  
R32*  
R8,R9  
R14,R26*  
R15  
470 , 1/10 W, ±1%  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
*Note: Only one component per system needed.  
20  
Rev. 1.43  
Si3210/Si3211  
VCC  
GND  
R1  
200k  
38  
SCLK  
15 STIPDC  
20 STIPAC  
37  
GND  
SDI  
SPI Bus  
36  
1
SDO  
R8  
470  
C3  
220nF  
CS  
6
3
4
FSYNC  
PCLK  
DRX  
Q1  
5401  
Q4  
5401  
28 ITIPP  
29 ITIPN  
17 STIPE  
R10  
10  
PCM Bus  
C324  
0.1 µF  
Q6  
5551  
TIP  
5
VCC  
DTX  
C8  
220nF  
R102 (100k)  
R13  
5.1k  
C5  
R2  
100k  
2
22nF  
R32  
Protection  
Circuit  
10k  
R6  
80.6  
C6  
22nF  
INT 2  
RESET7  
26 IRINGP  
25 IRINGN  
19 SRINGE  
Note 2  
Q2  
5401  
Q3  
5401  
RING  
C344  
0.1 µF  
R11  
10  
R4  
100k  
2
R26  
24  
40.2k  
Q5  
5551  
R104 (100k)  
IGMP  
IGMN  
R15  
243  
C7  
220nF  
22  
R12  
5.1k  
R5  
100k  
C334  
0.1 µF  
18 SVBAT  
R105 (100k)  
11  
12  
14  
IREF  
CAPP  
CAPM  
R7  
80.6  
C4  
220nF  
R9  
470  
C2  
10uF  
C1  
10uF  
R14  
40.2k  
21  
SRINGAC  
Notes:  
1. Values and configurations for these  
16  
QGND 13  
SRINGDC  
components can be derived from Table 19 or  
from “AN45: Design Guide for the Si3210 DC-  
DC Converter”.  
2. Only one component per system needed.  
3. All circuit grounds should have a single-point  
connection to the ground plane.  
R3  
200k  
C26  
0.1uF  
GND  
R21  
15  
Q9  
2N2222  
L2  
47 µH  
VDDA1 VDDA2  
VDDD  
VCC  
VDC  
C31  
1
1
R28  
4. Optional components to improve idle channel  
noise  
R29  
C15  
0.1 µF  
C16  
0.1 µ F 0.1 µ F  
C17  
C30  
10 µ F  
10 µF  
10  
V
Note 1  
DC-DC Converter  
Circuit  
VBAT  
VDC  
Figure 13. Si3210/Si3210M Typical Application Circuit Using Discrete Components  
Table 16. Si3210/Si3210M External Component Values—Discrete Solution  
Component(s)  
C1,C2  
Value  
10 µF, 6 V Ceramic or 16 V Low-Leakage Electrolytic, ±20%  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
220 nF, 50 V, X7R, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
Supplier/Part Number  
Murata, Panasonic, Nichicon URL1C100MD  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C3,C4  
C5,C6  
C7,C8  
C15,C16,C17  
C26  
0.1 µF, 100 V, X7R, ±20%  
10 µF, 10 V, Electrolytic, ±20%  
0.1 µF, 50 V, ±20%  
C30,C31  
C32,C33,C34  
L2  
Venkel  
47 µH, 150 A  
Coilcraft  
Q1,Q2,Q3,Q4  
120 V, PNP, BJT  
Central Semi CMPT5401; ON Semi MMBT5401LT1,  
2N5401; Zetex FMMT5401;  
Fairchild 2N5401; Samsung 2N5401  
Q5,Q6  
Q9  
120 V, NPN, BJT  
Central Semi CZT5551, ON Semi 2N5551;  
Fairchild 2N5551; Phillips 2N5551  
NPN General Purpose BJT  
ON Semi MMBT2222ALT1, MPS2222A; Central Semi  
CMPT2222A; Zetex FMMT2222  
R1,R3  
200 k, 1/10 W, ±1%  
100 k, 1/10 W, ±1%  
R2, R3, R4, R102,  
R104, R105  
R6,R7  
R8,R9  
80.6 , 1/4 W, ±1%  
470 , 1/10 W, ±1%  
R10,R11  
R12,R13  
R14,R26*  
R15  
10 , 1/10 W, ±5%  
5.1 k, 1/10 W, ±5%  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R21  
15 , 1/4 W, ±1%  
R28,R29  
R32*  
1/10 W, ±1% (See AN45 or Table 19 for value selection)  
10 k, 1/10 W, ±5%  
*Note: Only one component per system needed.  
Rev. 1.43  
21  
Si3210/Si3211  
VCC  
R1  
200k  
38  
37  
15  
20  
GND  
STIPDC  
STIPAC  
SCLK  
SDI  
SPI Bus  
36  
1
R8  
470  
SDO  
CS  
C3  
220nF  
6
3
4
5
Q1  
5401  
Q4  
5401  
28  
29  
17  
ITIPP  
ITIPN  
STIPE  
FSYNC  
PCLK  
DRX  
R10  
10  
PCM Bus  
Q6  
5551  
C32  
TIP  
0.1µF  
C8  
220nF  
R13  
5.1k  
R102 (100k)  
VCC  
C5  
22nF  
DTX  
R2  
100k  
Protection  
Circuit  
1
R32  
R6  
80.6  
10k  
C6  
22nF  
26  
25  
19  
IRINGP  
IRINGN  
SRINGE  
2
7
Q2  
5401  
Q3  
5401  
INT  
Note 1  
RING  
R11  
10  
R4  
100k  
C34  
RESET  
0.1µF  
1
Q5  
5551  
R26  
R104 (100k)  
24  
22  
40.2k  
IGMP  
IGMN  
C7  
220nF  
R15  
243  
R12  
5.1k  
R5  
100k  
C33  
0.1µF  
18  
SVBAT  
R105 (100k)  
R7  
80.6  
11  
12  
14  
IREF  
CAPP  
CAPM  
C4  
220nF  
R9  
470  
21  
16  
SRINGAC  
SRINGDC  
C2  
10uF  
C1  
10uF  
R14  
40.2k  
Notes:  
1.  
2.  
Only one component per system needed.  
R3  
200k  
13  
All circuit grounds should have a single-point  
connection to the ground plane.  
QGND  
C9  
0.1uF  
GND  
L2  
47 µH  
Q8  
5551  
VDDA1 VDDA2  
VDDD  
D1  
4003  
NC NC  
NC  
C31  
10 µF  
10 V  
C15  
0.1 µF  
C16  
0.1 µ F 0. 1 µ F  
C17  
C30  
10 µ F  
Q7  
5401  
R16  
200k  
R18  
1.8k  
VBATL  
VBATH  
Figure 14. Si3211 Typical Application Circuit Using Discrete Solution  
Table 17. Si3211 External Component Values—Discrete Solution  
Component(s)  
Value  
Supplier/Part Number  
C1,C2  
10 µF, 6 V Ceramic or 16 V Low Leakage Electrolytic,  
±20%  
Murata, Panasonic, Nichicon URL1C100MD  
C3,C4  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
220 nF, 50 V, X7R, ±20%  
0.1 µF, 100 V, Electrolytic, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
10 µF, 10 V, Electrolytic, ±20%  
0.1 µF, 50 V, X7R, ±20%  
47 µH, 150 mA  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C5,C6  
C7,C8  
C9  
C15,C16,C17  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C30,C31  
C32, C33, C34  
Venkel  
L2  
Coilcraft  
R1,R3,R16  
200 k, 1/10 W, ±1%  
100 k, 1/10 W, ±1%  
80.6 , 1/4 W, ±1%  
R2, R4, R5, R102, R104, R105  
R6,R7  
R8,R9  
470 , 1/10 W, ±1%  
R10,R11  
R12,R13  
R14,R26*  
R15  
10 , 1/10 W, ±5%  
5.1 k, 1/10 W, ±5%  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R18  
1.8 k, 1/10 W, ±5%  
10 k, 1/10 W, ±5%  
R32*  
D1  
200 V 1A Rectifier  
ON Semi MRA4003, 1N4003  
Q1,Q2,Q3,Q4,Q7  
120 V, PNP, BJT  
Central Semi CMPT5401; ON Semi MMBT5401LT1, 2N5401; Zetex  
FMMT5401  
Q5,Q6  
Q8  
120 V, NPN, BJT  
120 V, NPN, BJT  
Central Semi CZT5551, ON Semi 2N5551  
Central Semi CMPT5551, ON Semi 2N5551  
*Note: Only one component per system needed.  
22  
Rev. 1.43  
Si3210/Si3211  
QRDN  
5401  
QTDN  
5401  
Q3  
Q4  
R23  
R24  
RRBN0  
3.0k  
RTBN0  
3.0k  
QRP  
5551  
QTN  
5551  
Q5  
Q6  
C8  
C7  
CRBN  
100 nF  
CTBN  
100 nF  
R7  
RRE  
80.6  
R12  
RRBN  
5.1k  
R6  
RTE  
80.6  
R13  
RTBN  
5.1k  
Figure 15. Si321x Optional Equivalent Q5, Q6 Bias Circuit  
Table 18. Si321x Optional Bias Component Values  
Component  
C7,C8  
Value  
Supplier/Part Number  
Murata, Johanson, Venkel  
100 nF, 100 V, X7R, ±20%  
3.0 k, 1/10 W, ±5%  
R23,R24  
The subcircuit above can be substituted into any of the ProSLIC solutions as an optional bias circuit for Q5 and Q6.  
For this optional subcircuit, C7 and C8 are different in voltage and capacitance to the standard circuit. R23 and R24  
are additional components.  
Table 19. Component Value Selection for Si3210/Si3210M  
Component  
Value  
Comments  
R28 = (V + V )/148 µA  
R28  
1/10 W, 1% resistor  
DD  
BE  
For V = 3.3 V: 26.1 kΩ  
where V is the nominal VBE for Q9  
BE  
DD  
For V = 5.0 V: 37.4 kΩ  
DD  
R29  
1/10 W, 1% resistor  
R29 = V  
/148µµA  
CLAMP  
For V  
For V  
For V  
= 80 V: 541 kΩ  
= 85 V: 574 kΩ  
= 100 V: 676 kΩ  
where V  
is the clamping voltage for V  
CLAMP BAT  
CLAMP  
CLAMP  
CLAMP  
Rev. 1.43  
23  
Si3210/Si3211  
Table 20. Component Value Selection Examples for Si3210M MOSFET/Transformer DC-DC Converter  
VDC  
Maximum Ringing Load/Loop  
Resistance  
Transformer Ratio  
R18  
R19, R20  
3.3 V  
5.0 V  
12 V  
24 V  
3 REN/117 Ω  
5 REN/117 Ω  
5 REN/117 Ω  
5 REN/117 Ω  
1–2  
1–2  
1–3  
1–4  
0.06 Ω  
0.10 Ω  
0.6 Ω  
7.15 kΩ  
16.5 kΩ  
56.2 kΩ  
121 kΩ  
2.1 Ω  
Note: There are other system and software conditions that influence component value selection, so  
please refer to “AN45: Design Guide for the Si3210 DC-DC Converter” for detailed guidance.  
Table 21. Component Value Selection Examples for Si3210 BJT/Inductor DC-DC Converter  
VDC  
Maximum Ringing Load/Loop  
Resistance  
L1  
R17  
R18  
R19, R20  
5 V  
3 REN/117 Ω  
5 REN/117 Ω  
5 REN/117 Ω  
67 µH  
150 µH  
220 µH  
150 Ω  
162 Ω  
175 Ω  
0.15 16.5 kΩ  
12 V  
24 V  
0.56 Ω  
2.0 Ω  
56.2kΩ  
121 kΩ  
Note: There are other system and software conditions that influence component value selection, so  
please refer to “AN45: Design Guide for the Si3210 DC-DC Converter” for detailed guidance.  
24  
Rev. 1.43  
Si3210/Si3211  
2.1.1. DC Feed Characteristics  
2. Functional Description  
The ProSLIC has programmable constant voltage and  
constant current zones as depicted in Figure 16. Open  
®
The ProSLIC is a single, low-voltage CMOS device  
that provides all the SLIC, codec, DTMF detection, and  
signal generation functions needed for a complete  
analog telephone interface. The ProSLIC performs all  
battery, overvoltage, ringing, supervision, codec, hybrid,  
and test (BORSCHT) functions. Unlike most monolithic  
SLICs, the Si3210 does not require externally supplied  
high-voltage battery supplies. Instead, it generates all  
necessary battery voltages from a positive dc supply  
using its own dc-dc converter controller. Two fully  
programmable tone generators can produce DTMF  
tones, phase continuous FSK (caller ID) signaling, and  
call progress tones. DTMF decoding and pulse metering  
signal generation are also integrated. The Si3201  
linefeed interface IC performs all high voltage functions.  
As an option, the Si3201 can also be replaced with low-  
cost discrete components as shown in the typical  
application circuits in Figures 12, 13, and 14.  
circuit TIP-to-RING voltage (V ) defines the constant  
voltage zone and is programmable from 0 V to 94.5 V in  
OC  
1.5 V steps. The loop current limit (I ) defines the  
LIM  
constant current zone and is programmable from 20 mA  
to 41 mA in 3 mA steps. The ProSLIC has an inherent  
dc output resistance (R ) of 160 .  
O
V(TIP-RING) (V)  
Constant  
Voltage  
Zone  
VOC  
RO=160 Ω  
Constant Current  
Zone  
The ProSLIC is ideal for short loop applications, such as  
terminal adapters, cable telephony, PBX/key systems,  
wireless local loop (WLL), and voice over IP solutions.  
The device meets all relevant LSSGR and CCITT  
standards.  
ILIM  
ILOOP(mA)  
Figure 16. Simplified DC Current/Voltage  
Linefeed Characteristic  
The TIP-to-RING voltage (V ) is offset from ground by  
OC  
The linefeed provides programmable on-hook voltage,  
programmable off-hook loop current, reverse battery  
operation, loop or ground start operation, and on-hook  
transmission ringing voltage. Loop current and voltage  
are continuously monitored using an integrated A/D  
converter. Balanced 5 REN ringing with or without a  
programmable dc offset is integrated. The available  
offset, frequency, waveshape, and cadence options are  
designed to ring the widest variety of terminal devices  
and to reduce external controller requirements.  
a programmable voltage (V ) to provide voltage  
CM  
headroom to the positive-most terminal (TIP in forward  
polarity states and RING in reverse polarity states) for  
carrying audio signals. Table 22 summarizes the  
parameters to be initialized before entering an active  
state.  
Table 22. Programmable Ranges of DC  
Linefeed Characteristics  
Parameter Programmable Default  
Register  
Bits  
Location*  
A complete audio transmit and receive path is  
integrated, including DTMF decoding, ac impedance,  
and hybrid gain. These features are software-  
programmable, allowing for a single hardware design to  
meet international requirements. Digital voice data  
transfer occurs over a standard PCM bus. Control data  
is transferred using a standard SPI. The device is  
available in a 38-pin QFN or TSSOP package.  
Range  
Value  
ILIM  
VOC  
VCM  
20 to 41 mA  
20 mA  
ILIM[2:0]  
VOC[5:0]  
VCM[5:0]  
Direct  
Register 71  
0 to 94.5 V  
0 to 94.5 V  
48 V  
3 V  
Direct  
Register 72  
Direct  
Register 73  
2.1. Linefeed Interface  
*Note: The ProSLIC uses registers that are both directly  
and indirectly mapped. A “direct” register is one that  
is mapped directly.  
The ProSLIC’s linefeed interface offers a rich set of  
features and programmable flexibility to meet the  
broadest applications requirements. The dc linefeed  
characteristics are software programmable; key current,  
voltage, and power measurements are acquired in real  
time and provided in software registers.  
Rev. 1.43  
25  
Si3210/Si3211  
2.1.2. Linefeed Architecture  
2.1.4. Loop Voltage and Current Monitoring  
The ProSLIC is a low-voltage CMOS device that uses The ProSLIC continuously monitors the TIP and RING  
either an Si3201 linefeed interface IC or low-cost voltages and external BJT currents. These values are  
external components to control the high voltages available in registers 78–89. Table 24 on page 28 lists  
required for subscriber line interfaces. Figure 17 is a the values that are measured and their associated  
simplified illustration of the linefeed control loop circuit registers. An internal A/D converter samples the  
for TIP or RING and the external components used.  
measured voltages and currents from the analog sense  
circuitry and translates them into the digital domain. The  
A/D updates the samples at an 800 Hz rate. Two  
derived values are also reported: loop voltage and loop  
The ProSLIC uses both voltage and current sensing to  
control TIP and RING. DC and AC line voltages on TIP  
and RING are measured through sense resistors R  
DC  
current. The loop voltage, V – V  
, is reported as a  
TIP  
RING  
and R , respectively. The ProSLIC uses linefeed  
AC  
1-bit sign, 6-bit magnitude format. For ground start  
operation, the reported value is the RING voltage. The  
transistors Q and Q to drive TIP and RING. Q  
P
N
DN  
isolates the high-voltage base of Q from the ProSLIC.  
N
loop current, (I – I + I –I )/2, is reported in a 1-  
Q1  
Q2  
Q5 Q6  
The ProSLIC measures voltage at various nodes in  
bit sign, 6-bit magnitude format. In RING open and TIP  
open states, the loop current is reported as (I – I ) +  
order to monitor the linefeed current. R , R , and  
DC  
SE  
Q1  
Q2  
R
provide access to these measuring points. The  
BAT  
(I –I ).  
Q5 Q6  
sense circuitry is calibrated on-chip to guarantee  
measurement accuracy with standard external  
component  
tolerances.  
See  
"2.1.9.  
Linefeed  
Calibration" on page 31 for details.  
2.1.3. Linefeed Operation States  
The ProSLIC linefeed has eight states of operation as  
shown in Table 23. The state of operation is controlled  
using the Linefeed Control register (direct Register 64).  
The open state turns off all currents into the external  
bipolar transistors and can be used in the presence of  
fault conditions on the line and to generate Open Switch  
Intervals (OSIs). TIP and RING are effectively tri-stated  
with a dc output impedance of about 150 k. The  
ProSLIC can also automatically enter the open state if it  
detects excessive power being consumed in the  
external bipolar transistors. See "2.1.5. Power  
Monitoring and Line Fault Detection" on page 28 for  
more details.  
In the forward active and reverse active states, linefeed  
circuitry is on, and the audio signal paths are powered  
down.  
In the forward and reverse on-hook transmission states,  
audio signal paths are powered up to provide data  
transmission during an on-hook loop condition.  
The TIP Open state turns off all control currents to the  
external bipolar devices connected to TIP and provides  
an active linefeed on RING for ground start operation.  
The RING Open state provides similar operation with  
the RING drivers off and TIP active.  
The ringing state drives programmable ringing  
waveforms onto the line.  
26  
Rev. 1.43  
Si3210/Si3211  
Audio  
Codec  
Monitor A/D  
A/D  
A/D  
D/A  
DSP  
D/A  
SLIC DAC  
Battery Sense  
DC  
Control  
AC  
Control  
Emitter Sense  
Σ
AC Sense  
DC Sense  
RAC  
CAC  
Si3201  
RBP  
AC  
Control  
Loop  
QDN  
DC  
Control  
Loop  
QP  
RDC  
RSE  
RBAT  
TIP or  
RING  
QN  
RE  
VBAT  
Figure 17. Simplified ProSLIC Linefeed Architecture for TIP and RING Leads (One Shown)  
Table 23. ProSLIC Linefeed Operations  
LF[2:0]*  
000  
Linefeed State  
Open  
Description  
TIP and RING tri-stated.  
001  
Forward Active  
V
V
> V  
> V  
.
TIP  
TIP  
RING  
RING  
010  
Forward On-Hook Transmission  
TIP Open  
; audio signal paths powered on.  
011  
TIP tri-stated, RING active; used for ground start.  
Ringing waveform applied to TIP and RING.  
100  
Ringing  
101  
Reverse Active  
V
V
> V  
.
TIP  
RING  
RING  
110  
Reverse On-Hook Transmission  
Ring Open  
> V ; audio signal paths powered on.  
TIP  
111  
RING tri-stated, TIP active.  
Note: The Linefeed register (LF) is located in direct Register 64.  
Rev. 1.43  
27  
Si3210/Si3211  
Table 24. Measured Real-Time Linefeed Interface Characteristics  
Parameter  
Measurement  
Range  
Resolution  
Register  
Bits  
Location*  
Loop Voltage Sense (V  
– V  
)
RING  
–94.5 to +94.5 V  
1.5 V  
LVSP,  
Direct Register 78  
TIP  
LVS[6:0]  
Loop Current Sense  
–78.75 to +78.5 mA  
1.25 mA  
LCSP,  
Direct Register 79  
LCS[5:0]  
TIP Voltage Sense  
RING Voltage Sense  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to 81.35 mA  
0 to 81.35 mA  
0 to 9.59 mA  
0 to 9.59 mA  
0 to 80.58 mA  
0 to 80.58 mA  
0.376 V  
0.376 V  
VTIP[7:0]  
Direct Register 80  
Direct Register 81  
VRING[7:0]  
Battery Voltage Sense 1 (V  
Battery Voltage Sense 2 (V  
)
)
0.376 V  
VBATS1[7:0] Direct Register 82  
VBATS2[7:0] Direct Register 83  
BAT  
BAT  
0.376 V  
Transistor 1 Current Sense  
Transistor 2 Current Sense  
Transistor 3 Current Sense  
Transistor 4 Current Sense  
Transistor 5 Current Sense  
Transistor 6 Current Sense  
0.319 mA  
0.319 mA  
37.6 µA  
IQ1[7:0]  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
Direct Register 84  
Direct Register 85  
Direct Register 86  
Direct Register 87  
Direct Register 88  
Direct Register 89  
37.6 µA  
0.316 mA  
0.316 mA  
*Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly.  
2.1.5. Power Monitoring and Line Fault Detection  
the type of fault condition present on the line.  
In addition to reporting voltages and currents, the The value of each thermal low-pass filter pole is set  
ProSLIC continuously monitors the power dissipated in according to the equation:  
each external bipolar transistor. Real-time output power  
4096  
800 × τ  
3
of any one of the six linefeed transistors can be read by  
setting the Power Monitor Pointer (direct Register 76) to  
point to the desired transistor and then reading the Line  
Power Output Monitor (direct Register 77).  
------------------  
thermal LPF register =  
× 2  
where τ is the thermal time constant of the transistor  
package, 4096 is the full range of the 12-bit register, and  
800 is the sample rate in hertz. Generally τ = 3 seconds  
for SOT223 packages and τ = 0.16 seconds for SOT23,  
but check with the manufacturer for the package  
thermal constant of a specific device. For example, the  
power alarm threshold and low-pass filter values for Q5  
and Q6 using a SOT223 package transistor are  
computed as follows:  
The real-time power measurements are low-pass  
filtered and compared to a maximum power threshold.  
Maximum power thresholds and filter time constants are  
software-programmable and should be set for each  
transistor pair based on the characteristics of the  
transistors used. Table 25 describes the registers  
associated with this function. If the power in any  
external transistor exceeds the programmed threshold,  
a power alarm event is triggered. The ProSLIC sets the  
Power Alarm register bit, generates an interrupt (if  
enabled), and automatically enters the Open state (if  
AOPN = 1). This feature protects the external  
transistors from fault conditions and, combined with the  
loop voltage and current monitors, allows diagnosis of  
PMAX  
7
1.28  
7
------------------------------  
Resolution  
-----------------  
PT56 =  
× 2  
=
× 2 = 5389 = 150D  
0.0304  
Thus, indirect Register 34 should be set to 150Dh.  
Note: The power monitor resolution for Q3 and Q4 is different  
from that of Q1, Q2, Q5, and Q6.  
28  
Rev. 1.43  
Si3210/Si3211  
Table 25. Associated Power Monitoring and Power Fault Registers  
Parameter  
Description/  
Range  
Resolution  
Register  
Bits  
Location*  
Power Monitor Pointer  
Line Power Monitor Output  
0 to 5 points to Q1  
to Q6, respectively  
n/a  
PWRMP[2:0]  
PWROM[7:0]  
Direct Register 76  
Direct Register 77  
0 to 7.8 W for Q1,  
Q2, Q5, Q6  
0 to 0.9 W for Q3,  
Q4  
30.4 mW  
3.62 mW  
Power Alarm Threshold, Q1 & Q2  
Power Alarm Threshold, Q3 & Q4  
Power Alarm Threshold, Q5 & Q6  
Thermal LPF Pole, Q1 & Q2  
Thermal LPF Pole, Q3 & Q4  
Thermal LPF Pole, Q5 & Q6  
Power Alarm Interrupt Pending  
0 to 7.8 W  
0 to 0.9 W  
0 to 7.8 W  
30.4 mW  
3.62 mW  
30.4 mW  
PPT12[7:0]  
PPT34[7:0]  
PPT56[7:0]  
NQ12[7:0]  
NQ34[7:0]  
NQ56[7:0]  
Indirect Register 32  
Indirect Register 33  
Indirect Register 34  
Indirect Register 37  
Indirect Register 38  
Indirect Register 39  
Direct Register 19  
see equation above  
see equation above  
see equation above  
Bits 2 to 7 corre-  
spond to Q1 to Q6,  
respectively  
n/a  
n/a  
n/a  
QnAP[n+1],  
where n = 1  
to 6  
Power Alarm Interrupt Enable  
Bits 2 to 7 corre-  
spond to Q1 to Q6,  
respectively  
QnAE[n+1],  
where n = 1  
to 6  
Direct Register 22  
Direct Register 67  
Power Alarm  
Automatic/Manual Detect  
0 = manual mode  
1 = enter open state  
upon power alarm  
AOPN  
*Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
Rev. 1.43  
29  
Si3210/Si3211  
LCS  
Input  
Signal  
Processor  
ISP_OUT  
Digital  
LPF  
+
LVS  
LCIP  
LCR  
Debounce  
Filter  
Interrupt  
Logic  
NCLR  
LCDI  
LCIE  
LFS LCVE  
HYSTEN  
Loop Closure  
Threshold  
LCRT LCRTL  
Figure 18. Loop Closure Detection  
2.1.6. Loop Closure Detection  
which set the upper and lower bounds, respectively.  
A loop closure event signals that the terminal equipment 2.1.8. Voltage-Based Loop Closure Detection  
has gone off-hook during on-hook transmission or on-  
Silicon revisions C and higher also support an optional  
hook active states. The ProSLIC performs loop closure  
voltage-based loop closure detection mode, which is  
detection digitally using its on-chip monitor A/D  
enabled by setting LCVE = 1 (direct Register 108,  
converter. The functional blocks required to implement  
bit 2). In this mode, the loop voltage is compared to the  
loop closure detection are shown in Figure 18. The  
loop closure threshold register (LCRT), which  
primary input to the system is the Loop Current Sense  
represents a minimum voltage threshold instead of a  
value provided in the LCS register (direct Register 79).  
maximum current threshold. If hysteresis is also  
The LCS value is processed in the Input Signal  
enabled, then LCRT represents the upper voltage  
Processor when the ProSLIC is in the on-hook  
boundary, and LCRTL represents the lower voltage  
transmission or on-hook active linefeed state, as  
boundary for hysteresis. Although voltage-based loop  
indicated by the Linefeed Shadow register, LFS[2:0]  
closure detection is an option, the default current-based  
(direct Register 64). The data then feeds into a  
loop closure detection is recommended.  
programmable digital low-pass filter, which removes  
unwanted ac signal components before threshold  
detection.  
Table 26. Register Set for Loop  
Closure Detection  
The output of the low-pass filter is compared to a  
programmable threshold, LCRT (indirect register 28).  
The threshold comparator output feeds a programmable  
debouncing filter. The output of the debouncing filter  
remains in its present state unless the input remains in  
the opposite state for the entire period of time  
programmed by the loop closure debounce interval,  
LCDI (direct Register 69). If the debounce interval has  
been satisfied, the LCR bit will be set to indicate that a  
valid loop closure has occurred. A loop closure interrupt  
is generated if enabled by the LCIE bit (direct  
Register 22). Table 26 lists the registers that must be  
written or monitored to correctly detect a loop closure  
condition.  
Parameter  
Register  
Location  
Loop Closure  
Interrupt Pending  
LCIP  
Direct Reg. 19  
Loop Closure  
Interrupt Enable  
LCIE  
Direct Reg. 22  
Loop Closure Threshold LCRT[5:0] Indirect Reg. 28  
Loop Closure  
Threshold—Lower  
LCRTL[5:0] Indirect Reg. 43  
Loop Closure Filter  
Coefficient  
NCLR[12:0] Indirect Reg. 35  
Loop Closure Detect  
Status (monitor only)  
LCR  
Direct Reg. 68  
Direct Reg. 69  
2.1.7. Loop Closure Threshold Hysteresis  
Loop Closure Detect  
Debounce Interval  
LCDI[6:0]  
Silicon revisions C and higher support the addition of  
programmable hysteresis to the loop closure threshold,  
which can be enabled by setting HYSTEN = 1 (direct  
Register 108, bit 0). The hysteresis is defined by LCRT Voltage-Based Loop  
(indirect Register 28) and LCRTL (indirect Register 43), Closure  
Hysteresis Enable  
HYSTEN  
LCVE  
Direct Reg. 108  
Direct Reg. 108  
30  
Rev. 1.43  
Si3210/Si3211  
2.1.9. Linefeed Calibration  
voltage into the desired negative battery voltage. In  
addition to eliminating external power supplies, this  
allows the Si3210 to dynamically control the battery  
voltage to the minimum required for any given mode of  
operation.  
An internal calibration algorithm corrects for internal and  
external component errors. The calibration is initiated by  
setting the CAL bit in direct Register 96. Upon  
completion of the calibration cycle, this bit is  
automatically reset.  
Two different dc-dc circuit options are offered: a BJT/  
inductor version and a MOSFET/transformer version.  
It is recommended that a calibration be executed  
following system power-up. Upon release of the chip Due to the differences on the driving circuits, there are  
reset, the Si3210 will be in the open state. After two different versions of the Si3210. The Si3210  
powering up the dc-dc converter and allowing it to settle supports the BJT/inductor circuit option, and the  
for time (t  
) the calibration can be initiated. Si3210M version supports the MOSFET solution. The  
settle  
Additional calibrations may be performed, but only one only difference between the two versions is the polarity  
calibration should be necessary as long as the system of the DCFF pin with respect to the DCDRV pin. For the  
remains powered up.  
During calibration, V , V , and V voltages are  
RING  
controlled by the calibration engine to provide the  
correct external voltage conditions for the algorithm.  
Calibration should be performed in the on-hook state.  
RING or TIP must not be connected to ground during  
the calibration.  
Si3210, DCDRV and DCFF are opposite polarity. For  
the Si3210M, DCDRV and DCFF are the same polarity.  
Table 27 summarizes these differences.  
BAT  
TIP  
Table 27. Si3210 and Si3210M Differences  
Device  
DCFF Signal  
Polarity  
DCPOL  
When using the Si3201, automatic calibration routines  
for RING gain mismatch and TIP gain mismatch should  
not be performed. Instead of running these two  
calibrations automatically, follow the instructions for  
manual calibration in “AN35: Si321x User’s Quick  
Reference Guide”.  
Si3210  
0
1
= DCDRV  
= DCDRV  
Si3210M  
Notes:  
1. DCFF signal polarity with respect to DCDRV signal.  
2. Direct Register 93, bit 5; This is a read-only bit.  
Extensive design guidance on each of these circuits can  
be obtained from “AN45: Design Guide for the Si3210  
DC-DC Converter” and from an interactive dc-dc  
converter design spreadsheet. Both of these documents  
are available on the Silicon Laboratories website  
(www.silabs.com).  
2.2. Battery Voltage Generation and  
Switching  
The ProSLIC supports two modes of battery supply  
operation. First, the Si3210 integrates a dc-dc converter  
controller that dynamically regulates a single output  
voltage. This mode eliminates the need to supply large  
external battery voltages. Instead, it converts a single  
positive input voltage into the real-time battery voltage  
needed for any given state according to programmed  
linefeed parameters. Second, the Si3211 supports  
switching between high and low battery voltage  
supplies, as would a traditional monolithic SLIC.  
2.2.2. BJT/Inductor Circuit Option Using Si3210  
The BJT/Inductor circuit option, as defined in Figure 10  
on page 18, offers a flexible, low-cost solution.  
Depending on selected L1 inductance value and the  
switching frequency, the input voltage (V ) can range  
DC  
from 5 V to 30 V. Because of the nature of a dc-dc  
converter’s operation, peak and average input currents  
can become large with small input voltages. Consider  
this when selecting the appropriate input voltage and  
For single to low channel count applications, the Si3210  
proves to be an economical choice, as the dc-dc  
converter eliminates the need to design and build high-  
voltage power supplies. For higher channel count  
applications where centralized battery voltage supply is  
economical or for modular legacy systems where  
battery voltage is already available, the Si3211 is  
recommended.  
power rating for the V power supply.  
DC  
For this solution, a PNP power BJT (Q7) switches the  
current flow through low ESR inductor L1. The Si3210  
uses the DCDRV and DCFF pins to switch Q7 on and  
off. DCDRV controls Q7 through NPN BJT Q8. DCFF is  
ac coupled to Q7 through capacitor C10 to assist R16 in  
turning off Q7. Therefore, DCFF must have opposite  
polarity to DCDRV, and the Si3210 (not Si3210M) must  
be used.  
2.2.1. DC-DC Converter General Description  
(Si3210/Si3210M Only)  
The dc-dc converter dynamically generates the large  
negative voltages required to operate the linefeed  
interface. The Si3210 acts as the controller for a buck-  
boost dc-dc converter that converts a positive dc  
Rev. 1.43  
31  
Si3210/Si3211  
2.2.3. MOSFET/Transformer Circuit Option Using  
the Si3210M  
During a PWM period, the outputs of the control pins,  
DCDRV and DCFF, are asserted for a time given by the  
read-only PWM Pulse Width register (direct  
Register 94).  
The MOSFET/transformer circuit option, defined in  
Figure 11 on page 19, offers higher power efficiencies  
across a larger input voltage range. Depending on the The dc-dc converter must be off for some time in each  
transformers primary inductor value and the switching cycle to allow the inductor or transformer to transfer its  
frequency, the input voltage (V ) can range from 3.3 V stored energy to the output capacitor, C9. This minimum  
DC  
to 35 V. Therefore, it is possible to power the entire off time can be set through the dc-dc Converter  
ProSLIC solution from a single 3.3 V or 5 V power Switching Delay register, (direct Register 93). The  
supply. By nature of a dc-dc converter’s operation, peak number of 16.384 MHz clock cycles that the controller is  
and average input currents can become large with small off is equal to DCTOF (bits 0 through 4) plus 4. If the dc  
input voltages. Consider this when selecting the Monitor pins detect an overload condition, the dc-dc  
appropriate input voltage and power rating for the V  
power supply (number of REN supported).  
converter interrupts its conversion cycles regardless of  
the register settings to prevent component damage.  
These inputs should be calibrated by writing the DCCAL  
bit (bit 7) of the dc-dc Converter Switching Delay  
register, direct Register 93, after the dc-dc converter  
has been turned on.  
DC  
For this solution, an n-channel power MOSFET (M1)  
switches the current flow through a power transformer,  
T1. T1 is specified in “AN45: Design Guide for the  
Si3210 DC-DC Converter”, and includes several taps on  
the primary side to facilitate a wide range of input Because the Si3210 dynamically regulates its own  
voltages. The Si3210M version of the Si3210 must be battery supply voltage using the dc-dc converter  
used for the application circuit depicted in Figure 11 controller, the battery voltage (V  
) is offset from the  
BAT  
because the DCFF pin is used to drive M1 directly and, negative-most terminal by a programmable voltage  
therefore, must be the same polarity as DCDRV. (V ) to allow voltage headroom for carrying audio  
OV  
DCDRV is not used in this circuit option; connecting signals.  
DCFF and DCDRV together is not recommended.  
As mentioned previously, the Si3210 dynamically  
2.2.4. DC-DC Converter Architecture  
(Si3210/Si3210M Only)  
adjusts V  
illustrate this, the behavior of V  
to suit the particular circuit requirement. To  
BAT  
in the active state is  
BAT  
shown in Figure 19. In the active state, the TIP-to-RING  
open circuit voltage is kept at V in the constant  
The control logic for a pulse-width-modulated (PWM)  
dc-dc converter is incorporated in the Si3210. Output  
pins DCDRV and DCFF are used to switch a bipolar  
transistor or MOSFET. The polarity of DCFF is opposite  
that of DCDRV.  
OC  
voltage region while the regulator output voltage  
= V + V + V  
V
.
OV  
BAT  
CM  
OC  
When the loop current attempts to exceed I , the dc  
LIM  
line driver circuit enters constant current mode allowing  
The dc-dc converter circuit is powered on when the  
DCOF bit in the Powerdown Register (direct  
Register 14, bit 4) is cleared to 0. The switching  
the TIP to RING voltage to track R  
. As the TIP  
LOOP  
terminal is kept at a constant voltage, it is the RING  
terminal voltage that tracks R and, as a result, the  
LOOP  
regulator circuit within the Si3210 is  
a
high-  
|V  
|V  
| voltage will also track R  
. In this state,  
decreases  
LOOP  
BAT  
LOOP  
performance, pulse-width modulation controller. The  
control pins are driven by the PWM controller logic in  
| = I  
R
+ V  
+V . As R  
BAT  
LIM x LOOP  
CM  
OV  
below the VOC/I  
mark, the regulator output voltage  
LIM  
the Si3210. The regulated output voltage (V  
) is  
BAT  
can continue to track R  
(TRACK = 1), or the R  
LOOP  
LOOP  
sensed by the SVBAT pin and is used to detect whether  
the output voltage is above or below an internal  
reference for the desired battery voltage. The dc  
monitor pins, SDCH and SDCL, monitor input current  
and voltage to the dc-dc converter external circuitry. If  
an overload condition is detected, the PWM controller  
will turn off the switching transistor for the remainder of  
tracking mechanism is stopped when |V  
| = |V  
|
BATL  
BAT  
(TRACK = 0). The former case is the more common  
application and provides the maximum power  
dissipation savings. In principle, the regulator output  
voltage can go as low as |V  
significant power savings.  
| = V + V , offering  
BAT  
CM OV  
a PWM period to prevent damage to external When TRACK = 0, |V  
| will not decrease below  
BAT  
components. It is important that the proper value of R18  
V
. The RING terminal voltage, however, continues  
BATL  
be selected to ensure safe operation. Guidance is given to decrease with decreasing R  
. The power  
LOOP  
in AN45.  
dissipation on the NPN bipolar transistor driving the  
RING terminal can become large and may require a  
higher power rating device. The non-tracking mode of  
operation is required by specific terminal equipment  
The PWM controller operates at a frequency set by the  
dc-dc Converter PWM register (direct Register 92).  
32  
Rev. 1.43  
Si3210/Si3211  
which, in order to initiate certain data transmission modes, goes briefly on-hook to measure the line voltage to  
determine whether there is any other off-hook terminal equipment on the same line. TRACK = 0 mode is desired  
since the regulator output voltage has long settling time constants (on the order of tens of milliseconds) and cannot  
change rapidly for TRACK = 1 mode. Therefore, the brief on-hook voltage measurement would yield approximately  
the same voltage as the off-hook line voltage and would cause the terminal equipment to incorrectly sense another  
off-hook terminal.  
VOC  
ILIM  
RLOOP  
Constant I Region  
Constant V Region  
VCM  
VTIP  
VOC  
|VTIP - VRING  
|
VBATL  
TRACK=0  
VOV  
VRING  
VBAT  
VOV  
V
Figure 19. VTIP, VRING, and VBAT in the Forward Active State  
Table 28. Associated Relevant DC-DC Converter Registers  
Parameter  
Range  
Resolution Register Bit  
Location  
DC-DC Converter Power-off  
Control  
N/A  
n/a  
DCOF  
Direct Register 14  
DC-DC Converter Calibration  
Enable/Status  
N/A  
n/a  
DCCAL  
Direct Register 93  
DC-DC Converter PWM Period  
DC-DC Converter Min. Off Time  
0 to 15.564 µs  
61.035 ns  
61.035 ns  
DCN[7:0]  
Direct Register 92  
Direct Register 93  
(0 to 1.892 µs) +  
4 ns  
DCTOF[4:0]  
High Battery Voltage—V  
Low Battery Voltage—V  
0 to –94.5 V  
0 to –94.5 V  
1.5 V  
1.5 V  
1.5 V  
VBATH[5:0]  
VBATL[5:0]  
Direct Register 74  
Direct Register 75  
BATH  
BATL  
V
0 to –9 V or  
0 to –13.5 V  
VMIND[3:0]  
VOV  
Indirect Register 41  
Direct Register 66  
OV  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through 31).  
Rev. 1.43  
33  
Si3210/Si3211  
2.2.5. DC-DC Converter Enhancements  
When the ProSLIC changes operating states, it  
automatically switches battery supplies if the automatic/  
manual control bit ABAT (direct Register 67, bit 3) is set.  
For example, the ProSLIC will switch from high battery  
to low battery when it detects an off-hook event through  
either a ring trip or loop closure event. If automatic  
battery selection is disabled (ABAT = 0), the battery is  
selected by the Battery Feed Select bit, BATSL (direct  
Register 66, bit 1).  
Silicon revisions  
C
and higher support two  
enhancements to the dc-dc converter. The first is a  
multi-threshold error control algorithm that enables the  
dc-dc converter to adjust more quickly to voltage  
changes. This option is enabled by setting DCSU = 1  
(direct Register 108, bit 5). The second enhancement is  
an audio band filter that removes audio band noise from  
the dc-dc converter control loop. This option is enabled  
by setting DCFIL = 1 (direct Register 108, bit 1).  
Silicon revisions C and higher support the option to add  
a 60 ms debounce period to the battery switching circuit  
when transitioning from high battery to low battery. This  
option is enabled by setting SWDB = 1 (direct  
Register 108, bit 3). This debounce minimizes battery  
transitions in the case of pulse dialing or other quick on-  
hook to off-hook transitions.  
2.2.6. DC-DC Converter During Ringing  
When the ProSLIC enters the ringing state, it requires  
voltages well above those used in the active mode. The  
voltage to be generated and regulated by the dc-dc  
converter during a ringing burst is set using the V  
BATH  
register (direct Register 74). V  
can be set between  
BATH  
0 and –94.5 V in 1.5 V steps. To avoid clipping the  
2.3. Tone Generation  
ringing signal, V  
must be set larger than the ringing  
BATH  
Two digital tone generators are provided in the ProSLIC.  
They allow the generation of a wide variety of single or  
dual tone frequency and amplitude combinations and  
spare the user the effort of generating the required  
POTS signaling tones on the PCM highway. DTMF, FSK  
amplitude. At the end of each ringing burst the dc-dc  
converter adjusts back to active state regulation as  
described above.  
2.2.7. External Battery Switching (Si3211 Only)  
The Si3211 supports switching between two battery (caller ID), call progress, and other tones can all be  
voltages. The circuit for external battery switching is generated on-chip. The tones can be sent to either the  
defined in Figure 14. Typically a high voltage battery receive or transmit paths (see Figure 25 on page 44).  
(e.g., –70 V) is used for on-hook and ringing states, and  
2.3.1. Tone Generator Architecture  
a low voltage battery (e.g., –24 V) is used for the off-  
A simplified diagram of the tone generator architecture  
hook condition. The ProSLIC uses an external transistor  
is shown in Figure 20. The oscillator, active/inactive  
to switch between the two supplies.  
timers, interrupt block, and signal routing block are  
connected to give the user flexibility in creating audio  
signals. Control and status register bits are placed in the  
figure to indicate their association with the tone  
generator architecture. These registers are described in  
more detail in Table 29.  
34  
Rev. 1.43  
Si3210/Si3211  
8 kHz  
Clock  
8 kHz  
Clock  
OZn  
Zero Cross  
OnE  
OSSn  
to TX Path  
Enable  
Zero  
Cross  
Logic  
Two-Pole  
Resonance  
Oscillator  
16-Bit  
Modulo  
Counter  
OAT  
Expire  
Signal  
Routing  
Register  
Load  
Load  
Logic  
OIT  
Expire  
to RX Path  
OSCn  
OATn  
OITn  
OnIP REL*  
INT  
Logic  
OATnE  
OnSO  
OSCnX  
OSCnY  
OnIE  
OITnE  
OnAP  
INT  
Logic  
OnAE  
*Tone Generator 1 Only  
n = "1" or "2" for Tone Generator 1 and 2, respectively  
Figure 20. Simplified Tone Generator Diagram  
2.3.2. Oscillator Frequency and Amplitude  
Each of the two tone generators contains a two-pole  
resonate oscillator circuit with programmable  
frequency and amplitude, which are programmed via  
indirect registers OSC1, OSC1X, OSC1Y, OSC2,  
OSC2X, and OSC2Y. The sample rate for the two  
oscillators is 8000 Hz. The equations are as follows:  
2π1336  
8000  
= 0.49819  
--------------------  
coeff2 = cos  
a
15  
OSC2 = 0.49819 (2 ) = 16324 = 3FC4h  
1
0.50181  
--  
OSC2X =  
×
--------------------- × (215 1) × 0.5 = 2370 = 942h  
4
1.49819  
OSC2Y = 0  
coeff = cos(2π f /8000 Hz),  
n
n
The computed values above would be written to the  
corresponding registers to initialize the oscillators. Once  
the oscillators are initialized, the oscillator control  
registers can be accessed to enable the oscillators and  
direct their outputs.  
where f is the frequency to be generated;  
n
15  
OSCn = coeff x (2 );  
n
Desired Vrms  
-------------------------------------  
1.11 Vrms  
1
4
15  
1 coeff  
1 + coeff  
--  
OSCnX =  
× ----------------------- × (2 1) ×  
2.3.3. Tone Generator Cadence Programming  
where desired Vrms is the amplitude to be generated;  
OSCnY = 0,  
Each of the two tone generators contains two timers,  
one for setting the active period and one for setting the  
inactive period. The oscillator signal is generated during  
the active period and suspended during the inactive  
period. Both the active and inactive periods can be  
programmed from 0 to 8 seconds in 125 µs steps. The  
active period time interval is set using OAT1 (direct  
registers 36 and 37) for tone generator 1 and OAT2  
(direct registers 40 and 41) for tone generator 2.  
n = 1 or 2 for oscillator 1 or oscillator 2, respectively.  
For example, in order to generate a DTMF digit of 8, the  
two required tones are 852 Hz and 1336 Hz. Assuming  
the generation of half-scale values (ignoring twist) is  
desired, the following values are calculated:  
2π852  
8000  
----------------  
coeff1 = cos  
= 0.78434  
To enable automatic cadence for tone generator 1,  
define the OAT1 and OIT1 registers and then set the  
O1TAE bit (direct Register 32, bit 4) and O1TIE bit  
(direct Register 32, bit 3). This enables each of the  
timers to control the state of the Oscillator Enable bit,  
O1E (direct Register 32, bit 2). The 16-bit counter will  
begin counting until the active timer expires, at which  
time the 16-bit counter will reset to zero and begin  
OSC1 = 0.78434(215) = 25701= 6465h  
1
4
0.21556  
1.78434  
--  
OSC1X =  
×
--------------------- × (215 1) × 0.5 = 1424 = 590h  
OSC1Y = 0  
Rev. 1.43  
35  
Si3210/Si3211  
counting until the inactive timer expires. The cadence The operation of tone generator 2 is identical to that of  
continues until the user clears the O1TAE and O1TIE tone generator 1 using its respective control registers.  
control bits. The zero crossing detect feature can be  
implemented by setting the OZ1 bit (direct Register 32,  
bit 5). This ensures that each oscillator pulse ends  
without a dc component. The timing diagram in  
Figure 21 is an example of an output cadence using the  
zero crossing feature.  
Note: Tone Generator 2 should not be enabled simulta-  
neously with the ringing oscillator due to resource shar-  
ing within the hardware.  
Continuous phase frequency-shift keying (FSK)  
waveforms may be created using tone generator 1 (not  
available on tone generator 2) by setting the REL bit  
One-shot oscillation can be achieved by enabling O1E (direct Register 32, bit 6), which enables reloading of  
and O1TAE. Direct control over the cadence can be the OSC1, OSC1X, and OSC1Y registers at the  
achieved by controlling the O1E bit (direct Register 32, expiration of the active timer (OAT1).  
bit 2) directly if O1TAE and O1TIE are disabled.  
Table 29. Associated Tone Generator Registers  
Tone Generator 1  
Parameter  
Description / Range  
Register Bits  
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OAT1[15:0]  
OIT1[15:0]  
Location  
Oscillator 1 Frequency Coefficient Sets oscillator frequency  
Indirect Register 13  
Indirect Register 14  
Indirect Register 15  
Direct Registers 36 & 37  
Direct Register 38 & 39  
Direct Register 32  
Oscillator 1 Amplitude Coefficient  
Oscillator 1 initial phase coefficient  
Oscillator 1 Active Timer  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 seconds  
Oscillator 1 Inactive Timer  
Oscillator 1 Control  
0 to 8 seconds  
Status and control  
registers  
OSS1, REL, OZ1,  
O1TAE, O1TIE,  
O1E, O1SO[1:0]  
Tone Generator 2  
Description/Range  
Parameter  
Register  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
OAT2[15:0]  
OIT2[15:0]  
Location  
Oscillator 2 Frequency Coefficient Sets oscillator frequency  
Indirect Register 16  
Indirect Register 17  
Indirect Register 18  
Direct Registers 40 & 41  
Direct Register 42 & 43  
Direct Register 33  
Oscillator 2 Amplitude Coefficient  
Oscillator 2 initial phase coefficient  
Oscillator 2 Active Timer  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 seconds  
Oscillator 2 Inactive Timer  
Oscillator 2 Control  
0 to 8 seconds  
Status and control  
registers  
OSS2, OZ2,  
O2TAE, O2TIE,  
O2E, O2SO[1:0]  
36  
Rev. 1.43  
Si3210/Si3211  
O1E  
0,1 ...  
..., OAT1 0,1 ...  
..., OIT1 0,1 ...  
..., OAT1 0,1 ...  
...  
...  
OSS1  
Tone  
Gen. 1  
Signal  
Output  
Figure 21. Tone Generator Timing Diagram  
2.3.4. Enhanced FSK Waveform Generation  
2.4. Ringing Generation  
Silicon revisions C and higher support enhanced FSK  
generation capabilities, which can be enabled by setting  
FSKEN = 1 (direct Register 108, bit 6) and REN = 1  
(direct Register 32, bit 6). In this mode, the user can  
define mark (1) and space (0) attributes once during  
initialization by defining indirect registers 99–104. The  
user need only indicate 0-to-1 and 1-to-0 transitions in  
the information stream. By writing to FSKDAT (direct  
Register 52), this mode applies a 24 kHz sample rate to  
tone generator 1 to give additional resolution to timers  
and frequency generation. Application Note 32 gives  
detailed instructions on how to implement FSK in this  
mode. Additionally, sample source code is available  
from Silicon Laboratories upon request.  
The ProSLIC provides fully programmable internal  
balanced ringing with or without a dc offset to ring a  
wide variety of terminal devices. All parameters  
associated with ringing are software programmable:  
ringing frequency, waveform, amplitude, dc offset, and  
ringing cadence. Both sinusoidal and trapezoidal ringing  
waveforms are supported, and the trapezoidal crest  
factor is programmable. Ringing signals of up to 88 V  
peak or more can be generated, enabling the ProSLIC  
to drive a 5 REN (1380 + 40 µF) ringer load across  
loop lengths of 2000 feet (160 ) or more.  
2.4.1. Ringing Architecture  
The ringing generator architecture is nearly identical to  
that of the tone generator. The sinusoid ringing  
waveform is generated using an internal two-pole  
resonance oscillator circuit with programmable  
frequency and amplitude. However, since ringing  
frequencies are very low compared to the audio band  
signaling frequencies, the ringing waveform is  
generated at a 1 kHz rate instead of 8 kHz.  
2.3.5. Tone Generator Interrupts  
Both the active and inactive timers can generate their  
own interrupt to signal “on/off” transitions to the  
software. The timer interrupts for tone generator 1 can  
be individually enabled by setting the O1AE and O1IE  
bits (direct Register 21, bits 0 and 1, respectively).  
Timer interrupts for tone generator two are O2AE and  
O2IE (direct Register 21, bits 2 and 3, respectively). A  
pending interrupt for each of the timers is determined by  
reading the O1AP, O1IP, O2AP, and O2IP bits in the  
Interrupt Status 1 register (direct Register 18, bits 0  
through 3, respectively).  
The ringing generator has two timers that function the  
same as the tone generator timers. They allow on/off  
cadence settings up to 8 seconds on/ 8 seconds off. In  
addition to controlling ringing cadence, these timers  
control the transition into and out of the ringing state.  
Table 30 summarizes the list of registers used for  
ringing generation.  
Note: Tone generator 2 should not be enabled concurrently  
with the ringing generator due to resource sharing  
within the hardware.  
Rev. 1.43  
37  
Si3210/Si3211  
Table 30. Registers for Ringing Generation  
Parameter  
Range/ Description  
Register  
Bits  
Location  
Ringing Waveform  
Ringing Voltage Offset Enable  
Sine/Trapezoid  
Enabled/  
TSWS  
RVO  
Direct Register 34  
Direct Register 34  
Disabled  
Ringing Active Timer Enable  
Ringing Inactive Timer Enable  
Ringing Oscillator Enable  
Enabled/  
Disabled  
Enabled/  
Disabled  
RTAE  
RTIE  
ROE  
Direct Register 34  
Direct Register 34  
Direct Register 34  
Enabled/  
Disabled  
Ringing Oscillator Active Timer  
Ringing Oscillator Inactive Timer  
Linefeed Control (Initiates Ringing State)  
High Battery Voltage  
0 to 8 seconds  
0 to 8 seconds  
Ringing State = 100b  
0 to –94.5 V  
0 to 94.5 V  
15 to 100 Hz  
0 to 94.5 V  
Sets initial phase for  
sinewave and period  
for  
RAT[15:0]  
RIT[15:0]  
LF[2:0]  
VBATH[5:0]  
ROFF[15:0]  
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
Direct Registers 48 and 49  
Direct Registers 50 and 51  
Direct Register 64  
Direct Register 74  
Ringing dc voltage offset  
Ringing frequency  
Ringing amplitude  
Ringing initial phase  
Indirect Register 19  
Indirect Register 20  
Indirect Register 21  
Indirect Register 22  
trapezoid  
Common Mode Bias Adjust During Ringing  
0 to 22.5 V  
VCMR[3:0]  
Indirect Register 40  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
When the ringing state is invoked by writing  
LF[2:0] = 100 (direct Register 64), the ProSLIC will go  
into the ringing state and start the first ring. At the  
expiration of RAT, the ProSLIC will turn off the ringing  
waveform and will go to the on-hook transmission state.  
At the expiration of RIT, ringing will again be initiated.  
This process will continue as long as the two timers are  
enabled and the Linefeed Control register is set to the  
ringing state.  
Desired VPK(0 to 94.5 V)  
-----------------------------------------------------------------------  
96 V  
1
4
15  
1 coeff  
1 + coeff  
--  
RNGX =  
×
----------------------- × 2  
×
RNGY = 0  
In selecting a ringing amplitude, the peak TIP-to-RING  
ringing voltage must be greater than the selected on-  
hook line voltage setting (VOC, direct Register 72). For  
example, to generate a 70 V 20 Hz ringing signal, the  
PK  
equations are as follows:  
2π × 20  
1000 Hz  
= 0.99211  
2.4.2. Sinusoidal Ringing  
----------------------  
coeff = cos  
To configure the ProSLIC for sinusoidal ringing, the  
frequency and amplitude are initialized by writing to the  
following indirect registers: RCO, RNGX, and RNGY.  
The equations for RCO, RNGX, RNGY are as follows:  
RCO = 0.99211 × (215) = 32509 = 7EFDh  
1
15 70  
0.00789  
1.99211  
--  
------  
= 376 = 0177h  
RNGX =  
×
--------------------- × 2  
×
4
96  
RCO = coeff × (215  
)
RNGY = 0  
where  
2πf  
----------------------  
In addition, the user must select the sinusoidal ringing  
waveform by writing TSWS = 0 (direct Register 34,  
bit 0).  
coeff = cos  
1000 Hz  
and f = desired ringing frequency in hertz.  
38  
Rev. 1.43  
Si3210/Si3211  
2.4.3. Trapezoidal Ringing  
(20 Hz), the rise time requirement is 0.0153 seconds.  
In addition to the sinusoidal ringing waveform, the  
ProSLIC supports trapezoidal ringing. Figure 22  
illustrates a trapezoidal ringing waveform with offset  
RCO(20 Hz, 1.3 crest factor)  
2 × 24235  
-------------------------------------  
=
= 396= 018Ch  
V
.
ROFF  
0.0153 × 8000  
In addition, the user must select the trapezoidal ringing  
waveform by writing TSWS = 1 in direct Register 34.  
VTIP-RING  
2.4.4. Ringing DC voltage Offset  
A dc offset can be added to the ac ringing waveform by  
defining the offset voltage in ROFF (indirect  
Register 19). The offset, V  
signal when RVO is set to 1 (direct Register 34, bit 1).  
The value of ROFF is calculated as follows:  
, is added to the ringing  
ROFF  
VROFF  
T=1/freq  
VROFF  
15  
-----------------  
ROFF =  
× 2  
96  
tRISE  
time  
2.4.5. Linefeed Considerations During Ringing  
Care must be taken to keep the generated ringing signal  
within the ringing voltage rails (GNDA and V  
) to  
BAT  
Figure 22. Trapezoidal Ringing Waveform  
maintain proper biasing of the external bipolar  
transistors. If the ringing signal nears the rails, a  
distorted ringing signal and excessive power dissipation  
in the external transistors will result.  
To configure the ProSLIC for trapezoidal ringing, the  
user should follow the same basic procedure as in the  
Sinusoidal Ringing section, but using the following  
equations:  
To prevent this invalid operation, set the V  
value  
BATH  
(direct Register 74) to a value higher than the maximum  
peak ringing voltage. The discussion below outlines the  
considerations and equations that govern the selection  
1
2
--  
RNGY = × Period × 8000  
of the V  
voltage.  
setting for a particular desired peak ringing  
Desired VPK  
BATH  
15  
-----------------------------------  
RNGX =  
× (2 )  
96 V  
First, the required amount of ringing overhead voltage,  
, is calculated based on the maximum value of  
V
2 × RNGX  
tRISE × 8000  
OVR  
--------------------------------  
RCO =  
current through the load, I  
, the minimum current  
LOAD,PK  
gain of Q5 and Q6, and a reasonable voltage required  
to keep Q5 and Q6 out of saturation. For ringing signals  
RCO is a value, which is added or subtracted from the  
waveform to ramp the signal up or down in a linear  
fashion. This value is a function of rise time, period, and  
amplitude, where rise time and period are related  
through the following equation for the crest factor of a  
trapezoidal waveform.  
up to V = 87 V, V  
= 7.5 V is a safe value.  
PK  
OVR  
However, to determine V  
equations below.  
for a specific case, use the  
OVR  
VAC,PK  
NREN  
------------------  
-----------------  
+ IOS  
ILOAD,PK  
=
+ IOS = VAC,PK  
×
RLOAD  
6.9 kΩ  
3
4
1
--  
----------  
tRISE  
=
T 1 –  
CF2⎠  
where:  
is the ringing REN load (max value = 5),  
where T = ringing period, and CF = desired crest factor.  
N
REN  
For example, to generate a 71 V , 20 Hz ringing  
PK  
I
is the offset current flowing in the line driver circuit  
OS  
signal, the equations are as follows:  
(max value = 2 mA), and  
V
= amplitude of the ac ringing waveform.  
1
2
1
AC,PK  
-- ---------------  
× 8000 = 200 = C8h  
RNGY(20 Hz) =  
×
20 Hz  
It is good practice to provide a buffer of a few more  
milliamperes for I  
leakages, etc. The total I  
smaller than 80 mA.  
to account for possible line  
LOAD,PK  
71  
96  
RNGX(71 VPK) =  
× 215= 24235 = 5EABh  
current should be  
------  
LOAD,PK  
For a crest factor of 1.3 and a period of 0.05 seconds  
Rev. 1.43  
39  
Si3210/Si3211  
2.4.6. Ring Trip Detection  
β + 1  
β
------------  
× (80.6 + 1 V)  
VOVR = ILOAD,PK  
×
A ring trip event signals that the terminal equipment has  
gone off-hook during the ringing state. The ProSLIC  
performs ring trip detection digitally using its on-chip A/  
where β is the minimum expected current gain of  
transistors Q5 and Q6.  
D
converter. The functional blocks required to  
The minimum value for V  
following:  
is therefore given by the  
BATH  
implement ring trip detection are shown in Figure 23.  
The primary input to the system is the loop current  
sense (LCS) value provided by the current monitoring  
circuitry and reported in direct Register 79. LCS data is  
processed by the input signal processor when the  
ProSLIC is in the ringing state as indicated by the  
Linefeed Shadow register (direct Register 64). The data  
then feeds into a programmable digital low-pass filter,  
which removes unwanted ac signal components before  
threshold detection.  
VBATH = VAC,PK + VROFF + VOVR  
The ProSLIC is designed to create a fully balanced  
ringing waveform, meaning that the TIP and RING  
common mode voltage, (V  
+ V  
)/2, is fixed. This  
TIP  
RING  
voltage is referred to as VCM_RING and is  
automatically set to the following:  
The output of the low-pass filter is compared to a  
programmable threshold, RPTP (indirect Register 29).  
The threshold comparator output feeds a programmable  
debouncing filter. The output of the debouncing filter  
remains in its present state unless the input remains in  
the opposite state for the entire period of time  
programmed by the ring trip debounce interval,  
RTDI[6:0] (direct Register 70). If the debounce interval  
has been satisfied, the RTP bit of direct Register 68 will  
be set to indicate that a valid ring trip has occurred. A  
ring trip interrupt is generated if enabled by the RTIE bit  
(direct Register 22). Table 31 lists the registers that  
must be written or monitored to correctly detect a ring  
trip condition.  
VBATH VCMR  
---------------------------------------------  
VCM_RING =  
2
VCMR is an indirect register, which provides the  
headroom by the ringing waveform with respect to the  
rail. The value is set as a 4-bit setting in indirect  
Register 40 with an LSB voltage of 1.5 V/LSB.  
Register 40 should be set with the calculated V  
provide voltage headroom during ringing.  
V
BATH  
to  
OVR  
Silicon revisions C and higher support the option to  
briefly increase the maximum differential current limit  
between the voltage transition of TIP and RING from  
ringing to a dc linefeed state. This mode is enabled by  
setting ILIMEN = 1 (direct Register 108, bit 7).  
The recommended values for RPTP, NRTP, and RTDI  
vary according to the programmed ringing frequency.  
Register values for various ringing frequencies are  
given in Table 32.  
Input  
Signal  
Processor  
LCS  
ISP_OUT  
Digital  
LPF  
+
DBIRAW  
RTP  
RTIP  
Debounce  
Filter  
Interrupt  
Logic  
NRTP  
RTDI  
RTIE  
LFS  
Ring Trip  
Threshold  
RPTP  
Figure 23. Ring Trip Detector  
40  
Rev. 1.43  
Si3210/Si3211  
Table 31. Associated Registers for Ring Trip Detection  
Parameter  
Register  
RTIP  
Location  
Ring Trip Interrupt Pending  
Ring Trip Interrupt Enable  
Ring Trip Detect Debounce Interval  
Ring Trip Threshold  
Direct Register 19  
Direct Register 22  
Direct Register 70  
Indirect Register 29  
Indirect Register 36  
Direct Register 68  
RTIE  
RTDI[6:0]  
RPTP[5:0]  
NRTP[12:0]  
RTP  
Ring Trip Filter Coefficient  
Ring Trip Detect Status (monitor only)  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
Table 32. Recommended Ring Trip Values for Ringing  
Ringing  
NRTP  
RPTP  
RTDI  
Frequency  
Hz  
16.667  
20  
decimal  
64  
hex  
decimal  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
hex  
decimal  
15.4 ms  
12.3 ms  
8.96 ms  
7.5 ms  
5 ms  
hex  
0F  
0B  
09  
07  
05  
05  
0200  
0320  
0380  
0400  
06A8  
0800  
3600  
3600  
3600  
3600  
3600  
3600  
100  
112  
30  
40  
128  
213  
256  
50  
60  
4.8 ms  
2.5. Pulse Metering Generation  
Desired Vrms  
-------------------------------------------  
Full Scale Vrms  
1
4
15  
1 coeff  
--  
PLSX =  
----------------------- × (2 1) ×  
There is an additional tone generator suitable for  
generating tones above the audio frequency. This  
oscillator is provided for the generation of billing tones  
that are typically 12 kHz or 16 kHz. The generator  
follows the same algorithm as described in "2.3. Tone  
1 + coeff  
= 0.85 V  
where full scale V  
for a matched load.  
rms  
rms  
The initial phase of the pulse metering signal is set to 0  
internally; so, there is no register to serve this purpose.  
Generation" on page 34 with the exception that the The pulse metering generator timers and associated  
sample rate for computation is 64 kHz instead of 8 kHz. pulse metering timer registers are similar to those of the  
The equations are as follows:  
tone generators. These timers count 8 kHz sample  
periods like the other tones even though the sinusoid is  
generated at 64 kHz.  
2πf  
coeff = cos  
--------------------------  
64000 Hz  
PLSCO = coeff × (215 1)  
Rev. 1.43  
41  
Si3210/Si3211  
Table 33. Associated Pulse Metering Generator Registers  
Parameter  
Description / Range  
Register Bits  
Location  
Pulse Metering Frequency  
Coefficient  
Sets oscillator frequency  
PLSCO[15:0]  
Indirect Register 25  
Pulse Metering Amplitude  
Coefficient  
Sets oscillator amplitude  
0 to PLSX (full amplitude)  
PLSX[15:0]  
PLSD[15:0]  
Indirect Register 24  
Indirect Register 23  
Pulse Metering Attack/Decay  
Ramp Rate  
Pulse Metering Active Timer  
Pulse Metering Inactive Timer  
Pulse Metering Control  
0 to 8 seconds  
0 to 8 seconds  
PAT[15:0]  
PIT[15:0]  
Direct Registers 44 & 45  
Direct Register 46 & 47  
Direct Register 35  
Status and control registers  
PSTAT, PMAE,  
PMIE, PMOE  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A direct register is one that is mapped  
directly. An indirect register is one that is accessed using the indirect access registers (direct registers 28  
through 31).  
The pulse metering oscillator has a volume envelope  
2.6. DTMF Detection  
(linear ramp) on the on/off transitions of the oscillator.  
The dual-tone multi-frequency (DTMF) tone signaling  
The volume value is incremented by the value in the  
standard is also known as touch tone. It is an in-band  
PLSD register (indirect Register 23) at an 8 kHz rate.  
signaling system used to replace the pulse-dial  
The sinusoidal generator output is multiplied by this  
signaling standard. In DTMF, two tones are used to  
volume before being sent to the DAC. The volume will  
generate a DTMF digit. One tone is chosen from four  
ramp from 0 to 7FFF in increments of PLSD; so, the  
possible row tones, and one tone is chosen from four  
value of PLSD will set the slope of the ramp. When the  
possible column tones. The sum of these tones  
pulse metering signal is turned off, the volume will ramp  
constitutes one of 16 possible DTMF digits.  
to 0 by decrementing according to the value of PLSD.  
2.6.1. DTMF Detection Architecture  
DTMF detection is performed using a modified Goertzel  
Pulse Metering Oscillator  
algorithm to compute the dual frequency tone (DFT) for  
each of the eight DTMF frequencies as well as their  
second harmonics. At the end of the DFT computation,  
the squared magnitudes of the DFT results for the eight  
X
To DAC  
DTMF fundamental tones are computed. The row  
results are sorted to determine the strongest row  
frequency; the column frequencies are sorted as well.  
Volume  
At the completion of this process, a number of checks  
are made to determine whether the strongest row and  
column tones constitute a DTMF digit.  
8 Khz  
PLSD  
+/–  
The detection process is performed twice within the  
45 ms minimum tone time. A digit must be detected on  
two consecutive tests following a pause to be  
recognized as a new digit. If all tests pass, an interrupt  
is generated, and the DTMF digit value is loaded into  
the DTMF register. If tones are occurring at the  
maximum rate of 100 ms per digit, the interrupt must be  
serviced within 85 ms so that the current digit is not  
Clip to 7FFF or 0  
Figure 24. Pulse Metering Volume Envelope  
42  
Rev. 1.43  
Si3210/Si3211  
overwritten by a new one. There is no buffering of the  
digit information.  
2.7. Audio Path  
Unlike traditional SLICs, the codec function is integrated  
into the ProSLIC. The 16-bit codec offers programmable  
gain/attenuation blocks and several loop-back modes.  
The signal path block diagram is shown in Figure 25.  
2.7.1. Transmit Path  
In the transmit path, the analog signal fed by the  
external ac coupling capacitors is amplified by the  
analog transmit amplifier, ATX, prior to the A/D  
converter. The gain of the ATX is user-selectable to one  
of mute/–3.5/0/3.5 dB options. The main role of ATX is  
to coarsely adjust the signal swing to be as close as  
possible to the full-scale input of the A/D converter in  
order to maximize the signal-to-noise ratio of the  
transmit path. After passing through an anti-aliasing  
filter, the analog signal is processed by the A/D  
converter, producing an 8 kHz, 16-bit wide, linear PCM  
data stream. The standard requirements for transmit  
path attenuation for signals above 3.4 kHz are  
implemented as part of the combined decimation filter  
characteristic of the A/D converter. One more digital  
filter is available in the transmit path: THPF. THPF  
implements the high-pass attenuation requirements for  
signals below 65 Hz. The linear PCM data stream  
output from THPF is amplified by the transmit-path  
programmable gain amplifier, ADCG, which can be  
programmed from –dB to 6 dB. The DTMF decoder  
can receive the linear PCM data stream at this point to  
perform the digit extraction when enabled by the user.  
The final step in the transmit path signal processing is  
the user-selectable A-law or µ-law compression, which  
can reduce the data stream word width to 8 bits.  
Depending on the PCM_Mode register selection, every  
8-bit compressed serial data word will occupy one time  
slot on the PCM highway, or every 16-bit  
uncompressed serial data word will occupy two time  
slots on the PCM highway.  
Rev. 1.43  
43  
Si3210/Si3211  
44  
Rev. 1.43  
Si3210/Si3211  
2.7.2. Receive Path  
should be interpreted as the maximum allowable  
magnitude of any spurious signals that are generated  
when a PCM data stream representing a sine wave  
signal in the range of 300 Hz to 3.4 kHz at a level of  
0 dBm0 is applied at the digital input.  
In the receive path, the optionally compressed 8-bit data  
is first expanded to 16-bit words. The PCMF register bit  
can bypass the expansion process, in which case two  
8-bit words are assembled into one 16-bit word. DACG  
is the receive path programmable gain amplifier which The group delay distortion in either path is limited to no  
can be programmed from –dB to 6 dB. An 8 kHz, 16- more than the levels indicated in Figure 5 on page 10.  
bit signal is then provided to a D/A converter. The The reference in Figure 5 is the smallest group delay for  
resulting analog signal is amplified by the analog a sine wave in the range of 500 Hz to 2500 Hz at  
receive amplifier, ARX, which is user-selectable to one 0 dBm0.  
of mute/–3.5/0/3.5 dB options. It is then applied at the  
The block diagram for the voice-band signal processing  
input of the transconductance amplifier (Gm), which  
paths is shown in Figure 25. Both the receive and  
drives the off-chip current buffer (I  
).  
BUF  
transmit paths employ the optimal combination of  
analog and digital signal processing to provide  
maximum performance while offering sufficient flexibility  
to allow users to optimize for their particular ProSLIC  
application. All programmable signal-processing blocks  
are indicated symbolically in Figure 25 by a dashed  
arrow across them. The two-wire (TIP/RING) voice-  
band interface to the ProSLIC is implemented using a  
small number of external components. The receive path  
2.7.3. Audio Characteristics  
The dominant source of distortion and noise in both the  
transmit and receive paths is the quantization noise  
introduced by the µ-law or the A-law compression  
process. Figure 1 on page 7 specifies the minimum  
signal-to-noise-and-distortion ratio for either path for a  
sine wave input of 200 Hz to 3400 Hz.  
Both the µ-law and the A-law speech encoding allow the  
audio codec to transfer and process audio signals larger  
than 0 dBm0 without clipping. The maximum PCM code  
is generated for a µ-law encoded sine wave of  
3.17 dBm0 or an A-law encoded sine wave of  
3.14 dBm0. The ProSLIC overload clipping limits are  
interface consists of a unity-gain current buffer, I  
,
BUF  
while the transmit path interface is simply an ac  
coupling capacitor. Signal paths, although implemented  
differentially, are shown as single-ended for simplicity.  
2.7.4. Transhybrid Balance  
driven by the PCM encoding process. Figure 2 on page The ProSLIC provides programmable transhybrid  
7 shows the acceptable limits for the analog-to-analog balance with gain block H. (See Figure 25.) In the ideal  
fundamental power transfer-function, which bounds the case, where the synthesized SLIC impedance matches  
behavior of ProSLIC.  
exactly the subscriber loop impedance, the transhybrid  
balance should be set to subtract a –6 dB level from the  
transmit path signal. The transhybrid balance gain can  
be adjusted from –2.77 dB to +4.08 dB around the ideal  
setting of –6 dB by programming the HYBA[2:0] bits of  
the Hybrid Control register (direct Register 11). Note  
that adjusting any of the analog or digital gain blocks will  
not require any modification of the transhybrid balance  
gain block, as the transhybrid gain is subtracted from  
the transmit path signal prior to any gain adjustment  
stages. The transhybrid balance can also be disabled, if  
desired, using the appropriate register setting.  
The transmit path gain distortion versus frequency is  
shown in Figure 3 on page 8. The same figure also  
presents the minimum required attenuation for any out-  
of-band analog signal that may be applied on the line.  
Note the presence of a high-pass filter transfer-function  
that ensures at least 30 dB of attenuation for signals  
below 65 Hz. The low-pass filter transfer function that  
attenuates signals above 3.4 kHz has to exceed the  
requirements specified by the equations in Figure 3 on  
page 8 and is implemented as part of the A-to-D  
converter.  
2.7.5. Loopback Testing  
The receive path transfer function requirement, shown  
in Figure 4 on page 9, is very similar to the transmit path Four loopback test options are available in the ProSLIC:  
transfer function. The most notable difference is the  
The full analog loopback (ALM2) tests almost all the  
absence of the high-pass filter portion. The only other  
circuitry of both the transmit and receive paths. The  
differences are the maximum 2 dB of attenuation at  
compressed 8-bit word transmit data stream is fed  
200 Hz (as opposed to 3 dB for the transmit path) and  
back serially to the input of the receive path  
the 28 dB of attenuation for any frequency above  
expander. (See Figure 25.) The signal path starts  
4.6 kHz. The PCM data rate is 8 kHz and, thus, no  
with the analog signal at the input of the transmit  
frequencies greater than 4 kHz can be digitally encoded  
path and ends with an analog signal at the output of  
in the data stream. From this point of view, at  
the receive path.  
frequencies greater than 4 kHz, the plot in Figure 4  
Rev. 1.43  
45  
Si3210/Si3211  
An additional analog loopback (ALM1) takes the  
The ProSLIC also provides a means of compensating  
digital stream at the output of the A/D converter and for degraded subscriber loop conditions involving  
feeds it back to the D/A converter. (See Figure 25.)  
The signal path starts with the analog signal at the  
input of the transmit path and ends with an analog  
signal at the output of the receive path. This  
loopback option allows testing of the analog signal  
processing circuitry of the Si3210 to be carried out  
completely independently of any activity in the DSP.  
excessive line capacitance (leakage). The CLC[1:0] bits  
of direct Register 10 increase the ac signal magnitude  
to compensate for the additional loss at the high end of  
the audio frequency range. The default setting of  
CLC[2:0] assumes no line capacitance.  
Silicon revisions C and higher support the option to  
remove the internal reference resistor used to  
synthesize ac impedances for 600 + 2.16 µF and  
900 + 2.16 µF settings so that an external resistor  
reference may be used. This option is enabled by  
setting ZSEXT = 1 (direct Register 108, bit 4).  
The full digital loopback tests almost all the circuitry  
of both the transmit and receive paths. The analog  
signal at the output of the receive path are fed back  
to the input of the transmit path by way of the hybrid  
filter path. (See Figure 25.) The signal path starts  
with 8-bit PCM data input to the receive path and  
ends with 8-bit PCM data at the output of the  
2.9. Clock Generation  
The ProSLIC will generate the necessary internal clock  
frequencies from the PCLK input. PCLK must be  
synchronous to the 8 kHz FSYNC clock and run at one  
of the following rates: 256 kHz, 512 kHz, 768 kHz,  
1.024 MHz, 1.536 MHz, 2.048 MHz, 4.096 MHz or  
8.192 MHz. The ratio of the PCLK rate to the FSYNC  
rate is determined via a counter clocked by PCLK. The  
three-bit ratio information is automatically transferred  
into an internal register, PLL_MULT, following a reset of  
the ProSLIC. The PLL_MULT is used to control the  
internal PLL, which multiplies PCLK as needed to  
generate the 16.384 MHz rate needed to run the  
internal filters and other circuitry.  
transmit path. The user can bypass the companding  
process and interface directly to the 16-bit data.  
An additional digital loopback (DLM) takes the digital  
stream at the input of the D/A converter in the  
receive path and feeds it back to the transmit A/D  
digital filter. The signal path starts with 8-bit PCM  
data input to the receive path and ends with 8-bit  
PCM data at the output of the transmit path. This  
loopback option allows the testing of the digital  
signal processing circuitry of the Si3210 to be carried  
out completely independently of any analog signal  
processing activity. The user can bypass the  
companding process and interface directly to the 16-  
bit data.  
The PLL clock synthesizer settles very quickly following  
powerup. However, the settling time depends on the  
PCLK frequency, and it can be approximated by the  
following equation:  
2.8. Two-Wire Impedance Matching  
The ProSLIC provides on-chip, programmable, two-wire  
impedance settings to meet a wide variety of worldwide  
two-wire return loss requirements. The two-wire  
impedance is programmed by loading one of the eight  
available impedance values into the TISS[2:0] bits of the  
Two-Wire Impedance Synthesis Control register (direct  
Register 10). If direct Register 10 is not user-defined,  
the default setting of 600 will be loaded into the TISS  
register.  
64  
FPCLK  
----------------  
=
TSETTLE  
2.10. Interrupt Logic  
The ProSLIC is capable of generating interrupts for the  
following events:  
Loop current/ring ground detected  
Ring trip detected  
Real and complex two-wire impedances are realized by  
internal feedback of a programmable amplifier (RAC), a  
Power alarm  
DTMF digit detected  
switched  
capacitor  
network  
(XAC),  
and  
a
Active timer 1 expired  
transconductance amplifier (G ). (See Figure 25.) RAC  
m
Inactive timer 1 expired  
Active timer 2 expired  
creates the real portion, and XAC creates the imaginary  
portion of G ’s input. G then creates a current that  
m
m
models the desired impedance value to the subscriber  
loop. The differential ac current is fed to the subscriber  
loop via the ITIPP and IRINGP pins through an off-chip  
Inactive timer 2 expired  
Ringing active timer expired  
Ringing inactive timer expired  
Pulse metering active timer expired  
Pulse metering inactive timer expired  
current buffer, I , which is implemented using  
BUF  
transistors Q1 and Q2 (see Figure 13 on page 21). G  
m
is referenced to an off-chip resistor (R ).  
15  
46  
Rev. 1.43  
Si3210/Si3211  
Indirect register access complete  
The interface to the interrupt logic consists of six  
registers. Three interrupt status registers contain one bit  
for each of the above interrupt functions. These bits will  
be set when an interrupt is pending for the associated  
resource. Three interrupt enable registers also contain  
one bit for each interrupt function. In the case of the  
interrupt enable registers, the bits are active high. Refer  
to the appropriate functional description section for  
operational details of the interrupt functions.  
When a resource reaches an interrupt condition, it will  
signal an interrupt to the interrupt control block. The  
interrupt control block will then set the associated bit in  
the interrupt status register if the enable bit for that  
interrupt is set. The INT pin is a NOR of the bits of the  
interrupt status registers. Therefore, if a bit in the  
interrupt status registers is asserted, IRQ will assert low.  
Upon receiving the interrupt, the interrupt handler  
should read interrupt status registers to determine  
which resource is requesting service. To clear a pending  
interrupt, write the desired bit in the appropriate  
interrupt status register to 1. Writing a 0 has no effect.  
This provides a mechanism for clearing individual bits  
when multiple interrupts occur simultaneously. While the  
interrupt status registers are non-zero, the INT pin will  
remain asserted.  
2.11. Serial Peripheral Interface  
The control interface to the ProSLIC is a 4-wire interface  
modeled after commonly-available micro-controller and  
serial peripheral devices. The interface consists of a  
clock (SCLK), chip select (CS), serial data input (SDI),  
and serial data output (SDO). Data is transferred a byte  
at a time with each register access consisting of a pair  
of byte transfers. Figures 26 and 27 illustrate read and  
write operation in the SPI bus.  
The first byte of the pair is the command/address byte.  
The MSB of this byte indicates a register read when 1  
and a register write when 0. The remaining seven bits of  
the command/address byte indicate the address of the  
register to be accessed. The second byte of the pair is  
the data byte. Because the falling edge of CS provides  
resynchronization of the SPI state machine in the event  
of a framing error, it is recommended (but not required)  
that CS be taken high between byte transfers as shown  
in Figures 26 and 27.  
Rev. 1.43  
47  
Si3210/Si3211  
During a read operation, the SDO becomes active and  
the 8-bit contents of the register are driven out MSB  
first. The SDO will be high impedence on either the  
falling edge of SCLK following the LSB, or the rising of  
CS as specified by the SPIM bit (direct Register 0,  
bit 6). SDI is a “don’t care” during the data portion of  
read operations. During write operations, data is driven  
into the ProSLIC via the SDI pin MSB first. The SDO pin  
will remain high impedance during write operations.  
Data always transitions with the falling edge of the clock  
and is latched on the rising edge. The clock should  
return to a logic high when no transfer is in progress.  
a read cycle, and must remain low for the duration of  
the 8-‘bit transfer (command/address or data).  
SDI/SDO wired operation. Independent of the  
clocking options described, SDI and SDO can be  
treated as two separate lines or wired together if the  
master is capable of tristating its output during the  
data byte transfer of a read operation.  
Daisy chain mode. This mode allows  
communication with banks of up to eight ProSLIC  
devices using one chip select signal. When the  
SPIDC bit in the SPI Mode Select register is set,  
data transfer mode changes to a 3-byte operation: a  
chip select byte, an address/control byte, and a data  
byte. Using the circuit shown in Figure 28, a single  
device may select from the bank of devices by  
setting the appropriate chip select bit to 1. Each  
device uses the LSB of the chip select byte, shifts  
the data right by one bit, and passes the chip select  
byte using the SDITHRU pin to the next device in the  
chain. Address/control and data bytes are unaltered.  
Indirect registers are accessed through direct registers  
29 through 30. Instructions on how to access them is  
described in “Control Registers” beginning on page 54.  
There are a number of variations of usage on this four-  
wire interface:  
Continuous clocking. During continuous clocking,  
the data transfers are controlled by the assertion of  
the CS pin. CS must assert before the falling edge of  
SCLK on which the first bit of data is expected during  
Don't  
Care  
SCLK  
CS  
SDI  
a6 a5 a4 a3 a2 a1 a0  
d7 d6 d5 d4 d3 d2 d1 d0  
0
SDO  
High Impedance  
Figure 26. Serial Write 8-Bit Mode  
Don't  
Care  
SCLK  
CS  
SDI  
Don't Care  
a6 a5 a4 a3 a2 a1 a0  
1
SDO  
d7 d6 d5 d4 d3 d2 d1 d0  
High Impedance  
Figure 27. Serial Read 8-Bit Mode  
48  
Rev. 1.43  
Si3210/Si3211  
SDI0  
SDO  
CS  
SDI  
CS  
CPU  
SDO  
SDI  
SDITHRU  
SDI1  
SDI2  
SDI  
CS  
SDO  
SDITHRU  
SDI  
CS  
SDO  
SDITHRU  
SDI3  
SDI  
CS  
SDO  
SDITHRU  
Chip Select Byte  
Address Byte  
Data Byte  
SCLK  
SDI0  
SDI1  
SDI2  
SDI3  
C7 C6 C5 C4 C3 C2 C1 C0  
– C7 C6 C5 C4 C3 C2 C1  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
C7 C6 C5 C4 C3 C2  
C7 C6 C5 C4 C3  
Note: During chip select byte, SDITHRU = SDI delayed by one SCLK. Each device daisy-chained looks at the  
LSB of the chip select byte for its chip select.  
Figure 28. SPI Daisy Chain Mode  
Rev. 1.43  
49  
Si3210/Si3211  
2.12. PCM Interface  
The ProSLIC contains a flexible programmable interface high impedance either on the negative edge of PCLK  
for the transmission and reception of digital PCM during the LSB, or on the positive edge of PCLK  
samples. PCM data transfer is controlled via the PCLK following the LSB. This is based on the setting of the  
and FSYNC inputs as well as the PCM Mode Select TRI bit of the PCM Mode Select register. Tristating on  
(direct Register 1), PCM Transmit Start Count (direct the negative edge allows the transmission of data by  
registers 2 and 3), and PCM Receive Start Count (direct multiple sources in adjacent timeslots without the risk of  
registers 4 and 5) registers. The interface can be driver contention. In addition to 8-bit data modes, there  
configured to support from 4 to 128 8-bit timeslots in is a 16-bit mode provided. This mode can be activated  
each frame. This corresponds to PCLK frequencies of via the PCMT bit of the PCM Mode Select register. GCI  
256 kHz to 8.192 MHz in power of 2 increments. timing is also supported in which the duration of a data  
(768 kHz and 1.536 MHz are also available.) Timeslots bit is two PCLK cycles. This mode is also activated via  
for data transmission and reception are independently the PCM Mode Select register. Setting the TXS or RXS  
configured using the TXS and RXS registers. By setting register greater than the number of PCLK cycles in a  
the correct starting point of the data, the ProSLIC can sample period will stop data transmission because TXS  
be configured to support long FSYNC and short FSYNC or RXS will never equal the PCLK count. Figures 29–32  
variants as well as IDL2 8-bit, 10-bit, B1 and B2 channel illustrate the usage of the PCM highway interface to  
time slots. DTX data is high impedance except for the adapt to common PCM standards.  
duration of the 8-bit PCM transmit. DTX will return to  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
MSB  
LSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 29. Example, Timeslot 1, Short FSYNC (TXS/RXS = 1)  
PCLK  
FSYNC  
PCLK_CNT  
DRX  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
MSB  
MSB  
LSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 30. Example, Timeslot 1, Long FSYNC (TXS/RXS = 0)  
50  
Rev. 1.43  
Si3210/Si3211  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
MSB  
LSB  
DTX  
HI-Z  
HI-Z  
LSB  
Figure 31. Example, IDL2 Long FSYNC, B2, 10-Bit Mode (TXS/RXS = 10)  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 32. GCI Example, Timeslot 1 (TXS/RXS = 0)  
2.13. Companding  
The ProSLIC supports both µ-255 Law and A-Law companding formats in addition to linear data. These 8-bit  
companding schemes follow a segmented curve formatted as sign bit, three chord bits, and four step bits. µ-255  
Law is more commonly used in North America and Japan, while A-Law is primarily used in Europe. Data format is  
selected via the PCMF register. Tables 34 and 35 define the µ-Law and A-Law encoding formats.  
Rev. 1.43  
51  
Si3210/Si3211  
Table 34. µ-Law Encode-Decode Characteristics1,2  
Segment #Intervals X Interval Size Value at Segment Endpoints Digital Code  
Number  
Decode Level  
8159  
10000000b  
8031  
.
.
.
8
16 X 256  
4319  
4063  
10001111b  
4191  
2079  
1023  
495  
231  
99  
.
.
.
7
6
5
4
3
2
16 X 128  
16 X 64  
16 X 32  
16 X 16  
16 X 8  
2143  
2015  
10011111b  
10101111b  
10111111b  
11001111b  
11011111b  
11101111b  
.
.
.
1055  
991  
.
.
.
511  
479  
.
.
.
239  
223  
.
.
.
103  
95  
.
.
.
16 X 4  
35  
31  
33  
15 X 2  
.
.
.
1
3
1
0
__________________  
1 X 1  
11111110b  
11111111b  
2
0
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
52  
Rev. 1.43  
Si3210/Si3211  
Table 35. A-Law Encode-Decode Characteristics1,2  
Segment  
Number  
#intervals X interval size Value at segment endpoints Digital Code  
Decode Level  
4096  
3968  
.
.
2176  
2048  
10101010b  
10100101b  
4032  
7
16 X 128  
2112  
1056  
528  
264  
132  
66  
.
.
.
6
5
4
3
2
16 X 64  
16 X 32  
16 X 16  
16 X 8  
1088  
1024  
10110101b  
10000101b  
10010101b  
11100101b  
11110101b  
11010101b  
.
.
.
544  
512  
.
.
.
272  
256  
.
.
.
136  
128  
.
.
.
16 X 4  
68  
64  
32 X 2  
.
.
.
2
0
1
1
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative values.  
2. Digital code includes inversion of all even numbered bits.  
Rev. 1.43  
53  
Si3210/Si3211  
3. Control Registers  
Note: Any register not listed here is reserved and must not be written.  
Table 36. Direct Register Summary  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Setup  
PNI[1:0]  
PCME  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
2
SPI Mode Select  
PCM Mode Select  
SPIDC  
SPIM  
RNI[3:0]  
PCMF[1:0]  
PCMT  
GCI  
TRI  
PCM Transmit Start  
Count—Low Byte  
TXS[7:0]  
3
4
5
6
PCM Transmit Start  
Count—High Byte  
TXS[9:8]  
PCM Receive Start  
Count—Low Byte  
RXS[7:0]  
PCM Receive Start  
Count—High Byte  
RXS[9:8]  
1
1
1
1
1
Digital Input/Output  
Control  
DOUT  
DIO2  
DIO1  
PD2  
PD1  
Audio  
8
Audio Path Loopback  
Control  
ALM2  
DLM  
ALM1  
9
Audio Gain Control  
RXHP  
TXHP  
TXM  
RXM  
ATX[1:0]  
TISE  
ARX[1:0]  
10  
Two-Wire Impedance  
Synthesis Control  
CLC[1:0]  
TISS[2:0]  
11  
Hybrid Control  
HYBP[2:0]  
Powerdown  
PMON DCOF  
ADCM ADCON DACM DACON  
Interrupts  
PMAP RGIP  
HYBA[2:0]  
2
14  
15  
Powerdown Control 1  
Powerdown Control 2  
MOF  
BIASOF SLICOF  
GMM  
GMON  
18  
19  
20  
21  
22  
23  
24  
Interrupt Status 1  
Interrupt Status 2  
Interrupt Status 3  
Interrupt Enable 1  
Interrupt Enable 2  
Interrupt Enable 3  
Decode Status  
PMIP  
Q6AP  
RGAP  
Q3AP  
O2IP  
O2AP  
Q1AP  
CMCP  
O2AE  
Q1AE  
CMCE  
O1IP  
LCIP  
INDP  
O1IE  
LCIE  
INDE  
O1AP  
RTIP  
Q5AP  
Q4AP  
Q2AP  
DTMFP  
O1AE  
RTIE  
PMIE  
Q6AE  
PMAE  
Q5AE  
RGIE  
Q4AE  
RGAE  
Q3AE  
O2IE  
Q2AE  
DTMFE  
VAL  
DIG[3:0]  
Indirect Register Access  
Notes:  
1. Si3211 only.  
2. Si3210 only.  
54  
Rev. 1.43  
Si3210/Si3211  
Table 36. Direct Register Summary (Continued)  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
28  
Indirect Data Access—  
Low Byte  
IDA[7:0]  
29  
Indirect Data Access—  
High Byte  
IDA[15:8]  
IAA[7:0]  
30  
31  
Indirect Address  
Indirect Address Status  
IAS  
Oscillators  
32  
33  
34  
Oscillator 1 Control  
Oscillator 2 Control  
OSS1  
OSS2  
RSS  
REL  
OZ1  
OZ2  
O1TAE O1TIE  
O2TAE O2TIE  
O1E  
O2E  
ROE  
O1SO[1:0]  
O2SO[1:0]  
RVO TSWS  
Ringing Oscillator  
Control  
RDAC  
RTAE  
RTIE  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Pulse Metering  
Oscillator Control  
PSTAT  
PMAE  
PMIE  
PMOE  
Oscillator 1 Active  
Timer—Low Byte  
OAT1[7:0]  
OAT1[15:8]  
OIT1[7:0]  
OIT1[15:8]  
OAT2[7:0]  
OAT2[15:8]  
OIT2[7:0]  
OIT2[15:8]  
PAT[7:0]  
Oscillator 1 Active  
Timer—High Byte  
Oscillator 1 Inactive  
Timer—Low Byte  
Oscillator 1 Inactive  
Timer—High Byte  
Oscillator 2 Active  
Timer—Low Byte  
Oscillator 2 Active  
Timer—High Byte  
Oscillator 2 Inactive  
Timer—Low Byte  
Oscillator 2 Inactive  
Timer—High Byte  
Pulse Metering  
Oscillator Active Timer—  
Low Byte  
45  
46  
Pulse Metering  
Oscillator Active Timer—  
High Byte  
PAT[15:8]  
PIT[7:0]  
Pulse Metering  
Oscillator Inactive  
Timer—Low Byte  
Notes:  
1. Si3211 only.  
2. Si3210 only.  
Rev. 1.43  
55  
Si3210/Si3211  
Table 36. Direct Register Summary (Continued)  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
47  
Pulse Metering  
PIT[15:8]  
Oscillator Inactive  
Timer—High Byte  
48  
49  
50  
51  
52  
Ringing Oscillator  
Active Timer—Low Byte  
RAT[7:0]  
RAT[15:8]  
RIT[7:0]  
Ringing Oscillator  
Active Timer—High Byte  
Ringing Oscillator Inac-  
tive Timer—Low Byte  
Ringing Oscillator Inac-  
tive Timer—High Byte  
RIT[15:8]  
FSK Data  
FSKDAT  
SLIC  
63  
Loop Closure Debounce  
Interval for Automatic  
Ringing  
LCD[7:0]  
64  
65  
Linefeed Control  
LFS[2:0]  
CBY  
LF[2:0]  
External Bipolar  
SQH  
ETBE  
ETBO[1:0]  
ETBA[1:0]  
Transistor Control  
2
2
1
2
66  
67  
Battery Feed Control  
VOV  
MNCM MNDIF SPDS  
FVBAT  
ABAT  
BATSL TRACK  
Automatic/Manual  
Control  
AORD  
AOLD  
RTP  
AOPN  
68  
69  
70  
Loop Closure/Ring Trip  
Detect Status  
DBIRAW  
LCR  
Loop Closure Debounce  
Interval  
LCDI[6:0]  
RTDI[6:0]  
Ring Trip Detect  
Debounce Interval  
71  
72  
73  
74  
75  
76  
77  
Loop Current Limit  
ILIM[2:0]  
On-Hook Line Voltage  
Common Mode Voltage  
High Battery Voltage  
Low Battery Voltage  
Power Monitor Pointer  
VSGN  
VOC[5:0]  
VCM[5:0]  
VBATH[5:0]  
VBATL[5:0]  
PWRMP[2:0]  
Line Power Output  
Monitor  
PWROM[7:0]  
78  
Loop Voltage Sense  
LVSP  
LVS[5:0]  
Notes:  
1. Si3211 only.  
2. Si3210 only.  
56  
Rev. 1.43  
Si3210/Si3211  
Table 36. Direct Register Summary (Continued)  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
79  
80  
81  
82  
83  
84  
Loop Current Sense  
TIP Voltage Sense  
LCSP  
LCS[5:0]  
VTIP[7:0]  
RING Voltage Sense  
Battery Voltage Sense 1  
Battery Voltage Sense 2  
VRING[7:0]  
VBATS1[7:0]  
VBATS2[7:0]  
IQ1[7:0]  
Transistor 1 Current  
Sense  
85  
86  
87  
88  
89  
92  
93  
Transistor 2 Current  
Sense  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
Transistor 3 Current  
Sense  
Transistor 4 Current  
Sense  
Transistor 5 Current  
Sense  
Transistor 6 Current  
Sense  
1
DC-DC Converter PWM  
Period  
DCN[7:0]  
2
2
2
DC-DC Converter  
Switching Delay  
DCCAL  
DCPOL  
DCTOF[4:0]  
CALD  
2
94  
95  
96  
PWM Pulse Width  
Reserved  
DCPW[7:0]  
Calibration Control/  
Status Register 1  
CAL  
CALSP CALR  
CALT  
CALC  
CALIL  
CALM1 CALM2 CALDAC CALADC CALCM  
97  
98  
Calibration Control/  
Status Register 2  
RING Gain Mismatch  
Calibration Result  
CALGMR[4:0]  
CALGMT[4:0]  
CALGD[4:0]  
99  
TIP Gain Mismatch  
Calibration Result  
100  
Differential Loop  
Current Gain  
Calibration Result  
101  
Common Mode Loop  
Current Gain  
CALGC[4:0]  
Calibration Result  
Notes:  
1. Si3211 only.  
2. Si3210 only.  
Rev. 1.43  
57  
Si3210/Si3211  
Table 36. Direct Register Summary (Continued)  
Register  
Name  
Current Limit  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
102  
CALGIL[3:0]  
Calibration Result  
103  
Monitor ADC Offset  
Calibration Result  
CALMG1[3:0]  
CALMG2[3:0]  
DACN ADCP  
104  
105  
Analog DAC/ADC Offset  
DACP  
ADCN  
DAC Offset Calibration  
Result  
DACOF[7:0]  
106  
107  
Common Mode Balance  
Calibration Result  
CMBAL[5:0]  
CMDCPK[3:0]  
DC Peak Voltage  
Calibration Result  
2
2
108  
Enhancement Enable  
ILIMEN FSKEN DCSU  
ZSEXT SWDB  
LCVE  
DCFIL HYSTEN  
Notes:  
1. Si3211 only.  
2. Si3210 only.  
58  
Rev. 1.43  
Si3210/Si3211  
Register 0. SPI Mode Select  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SPIDC  
R/W  
SPIM  
R/W  
PNI[1:0]  
R
RNI[3:0]  
R
Reset settings = 00xx_xxxx  
Bit  
Name  
Function  
7
SPIDC  
SPI Daisy Chain Mode Enable.  
0 = Disable SPI daisy chain mode.  
1 = Enable SPI daisy chain mode.  
6
SPIM  
SPI Mode.  
0 = Causes SDO to tri-state on rising edge of SCLK of LSB.  
1 = Normal operation; SDO tri-states on rising edge of CS.  
5:4  
PNI[1:0]  
Part Number Identification.  
00 = Si3210  
01 = Si3211  
10 = Unused  
11 = Si3210M  
3:0  
RNI[3:0]  
Revision Number Identification.  
0001 = Revision A, 0010 = Revision B, 0011 = Revision C, etc.  
Rev. 1.43  
59  
Si3210/Si3211  
Register 1. PCM Mode Select  
Bit  
D7  
D6  
D5  
D4  
PCMF[1:0]  
R/W  
D3  
D2  
D1  
GCI  
R/W  
D0  
TRI  
R/W  
Name  
Type  
PCME  
R/W  
PCMT  
R/W  
Reset settings = 0000_1000  
Bit  
7:6  
5
Name  
Reserved  
PCME  
Function  
Read returns zero.  
PCM Enable.  
0 = Disable PCM transfers.  
1 = Enable PCM transfers.  
4:3  
PCMF[1:0]  
PCM Format.  
00 = A-Law  
01 = µ-Law  
10 = Reserved  
11 = Linear  
2
1
0
PCMT  
GCI  
PCM Transfer Size.  
0 = 8-bit transfer.  
1 = 16-bit transfer.  
GCI Clock Format.  
0 = 1 PCLK per data bit.  
1 = 2 PCLKs per data bit.  
TRI  
Tri-state Bit 0.  
0 = Tri-state bit 0 on positive edge of PCLK.  
1 = Tri-state bit 0 on negative edge of PCLK.  
Register 2. PCM Transmit Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
TXS[7:0]  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data trans-  
mission begins. See Figure 29 on page 50.  
60  
Rev. 1.43  
Si3210/Si3211  
Register 3. PCM Transmit Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
TXS[9:8]  
Read returns zero.  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data  
transmission begins. See Figure 29 on page 50.  
Register 4. PCM Receive Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RXS[7:0]  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 29 on page 50.  
Register 5. PCM Receive Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
RXS[9:8]  
Read returns zero.  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 29 on page 50.  
Rev. 1.43  
61  
Si3210/Si3211  
Register 6. Digital Input/Output Control  
Si3210  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
DOUT  
R/W  
DIO2  
R/W  
DIO1  
R/W  
PD2  
R/W  
PD1  
R/W  
Reset settings = 0000_0000  
Bit  
7:5  
4
Name  
Reserved  
DOUT  
Function  
Read returns zero.  
DOUT Pin Output Data (Si3211 only).  
0 = DOUT pin driven low.  
1 = DOUT pin driven high.  
Si3210 = Reserved.  
3
2
1
DIO2  
DIO1  
PD2  
DIO2 Pin Input/Output Direction (Si3211 only).  
0 = DIO2 pin is an input.  
1 = DIO2 pin is an output and driven to value of the PD2 bit.  
Si3210 = Reserved.  
DIO1 Pin Input/Output Direction (Si3211 only).  
0 = DIO1 pin is an input.  
1 = DIO1 pin is an output and driven to value of the PD1 bit.  
Si3210 = Reserved.  
DIO2 Pin Data (Si3211 only).  
When DIO2 = 1:  
0 = DIO2 pin driven low.  
1 = DIO2 pin driven high.  
Si3210 = Reserved.  
When DIO2 = 0, PD2 value equals the logic input of DIO2 pin.  
0
PD1  
DIO1 Pin Data (Si3211 only).  
When DIO1 = 1:  
0 = DIO1 pin driven low.  
1 = DIO1 pin driven high.  
Si3210 = Reserved.  
When DIO1 = 0, PD1 value equals the logic input of DIO1 pin.  
62  
Rev. 1.43  
Si3210/Si3211  
Register 8. Audio Path Loopback Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ALM2  
R/W  
DLM  
R/W  
ALM1  
R/W  
Reset settings = 0000_0010  
Bit  
7:3  
2
Name  
Reserved  
ALM2  
Function  
Read returns zero.  
Analog Loopback Mode 2. (See Figure 25 on page 44.)  
0 = Full analog loopback mode disabled.  
1 = Full analog loopback mode enabled.  
1
0
DLM  
Digital Loopback Mode. (See Figure 25 on page 44.)  
0 = Digital loopback disabled.  
1 = Digital loopback enabled.  
ALM1  
Analog Loopback Mode 1. (See Figure 25 on page 44.)  
0 = Analog loopback disabled.  
1 = Analog loopback enabled.  
Rev. 1.43  
63  
Si3210/Si3211  
Register 9. Audio Gain Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXHP  
R/W  
TXHP  
R/W  
TXM  
R/W  
RXM  
R/W  
ATX[1:0]  
R/W  
ARX[1:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RXHP  
Receive Path High Pass Filter Disable.  
0 = HPF enabled in receive path, RHDF.  
1 = HPF bypassed in receive path, RHDF.  
6
5
TXHP  
TXM  
Transmit Path High Pass Filter Disable.  
0 = HPF enabled in transmit path, THPF.  
1 = HPF bypassed in transmit path, THPF.  
Transmit Path Mute.  
Refer to position of digital mute in Figure 25 on page 44.  
0 = Transmit signal passed.  
1 = Transmit signal muted.  
4
RXM  
Receive Path Mute.  
Refer to position of digital mute in Figure 25 on page 44.  
0 = Receive signal passed.  
1 = Receive signal muted.  
3:2  
ATX[1:0]  
Analog Transmit Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = ATX gain = 0 dB; analog transmit path muted.  
1:0  
ARX[1:0]  
Analog Receive Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = Analog receive path muted.  
64  
Rev. 1.43  
Si3210/Si3211  
Register 10. Two-Wire Impedance Synthesis Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TISS[2:0]  
R/W  
D0  
Name  
Type  
CLC[1:0]  
R/W  
TISE  
R/W  
Reset settings = 0000_1000  
Bit  
7:6  
5:4  
Name  
Function  
Reserved  
CLC[1:0]  
Read returns zero.  
Line Capacitance Compensation.  
00 = Off  
01 = 4.7 nF  
10 = 10 nF  
11 = Reserved  
3
TISE  
Two-Wire Impedance Synthesis Enable.  
0 = Two-wire impedance synthesis disabled.  
1 = Two-wire impedance synthesis enabled.  
2:0  
TISS[2:0]  
Two-Wire Impedance Synthesis Selection.  
000 = 600 Ω  
001 = 900 Ω  
010 = 600 + 2.16 µF  
011 = 900 + 2.16 µF  
100 = CTR21 (270 + 750 || 150 nF)  
101 = Australia/New Zealand #1 (220 + 820 || 120 nF)  
110 = Slovakia/Slovenia/South Africa (220 + 820 || 115 nF)  
111 = New Zealand #2 (370 + 620 || 310 nF)  
Rev. 1.43  
65  
Si3210/Si3211  
Register 11. Hybrid Control  
Bit  
D7  
D6  
D5  
HYBP[2:0]  
R/W  
D4  
D3  
D2  
D1  
HYBA[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0011_0011  
Bit  
7
Name  
Function  
Reserved  
HYBP[2:0]  
Read returns zero.  
6:4  
Pulse Metering Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
3
Reserved  
HYBA[2:0]  
Read returns zero.  
2:0  
Audio Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
66  
Rev. 1.43  
Si3210/Si3211  
Register 14. Powerdown Control 1  
Si3210  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
BIASOF  
R/W  
D0  
SLICOF  
R/W  
Name  
Type  
PMON  
R/W  
DCOF  
R/W  
MOF  
R/W  
Reset settings = 0001_0000  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
BIASOF  
R/W  
D0  
SLICOF  
R/W  
Name  
Type  
PMON  
R/W  
MOF  
R/W  
Reset settings = 0001_0000  
Bit  
7:6  
5
Name  
Reserved  
PMON  
Function  
Read returns zero.  
Pulse Metering DAC Power-On Control.  
0 = Automatic power control.  
1 = Override automatic control and force pulse metering DAC circuitry on.  
4
3
DCOF  
MOF  
DC-DC Converter Power-Off Control (Si3210 only).  
0 = Automatic power control.  
1 = Override automatic control and force dc-dc circuitry off.  
Si3211 = Read returns 1; it cannot be written.  
Monitor ADC Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force monitor ADC circuitry off.  
2
1
Reserved  
BIASOF  
Read returns zero.  
DC Bias Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force dc bias circuitry off.  
0
SLICOF  
SLIC Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force SLIC circuitry off.  
Rev. 1.43  
67  
Si3210/Si3211  
Register 15. Powerdown Control 2  
Bit  
D7  
D6  
D5  
D4  
ADCON  
R/W  
D3  
D2  
DACON  
R/W  
D1  
D0  
Name  
Type  
ADCM  
R/W  
DACM  
R/W  
GMM  
R/W  
GMON  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
ADCM  
Function  
Read returns zero.  
Analog to Digital Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; ADCON controls on/off state.  
4
ADCON  
Analog to Digital Converter On/Off Power Control.  
When ADCM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
ADCON has no effect when ADCM = 0.  
3
2
DACM  
Digital to Analog Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; DACON controls on/off state.  
DACON  
Digital to Analog Converter On/Off Power Control.  
When DACM = 1:  
0 = Digital to analog converter powered off.  
1 = Digital to analog converter powered on.  
DACON has no effect when DACM = 0.  
1
0
GMM  
Transconductance Amplifier Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; GMON controls on/off state.  
GMON  
Transconductance Amplifier On/Off Power Control.  
When GMM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
GMON has no effect when GMM = 0.  
68  
Rev. 1.43  
Si3210/Si3211  
Register 18. Interrupt Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PMIP  
R/W  
PMAP  
R/W  
RGIP  
R/W  
RGAP  
R/W  
O2IP  
R/W  
O2AP  
R/W  
O1IP  
R/W  
O1AP  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
PMIP  
Pulse Metering Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
6
5
4
3
2
1
0
PMAP  
RGIP  
RGAP  
O2IP  
Pulse Metering Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Ringing Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Ringing Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 2 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O2AP  
O1IP  
Oscillator 2 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 1 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O1AP  
Oscillator 1 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Rev. 1.43  
69  
Si3210/Si3211  
Register 19. Interrupt Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AP  
R/W  
Q5AP  
R/W  
Q4AP  
R/W  
Q3AP  
R/W  
Q2AP  
R/W  
Q1AP  
R/W  
LCIP  
R/W  
RTIP  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AP  
Power Alarm Q6 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
6
5
4
3
2
1
0
Q5AP  
Q4AP  
Q3AP  
Q2AP  
Q1AP  
LCIP  
Power Alarm Q5 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q4 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q3 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q2 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q1 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Loop Closure Transition Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
RTIP  
Ring Trip Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
70  
Rev. 1.43  
Si3210/Si3211  
Register 20. Interrupt Status 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DTMFP  
R/W  
Name  
Type  
CMCP  
R/W  
INDP  
R/W  
Reset settings = 0000_0000  
Bit  
7:3  
2
Name  
Reserved  
CMCP  
Function  
Read returns zero.  
Common Mode Calibration Error Interrupt.  
This bit is set when off-hook/on-hook status changes during the common mode balance  
calibration. Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
1
0
INDP  
Indirect Register Access Serviced Interrupt.  
This bit is set once a pending indirect register service request has been completed. Writ-  
ing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
DTMFP  
DTMF Tone Detected Interrupt.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Rev. 1.43  
71  
Si3210/Si3211  
Register 21. Interrupt Enable 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PMIE  
R/W  
PMAE  
R/W  
RGIE  
R/W  
RGAE  
R/W  
O2IE  
R/W  
O2AE  
R/W  
O1IE  
R/W  
O1AE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
PMIE  
Pulse Metering Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
6
5
4
3
2
1
0
PMAE  
RGIE  
RGAE  
O2IE  
Pulse Metering Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Ringing Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Ringing Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 2 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O2AE  
O1IE  
Oscillator 2 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 1 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O1AE  
Oscillator 1 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
72  
Rev. 1.43  
Si3210/Si3211  
Register 22. Interrupt Enable 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AE  
R/W  
Q5AE  
R/W  
Q4AE  
R/W  
Q3AE  
R/W  
Q2AE  
R/W  
Q1AE  
R/W  
LCIE  
R/W  
RTIE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AE  
Power Alarm Q6 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
6
5
4
3
2
1
0
Q5AE  
Q4AE  
Q3AE  
Q2AE  
Q1AE  
LCIE  
Power Alarm Q5 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q4 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q3 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q2 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q1 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Loop Closure Transition Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
RTIE  
Ring Trip Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Rev. 1.43  
73  
Si3210/Si3211  
Register 23. Interrupt Enable 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DTMFE  
R/W  
Name  
Type  
CMCE  
R/W  
INDE  
R/W  
Reset settings = 0000_0000  
Bit  
7:3  
2
Name  
Reserved  
CMCE  
Function  
Read returns zero.  
Common Mode Calibration Error Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
1
0
INDE  
Indirect Register Access Serviced Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
DTMFE  
DTMF Tone Detected Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
74  
Rev. 1.43  
Si3210/Si3211  
Register 24. DTMF Decode Status  
Bit  
D7  
D6  
D5  
D4  
VAL  
R
D3  
D2  
D1  
D0  
Name  
Type  
DIG[3:0]  
R
Reset settings = 0000_0000  
Bit  
7:5  
4
Name  
Reserved  
VAL  
Function  
Read returns zero.  
DTMF Valid Digit Decoded.  
0 = Not currently detecting digit.  
1 = Currently detecting digit.  
3:0  
DIG[3:0]  
DTMF Digit.  
0001 = “1”  
0010 = “2”  
0011 = “3”  
0100 = “4”  
0101 = “5”  
0110 = “6”  
0111 = “7”  
1000 = “8”  
1001 = “9”  
1010 = “0”  
1011 = “*”  
1100 = “#”  
1101 = “A”  
1110 = “B”  
1111 = “C”  
0000 = “D”  
Rev. 1.43  
75  
Si3210/Si3211  
Register 28. Indirect Data Access—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IDA[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[7:0]  
Indirect Data Access—Low Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 29. Indirect Data Access—High Byte  
Bit  
D7  
D6  
D5  
D4  
IDA[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[15:8]  
Indirect Data Access—High Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
76  
Rev. 1.43  
Si3210/Si3211  
Register 30. Indirect Address  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IAA[7:0]  
R/W  
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IAA[7:0]  
Indirect Address Access.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 31. Indirect Address Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IAS  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Reserved  
IAS  
Function  
Read returns zero.  
Indirect Access Status.  
0 = No indirect memory access pending.  
1 = Indirect memory access pending.  
Rev. 1.43  
77  
Si3210/Si3211  
Register 32. Oscillator 1 Control  
Bit  
D7  
OSS1  
R
D6  
D5  
D4  
D3  
D2  
D1  
O1SO[1:0]  
R/W  
D0  
Name  
Type  
REL  
R/W  
OZ1  
R/W  
O1TAE  
R/W  
O1TIE  
R/W  
O1E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS1  
Oscillator 1 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
REL  
Oscillator 1 Automatic Register Reload.  
This bit should be set for FSK signaling.  
0 = Oscillator 1 will stop signaling after inactive timer expires.  
1 = Oscillator 1 will continue to read register parameters and output signals.  
5
4
OZ1  
O1TAE  
O1TIE  
Oscillator 1 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing after active timer expires.  
Oscillator 1 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
3
Oscillator 1 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O1E  
Oscillator 1 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O1SO[1:0]  
Oscillator 1 Signal Output Routing.  
00 = Unassigned path (output not connected).  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
78  
Rev. 1.43  
Si3210/Si3211  
Register 33. Oscillator 2 Control  
Bit  
D7  
OSS2  
R
D6  
D5  
D4  
O2TAE  
R/W  
D3  
D2  
D1  
O2SO[1:0]  
R/W  
D0  
Name  
Type  
OZ2  
R/W  
O2TIE  
R/W  
O2E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS2  
Oscillator 2 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
5
Reserved  
OZ2  
Read returns zero.  
Oscillator 2 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing.  
4
3
O2TAE  
O2TIE  
Oscillator 2 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Oscillator 2 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O2E  
Oscillator 2 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O2SO[1:0]  
Oscillator 2 Signal Output Routing.  
00 = Unassigned path (output not connected)  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
Rev. 1.43  
79  
Si3210/Si3211  
Register 34. Ringing Oscillator Control  
Bit  
D7  
RSS  
R
D6  
D5  
RDAC  
R
D4  
D3  
D2  
ROE  
R
D1  
D0  
Name  
Type  
RTAE  
R/W  
RTIE  
R/W  
RVO  
R/W  
TSWS  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RSS  
Ringing Signal Status.  
0 = Ringing oscillator output signal inactive.  
1 = Ringing oscillator output signal active.  
6
5
Reserved  
RDAC  
Read returns zero.  
Ringing Signal DAC/Linefeed Cross Indicator.  
For ringing signal start and stop, output to TIP and RING is suspended to ensure conti-  
nuity with dc linefeed voltages. RDAC indicates that ringing signal is actually present at  
TIP and RING.  
0 = Ringing signal not present at TIP and RING.  
1 = Ringing signal present at TIP and RING.  
4
3
2
1
0
RTAE  
RTIE  
ROE  
Ringing Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Oscillator Enable.  
0 = Ringing oscillator disabled.  
1 = Ringing oscillator enabled.  
RVO  
Ringing Voltage Offset.  
0 = No dc offset added to ringing signal.  
1 = DC offset added to ringing signal.  
TSWS  
Trapezoid/Sinusoid Waveshape Select.  
0 = Sinusoid  
1 = Trapezoid  
80  
Rev. 1.43  
Si3210/Si3211  
Register 35. Pulse Metering Oscillator Control  
Bit  
D7  
PSTAT  
R
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PMAE  
R/W  
PMIE  
R/W  
PMOE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
PSTAT  
Pulse Metering Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6:5  
4
Reserved  
PMAE  
Read returns zero.  
Pulse Metering Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
3
2
PMIE  
PMOE  
Pulse Metering Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Pulse Metering Oscillator Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
Reserved  
Read returns zero.  
Rev. 1.43  
81  
Si3210/Si3211  
Register 36. Oscillator 1 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[7:0]  
Oscillator 1 Active Timer.  
LSB = 125 µs  
Register 37. Oscillator 1 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT1[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[15:8]  
Oscillator 1 Active Timer.  
Register 38. Oscillator 1 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[7:0]  
Oscillator 1 Inactive Timer.  
LSB = 125 µs  
82  
Rev. 1.43  
Si3210/Si3211  
Register 39. Oscillator 1 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[15:8]  
Oscillator 1 Inactive Timer.  
Register 40. Oscillator 2 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[7:0]  
Oscillator 2 Active Timer.  
LSB = 125 µs  
Register 41. Oscillator 2 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT2[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[15:8]  
Oscillator 2 Active Timer.  
Rev. 1.43  
83  
Si3210/Si3211  
Register 42. Oscillator 2 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[7:0]  
Oscillator 2 Inactive Timer.  
LSB = 125 µs  
Register 43. Oscillator 2 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[15:8]  
Oscillator 2 Inactive Timer.  
Register 44. Pulse Metering Oscillator Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PAT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
PAT[7:0]  
Pulse Metering Active Timer.  
LSB = 125 µs  
84  
Rev. 1.43  
Si3210/Si3211  
Register 45. Pulse Metering Oscillator Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
PAT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
PAT[15:8]  
Pulse Metering Active Timer.  
Register 46. Pulse Metering Oscillator Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PIT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
PIT[7:0]  
Pulse Metering Inactive Timer.  
LSB = 125 µs  
Register 47. Pulse Metering Oscillator Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
PIT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
PIT[15:8]  
Pulse Metering Inactive Timer.  
Rev. 1.43  
85  
Si3210/Si3211  
Register 48. Ringing Oscillator Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RAT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[7:0]  
Ringing Active Timer.  
LSB = 125 µs  
Register 49. Ringing Oscillator Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
RAT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[15:8]  
Ringing Active Timer.  
Register 50. Ringing Oscillator Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RIT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[7:0]  
Ringing Inactive Timer.  
LSB = 125 µs  
86  
Rev. 1.43  
Si3210/Si3211  
Register 51. Ringing Oscillator Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
RIT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[15:8]  
Ringing Inactive Timer.  
Register 52. FSK Data  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FSKDAT  
R/W  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FSKDAT  
Read returns zero.  
FSK Data.  
When FSKEN = 1 (direct Register 108, bit 6) and REL = 1 (direct Register 32, bit 6), this  
bit serves as the buffered input for FSK generation bit stream data.  
Register 63. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCD[7:0]  
Reset settings = 0011_0010 (revision C); 0101_0100 (subsequent revisions)  
Bit  
Name  
Function  
Loop Closure Debounce Interval for Automatic Ringing.  
7:0  
LCD[7:0]  
This register sets the loop closure debounce interval for the ringing silent period when  
using automatic ringing cadences. The value may be set between 0 ms (0x00) and  
159 ms (0x7F) in 1.25 ms steps.  
Rev. 1.43  
87  
Si3210/Si3211  
Register 64. Linefeed Control  
Bit  
D7  
D6  
D5  
LFS[2:0]  
R
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LF[2:0]  
R/W  
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LFS[2:0]  
Function  
Read returns zero.  
6:4  
Linefeed Shadow.  
This register reflects the actual real-time linefeed state. Automatic operations may cause  
actual linefeed state to deviate from the state defined by linefeed register (e.g., when  
linefeed equals ringing state, LFS will equal on-hook transmission state during ringing  
silent period and ringing state during ring burst).  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
3
Reserved  
LF[2:0]  
Read returns zero.  
2:0  
Linefeed.  
Writing to this register sets the linefeed state.  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
88  
Rev. 1.43  
Si3210/Si3211  
Register 65. External Bipolar Transistor Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ETBA[1:0]  
R/W  
D0  
Name  
Type  
SQH  
R/W  
CBY  
R/W  
ETBE  
R/W  
ETBO[1:0]  
R/W  
Reset settings = 0110_0001  
Bit  
7
Name  
Reserved  
SQH  
Function  
Read returns zero.  
6
Audio Squelch.  
0 = No squelch.  
1 = STIPAC and SRINGAC pins squelched.  
5
4
CBY  
ETBE  
Capacitor Bypass.  
0 = Capacitors CP (C1) and CM (C2) in circuit.  
1 = Capacitors CP (C1) and CM (C2) bypassed.  
External Transistor Bias Enable.  
0 = Bias disabled.  
1 = Bias enabled.  
3:2  
ETBO[1:0]  
External Transistor Bias Levels—On-Hook Transmission State.  
DC bias current which flows through external BJTs in the on-hook transmission state.  
Increasing this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
1:0  
ETBA[1:0]  
External Transistor Bias Levels—Active Off-Hook State.  
DC bias current which flows through external BJTs in the active off-hook state. Increasing  
this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
Rev. 1.43  
89  
Si3210/Si3211  
Register 66. Battery Feed Control  
Si3210  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
TRACK  
R/W  
Name  
Type  
VOV  
R/W  
FVBAT  
R/W  
Reset settings = 0000_0011  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
BATSL  
R/W  
Reset settings = 0000_0110  
Bit  
7:5  
4
Name  
Reserved  
VOV  
Function  
Read returns zero.  
Overhead Voltage Range Increase. (Si3210 only; See Figure 19 on page 33.)  
This bit selects the programmable range for V , which is defined in indirect Register 41.  
OV  
0 = V = 0 V to 9 V  
OV  
1 = V = 0 V to 13.5 V  
OV  
Si3211 = Reserved.  
3
FVBAT  
V
Manual Setting (Si3210 only).  
BAT  
0 = Normal operation  
1 = V tracks V  
register.  
BATH  
BAT  
Si3211 = Read returns 0; it cannot be written.  
2
1
Reserved  
BATSL  
Si3210 = Read returns zero.  
Si3211 = Read returns one.  
Battery Feed Select (Si3211 only).  
This bit selects between high and low battery supplies.  
0 = Low battery selected (DCSW pin low).  
1 = High battery selected (DCSW pin high).  
Si3210 = Read returns zero.  
0
TRACK  
DC-DC Converter Tracking Mode (Si3210 only).  
0 = |V | will not decrease below VBATL.  
BAT  
1 = V  
tracks V  
.
RING  
BAT  
Si3211 = Reserved.  
90  
Rev. 1.43  
Si3210/Si3211  
Register 67. Automatic/Manual Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MNCM  
R/W  
MNDIF  
R/W  
SPDS  
R/W  
ABAT  
R/W  
AORD  
R/W  
AOLD  
R/W  
AOPN  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
MNCM  
Function  
Read returns zero.  
6
Common Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control, in which TIP (forward) or RING (reverse) forces voltage to follow  
VCM value.  
5
4
3
2
1
0
MNDIF  
SPDS  
ABAT  
Differential Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control (forces differential voltage to follow VOC value).  
Speed-Up Mode Enable.  
0 = Speed-up disabled.  
1 = Automatic speed-up.  
Battery Feed Automatic/Manual Select (Si3211 only).  
0 = Automatic mode disabled.  
1 = Automatic mode enabled (automatic switching to low battery in off-hook state).  
AORD  
AOLD  
AOPN  
Automatic/Manual Ring Trip Detect.  
0 = Manual mode.  
1 = Enter off-hook active state automatically upon ring trip detect.  
Automatic/Manual Loop Closure Detect.  
0 = Manual mode.  
1 = Enter off-hook active state automatically upon loop closure detect.  
Power Alarm Automatic/Manual Detect.  
0 = Manual mode.  
1 = Enter open state automatically upon power alarm.  
Rev. 1.43  
91  
Si3210/Si3211  
Register 68. Loop Closure/Ring Trip Detect Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
DBIRAW  
R
D1  
RTP  
R
D0  
LCR  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2
Name  
Function  
Reserved  
DBIRAW  
Read returns zero.  
Ring Trip/Loop Closure Unfiltered Output.  
State of this bit reflects the real-time output of ring trip and loop closure detect circuits  
before debouncing.  
0 = Ring trip/loop closure threshold exceeded.  
1 = Ring trip/loop closure threshold not exceeded.  
1
0
RTP  
LCR  
Ring Trip Detect Indicator (Filtered Output).  
0 = Ring trip detect has not occurred.  
1 = Ring trip detect occurred.  
Loop Closure Detect Indicator (Filtered Output).  
0 = Loop closure detect has not occurred.  
1 = Loop closure detect has occurred.  
Register 69. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
LCDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
LCDI[6:0]  
Read returns zero.  
6:0  
Loop Closure Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. Value  
may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
92  
Rev. 1.43  
Si3210/Si3211  
Register 70. Ring Trip Detect Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
RTDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
RTDI[6:0]  
Read returns zero.  
6:0  
Ring Trip Detect Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. The  
value may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
Register 71. Loop Current Limit  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ILIM[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
ILIM[2:0]  
Read returns zero.  
Loop Current Limit.  
The value written to this register sets the constant loop current. The value may be set  
between 20 mA (0x00) and 41 mA (0x07) in 3 mA steps.  
Rev. 1.43  
93  
Si3210/Si3211  
Register 72. On-Hook Line Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VSGN  
R/W  
VOC[5:0]  
R/W  
Reset settings = 0010_0000  
Bit  
7
Name  
Reserved  
VSGN  
Function  
Read returns zero.  
6
On-Hook Line Voltage.  
The value written to this bit sets the on-hook line voltage polarity (V –V  
).  
RING  
TIP  
0 = V –V  
is positive  
is negative  
TIP  
RING  
RING  
1 = V –V  
TIP  
5:0  
VOC[5:0]  
On-Hook Line Voltage.  
The value written to this register sets the on-hook line voltage (V –V  
). Value may  
RING  
TIP  
be set between 0 V (0x00) and 94.5 V (0x3F) in 1.5 V steps. Default value = 48 V.  
Register 73. Common Mode Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VCM[5:0]  
R/W  
Reset settings = 0000_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VCM[5:0]  
Read returns zero.  
Common Mode Voltage.  
The value written to this register sets V  
for forward active and forward on-hook trans-  
TIP  
mission states and V  
for reverse active and reverse on-hook transmission states.  
RING  
The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V steps. Default  
value = –3 V.  
94  
Rev. 1.43  
Si3210/Si3211  
Register 74. High Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATH[5:0]  
R/W  
Reset settings = 0011_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATH[5:0]  
Read returns zero.  
High Battery Voltage.  
The value written to this register sets high battery voltage. V  
must be greater than or  
BATH  
equal to VBATL. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V  
steps. Default value = –75 V. For Si3211, V must be set equal to externally supplied  
BATH  
V
input voltage.  
BATH  
Register 75. Low Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATL[5:0]  
R/W  
Reset settings = 0001_0000  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATL[5:0]  
Read returns zero.  
Low Battery Voltage.  
The value written to this register sets low battery voltage. V  
must be greater than or  
BATH  
equal to V  
. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V  
BATL  
steps. Default value = –24 V. For Si3211, V  
must be set equal to externally supplied  
BATL  
V
input voltage.  
BATL  
Rev. 1.43  
95  
Si3210/Si3211  
Register 76. Power Monitor Pointer  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PWRMP[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Read returns zero.  
PWRMP[2:0] Power Monitor Pointer.  
Selects the external transistor from which to read power output. The power of the  
selected transistor is read in the PWROM register.  
000 = Q1  
001 = Q2  
010 = Q3  
011 = Q4  
100 = Q5  
101 = Q6  
110 = Undefined  
111 = Undefined  
Register 77. Line Power Output Monitor  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PWROM[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
PWROM[7:0] Line Power Output Monitor.  
Function  
7:0  
This register reports the real-time power output of the transistor selected using PWRMP.  
The range is 0 W (0x00) to 7.8 W (0xFF) in 30.4 mW steps for Q1, Q2, Q5, and Q6.  
The range is 0 W (0x00) to 0.9 W (0xFF) in 3.62 mW steps for Q3 and Q4.  
96  
Rev. 1.43  
Si3210/Si3211  
Register 78. Loop Voltage Sense  
Bit  
D7  
D6  
LVSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LVS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LVSP  
Function  
Read returns zero.  
6
Loop Voltage Sense Polarity.  
This register reports the polarity of the differential loop voltage (V  
– V  
).  
TIP  
RING  
0 = Positive loop voltage (V  
> V  
).  
RING  
TIP  
1 = Negative loop voltage (V  
< V  
).  
RING  
TIP  
5:0  
LVS[5:0]  
Loop Voltage Sense Magnitude.  
This register reports the magnitude of the differential loop voltage (V –V  
). The  
TIP  
RING  
range is 0 V to 94.5 V in 1.5 V steps.  
Register 79. Loop Current Sense  
Bit  
D7  
D6  
LCSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LCSP  
Function  
Read returns zero.  
6
Loop Current Sense Polarity.  
This register reports the polarity of the loop current.  
0 = Positive loop current (forward direction).  
1 = Negative loop current (reverse direction).  
5:0  
LCS[5:0]  
Loop Current Sense Magnitude.  
This register reports the magnitude of the loop current. The range is 0 mA to 78.75 mA in  
1.25 mA steps.  
Rev. 1.43  
97  
Si3210/Si3211  
Register 80. TIP Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VTIP[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VTIP[7:0]  
TIP Voltage Sense.  
This register reports the real-time voltage at TIP with respect to ground. The range is 0 V  
(0x00) to –95.88 V (0xFF) in .376 V steps.  
Register 81. RING Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VRING[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VRING[7:0]  
RING Voltage Sense.  
This register reports the real-time voltage at RING with respect to ground. The range is  
0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
Register 82. Battery Voltage Sense 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS1[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS1[7:0] Battery Voltage Sense 1.  
Function  
7:0  
This register is one of two registers that reports the real-time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
98  
Rev. 1.43  
Si3210/Si3211  
Register 83. Battery Voltage Sense 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS2[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS2[7:0] Battery Voltage Sense 2.  
Function  
7:0  
This register is one of two registers that reports the real-time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
Register 84. Transistor 1 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ1[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ1[7:0]  
Transistor 1 Current Sense.  
This register reports the real-time current through Q1. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
Register 85. Transistor 2 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ2[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ2[7:0]  
Transistor 2 Current Sense.  
This register reports the real-time current through Q2. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
Rev. 1.43  
99  
Si3210/Si3211  
Register 86. Transistor 3 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ3[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ3[7:0]  
Transistor 3 Current Sense.  
This register reports the real-time current through Q3. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 87. Transistor 4 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ4[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ4[7:0]  
Transistor 4 Current Sense.  
This register reports the real-time current through Q4. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 88. Transistor 5 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ5[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ5[7:0]  
Transistor 5 Current Sense.  
This register reports the real-time current through Q5. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
100  
Rev. 1.43  
Si3210/Si3211  
Register 89. Transistor 6 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ6[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ6[7:0]  
Transistor 6 Current Sense.  
This register reports the real-time current through Q6. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
Register 92. DC-DC Converter PWM Period  
Si3210  
D4  
Bit  
Name DCN[7]  
Type R/W  
D7  
D6  
1
D5  
D3  
DCN[5:0]  
R/W  
D2  
D1  
D0  
R
Reset settings = 1111_1111  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
DCN[7:0]  
DC-DC Converter Period.  
This bit sets the PWM period for the dc-dc converter. The range is 3.906 µs (0x40) to  
15.564 µs (0xFF) in 61.035 ns steps.  
Si3211 = Reserved.  
Bit 6 is fixed to one and read-only, so there are two ranges of operation:  
3.906 µs–7.751 µs, used for MOSFET transistor switching.  
11.719 µs–15.564 µs, used for BJT transistor switching.  
Rev. 1.43  
101  
Si3210/Si3211  
Register 93. DC-DC Converter Switching Delay  
Si3210  
D4  
Bit  
Name DCCAL  
Type R/W  
D7  
D6  
D5  
DCPOL  
R
D3  
D2  
DCTOF[4:0]  
R/W  
D1  
D0  
Reset settings = 0001_0100 (Si3210)  
Reset settings = 0011_0100 (Si3210M)  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7
DCCAL  
DC-DC Converter Peak Current Monitor Calibration Status (Si3210 only).  
Writing a one to this bit starts the dc-dc converter peak current monitor calibration rou-  
tine.  
0 = Normal operation.  
1 = Calibration being performed.  
Si3211 = Reserved.  
6
5
Reserved  
DCPOL  
Read returns zero.  
DC-DC Converter Feed Forward Pin (DCFF) Polarity (Si3210 only).  
This read-only register bit indicates the polarity relationship of the DCFF pin to the  
DCDRV pin. Two versions of the Si3210 are offered to support the two relationships.  
0 = DCFF pin polarity is opposite of DCDRV pin (Si3210).  
1 = DCFF pin polarity is same as DCDRV pin (Si3210M).  
Si3211 = Reserved.  
4:0  
DCTOF[4:0]  
DC-DC Converter Minimum Off Time (Si3210 only).  
This register sets the minimum off time for the pulse width modulated dc-dc  
converter control. T  
= (DCTOF + 4) 61.035 ns.  
OFF  
Si3211 = Reserved.  
102  
Rev. 1.43  
Si3210/Si3211  
Register 94. DC-DC Converter PWM Pulse Width  
Si3210  
D4  
DCPW[7:0]  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
R
Reset settings = 0000_0000  
Si3211  
D4  
Bit  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DCPW[7:0]  
DC-DC Converter Pulse Width (Si3210 only).  
Pulse width of DCDRV is given by PW = (DCPW – DCTOF – 4)  
Si3211 = Reserved.  
61.035 ns.  
Rev. 1.43  
103  
Si3210/Si3211  
Register 96. Calibration Control/Status Register 1  
Bit  
D7  
D6  
D5  
CALSP  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CAL  
R/W  
CALR  
R/W  
CALT  
R/W  
CALD  
R/W  
CALC  
R/W  
CALIL  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
CAL  
Function  
Read returns zero.  
6
Calibration Control/Status Bit.  
Setting this bit begins calibration of the entire system.  
0 = Normal operation or calibration complete.  
1 = Calibration in progress.  
5
4
3
CALSP  
CALR  
CALT  
Calibration Speedup.  
Setting this bit shortens the time allotted for V  
calibration cycle.  
0 = 300 ms  
1 = 30 ms  
settling at the beginning of the  
BAT  
RING Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
TIP Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
2
1
0
CALD  
CALC  
CALIL  
Differential DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Common Mode DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
I
Calibration.  
LIM  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
104  
Rev. 1.43  
Si3210/Si3211  
Register 97. Calibration Control/Status Register 2  
Bit  
D7  
D6  
D5  
D4  
CALM1  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CALM2 CALDAC CALADC CALCM  
R/W  
R/W  
R/W  
R/W  
Reset settings = 0001_1111  
Bit  
7:5  
4
Name  
Reserved  
CALM1  
Function  
Read returns zero.  
Monitor ADC Calibration 1.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
3
2
CALM2  
Monitor ADC Calibration 2.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
CALDAC  
DAC Calibration.  
Setting this bit begins calibration of the audio DAC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
1
0
CALADC  
CALCM  
ADC Calibration.  
Setting this bit begins calibration of the audio ADC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Common Mode Balance Calibration.  
Setting this bit begins calibration of the ac longitudinal balance.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Rev. 1.43  
105  
Si3210/Si3211  
Register 98. RING Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMR[4:0]  
R/W  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMR[4:0] Gain Mismatch of IE Tracking Loop for RING Current.  
Register 99. TIP Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMT[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMT[4:0] Gain Mismatch of IE Tracking Loop for TIP Current.  
Register 100. Differential Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGD[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGD[4:0]  
Read returns zero.  
Differential DAC Gain Calibration Result.  
106  
Rev. 1.43  
Si3210/Si3211  
Register 101. Common Mode Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGC[4:0]  
R/W  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGC[4:0]  
Read returns zero.  
Common Mode DAC Gain Calibration Result.  
Register 102. Current Limit Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGIL[3:0]  
R/W  
D1  
Name  
Type  
Reset settings = 0000_1000  
Bit  
7:5  
3:0  
Name  
Function  
Reserved  
CALGIL[3:0]  
Read returns zero.  
Current Limit Calibration Result.  
Register 103. Monitor ADC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
CALMG1[3:0]  
R/W  
CALMG2[3:0]  
R/W  
Reset settings = 1000_1000  
Bit  
7:4  
3:0  
Name  
Function  
CALMG1[3:0] Monitor ADC Offset Calibration Result 1.  
CALMG2[3:0] Monitor ADC Offset Calibration Result 2.  
Rev. 1.43  
107  
Si3210/Si3211  
Register 104. Analog DAC/ADC Offset  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACP  
R/W  
DACN  
R/W  
ADCP  
R/W  
ADCN  
R/W  
Reset settings = 0000_0000  
Bit  
7:4  
3
Name  
Reserved  
DACP  
Function  
Read returns zero.  
Positive Analog DAC Offset.  
Negative Analog DAC Offset.  
Positive Analog ADC Offset.  
Negative Analog ADC Offset.  
2
DACN  
1
ADCP  
0
ADCN  
Register 105. DAC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACOF[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DACOF[7:0]  
DAC Offset Calibration Result.  
Register 106. Common Mode Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CMBAL[5:0]  
Reset settings = 0010_0000  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
CMBAL[5:0]  
Read returns zero.  
Common Mode Calibration Result.  
108  
Rev. 1.43  
Si3210/Si3211  
Register 107. DC Peak Current Monitor Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CMDCPK[3:0]  
R/W  
Reset settings = 0000_1000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Read returns zero.  
CMDCPK[3:0] DC Peak Current Monitor Calibration Result.  
Rev. 1.43  
109  
Si3210/Si3211  
Register 108. Enhancement Enable  
Note: The Enhancement Enable register and associated features are available in silicon revisions C and later.  
Si3210  
Bit  
Name ILIMEN  
Type R/W  
D7  
D6  
FSKEN  
R/W  
D5  
D4  
ZSEXT  
R/W  
D3  
D2  
D1  
D0  
HYSTEN  
R/W  
DCSU  
R/W  
LCVE  
R/W  
DCFIL  
R/W  
Reset settings = 0000_0000  
Si3211  
D4  
Bit  
Name ILIMEN  
Type R/W  
D7  
D6  
FSKEN  
R/W  
D5  
D3  
D2  
D1  
D0  
HYSTEN  
R/W  
ZSEXT  
R/W  
SWDB  
R/W  
LCVE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
ILIMEN  
Current Limit Increase.  
When enabled, this bit temporarily increases the maximum differential current limit at the  
end of a ring burst to enable a faster settling time to a dc linefeed state.  
0 = The value programmed in ILIM (direct Register 71) is used.  
1 = The maximum differential loop current limit is temporarily increased to 41 mA.  
6
FSKEN  
FSK Generation Enhancement.  
When enabled, this bit will increase the clocking rate of tone generator 1 to 24 kHz only  
when the REL bit (direct Register 32, bit 6) is set. Also, dedicated oscillator registers are  
used for FSK generation (indirect registers 99–104). Audio tones are generated using  
this new higher frequency, and oscillator 1 active and inactive timers have a finer bit res-  
olution of 41.67 µs. This provides greater resolution during FSK caller ID signal genera-  
tion.  
0 = Tone generator always clocked at 8 kHz; OSC1, OSC1X., and OSC1Y are always  
used.  
1 = Tone generator module clocked at 24 kHz and dedicated FSK registers used only  
when REL = 1; otherwise clocked at 8 kHz.  
5
DCSU  
DC-DC Converter Control Speedup (Si3210 only).  
When enabled, this bit invokes a multi-threshold error control algorithm which allows the  
dc-dc converter to adjust more quickly to voltage changes.  
0 = Normal control algorithm used.  
1 = Multi-threshold error control algorithm used.  
110  
Rev. 1.43  
Si3210/Si3211  
Bit  
Name  
Function  
4
ZSEXT  
Impedance Internal Reference Resistor Disable.  
When enabled, this bit removes the internal reference resistor used to synthesize ac  
impedances for 600 + 2.1 µF and 900 + 2.16 µF so that an external resistor reference  
may be used.  
0 = Internal resistor used to generate 600 + 2.1 µF and 900 + 2.16 µF impedances.  
1 = Internal resistor removed from circuit.  
3
SWDB  
Battery Switch Debounce (Si3211 only).  
When enabled, this bit allows debouncing of the battery switching circuit only when tran-  
sitioning from V  
to V  
external battery supplies (EXTBAT = 1).  
BATH  
BATL  
0 = No debounce used.  
1 = 60 ms debounce period used.  
Si3210 = Reserved.  
2
1
0
LCVE  
DCFIL  
Voltage-Based Loop Closure.  
Enables loop closure to be determined by the TIP-to-RING voltage rather than loop cur-  
rent.  
0 = Loop closure determined by loop current.  
1 = Loop closure determined by TIP-to-RING voltage.  
DC-DC Converter Squelch (Si3210 only).  
When enabled, this bit squelches noise in the audio band from the dc-dc converter con-  
trol loop.  
0 = Voice band squelch disabled.  
1 = Voice band squelch enabled.  
HYSTEN  
Loop Closure Hysteresis Enable.  
When enabled, this bit allows hysteresis to the loop closure calculation. The upper and  
lower hysteresis thresholds are defined by indirect registers 28 and 43, respectively.  
0 = Loop closure hysteresis disabled.  
1 = Loop closure hysteresis enabled.  
Rev. 1.43  
111  
Si3210/Si3211  
4. Indirect Registers  
Indirect registers are not directly mapped into memory but are accessible through the IDA and IAA registers. A  
write to IDA followed by a write to IAA is interpreted as a write request to an indirect register. In this case, the  
contents of IDA are written to indirect memory at the location referenced by IAA at the next indirect register update.  
A write to IAA without first writing to IDA is interpreted as a read request from an indirect register. In this case, the  
value located at IAA is written to IDA at the next indirect register update. Indirect registers are updated at a rate of  
16 kHz. For pending indirect register transfers, IAS (direct Register 31) will be one until serviced. In addition, an  
interrupt, IND (Register 20), can be generated upon completion of the indirect transfer.  
4.1. DTMF Decoding  
All values are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state.  
Table 37. DTMF Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
ROW0[15:0]  
ROW1[15:0]  
ROW2[15:0]  
ROW3[15:0]  
COL[15:0]  
2
3
4
5
FWDTW[15:0]  
REVTW[15:0]  
ROWREL[15:0]  
COLREL[15:0]  
ROW2[15:0]  
COL2[15:0]  
6
7
8
9
10  
11  
12  
PWRMIN[15:0]  
HOTL[15:0]  
Table 38. DTMF Indirect Registers Description  
Description  
Addr.  
Reference  
Page  
0
DTMF Row 0 Peak Magnitude Pass Ratio Threshold.  
42  
This register sets the minimum power ratio threshold for row 0 DTMF detection. If the ratio of  
power in row 0 to total power in the row band is greater than ROW0, a row 0 signal is  
detected. A value of 0x7FF0 corresponds to a 1.0 ratio.  
1
DTMF Row 1 Peak Magnitude Pass Ratio Threshold.  
42  
This register sets the minimum power ratio threshold for row 1 DTMF detection. If the ratio of  
power in row 1 to total power in the row band is greater than ROW1, a row 1 signal is  
detected. A value of 0x7FF0 corresponds to a 1.0 ratio.  
112  
Rev. 1.43  
Si3210/Si3211  
Table 38. DTMF Indirect Registers Description (Continued)  
Addr.  
Description  
Reference  
Page  
2
DTMF Row 2 Peak Magnitude Pass Ratio Threshold.  
42  
42  
42  
This register sets the minimum power ratio threshold for row 2 DTMF detection. If the ratio of  
power in row 2 to total power in the row band is greater than ROW2, a row 2 signal is  
detected. A value of 0x7FF0 corresponds to a 1.0 ratio.  
3
4
DTMF Row 3 Peak Magnitude Pass Ratio Threshold.  
This register sets the minimum power ratio threshold for row 3 DTMF detection. If the ratio of  
power in row 3 to total power in the row band is greater than ROW3, a row 3 signal is  
detected. A value of 0x7FF0 corresponds to a 1.0 ratio.  
DTMF Column Peak Magnitude Pass Threshold.  
This register sets the minimum power ratio threshold for column DTMF detection; all col-  
umns use the same threshold. If the ratio of power in a particular column to total power in the  
column band is greater than COL, a column detect for that particular column signal is  
detected. A value of 0x7FF0 corresponds to a 1.0 ratio.  
5
6
7
8
9
DTMF Forward Twist Threshold.  
42  
42  
42  
42  
42  
42  
42  
42  
This register sets the threshold for the power ratio of row power to column power. A value of  
0x7F0 corresponds to a 1.0 ratio.  
DTMF Reverse Twist Threshold.  
This register sets the threshold for the power ratio of column power to row power. A value of  
0x7F0 corresponds to a 1.0 ratio.  
DTMF Row Ratio Threshold.  
This register sets the threshold for the power ratio of highest power row to the other rows. A  
value of 0x7F0 corresponds to a 1.0 ratio.  
DTMF Column Ratio Threshold.  
This register sets the threshold for the power ratio of highest power column to the other col-  
umns. A value of 0x7F0 corresponds to a 1.0 ratio.  
DTMF Row Second Harmonic Threshold.  
This register sets the threshold for the power ratio of peak row tone to its second harmonic.  
A value of 0x7F0 corresponds to a 1.0 ratio.  
10 DTMF Column Second Harmonic Threshold.  
This register sets the threshold for the power ratio of peak column tone to its second har-  
monic. A value of 0x7F0 corresponds to a 1.0 ratio.  
11 DTMF Power Minimum Threshold.  
This register sets the threshold for the minimum total power in the DTMF calculation, under  
which the calculation is ignored.  
12 DTMF Hot Limit Threshold.  
This register sets the two-step AGC in the DTMF path.  
Rev. 1.43  
113  
Si3210/Si3211  
4.2. Oscillators  
See functional description sections of tone generation, ringing, and pulse metering for guidelines on computing  
register values. All values are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 39. Oscillator Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13  
14  
15  
16  
17  
18  
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
19  
ROFF[5:0]  
20  
21  
22  
23  
24  
25  
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
PLSD[15:0]  
PLSX[15:0]  
PLSCO[15:0]  
Table 40. Oscillator Indirect Registers Description  
Description  
Addr.  
Reference  
Page  
13 Oscillator 1 Frequency Coefficient.  
35  
35  
35  
35  
35  
35  
37  
Sets tone generator 1 frequency.  
14 Oscillator 1 Amplitude Register.  
Sets tone generator 1 signal amplitude.  
15 Oscillator 1 Initial Phase Register.  
Sets initial phase of tone generator 1 signal.  
16 Oscillator 2 Frequency Coefficient.  
Sets tone generator 2 frequency.  
17 Oscillator 2 Amplitude Register.  
Sets tone generator 2 signal amplitude.  
18 Oscillator 2 Initial Phase Register.  
Sets initial phase of tone generator 2 signal.  
19 Ringing Oscillator DC Offset.  
Sets dc offset component (V –V  
) to ringing waveform. The range is 0 to 94.5 V in  
RING  
TIP  
1.5 V increments.  
114  
Rev. 1.43  
Si3210/Si3211  
Table 40. Oscillator Indirect Registers Description (Continued)  
Addr.  
Description  
Reference  
Page  
20 Ringing Oscillator Frequency Coefficient.  
37  
37  
37  
41  
41  
41  
Sets ringing generator frequency.  
21 Ringing Oscillator Amplitude Register.  
Sets ringing generator signal amplitude.  
22 Ringing Oscillator Initial Phase Register.  
Sets initial phase of ringing generator signal.  
23 Pulse Metering Oscillator Attack/Decay Ramp Rate.  
Sets pulse metering attack/decay ramp rate.  
24 Pulse Metering Oscillator Amplitude Register.  
Sets pulse metering generator signal amplitude.  
25 Pulse Metering Oscillator Frequency Coefficient.  
Sets pulse metering generator frequency.  
4.3. Digital Programmable Gain/Attenuation  
See functional description sections of digital programmable gain/attenuation for guidelines on computing register  
values. All values are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 41. Digital Programmable Gain/Attenuation Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
26  
27  
DACG[11:0]  
ADCG[11:0]  
Table 42. Digital Programmable Gain/Attenuation Indirect Registers Description  
Addr.  
Description  
Reference  
Page  
26 Receive Path Digital to Analog Converter Gain/Attenuation.  
43  
This register sets gain/attenuation for the receive path. The digitized signal is effectively mul-  
tiplied by DACG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
27 Transmit Path Analog to Digital Converter Gain/Attenuation.  
43  
This register sets gain/attenuation for the transmit path. The digitized signal is effectively  
multiplied by ADCG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
Rev. 1.43  
115  
Si3210/Si3211  
4.4. SLIC Control  
See descriptions of linefeed interface and power monitoring for guidelines on computing register values. All values  
are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 43. SLIC Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
28  
LCRT[5:0]  
RPTP[5:0]  
29  
30  
CML[5:0]  
CMH[5:0]  
31  
32  
PPT12[7:0]  
33  
PPT34[7:0]  
PPT56[7:0]  
34  
35  
NCLR[12:0]  
36  
NRTP[12:0]  
NQ12[12:0]  
NQ34[12:0]  
NQ56[12:0]  
37  
38  
39  
40  
VCMR[3:0]  
VMIND[3:0]*  
41  
42  
43  
LCRTL[5:0]  
*Note: Si3210 only.  
Table 44. SLIC Control Indirect Registers Description  
Description  
Addr.  
Reference Page  
28 Loop Closure Threshold.  
30  
Loop closure detection threshold. This register defines the upper bounds threshold if hys-  
teresis is enabled (direct Register 108, bit 0). The range is 0–80 mA in 1.27 mA steps.  
29 Ring Trip Threshold.  
40  
Ring trip detection threshold during ringing.  
30 Common Mode Minimum Threshold for Speed-Up.  
This register defines the negative common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
31 Common Mode Maximum Threshold for Speed-Up.  
This register defines the positive common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
116  
Rev. 1.43  
Si3210/Si3211  
Table 44. SLIC Control Indirect Registers Description (Continued)  
Addr.  
Description  
Reference Page  
32 Power Alarm Threshold for Transistors Q1 and Q2.  
33 Power Alarm Threshold for Transistors Q3 and Q4.  
34 Power Alarm Threshold for Transistors Q5 and Q6.  
35 Loop Closure Filter Coefficient.  
28  
28  
28  
30  
40  
28  
28  
28  
37  
36 Ring Trip Filter Coefficient.  
37 Thermal Low Pass Filter Pole for Transistors Q1 and Q2.  
38 Thermal Low Pass Filter Pole for Transistors Q3 and Q4.  
39 Thermal Low Pass Filter Pole for Transistors Q5 and Q6.  
40 Common Mode Bias Adjust During Ringing.  
Recommended value of 0 decimal.  
41 DC-DC Converter V Voltage (Si3210 only).  
31  
OV  
This register sets the overhead voltage, V , to be supplied by the dc-dc converter.  
OV  
When the VOV bit = 0 (direct Register 66, bit 4), V should be set between 0 and 9 V  
OV  
(VMIND = 0 to 6h). When the VOV bit = 1, V should be set between 0 and 13.5 V  
OV  
(VMIND = 0 to 9h).  
42 Reserved.  
43 Loop Closure Threshold—Lower Bound.  
30  
This register defines the lower threshold for loop closure hysteresis, which is enabled in  
bit 0 of direct Register 108. The range is 0–80 mA in 1.27 mA steps.  
4.5. FSK Control  
For detailed instructions on FSK signal generation, refer to “Application Note 32: FSK Generation” (AN32). These  
registers support enhanced FSK generation mode, which is enabled by setting FSKEN = 1 (direct Register 108,  
bit 6) and REL = 1 (direct Register 32, bit 6).  
Table 45. FSK Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
99  
FSK0X[15:0]  
FSK0[15:0]  
FSK1X[15:0]  
FSK1[15:0]  
FSK01[15:0]  
FSK10[15:0]  
100  
101  
102  
103  
104  
Rev. 1.43  
117  
Si3210/Si3211  
Table 46. FSK Control Indirect Registers Description  
Addr.  
Description  
Reference Page  
99 FSK Amplitude Coefficient for Space.  
37 and AN32  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a space or “0”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
100 FSK Frequency Coefficient for Space.  
37 and AN32  
37 and AN32  
37 and AN32  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a space or “0”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
101 FSK Amplitude Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a mark or “1”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
102 FSK Frequency Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a mark or “1”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
103 FSK Transition Parameter from 0 to 1.  
37 and AN32  
37 and AN32  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a space (0) to a mark (1).  
104 FSK Transition Parameter from 1 to 0.  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a mark (1) to a space (0).  
118  
Rev. 1.43  
Si3210/Si3211  
5. Pin Descriptions: Si3210/11  
QFN  
TSSOP  
38  
1
2
3
CS  
INT  
PCLK  
SCLK  
37  
SDI  
36 SDO  
38 37 36 35 34 33 32  
1
2
3
4
DTX  
FSYNC  
RESET  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
SDITHRU  
DCDRV/DCSW  
DCFF/DOUT  
TEST  
GNDD  
VDDD  
ITIPN  
ITIPP  
VDDA2  
35  
34  
DRX  
DTX  
FSYNC  
SDITHRU  
DCDRV/DCSW  
4
5
6
7
8
9
10  
11  
12  
13  
14  
33 DCFF/DOUT  
SDCH/DIO1  
SDCL/DIO2  
VDDA1  
RESET  
SDCH/DIO1  
SDCL/DIO2  
VDDA1  
32  
31  
30  
TEST  
GNDD  
VDDD  
5
6
7
IREF  
CAPP  
QGND  
CAPM  
29 ITIPN  
28  
27  
8
IREF  
CAPP  
QGND  
CAPM  
ITIPP  
VDDA2  
9
10  
11  
12  
IRINGP  
IRINGN  
IGMP  
26 IRINGP  
STIPDC  
SRINGDC  
25  
24  
23  
22  
21  
20  
IRINGN  
IGMP  
GNDA  
IGMN  
SRINGAC  
STIPAC  
13 14 15 16 17 18 19  
STIPDC 15  
SRINGDC 16  
STIPE  
SVBAT 18  
19  
17  
SRINGE  
QFN  
Pin #  
TSSOP  
Pin #  
Name  
Description  
35  
1
CS  
Chip Select.  
Active low. When inactive, SCLK and SDI are ignored and SDO is high  
impedance. When active, the serial port is operational.  
36  
37  
38  
1
2
3
4
5
6
INT  
PCLK  
DRX  
Interrupt.  
Maskable interrupt output. Open drain output for wire-ORed operation.  
PCM Bus Clock.  
Clock input for PCM bus timing.  
Receive PCM Data.  
Input data from PCM bus.  
DTX  
Transmit PCM Data.  
Output data to PCM bus.  
2
FSYNC  
Frame Synch.  
8 kHz frame synchronization signal for the PCM bus. May be short or long  
pulse format.  
3
4
7
8
RESET  
Reset.  
Active low input. Hardware reset used to place all control registers in the  
default state.  
SDCH/DIO1 DC Monitor/General Purpose I/O.  
DC-DC converter monitor input used to detect overcurrent situations in the  
converter (Si3210 only). General purpose I/O (Si3211 only).  
Rev. 1.43  
119  
Si3210/Si3211  
QFN  
Pin #  
TSSOP  
Pin #  
Name  
Description  
5
9
SDCL/DIO2 DC Monitor/General Purpose I/O.  
DC-DC converter monitor input used to detect overcurrent situations in the  
converter (Si3210 only). General purpose I/O (Si3211 only).  
6
7
10  
11  
VDDA1  
IREF  
Analog Supply Voltage.  
Analog power supply for internal analog circuitry.  
Current Reference.  
Connects to an external resistor used to provide a high accuracy reference  
current.  
8
12  
CAPP  
SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
9
13  
14  
QGND  
CAPM  
Component Reference Ground.  
10  
SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
11  
12  
13  
14  
15  
16  
17  
18  
STIPDC  
SRINGDC  
STIPE  
TIP Sense.  
Analog current input used to sense voltage on the TIP lead.  
RING Sense.  
Analog current input used to sense voltage on the RING lead.  
TIP Emitter Sense.  
Analog current input used to sense voltage on the Q6 emitter lead.  
SVBAT  
V
Sense.  
BAT  
Analog current input used to sense voltage on dc-dc converter output voltage  
lead.  
15  
16  
17  
18  
19  
20  
21  
22  
19  
20  
21  
22  
23  
24  
25  
26  
SRINGE  
STIPAC  
SRINGAC  
IGMN  
RING Emitter Sense.  
Analog current input used to sense voltage on the Q5 emitter lead.  
TIP Transmit Input.  
Analog ac input used to detect voltage on the TIP lead.  
RING Transmit Input.  
Analog ac input used to detect voltage on the RING lead.  
Transconductance Amplifier External Resistor.  
Negative connection for transconductance gain setting resistor.  
GNDA  
Analog Ground.  
Ground connection for internal analog circuitry.  
IGMP  
Transconductance Amplifier External Resistor.  
Positive connection for transconductance gain setting resistor.  
IRINGN  
IRINGP  
Negative Ring Current Control.  
Analog current output driving Q3.  
Positive Ring Current Control.  
Analog current output driving Q2.  
120  
Rev. 1.43  
Si3210/Si3211  
QFN  
Pin #  
TSSOP  
Pin #  
Name  
Description  
23  
24  
25  
26  
27  
28  
27  
28  
29  
30  
31  
32  
VDDA2  
Analog Supply Voltage.  
Analog power supply for internal analog circuitry.  
ITIPP  
ITIPN  
VDDD  
GNDD  
TEST  
Positive TIP Current Control.  
Analog current output driving Q1.  
Negative TIP Current Control.  
Analog current output driving Q4.  
Digital Supply Voltage.  
Digital power supply for internal digital circuitry.  
Digital Ground.  
Ground connection for internal digital circuitry.  
Test.  
Enables test modes for Silicon Labs internal testing. This pin should always  
be tied to ground for normal operation.  
29  
30  
33  
34  
DCFF/DOUT DC Feed-Forward/High Current General Purpose Output.  
Feed-forward drive of external bipolar transistors to improve dc-dc converter  
efficiency (Si3210 only). High current output pin (Si3211 only).  
DCDRV/DCSW DC Drive/Battery Switch.  
DC-DC converter control signal output which drives external bipolar transistor  
(Si3210 only). Battery switch control signal output which drives external  
bipolar transistor (Si3211 only).  
31  
32  
33  
34  
35  
36  
37  
38  
SDITHRU  
SDO  
SDI Passthrough.  
Cascaded SDI output signal for daisy-chain mode.  
Serial Port Data Out.  
Serial port control data output.  
SDI  
Serial Port Data In.  
Serial port control data input.  
SCLK  
Serial Port Bit Clock Input.  
Serial port clock input. Controls the serial data on SDO and latches the data  
on SDI.  
Rev. 1.43  
121  
Si3210/Si3211  
6. Pin Descriptions: Si3201  
TIP  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ITIPP  
ITIPN  
IRINGP  
IRINGN  
NC  
RING  
VBAT  
VBATH  
NC  
STIPE  
SRINGE  
NC  
GND  
VDD  
Pin #  
Name  
Input/  
Description  
Output  
1
TIP  
NC  
I/O  
I/O  
TIP Output—Connect to the TIP lead of the subscriber loop.  
No Internal Connection—Do not connect to any electrical signal.  
RING Output—Connect to the RING lead of the subscriber loop.  
Operating Battery Voltage—Connect to the battery supply.  
High Battery Voltage—This pin is internally connected to VBAT.  
Ground—Connect to a low impedance ground plane.  
2, 6, 9, 12  
3
4
5
7
8
RING  
VBAT  
VBATH  
GND  
VDD  
Supply Voltage—Main power supply for all internal circuitry. Connect to a  
3.3 V or 5 V supply. Decouple locally with a 0.1 µF/6 V capacitor.  
10  
SRINGE  
O
RING Emitter Sense Output—Connect to the SRINGE pin of the Si321x  
pin.  
11  
13  
STIPE  
O
I
TIP Emitter Sense Output—Connect to the STIPE pin of the Si321x pin.  
IRINGN  
Negative RING Current Control—Connect to the IRINGN lead of the  
Si321x.  
14  
15  
16  
IRINGP  
ITIPN  
I
I
Positive RING Current Drive—Connect to the IRINGP lead of the Si321x.  
Negative TIP Current Control—Connect to the ITIPN lead of the Si321x.  
Positive TIP Current Control—Connect to the ITIPP lead of the Si321x.  
Exposed Thermal Pad—Connect to the bulk ground plane.  
ITIPP  
I
Bottom-Side  
Exposed Pad  
122  
Rev. 1.43  
Si3210/Si3211  
7. Ordering Guide  
Chip  
Description DC-DC  
DTMF  
DCFFPin Package  
Output  
Lead-Free  
and  
Temperature  
Converter Decoder  
RoHS-  
Compliant  
Si3210-X-FM  
Si3210-X-GM  
Si3210M-X-FM  
Si3210M-X-GM  
Si3210-KT  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
DCDRV  
DCDRV  
DCDRV  
DCDRV  
QFN-38  
QFN-38  
QFN-38  
QFN-38  
Yes  
Yes  
Yes  
Yes  
No  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
DCDRV TSSOP-38  
Si3210-BT  
No  
–40 to 85 °C  
0 to 70 °C  
Si3210-FT  
Yes  
Yes  
No  
Si3210-GT  
–40 to 85 °C  
0 to 70 °C  
Si3210M-KT  
Si3210M-BT  
Si3210M-FT  
Si3210M-GT  
Si3211-KT  
No  
–40 to 85 °C  
0 to 70 °C  
Yes  
Yes  
No  
–40 to 85 °C  
0 to 70 °C  
n/a  
n/a  
n/a  
n/a  
n/a  
TSSOP-38  
TSSOP-38  
QFN-38  
Si3211-BT  
No  
–40 to 85 °C  
0 to 70 °C  
Si3211-X-FM  
Si3211-X-GM  
Si3201-KS  
Yes  
Yes  
No  
QFN-38  
–40 to 85 °C  
0 to 70 °C  
Linefeed  
Interface  
SOIC-16  
Si3201-BS  
Si3201-FS  
Si3201-GS  
Notes:  
Linefeed  
Interface  
n/a  
n/a  
n/a  
SOIC-16  
SOIC-16  
SOIC-16  
No  
Yes  
Yes  
–40 to 85 °C  
0 to 70 °C  
Linefeed  
Interface  
Linefeed  
Interface  
–40 to 85 °C  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel; 2500 quantity per reel.  
Rev. 1.43  
123  
Si3210/Si3211  
Table 47. Evaluation Kit Ordering Guide  
Item  
Supported  
ProSLIC  
Description  
Linefeed  
Interface  
Si3210PPQX-EVB  
Si3210PPQ1-EVB  
Si3210DCQX-EVB  
Si3210DCQ1-EVB  
Si3210PPTX-EVB  
Si3210PPT1-EVB  
Si3210DCX-EVB  
Si3210DC1-EVB  
Si3210MPPTX-EVB  
Si3210MPPT1-EVB  
Si3210MDCX-EVB  
Si3210MDC1-EVB  
Si3211PPTX-EVB  
Si3210-QFN  
Si3210-QFN  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3210-QFN  
Si3210-QFN  
Daughter Card Only  
Si3210-TSSOP  
Si3210-TSSOP  
Si3210-TSSOP  
Si3210-TSSOP  
Si3210M-TSSOP  
Si3210M-TSSOP  
Si3210M-TSSOP  
Si3210M-TSSOP  
Si3211-TSSOP  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Daughter Card Only  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Daughter Card Only  
Eval Board, Daughter Card  
124  
Rev. 1.43  
Si3210/Si3211  
8. Package Outline: 38-Pin QFN  
Figure 33 illustrates the package details for the Si321x. Table 48 lists the values for the dimensions shown in the  
illustration.  
Bottom Side  
Exposed Pad  
3.2 x 5.2 mm  
Figure 33. 38-Pin Quad Flat No-Lead Package (QFN)  
Table 48. Package Diagram Dimensions1,2,3  
Millimeters  
Symbol  
Min  
0.75  
0.00  
0.18  
Nom  
0.85  
Max  
0.95  
0.05  
0.30  
A
A1  
b
0.01  
0.23  
D
5.00 BSC.  
3.20  
D2  
e
3.10  
3.30  
0.50 BSC.  
7.00 BSC.  
5.20  
E
E2  
L
5.10  
0.35  
0.03  
5.30  
0.55  
0.08  
0.10  
0.10  
0.08  
0.10  
0.45  
L1  
0.05  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless  
otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1982.  
3. Recommended card reflow profile is per the JEDEC/IPC  
J-STD-020C specification for Small Body Components.  
Rev. 1.43  
125  
Si3210/Si3211  
9. Package Outline: 38-Pin TSSOP  
Figure 34 illustrates the package details for the Si321x. Table 49 lists the values for the dimensions shown in the  
illustration.  
B
E/2  
2x  
E1  
E
θ
L
C
2x  
B A  
ddd  
e
ccc  
A
D
C
aaa  
C
A
Seating Plane  
b
A1  
C
38x  
M
bbb  
C B A  
Approximate device weight is 115.7 mg  
Figure 34. 38-Pin Thin Shrink Small Outline Package (TSSOP)  
Table 49. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Nom  
Max  
1.20  
0.15  
0.27  
0.20  
9.80  
A
A1  
b
0.05  
0.17  
0.09  
9.60  
c
D
9.70  
e
E
0.50 BSC  
6.40 BSC  
4.40  
E1  
L
4.30  
0.45  
0°  
4.50  
0.75  
8°  
0.60  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.05  
0.20  
126  
Rev. 1.43  
Si3210/Si3211  
10. Package Outline: 16-Pin ESOIC  
Figure 35 illustrates the package details for the Si3201. Table 50 lists the values for the dimensions shown in the  
illustration.  
16  
9
8
x45°  
h
E
H
.25 M B M  
–B–  
θ
1
L
B
Bottom Side  
Exposed Pad  
2.3 x 3.6 mm  
.25 M C A M B S  
Detail F  
–A–  
D
C
A
–C–  
See Detail F  
A1  
e
γ
Seating Plane  
Weight: Approximate device weight is 0.15 grams.  
Figure 35. 16-Pin Thermal Enhanced Small Outline Integrated Circuit (ESOIC) Package  
Table 50. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
1.35  
0
Max  
1.75  
0.15  
.51  
A
A1  
B
C
D
E
e
.33  
.19  
.25  
9.80  
3.80  
10.00  
4.00  
1.27 BSC  
H
h
5.80  
.25  
.40  
6.20  
.50  
L
1.27  
0.10  
8º  
γ
θ
0º  
Rev. 1.43  
127  
Si3210/Si3211  
DOCUMENT CHANGE LIST  
Revision 1.41 to Revision 1.42  
16-pin ESOIC dimension A1 corrected in Table 49  
on page 126.  
Delay time between chip selects, t , changed from  
cs  
220 ns to 440 ns in Table 10 on page 15.  
C10 changed from 22 nF to 0.1 µF in Figure 10 on  
page 18.  
C18, C19 changed from 1.0 µF to 4.7 µF in  
Figure 12 on page 20.  
Recommended value for Indirect Register 40  
changed from 6 to 0 in Table 44 on page 116.  
Added QFN package option.  
Revision 1.42 to Revision 1.43  
Table 16, “Si3210/Si3210M External Component  
Values—Discrete Solution,” on page 21.  
Added TO-92 transistor suppliers to BOM.  
"7. Ordering Guide" on page 123  
Updated to include product revision designator.  
“Lead-Free” changed to “Lead-Free and RoHS-  
Compliant”  
Figure 9, “Si3210/Si3210M Application Circuit Using  
Si3201,” on page 17.  
Added additional decoupling components to VDDA1,  
VDDA2, and VDDD.  
Figure 12, “Si3211 Typical Application Circuit Using  
Si3201,” on page 20.  
Added additional decoupling components to VDDA1,  
VDDA2, and VDDD.  
Figure 13, “Si3210/Si3210M Typical Application  
Circuit Using Discrete Components,” on page 21.  
Added additional decoupling components to VDDA1,  
VDDA2, and VDDD.  
Added optional components to STIPE, SRINGE, and  
SVBAT pins to improve idle channel noise.  
Figure 14, “Si3211 Typical Application Circuit Using  
Discrete Solution,” on page 22.  
Added additional decoupling components to VDDA1,  
VDDA2, and VDDD.  
Added optional components to STIPE, SRINGE, and  
SVBAT pins to improve idle channel noise.  
Table 50, “Package Diagram Dimensions,” on  
page 127  
Changed A1 max dimension from 0.10 to 0.15.  
128  
Rev. 1.43  
Si3210/Si3211  
NOTES:  
Rev. 1.43  
129  
Si3210/Si3211  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email:ProSLICinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ProSLIC are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
130  
Rev. 1.43  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY