SI3215M-X-GMR [SILICON]

暂无描述;
SI3215M-X-GMR
型号: SI3215M-X-GMR
厂家: SILICON    SILICON
描述:

暂无描述

电池
文件: 总118页 (文件大小:1480K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3215  
PROSLIC® PROGRAMMABLE CMOS SLIC/CODEC WITH  
RINGING/BATTERY VOLTAGE GENERATION  
Features  
Performs all BORSCHT functions  
Software-programmable internal balanced  
ringing up to 90 VPK  
(5 REN up to 4 kft, 3 REN up to 8 kft)  
Integrated battery supply with dynamic  
voltage output  
Software-programmable signal  
generation and audio processing:  
Phase-continuous FSK (caller ID)  
generation  
Dual audio tone generators  
Smooth and abrupt polarity reversal  
µ-Law/A-Law and 16-bit linear PCM  
audio  
On-chip dc-dc converter continuously  
minimizes power in all operating modes  
Entire solution can be powered from a  
single 3.3 V or 5 V supply  
Extensive test and diagnostic features  
Multiple voice loopback test modes  
Real time dc linefeed measurement  
GR-909 line test capabilities  
Ordering Information  
See page 111.  
SPI and PCM bus digital interfaces  
Extensive programmable interrupts  
100% software-configurable global  
solution  
Ideal for customer premise equipment  
applications  
Lead-free and RoHS-compliant packages  
available  
3.3 to 35 V dc input range  
Dynamic 0 to –94.5 V output  
Low-cost inductor and high-efficiency  
transformer versions supported  
Pin Assignments  
Software-programmable linefeed  
parameters:  
Si3215  
Ringing frequency, amplitude, cadence,  
and waveshape  
QFN  
2-wire ac impedance and hybrid  
Constant current feed (20 to 41 mA)  
Loop closure and ring trip thresholds and  
filtering  
38 37 36 35 34 33 32  
Applications  
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
IREF  
CAPP  
QGND  
CAPM  
STIPDC  
SRINGDC  
1
2
3
4
31 SDITHRU  
30  
DCDRV  
Voice-over-broadband systems:  
DSL, cable, wireless  
PBX/IP-PBX/key telephone systems  
Terminal adapters:  
ISDN, Ethernet, USB  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
DCFF  
TEST  
GNDD  
VDDD  
ITIPN  
ITIPP  
5
6
7
Description  
The ProSLIC is a low-voltage CMOS device that provides a complete analog  
telephone interface ideal for customer premise equipment (CPE) applications.  
The ProSLIC integrates subscriber line interface circuit (SLIC), codec, and battery  
generation functionality into a single CMOS integrated circuit. The integrated  
battery supply continuously adapts its output voltage to minimize power and  
enables the entire solution to be powered from a single 3.3 V (Si3215M only) or  
5 V supply. The ProSLIC controls the phone line through Silicon Labs’ Si3201  
Linefeed Interface Chip or discrete component line feed. Si3215 features include  
software-configurable 5 REN internal ringing up to 90 VPK, DTMF generation, and  
a comprehensive set of telephony signaling capabilities including expanded  
support of Japan and China country requirements. The ProSLIC is packaged in a  
38-pin QFN and TSSOP, and the Si3201 is packaged in a thermally-enhanced 16-  
pin SOIC.  
8
9
VDDA2  
10  
11  
12  
IRINGP  
IRINGN  
IGMP  
13 14 15 16 17 18 19  
U.S. Patent #6,567,521  
U.S. Patent #6,812,744  
Other patents pending  
Functional Block Diagram  
INT  
RESET  
Si3215  
Line  
Status  
CS  
SCLK  
SDO  
Control  
Interface  
SDI  
Gain/  
A/D  
D/A  
TIP  
DTX  
Attenuation/  
Filter  
Line  
Feed  
Control  
Prog.  
Hybrid  
Linefeed  
Interface  
Tone  
Generators  
PCM  
Interface  
DRX  
RING  
Gain/  
Attenuation/  
Filter  
ZS  
FSYNC  
PCLK  
Discrete  
Components  
DC-DC Converter Controller  
PLL  
Rev. 0.92 8/05  
Copyright © 2005 by Silicon Laboratories  
Si3215  
Si3215  
2
Rev. 0.92  
Si3215  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.1. Si3210 to Si3215 Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.2. Linefeed Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2.3. Battery Voltage Generation and Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
2.4. Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.5. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2.6. Audio Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2.7. Two-Wire Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
2.8. Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
2.9. Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2.10. Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2.11. PCM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.12. Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
4. Indirect Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
4.1. Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
4.2. Digital Programmable Gain/Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
4.3. SLIC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
4.4. FSK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
5. Pin Descriptions: Si3215 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
6. Pin Descriptions: Si3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
8. Package Outline: 38-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
9. Package Outline: 38-Pin TSSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
10. Package Outline: 16-Pin ESOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Rev. 0.92  
3
Si3215  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings and Thermal Information  
1
Parameter  
Symbol  
Si3215  
Value  
Unit  
DC Supply Voltage  
V
, V  
, V  
DDA2  
–0.5 to 6.0  
±10  
V
mA  
V
DDD  
DDA1  
Input Current, Digital Input Pins  
Digital Input Voltage  
I
IN  
V
–0.3 to (V  
+ 0.3)  
DDD  
IND  
2
Operating Temperature Range  
T
–40 to 100  
°C  
A
Storage Temperature Range  
T
–40 to 150  
°C  
STG  
TSSOP-38 Thermal Resistance, Typical  
QFN-38 Thermal Resistance, Typical  
θ
70  
35  
°C/W  
°C/W  
W
JA  
JA  
θ
2
Continuous Power Dissipation  
P
0.7  
D
Si3201  
DC Supply Voltage  
V
–0.5 to 6.0  
–104  
V
V
DD  
Battery Supply Voltage  
V
BAT  
Input Voltage: TIP, RING, SRINGE, STIPE pins  
Input Voltage: ITIPP, ITIPN, IRINGP, IRINGN pins  
V
(V  
– 0.3) to (V + 0.3)  
V
INHV  
BAT  
DD  
V
–0.3 to (V + 0.3)  
V
IN  
DD  
2
Operating Temperature Range  
T
–40 to 100  
–40 to 150  
55  
°C  
°C  
°C/W  
A
Storage Temperature Range  
T
STG  
3
SOIC-16 Thermal Resistance, Typical  
θ
JA  
o
0.8 at 70 C  
2
P
W
Continuous Power Dissipation  
D
o
0.6 at 85 C  
Notes:  
1. Permanent device damage may occur if these absolute maximum ratings are exceeded. Functional operation should  
be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Operation above 125 oC junction temperature may degrade device reliability.  
3. Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.  
4
Rev. 0.92  
Si3215  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min*  
Typ  
Max*  
Unit  
o
Ambient Temperature  
Ambient Temperature  
Si3215 Supply Voltage  
T
K-grade  
B-grade  
0
25  
25  
70  
85  
C
A
o
T
–40  
3.13  
C
A
V
,V  
,
3.3/5.0  
5.25  
V
DDD DDA1  
V
DDA2  
Si3201 Supply Voltage  
Si3201 Battery Voltage  
V
3.13  
–96  
3.3/5.0  
5.25  
–10  
V
V
DD  
V
V
= V  
BATH BAT  
BAT  
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 oC unless otherwise stated.  
Product specifications are only guaranteed when the typical application circuit (including component tolerances) is  
used.  
Table 3. AC Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
TX/RX Performance  
THD = 1.5%  
Min  
Typ  
Max  
Unit  
Overload Level  
2.5  
V
PK  
1
Single Frequency Distortion  
2-wire – PCM or  
PCM – 2-wire:  
200 Hz–3.4 kHz  
–45  
dB  
2
Signal-to-(Noise + Distortion) Ratio  
200 Hz to 3.4 kHz  
D/A or A/D 8-bit  
Active off-hook, and OHT,  
any ZAC  
Figure 1  
45  
Audio Tone Generator  
0 dBm0, Active off-hook,  
and OHT, any Zac  
dB  
2
Signal-to-Distortion Ratio  
Intermodulation Distortion  
0
–45  
0.5  
0.5  
dB  
dB  
dB  
2
Gain Accuracy  
2-wire to PCM, 1014 Hz  
PCM to 2-wire, 1014 Hz  
–0.5  
–0.5  
0
Gain Accuracy Over Frequency  
Group Delay Over Frequency  
Figure 3,4  
Figure 5,6  
3
Gain Tracking  
1014 Hz sine wave, refer-  
ence level –10 dBm  
signal level:  
3 dB to –37 dB  
–37 dB to –50 dB  
–50 dB to –60 dB  
at 1000 Hz  
–0.25  
–0.5  
0.25  
0.5  
dB  
dB  
dB  
µs  
–1.0  
1.0  
Round-Trip Group Delay  
Gain Step Accuracy  
1100  
–6 dB to 6 dB  
–0.017  
–0.25  
–0.1  
0.017  
0.25  
0.1  
dB  
dB  
dB  
Gain Variation with Temperature  
Gain Variation with Supply  
All gain settings  
V
= V  
= 3.3/5 V ±5%  
DDA  
DDA  
Rev. 0.92  
5
Si3215  
Table 3. AC Characteristics (Continued)  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
200 Hz to 3.4 kHz  
Min  
30  
Typ  
35  
Max  
Unit  
dB  
2-Wire Return Loss  
Transhybrid Balance  
300 Hz to 3.4 kHz  
30  
dB  
Noise Performance  
C-Message Weighted  
Psophometric Weighted  
3 kHz flat  
4
Idle Channel Noise  
40  
40  
40  
15  
–75  
18  
dBrnC  
dBmP  
dBrn  
dB  
PSRR from VDDA  
PSRR from VDDD  
PSRR from VBAT  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
Longitudinal Performance  
dB  
dB  
Longitudinal to Metallic or PCM  
Balance  
200 Hz to 3.4 kHz, β  
56  
60  
dB  
Q1,Q2  
150, 1% mismatch  
5
β
= 60 to 240  
43  
53  
53  
40  
60  
60  
60  
dB  
dB  
dB  
dB  
Q1,Q2  
5
β
= 300 to 800  
Q1,Q2  
Using Si3201  
Metallic to Longitudinal Balance  
Longitudinal Impedance  
200 Hz to 3.4 kHz  
200 Hz to 3.4 kHz at TIP or  
RING  
Register selectable  
ETBO/ETBA  
00  
01  
10  
33  
17  
17  
Longitudinal Current per Pin  
Active off-hook  
200 Hz to 3.4 kHz  
Register selectable  
ETBO/ETBA  
4
8
8
mA  
mA  
mA  
00  
01  
10  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The quantization errors inherent in the µ3/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 dB to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
5. Assumes normal distribution of betas.  
6
Rev. 0.92  
Si3215  
Figure 1. Transmit and Receive Path SNDR  
9
8
7
6
Fundamental  
Output Power  
(dBm0)  
Acceptable  
Region  
5
4
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 2. Overload Compression Performance  
Rev. 0.92  
7
Si3215  
Typical Response  
Typical Response  
Figure 3. Transmit Path Frequency Response  
8
Rev. 0.92  
Si3215  
Figure 4. Receive Path Frequency Response  
Rev. 0.92  
9
Si3215  
Figure 5. Transmit Group Delay Distortion  
Figure 6. Receive Group Delay Distortion  
10  
Rev. 0.92  
Si3215  
Table 4. Linefeed Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70°C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Loop Resistance Range  
R
See note.  
0
160  
10  
4
%
V
LOOP  
DC Loop Current Accuracy  
I
= 29 mA, ETBA = 4 mA  
–10  
–4  
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance  
R
I
< I  
LIM  
–4  
160  
4
V
DO  
LOOP  
DC Open Circuit Voltage—  
Ground Start  
V
R
I
<I ; V  
wrt ground  
RING  
= 48 V  
OCTO  
ROTO  
RING LIM  
V
OC  
DC Output Resistance—  
Ground Start  
I
<I ; RING to ground  
160  
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
150  
–20  
–10  
kΩ  
%
%
TOTO  
Loop Closure/Ring Ground  
Detect Threshold Accuracy  
I
= 11.43 mA  
= 40.64 mA  
20  
10  
THR  
THR  
Ring Trip Threshold  
Accuracy  
I
Ring Trip Response Time  
User Programmable Register 70  
and Indirect Register 23  
Ring Amplitude  
V
R
5 REN load; sine wave;  
44  
V
rms  
TR  
R
= 160 Ω, V  
= –75 V  
LOOP  
BAT  
Ring DC Offset  
Programmable in Indirect  
Register 6  
0
V
OS  
Trapezoidal Ring Crest  
Factor Accuracy  
Crest factor = 1.3  
–.05  
1.35  
.05  
1.45  
Sinusoidal Ring Crest  
Factor  
R
CF  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
Calibration Time  
f = 20 Hz  
–1  
–50  
1
%
ms  
ms  
%
Accuracy of ON/OFF Times  
CAL to CAL Bit  
50  
600  
25  
Power Alarm Threshold  
Accuracy  
At Power Threshold = 300 mW  
–25  
Note: DC resistance round trip; 160 corresponds to 2 kft 26 gauge AWG.  
Rev. 0.92  
11  
Si3215  
Table 5. Monitor ADC Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Nonlinearity  
(6-bit resolution)  
DNLE  
–1/2  
1/2  
LSB  
Integral Nonlinearity  
(6-bit resolution)  
INLE  
–1  
1
LSB  
Gain Error (voltage)  
Gain Error (current)  
10  
20  
%
%
Table 6. Si321x DC Characteristics, VDDA = VDDD = 5.0 V  
(VDDA, VDDD = 4.75 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
IH  
DDD  
V
0.3 x V  
V
IL  
DD  
D
SDITHRU:IO = –4 mA  
SDO, DTX:IO = –8 mA  
High Level Output Voltage  
V
V
V
– 0.6  
– 0.8  
V
OH  
DDD  
DOUT: IO = –40 mA  
V
V
DDD  
SDITHRU:  
IO = 4 mA  
SDO,INT,DTX:IO = 8 mA  
Low Level Output Voltage  
Input Leakage Current  
V
0.4  
OL  
I
–10  
10  
µA  
L
Table 7. Si321x DC Characteristics, VDDA = VDDD = 3.3 V  
(VDDA, VDDD = 3.13 to 3.47 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
IH  
DDD  
V
0.3 x V  
V
IL  
DD  
D
SDITHRU: IO =–2 mA  
SDO, DTX:IO = –4 mA  
High Level Output Voltage  
V
V
V
– 0.6  
– 0.8  
V
OH  
DDD  
DOUT: IO = –40 mA  
V
V
DDD  
SDITHRU:  
IO = 2 mA  
SDO,INT,DTX:IO = 4 mA  
Low Level Output Voltage  
Input Leakage Current  
12  
V
0.4  
OL  
I
–10  
10  
µA  
L
Rev. 0.92  
Si3215  
Table 8. Power Supply Characteristics  
(VDDA, VDDD = 3.13 V to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
1
2
Parameter  
Symbol  
I + I  
Test Condition  
Max  
Unit  
Typ  
Typ  
Power Supply Current,  
Analog and Digital  
Sleep (RESET = 0)  
Open  
0.1  
33  
37  
0.13  
42.8  
53  
0.3  
49  
68  
mA  
mA  
mA  
A
D
Active on-hook  
ETBO = 4 mA, codec and Gm  
amplifier powered down  
Active OHT  
ETBO = 4 mA  
Active off-hook  
ETBA = 4 mA, I  
57  
72  
83  
mA  
mA  
= 20 mA  
73  
36  
88  
47  
99  
55  
LIM  
Ground-start  
mA  
Ringing  
mA  
µA  
µA  
µA  
mA  
Sinewave, REN = 1, V = 56 V  
45  
55  
65  
PK  
V
Supply Current (Si3201)  
I
Sleep mode, RESET = 0  
Open (high impedance)  
100  
DD  
VDD  
100  
110  
1
Active on-hook standby  
Forward/reverse active off-hook, no  
I
, ETBO = 4 mA, V  
= –24 V  
LOOP  
BAT  
Forward/reverse OHT, ETBO = 4 mA,  
= –70 V  
1
mA  
V
BAT  
3
V
Supply Current  
I
Sleep (RESET = 0)  
Open (DCOF = 1)  
Active on-hook  
0
0
mA  
mA  
BAT  
BAT  
mA  
mA  
V
= 48 V, ETBO = 4 mA  
3
OC  
Active OHT  
ETBO = 4 mA  
11  
Active off-hook  
ETBA = 4 mA, I  
mA  
mA  
= 20 mA  
30  
2
LIM  
Ground-start  
Ringing  
V
mA  
= 56 V  
,
PK  
5.5  
PK_RING  
sinewave ringing, REN = 1  
V
Supply Slew Rate  
When using Si3201  
10  
V/µs  
BAT  
Notes:  
1. VDDD, VDDA = 3.3 V.  
2. VDDD, VDDA = 5.25 V.  
3. IBAT = current from VBAT (the large negative supply). For a switched-mode power supply regulator efficiency of 71%,  
the user can calculate the regulator current consumption as IBAT x VBAT/(0.71 x VDC).  
Rev. 0.92  
13  
Si3215  
Table 9. Switching Characteristics—General Inputs  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF)  
Parameter  
Symbol  
Min  
Typ  
Max  
20  
Unit  
ns  
Rise Time, RESET  
RESET Pulse Width  
t
r
t
100  
ns  
rl  
Note: All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are VIH = VD –  
0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
Table 10. Switching Characteristics—SPI  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Cycle Time SCLK  
t
0.062  
25  
25  
20  
20  
µs  
ns  
ns  
ns  
ns  
c
Rise Time, SCLK  
t
r
Fall Time, SCLK  
t
f
Delay Time, SCLK Fall to SDO Active  
t
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
t
t
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
25  
20  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
20  
h1  
t
25  
su2  
t
20  
h2  
Delay Time between Chip Selects  
(Continuous SCLK)  
t
440  
cs  
cs  
d4  
Delay Time between Chip Selects  
(Non-continuous SCLK)  
t
220  
ns  
ns  
SDI to SDITHRU Propagation Delay  
t
4
10  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
14  
Rev. 0.92  
Si3215  
tthru  
tc  
tr  
tr  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
Figure 7. SPI Timing Diagram  
Table 11. Switching Characteristics—PCM Highway Serial Interface  
VD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
1
1
1
Symbol  
Units  
Min  
Typ  
Max  
PCLK Frequency  
1/t  
0.256  
0.512  
0.768  
1.024  
1.536  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
c
PCLK Duty Cycle Tolerance  
PCLK Period Jitter Tolerance  
Rise Time, PCLK  
t
40  
50  
60  
120  
25  
%
ns  
ns  
ns  
ns  
ns  
dty  
t
–120  
jitter  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
2
Delay Time, PCLK Rise to DTX Tri-State  
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
Notes:  
t
25  
20  
25  
20  
20  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
h1  
t
su2  
t
h2  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O –0.4 V, VIL = 0.4 V  
2. Spec applies to PCLK fall to DTX tri-state when that mode is selected (TRI = 0).  
Rev. 0.92  
15  
Si3215  
tr  
tf  
tc  
PCLK  
th1  
tsu1  
FSYNC  
tsu2  
th2  
DRX  
DTX  
td2  
td1  
td3  
Figure 8. PCM Highway Interface Timing Diagram  
VCC  
R1  
200k  
15  
38  
STIPDC  
SCLK  
37  
20  
C24  
SDI  
SDO  
CS  
STIPAC  
C3  
220 nF  
SPI Bus  
PCM  
0.1 µF  
R8  
4.7k  
VCC  
36  
1
6
3
4
C18  
4.7 µF  
C19  
4.7 µF  
FSYNC  
PCLK  
DRX  
15  
29  
ITIPN  
IRINGN  
ITIPP  
ITIPN  
Bus  
VCC  
13  
16  
14  
11  
10  
25  
28  
26  
17  
19  
5
IRINGN  
ITIPP  
DTX  
1
3
TIP  
R322  
10k  
TIP  
C5  
22nF  
IRINGP  
STIPE  
Protection  
Circuit  
IRINGP  
STIPE  
SRINGE  
2
7
R2  
196k  
INT  
Note 2  
C6  
22nF  
RESET  
R4  
196k  
R262  
40.2k  
RING  
RING  
SRINGE  
24  
22  
IGMP  
IGMN  
R15  
243  
R7  
4.02k  
R6  
4.02k  
18  
SVBAT  
11  
12  
14  
R5  
200k  
IREF  
CAPP  
CAPM  
C4  
220 nF  
R9  
4.7k  
R14  
40.2k  
C2  
10 µF  
C1  
10 µF  
21  
16  
SRINGAC  
SRINGDC  
Notes:  
1. Values and configurations for these  
13  
QGN  
D
R3  
200k  
components can be derived from Table 19 or  
from “AN45: Design Guide for the Si3210 DC-  
DC Converter”.  
C26  
0.1 µF  
GND  
L2  
47 µH  
2. Only one component per system needed .  
VDDA1  
VDDA2  
VDDD  
Q9  
2N2222  
R21  
15  
3. All circuit ground should have a single -point  
connection to the ground plane .  
VCC  
C31  
10 µF  
10 V  
R291  
R281  
C15  
0.1 µF  
C16  
0.1 µF 0.1 µ F  
C17  
C30  
10 µF  
4. Si3201 bottom-side exposed pad should be  
electrically and thermally connected to bulk  
ground plane.  
VDC  
Note  
1
VBAT DC-DC Converter  
VDC  
Circuit  
Figure 9. Si3215/Si3215M Application Circuit Using Si3201  
16  
Rev. 0.92  
Si3215  
Table 12. Si3215/Si3215M External Component Values  
Value  
Component(s)  
C1,C2  
Supplier  
10 µF, 6 V Ceramic or 16 V Low Leakage Electrolytic, ±20%  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
Murata, Nichicon URL1C100MD  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C3,C4  
C5,C6  
C15,C16,C17,C24  
C18,C19  
C26  
4.7 µF Ceramic, 6 V, X7R, ±20%  
0.1 µF, 100 V, X7R, ±20%  
10 µF, 6 V, Electrolytic, ±20%  
47 µH, 150 A  
C30, C31  
L2  
Coilcraft  
R1,R3,R5  
R2,R4  
200 k, 1/10 W, ±1%  
196 k, 1/10 W, ±1%  
R6,R7  
4.02 k, 1/10 W, ±1%  
R8,R9  
4.7 k, 1/10 W, ±1%  
R14,R26*  
R15  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R21  
15 , 1/4 W, ±5%  
R28,R29  
R32*  
1/10 W, 1% (See AN45 or Table 17 for value selection)  
10 k, 1/10 W, ±5%  
Q9  
60 V, General Purpose Switching NPN  
ON Semi MMBT2222ALT1; Central  
Semi CMPT2222A; Zetex FMMT2222  
*Note: Only one component per system needed.  
VDC  
F1  
SDCH  
SDCL  
1
R19  
2
2
C14  
See  
Note 1  
C25  
10 µF  
1
0.1 µF  
R18  
1
R20  
C10  
0.1 µF  
R16  
200  
Q7  
FZT953  
DCFF  
Q8  
D1  
ES1D  
2N2222  
VBAT  
C9  
10 µF  
R17  
L1  
DCDRV  
See Note 1  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 21 or from “AN45: Design Guide for the Si3210 DC-DC  
Converter”.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 10. Si3215 BJT/Inductor DC-DC Converter Circuit  
Rev. 0.92  
17  
Si3215  
Table 13. Si3215 BJT/Inductor DC-DC Converter Component Values  
Component(s)  
Value  
Supplier  
C9  
10 µF, 100 V, Electrolytic, ±20%  
Panasonic  
C10  
0.1 µF, 50 V, X7R, ±20%  
0.1 µF, X7R, ±20%  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
1
C14  
1
C25  
10 µF, Electrolytic, ±20%  
200 , 1/10 W, ±5%  
R16  
R17  
2
1/10 W, ±5% (See AN45 or Table 19 for value selec-  
tion)  
R18  
R19,R20  
F1  
1/4 W, ±5% (See AN45 or Table 19 for value selection)  
1/10 W, ±1% (See AN45 or Table 19 for value selection)  
Fuse  
Belfuse SSQ Series  
D1  
Ultra Fast Recovery 200 V, 1 A Rectifier  
General Semi ES1D; Central Semi  
CMR1U-02  
L1  
1A, Shielded Inductor (See “AN45: Design Guide for the API Delevan SPD127 series, Sum-  
Si3210 DC-DC Converter” or Table 19 for value selec-  
tion)  
ida CDRH127 series, Datatronics  
DR340-1 series, Coilcraft DS5022,  
TDK SLF12565  
Q7  
Q8  
120 V, High Current Switching PNP  
60 V, General Purpose Switching NPN  
Zetex FZT953, FZT955, ZTX953,  
ZTX955; Sanyo 2SA1552  
ON Semi MMBT2222ALT1,  
MPS2222A; Central Semi  
CMPT2222A; Zetex FMMT2222  
Notes:  
1. Voltage rating of this device must be greater than VDC  
.
2. “AN45: Design Guide for the Si3210 DC-DC Converter”.  
18  
Rev. 0.92  
Si3215  
VDC  
F1  
SDCH  
SDCL  
1
R19  
2
2
C25  
C14  
0.1uF  
1
R18  
Note 1  
10uF  
1
R20  
1
2
3
4
R22  
22  
C27  
470pF  
D1  
ES1D  
VBAT  
6
DCFF  
M1  
IRLL014N  
C9  
10uF  
10  
T11  
Note 1  
R17  
200k  
DCDRV  
NC  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 20 or from “AN45: Design Guide for the Si3210 DC-DC Converter”.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 11. Si3215M MOSFET/Transformer DC-DC Converter Circuit  
Table 14. Si3215M MOSFET/Transformer DC-DC Converter Component Values  
Component(s)  
Value  
Supplier  
Panasonic  
C9  
10 µF, 100 V, Electrolytic, ±20%  
0.1 µF, X7R, ±20%  
1
C14  
Murata, Johanson, Novacap, Venkel  
Panasonic  
1
C25  
10 µF, Electrolytic, ±20%  
470 pF, 100 V, X7R, ±20%  
200 k, 1/10 W, ±5%  
C27  
R17  
Murata, Johanson, Novacap, Venkel  
2
R18  
1/4 W, ±5% (See AN45 or Table 18 for value selection)  
R19,R20  
1/10 W, ±1% (See AN45 or Table 18  
for value selection)  
R22  
F1  
22 , 1/10 W, ±5%  
Fuse  
Belfuse SSQ Series  
D1  
Ultra Fast Recovery 200 V, 1A Rectifier  
General Semi ES1D; Central Semi  
CMR1U-02  
T1  
M1  
Power Transformer  
Coiltronic CTX01-15275;  
Datatronics SM76315;  
Midcom 31353R-02  
100 V, Logic Level Input MOSFET  
Intl Rect. IRLL014N; Intersil  
HUF76609D3S; ST Micro  
STD5NE10L, STN2NE10L  
Notes:  
1. Voltage rating of this device must be greater than VDC  
.
2. “AN45: Design Guide for the Si3210 DC-DC Converter”.  
Rev. 0.92  
19  
Si3215  
VCC  
GND  
R1  
200k  
38  
37  
SCLK  
SDI  
15 STIPDC  
20 STIPAC  
GND  
SPI Bus  
36  
1
SDO  
R8  
4.7k  
C3  
220nF  
CS  
6
3
4
FSYNC  
PCLK  
DRX  
Q1  
5401  
Q4  
5401  
28 ITIPP  
29 ITIPN  
17 STIPE  
R10  
10  
PCM Bus  
C324  
0.1 µF  
Q6  
5551  
TIP  
5
VCC  
DTX  
C8  
220nF  
R102 (100k)  
R13  
5.1k  
C5  
R2  
100k  
2
22nF  
R32  
Protection  
Circuit  
10k  
R6  
80.6  
C6  
22nF  
26 IRINGP  
25 IRINGN  
19 SRINGE  
INT 2  
RESET7  
Note 2  
Q2  
5401  
Q3  
5401  
RING  
C344  
0.1 µF  
R11  
10  
R4  
100k  
2
R26  
24  
40.2k  
Q5  
5551  
R104 (100k)  
IGMP  
IGMN  
R15  
243  
C7  
220nF  
22  
R12  
5.1k  
R5  
100k  
C334  
0.1 µF  
18 SVBAT  
11  
12  
14  
R105 (100k)  
IREF  
CAPP  
CAPM  
R7  
80.6  
C4  
220nF  
R9  
4.7k  
C2  
10uF  
C1  
10uF  
R14  
40.2k  
21  
SRINGAC  
Notes:  
1. Values and configurations for these  
components can be derived from Table 19 or  
from “AN45: Design Guide for the Si3210 DC-  
DC Converter”.  
2. Only one component per system needed.  
3. All circuit grounds should have a single-point  
connection to the ground plane.  
4. Optional components to improve idle channel  
noise  
16  
QGND 13  
SRINGDC  
R3  
200k  
C26  
0.1uF  
GND  
R21  
15  
Q9  
2N2222  
L2  
47 µH  
VDDA1 VDDA2  
VDDD  
VCC  
VDC  
C31  
10 µF  
10 V  
1
1
R29  
R28  
C15  
0.1 µF  
C16  
0.1 µ F 0. 1 µ F  
C17  
C30  
10 µ F  
Note 1  
DC-DC Converter  
Circuit  
VBAT  
VDC  
Figure 12. Si3215/Si3215M Typical Application Circuit Using Discrete Components  
Table 15. Si3215/Si3215M External Component Values—Discrete Solution  
Component  
Value  
Supplier/Part Number  
C1,C2  
10 µF, 6 V Ceramic or 16 V Low Leakage Electrolytic,  
Murata, Panasonic, Nichicon  
URL1C100MD  
±20%  
C3,C4  
C5,C6  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
220 nF, 50 V, X7R, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
0.1 µF, 100 V, X7R, ±20%  
10 µF, 16 V, Electrolytic, ±20%  
47 µH, 150 A  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C7,C8  
C15,C16,C17  
C26  
C30, C31  
L2  
Coilcraft  
Q1,Q2,Q3,Q4  
120 V, PNP, BJT  
Central Semi CMPT5401; ON Semi  
MMBT5401LT1, 2N5401; Zetex  
FMMT5401;  
Fairchild 2N5401; Samsung 2N5410  
Q5,Q6  
120 V, NPN, BJT  
Central Semi CZT5551, ON Semi  
2N5551;  
Fairchild 2N5551; Phillips 2N5551  
20  
Rev. 0.92  
Si3215  
Table 15. Si3215/Si3215M External Component Values—Discrete Solution (Continued)  
Q9  
NPN General Purpose BJT  
ON Semi MMBT2222ALT1,  
MPS2222A; Central Semi  
CMPT2222A; Zetex FMMT2222  
R1,R3  
200 k, 1/10 W, ±1%  
100 k, 1/10 W, ±1%  
R2,R4,R5,  
R102,R104,  
R105  
R6,R7  
R8,R9  
80.6 , 1/4 W, ±1%  
4.7 k, 1/10 W, ±1%  
R10,R11  
R12,R13  
R14,R26*  
R15  
10 , 1/10 W, ±5%  
5.1 k, 1/10 W, ±5%  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R21  
15 , 1/4 W, ±1%  
R28,R29  
R32*  
1/10 W, ±1% (See AN45 or Table 17 for value selection)  
10 k, 1/10 W, ±5%  
Note: Only one component per system needed.  
QRDN  
QTDN  
Q3  
Q4  
5401  
5401  
R23  
R24  
RRBN0  
3.0k  
RTBN0  
3.0k  
QRP  
Q5  
QTN  
5551  
Q6  
C8  
5551  
C7  
CRBN  
100 nF  
CTBN  
100 nF  
R7  
RRE  
80.6  
R12  
RRBN  
5.1k  
R6  
RTE  
80.6  
R13  
RTBN  
5.1k  
Figure 13. Si321x Optional Equivalent Q5, Q6 Bias Circuit3  
Rev. 0.92  
21  
Si3215  
The subcircuit above can be substituted into any of the ProSLIC solutions as an optional bias circuit for Q5, Q6. For  
this optional subcircuit, C7 and C8 are different in voltage and capacitance than the standard circuit. R23 and R24  
are additional components.  
Table 16. Si321x Optional Bias Component Values  
Component  
C7,C8  
Value  
Supplier/Part Number  
100 nF, 100 V, X7R, ±20%  
3.0 k, 1/10 W, ±5%  
Murata, Johanson, Venkel  
R23,R24  
Table 17. Component Value Selection for Si3215/Si3215M  
Component  
Value  
Comments  
R28 = (V + V )/148 µA  
R28  
1/10 W, 1% resistor  
DD  
BE  
For V = 3.3 V: 26.1 kΩ  
where V is the nominal VBE for Q9  
BE  
DD  
For V = 5.0 V: 37.4 kΩ  
DD  
R29  
1/10 W, 1% resistor  
R29 = V  
/148 µA  
CLAMP  
For V  
For V  
For V  
= 80 V: 541 kΩ  
= 85 V: 574 kΩ  
= 100 V: 676 kΩ  
where V  
is the clamping voltage for V  
CLAMP BAT  
CLAMP  
CLAMP  
CLAMP  
Table 18. Component Value Selection Examples for Si3215M  
MOSFET/Transformer DC-DC Converter  
VDC  
Maximum Ringing Load/Loop Resistance  
3 REN/117 Ω  
Transformer Ratio  
R18  
0.06 Ω  
0.10 Ω  
0.6 Ω  
2.1 Ω  
R19, R20  
7.15 kΩ  
16.5 kΩ  
56.2 kΩ  
121 kΩ  
3.3 V  
5.0 V  
12 V  
24 V  
1–2  
1–2  
1–3  
1–4  
5 REN/117 Ω  
5 REN/117 Ω  
5 REN/117 Ω  
Note: There are other system and software conditions that influence component value selection.  
Please refer to “AN45: Design Guide for the Si3210 DC-DC Converter” for detailed information.  
Table 19. Component Value Selection Examples for Si3215 BJT/Inductor DC-DC Converter  
VDC  
5 V  
Maximum Ringing Load/Loop Resistance  
3 REN/117 Ω  
L1  
R17  
R18  
R19, R20  
16.5 kΩ  
56.2kΩ  
67 µH  
150 µH  
220 µH  
150 Ω  
162 Ω  
175 Ω  
0.15 Ω  
0.56 Ω  
2.0 Ω  
12 V  
24 V  
5 REN/117 Ω  
5 REN/117 Ω  
121 kΩ  
Note: There are other system and software conditions that influence component value selection, so please refer to “AN45:  
Design Guide for the Si3210 DC-DC Converter” for detailed information.  
22  
Rev. 0.92  
Si3215  
2.1. Si3210 to Si3215 Differences  
2. Functional Description  
The Si3215 is very similar to the Si3210 in terms of its  
operation. The complete functionality of the Si3215 is  
covered in this data sheet. There are some hardware  
and software differences between the Si3215 and the  
Si3210 that are mentioned here for customers migrating  
designs from the Si3210 to the Si3215.  
®
The ProSLIC is a single, low-voltage CMOS device  
that provides all the SLIC, codec, and signal generation  
functions needed for a complete analog telephone  
interface. The ProSLIC performs all battery,  
overvoltage, ringing, supervision, codec, hybrid, and  
test (BORSCHT) functions. Unlike most monolithic  
SLICs, the Si3215 does not require externally-supplied  
2.1.1. Hardware Changes  
high-voltage battery supplies. Instead, it generates all The Si3215 adds China and Japan impedances. See  
necessary battery voltages from a positive dc supply  
using its own dc-dc converter controller. Two fully-  
programmable tone generators can produce DTMF  
tones, phase-continuous FSK (caller ID) signaling, and  
call progress tones. The Si3201 linefeed interface IC  
performs all high-voltage functions. As an option, the  
Si3201 can also be replaced with low-cost discrete  
components as shown in the typical application circuit in  
Figure 12.  
"2.7. Two-Wire Impedance Matching" on page 42.  
Pulse metering and DTMF detection are removed  
from the Si3215.  
The pinout on the QFN package has changed. See  
"5. Pin Descriptions: Si3215" on page 107.  
External resistors R8 and R9 are changed from  
470 to 4.7 k. See the typical application circuit  
in Figure 12.  
2.1.2. Software Changes  
The ProSLIC is ideal for short loop applications, such as  
terminal adapters, cable telephony, PBX/key systems,  
wireless local loop (WLL), and voice-over-IP solutions.  
The device meets all relevant LSSGR and CCITT  
standards.  
The sample rate for the two-tone oscillators has  
changed from 8 kHz to 16 kHz; therefore, the audio  
tone coefficient equation has changed. See "2.4.2.  
Oscillator Frequency and Amplitude" on page 33 for  
a complete description.  
The linefeed provides programmable on-hook voltage,  
programmable off-hook loop current, reverse battery  
operation, loop or ground start operation, and on-hook  
transmission ringing voltage. Loop current and voltage  
are continuously monitored using an integrated A/D  
converter. Balanced 5 REN ringing with or without a  
programmable dc offset is integrated. The available  
offset, frequency, waveshape, and cadence options are  
designed to ring the widest variety of terminal devices  
and to reduce external controller requirements.  
The Si3215 is automatically calibrated for gain  
mismatch, and manual calibration is not required.  
Refer to “AN35: Si321x User’s Quick Reference  
Guide”.  
The Indirect Registers have been remapped. When  
porting code from the Si3210 to the Si3215, the  
indirect register access function needs to be  
modified. See "4. Indirect Registers" on page 101.  
2.2. Linefeed Interface  
A complete audio transmit and receive path is  
integrated, including ac impedance and hybrid gain.  
These features are software-programmable, allowing  
for a single hardware design to meet international  
requirements. Digital voice data transfer occurs over a  
standard PCM bus. Control data is transferred using a  
standard SPI. The device is available in 38-pin QFN or  
TSSOP packages.  
The ProSLIC’s linefeed interface offers a rich set of  
features and programmable flexibility to meet the  
broadest applications requirements. The dc linefeed  
characteristics are software-programmable; key current,  
voltage, and power measurements are acquired in real  
time and provided in software registers.  
Rev. 0.92  
23  
Si3215  
2.2.1. DC Feed Characteristics  
2.2.2. Linefeed Architecture  
The ProSLIC has programmable constant voltage and The ProSLIC is a low-voltage CMOS device that uses  
constant current zones as depicted in Figure 14. Open either an Si3201 linefeed interface IC or low-cost  
circuit TIP-to-RING voltage (V ) defines the constant external components to control the high voltages  
OC  
voltage zone and is programmable from 0 V to 94.5 V in required for subscriber line interfaces. Figure 15 is a  
1.5 V steps. The loop current limit (I ) defines the simplified illustration of the linefeed control loop circuit  
LIM  
constant current zone and is programmable from 20 mA for TIP or RING and the external components used.  
to 41 mA in 3 mA steps. The ProSLIC has an inherent  
The ProSLIC uses both voltage and current sensing to  
dc output resistance (R ) of 160 .  
O
control TIP and RING. DC and AC line voltages on TIP  
and RING are measured through sense resistors R  
DC  
and R . The ProSLIC uses linefeed transistors Q and  
AC  
P
V(TIP-RING) (V)  
Q to drive TIP and RING. Q isolates the high-voltage  
N
DN  
Constant  
Voltage  
Zone  
base of Q from the ProSLIC.  
N
The ProSLIC measures voltage at various nodes in  
order to monitor the linefeed current. R , R , and  
VOC  
DC  
SE  
R
provide access to these measuring points. The  
BAT  
sense circuitry is calibrated on-chip to guarantee  
measurement accuracy with standard external  
RO=160 Ω  
Constant Current  
Zone  
component  
tolerances.  
See  
"2.2.9.  
Linefeed  
Calibration" on page 29 for details.  
ILIM  
ILOOP(mA)  
2.2.3. Linefeed Operation States  
Figure 14. Simplified DC Current/Voltage Linefeed  
Characteristic  
The ProSLIC linefeed has eight states of operation as  
shown in Table 21. The state of operation is controlled  
using the Linefeed Control register (direct Register 64).  
The TIP-to-RING voltage (V ) is offset from ground by  
OC  
The open state turns off all currents into the external  
bipolar transistors and can be used in the presence of  
fault conditions on the line and to generate Open Switch  
Intervals (OSIs). TIP and RING are effectively tri-stated  
with a dc output impedance of about 150 k. The  
ProSLIC can also automatically enter the open state if it  
detects excessive power being consumed in the  
external bipolar transistors. See "2.2.5. Power  
Monitoring and Line Fault Detection" on page 27 for  
more details.  
a programmable voltage (V ) to provide voltage  
CM  
headroom to the positive-most terminal (TIP in forward  
polarity states and RING in reverse polarity states) for  
carrying audio signals. Table 20 summarizes the  
parameters to be initialized before entering an active  
state.  
Table 20. Programmable Ranges of DC  
Linefeed Characteristics  
Parameter Programmable Default  
Register  
Bits  
Location*  
In the forward active and reverse active states, linefeed  
circuitry is on, and the audio signal paths are powered  
down.  
Range  
Value  
ILIM  
VOC  
VCM  
20 to 41 mA  
20 mA  
ILIM[2:0]  
VOC[5:0]  
VCM[5:0]  
Direct  
Register 71  
In the forward and reverse on-hook transmission states,  
audio signal paths are powered up to provide data  
transmission during an on-hook loop condition.  
0 to 94.5 V  
0 to 94.5 V  
48 V  
3 V  
Direct  
Register 72  
Direct  
The TIP Open state turns off all control currents to the  
external bipolar devices connected to TIP and provides  
an active linefeed on RING for ground start operation.  
Register 73  
*Note: The ProSLIC uses registers that are both directly and  
indirectly mapped. A “direct” register is one that is mapped  
directly.  
The RING Open state provides similar operation with  
the RING drivers off and TIP active.  
The ringing state drives programmable ringing  
waveforms onto the line.  
24  
Rev. 0.92  
Si3215  
2.2.4. Loop Voltage and Current Monitoring  
Two derived values are also reported: loop voltage and  
loop current. The loop voltage, V – V  
as a 1-bit sign, 6-bit magnitude format. For ground start  
operation, the reported value is the RING voltage. The  
, is reported  
TIP  
RING  
The ProSLIC continuously monitors the TIP and RING  
voltages and external BJT currents. These values are  
available in registers 78–89. Table 22 lists the values  
that are measured and their associated registers. An  
internal A/D converter samples the measured voltages  
and currents from the analog sense circuitry and  
translates them into the digital domain. The A/D updates  
the samples at an 800 Hz rate.  
loop current, (I – I + I –I )/2, is reported in a 1-  
Q1  
Q2  
Q5 Q6  
bit sign, 6-bit magnitude format. In RING open and TIP  
open states, the loop current is reported as (I – I ) +  
Q1  
Q2  
(I –I ).  
Q5 Q6  
Audio  
Codec  
Monitor A/D  
A/D  
A/D  
DSP  
D/A  
D/A  
SLIC DAC  
Battery Sense  
Emitter Sense  
AC  
Control  
DC  
Control  
Σ
AC Sense  
DC Sense  
RAC  
Si3201  
AC  
QDN  
DC  
QP  
CAC  
Control  
Loop  
Control  
Loop  
RBP  
RDC  
RSE  
RBAT  
TIP or  
RING  
QN  
RE  
VBAT  
Figure 15. Simplified ProSLIC Linefeed Architecture for TIP and RING Leads (One Shown)  
Rev. 0.92  
25  
Si3215  
Table 21. ProSLIC Linefeed Operations  
LF[2:0]*  
000  
Linefeed State  
Description  
TIP and RING tri-stated.  
Open  
Forward Active  
001  
V
V
> V  
> V  
.
RING  
TIP  
TIP  
010  
Forward On-Hook Transmission  
TIP Open  
; audio signal paths powered on.  
RING  
011  
TIP tri-stated, RING active; used for ground start.  
Ringing waveform applied to TIP and RING.  
100  
Ringing  
101  
Reverse Active  
V
V
> V  
.
TIP  
RING  
RING  
110  
Reverse On-Hook Transmission  
Ring Open  
> V ; audio signal paths powered on.  
TIP  
111  
RING tri-stated, TIP active.  
*Note: The Linefeed register (LF) is located in direct Register 64.  
Table 22. Measured Real Time Linefeed Interface Characteristics  
Parameter  
Measurement  
Range  
Resolution  
Register  
Bits  
Location*  
Loop Voltage Sense (V  
– V  
)
RING  
–94.5 to +94.5 V  
1.5 V  
LVSP,  
Direct Register 78  
TIP  
LVS[6:0]  
Loop Current Sense  
–78.75 to +78.5 mA  
1.25 mA  
LCSP,  
Direct Register 79  
LCS[5:0]  
TIP Voltage Sense  
RING Voltage Sense  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to 81.35 mA  
0 to 81.35 mA  
0 to 9.59 mA  
0 to 9.59 mA  
0 to 80.58 mA  
0 to 80.58 mA  
0.376 V  
0.376 V  
VTIP[7:0]  
Direct Register 80  
Direct Register 81  
VRING[7:0]  
Battery Voltage Sense 1 (V  
Battery Voltage Sense 2 (V  
)
)
0.376 V  
VBATS1[7:0] Direct Register 82  
VBATS2[7:0] Direct Register 83  
BAT  
0.376 V  
BAT  
Transistor 1 Current Sense  
Transistor 2 Current Sense  
Transistor 3 Current Sense  
Transistor 4 Current Sense  
Transistor 5 Current Sense  
Transistor 6 Current Sense  
0.319 mA  
0.319 mA  
37.6 µA  
IQ1[7:0]  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
Direct Register 84  
Direct Register 85  
Direct Register 86  
Direct Register 87  
Direct Register 88  
Direct Register 89  
37.6 µA  
0.316 mA  
0.316 mA  
*Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly.  
26  
Rev. 0.92  
Si3215  
2.2.5. Power Monitoring and Line Fault Detection  
the type of fault condition present on the line.  
In addition to reporting voltages and currents, the The value of each thermal low-pass filter pole is set  
ProSLIC continuously monitors the power dissipated in according to the equation:  
each external bipolar transistor. Real time output power  
4096  
800 × τ  
3
of any one of the six linefeed transistors can be read by  
setting the power monitor pointer (direct Register 76) to  
point to the desired transistor and then reading the line  
power output monitor (direct Register 77).  
------------------  
thermal LPF register =  
× 2  
where τ is the thermal time constant of the transistor  
package; 4096 is the full range of the 12-bit register, and  
800 is the sample rate in Hertz. Generally, τ = 3  
seconds for SOT223 packages and τ = 0.16 seconds  
for SOT23, but check with the manufacturer for the  
package thermal constant of a specific device. For  
example, the power alarm threshold and low-pass filter  
values for Q5 and Q6 using a SOT223 package  
transistor are computed as follows:  
The real time power measurements are low-pass  
filtered and compared to a maximum power threshold.  
Maximum power thresholds and filter time constants are  
software-programmable and should be set for each  
transistor pair based on the characteristics of the  
transistors used. Table 23 describes the registers  
associated with this function. If the power in any  
external transistor exceeds the programmed threshold,  
a power alarm event is triggered. The ProSLIC sets the  
Power Alarm register bit, generates an interrupt (if  
enabled), and automatically enters the Open state (if  
AOPN = 1). This feature protects the external  
transistors from fault conditions and, combined with the  
loop voltage and current monitors, allows diagnosis of  
PMAX  
7
1.28  
7
------------------------------  
Resolution  
-----------------  
PT56 =  
× 2  
=
× 2 = 5389 = 150D  
0.0304  
Thus, indirect Register 21 should be set to 150Dh.  
Note: The power monitor resolution for Q3 and Q4 is different  
from that of Q1, Q2, Q5, and Q6.  
Table 23. Associated Power Monitoring and Power Fault Registers  
Parameter  
Description/  
Range  
Resolution  
Register  
Bits  
Location*  
Power Monitor Pointer  
Line Power Monitor Output  
0 to 5 points to Q1  
to Q6, respectively  
N/A  
PWRMP[2:0]  
PWROM[7:0]  
Direct Register 76  
Direct Register 77  
0 to 7.8 W for Q1,  
Q2, Q5, Q6  
0 to 0.9 W for Q3,  
Q4  
30.4 mW  
3.62 mW  
Power Alarm Threshold, Q1 & Q2  
Power Alarm Threshold, Q3 & Q4  
Power Alarm Threshold, Q5 & Q6  
Thermal LPF Pole, Q1 & Q2  
Thermal LPF Pole, Q3 & Q4  
Thermal LPF Pole, Q5 & Q6  
Power Alarm Interrupt Pending  
0 to 7.8 W  
0 to 0.9 W  
0 to 7.8 W  
30.4 mW  
3.62 mW  
30.4 mW  
PPT12[7:0]  
PPT34[7:0]  
PPT56[7:0]  
NQ12[7:0]  
NQ34[7:0]  
NQ56[7:0]  
Indirect Register 19  
Indirect Register 20  
Indirect Register 21  
Indirect Register 24  
Indirect Register 25  
Indirect Register 26  
Direct Register 19  
See equation above.  
See equation above.  
See equation above.  
Bits 2 to 7 corre-  
spond to Q1 to Q6,  
respectively  
N/A  
QnAP[n+1],  
where n = 1  
to 6  
Rev. 0.92  
27  
Si3215  
Table 23. Associated Power Monitoring and Power Fault Registers (Continued)  
Power Alarm Interrupt Enable  
Bits 2 to 7 corre-  
spond to Q1 to Q6,  
respectively  
N/A  
QnAE[n+1],  
where n = 1  
to 6  
Direct Register 22  
Power Alarm  
Automatic/Manual Detect  
0 = manual mode  
1 = enter open state  
upon power alarm  
N/A  
AOPN  
Direct Register 67  
*Note: The ProSLIC uses registers that are both directly and indirectly mapped. A direct register is one that is mapped  
directly. An indirect register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
LCS  
Input  
Signal  
Processor  
ISP_OUT  
Digital  
+
LVS  
LCR  
LCIP  
LPF  
Debounce  
Filter  
Interrupt  
Logic  
NCLR  
LCDI  
LCIE  
LFS LCVE  
HYSTEN  
Loop Closure  
Threshold  
LCRT LCRTL  
Figure 16. Loop Closure Detection  
2.2.6. Loop Closure Detection  
LCDI (direct Register 69). If the debounce interval has  
been satisfied, the LCR bit will be set to indicate that a  
valid loop closure has occurred. A loop closure interrupt  
is generated if enabled by the LCIE bit (direct  
Register 22). Table 24 lists the registers that must be  
written or monitored to correctly detect a loop closure  
condition.  
A loop closure event signals that the terminal equipment  
has gone off-hook during on-hook transmission or on-  
hook active states. The ProSLIC performs loop closure  
detection digitally using its on-chip monitor A/D  
converter. The functional blocks required to implement  
loop closure detection are shown in Figure 16. The  
primary input to the system is the Loop Current Sense 2.2.7. Loop Closure Threshold Hysteresis  
value provided in the LCS register (direct Register 79).  
Programmable hysteresis to the loop closure threshold  
The LCS value is processed in the Input Signal  
can be enabled by setting HYSTEN = 1 (direct  
Processor when the ProSLIC is in the on-hook  
Register 108, bit 0). The hysteresis is defined by LCRT  
transmission or on-hook active linefeed state, as  
(indirect Register 15) and LCRTL (indirect Register 66),  
indicated by the Linefeed Shadow register, LFS[2:0]  
which set the upper and lower bounds, respectively.  
(direct Register 64). The data then feeds into a  
2.2.8. Voltage-Based Loop Closure Detection  
programmable digital low-pass filter, which removes  
An optional voltage-based loop closure detection mode  
unwanted ac signal components before threshold  
can be enabled by setting LCVE = 1 (direct  
detection.  
Register 108, bit 2). In this mode, the loop voltage is  
The output of the low-pass filter is compared to a  
compared to the loop closure threshold register (LCRT),  
programmable threshold, LCRT (indirect register 15).  
which represents a minimum voltage threshold instead  
The threshold comparator output feeds a programmable  
of a maximum current threshold. If hysteresis is also  
debouncing filter. The output of the debouncing filter  
enabled, LCRT represents the upper voltage boundary,  
remains in its present state unless the input remains in  
and LCRTL represents the lower voltage boundary for  
the opposite state for the entire period of time  
hysteresis. Although voltage-based loop closure  
programmed by the loop closure debounce interval,  
28  
Rev. 0.92  
Si3215  
detection is an option, the default current-based loop  
closure detection is recommended.  
2.3. Battery Voltage Generation and  
Switching  
The Si3215 integrates a dc-dc converter controller that  
dynamically regulates a single output voltage. This  
mode eliminates the need to supply large external  
battery voltages. Instead, it converts a single positive  
input voltage into the real-time battery voltage needed  
for any given state according to programmed linefeed  
parameters.  
Table 24. Register Set for Loop  
Closure Detection  
Parameter  
Register  
Location  
Loop Closure  
LCIP  
Direct Reg. 19  
Interrupt Pending  
Loop Closure  
LCIE  
Direct Reg. 22  
Interrupt Enable  
For single to low channel count applications, the Si3215  
proves to be an economical choice, as the dc-dc  
converter eliminates the need to design and build high-  
voltage power supplies.  
Loop Closure Threshold LCRT[5:0] Indirect Reg. 15  
Loop Closure  
Threshold—Lower  
LCRTL[5:0] Indirect Reg. 66  
2.3.1. DC-DC Converter General Description  
Loop Closure Filter  
Coefficient  
NCLR[12:0] Indirect Reg. 22  
The dc-dc converter dynamically generates the large  
negative voltages required to operate the linefeed  
interface. The Si3215 acts as the controller for a buck-  
boost dc-dc converter that converts a positive dc  
voltage into the desired negative battery voltage. In  
addition to eliminating external power supplies, this  
allows the Si3215 to dynamically control the battery  
voltage to the minimum required for any given mode of  
operation.  
Loop Closure Detect  
Status (monitor only)  
LCR  
Direct Reg. 68  
Direct Reg. 69  
Loop Closure Detect  
Debounce Interval  
LCDI[6:0]  
Hysteresis Enable  
HYSTEN  
LCVE  
Direct Reg. 108  
Direct Reg. 108  
Voltage-Based Loop  
Closure  
Two different dc-dc circuit options are offered: a BJT/  
inductor version and a MOSFET/transformer version.  
2.2.9. Linefeed Calibration  
An internal calibration algorithm corrects for internal and  
external component errors. The calibration is initiated by  
setting the CAL bit in direct Register 96. Upon  
completion of the calibration cycle, this bit is  
automatically reset.  
Due to the differences on the driving circuits, there are  
two different versions of the Si3215. The Si3215  
supports the BJT/inductor circuit option, and the  
Si3215M version supports the MOSFET solution. The  
only difference between the two versions is the polarity  
of the DCFF pin with respect to the DCDRV pin. For the  
Si3215, DCDRV and DCFF are of opposite polarity. For  
the Si3215M, DCDRV and DCFF are of the same  
polarity. Table 25 summarizes these differences.  
It is recommended that a calibration be executed  
following system power-up. Upon release of the chip  
reset, the Si3215 will be in the open state. After  
powering up the dc-dc converter and allowing it to settle  
for time (t  
) the calibration can be initiated.  
settle  
Additional calibrations may be performed, but only one  
calibration should be necessary as long as the system  
remains powered up.  
Table 25. Si3215 and Si3215M Differences  
Device  
DCFF Signal  
Polarity  
DCPOL  
During calibration, V , V , and V voltages are  
RING  
BAT  
TIP  
Si3215  
0
1
controlled by the calibration engine to provide the  
correct external voltage conditions for the algorithm.  
Calibration should be performed in the on-hook state.  
RING or TIP must not be connected to ground during  
the calibration.  
= DCDRV  
= DCDRV  
Si3215M  
Notes:  
1. DCFF signal polarity with respect to DCDRV signal.  
2. Direct Register 93, bit 5; This is a read-only bit.  
When using the Si3201, automatic calibration routines  
for RING gain mismatch and TIP gain mismatch should  
not be performed. Instead of running these two  
calibrations automatically, consult “AN35: Si321x User’s  
Quick Reference Guide”, and follow the instructions for  
manual calibration.  
Extensive design guidance on each of these circuits can  
be obtained from “AN45: Design Guide for the Si3210  
DC-DC Converter” and from an interactive dc-dc  
converter design spreadsheet. Both of these documents  
are available on the Silicon Laboratories website  
(www.silabs.com).  
Rev. 0.92  
29  
Si3215  
2.3.2. BJT/Inductor Circuit Option Using Si3215  
regulator circuit within the Si3215 is  
a
high-  
performance, pulse-width modulation controller. The  
control pins are driven by the PWM controller logic in  
The BJT/Inductor circuit option, as defined in Figure 10  
on page 17, offers a flexible, low-cost solution.  
Depending on selected L1 inductance value and the  
the Si3215. The regulated output voltage (V ) is  
BAT  
sensed by the SVBAT pin and used to detect whether  
the output voltage is above or below an internal  
reference for the desired battery voltage. The dc  
monitor pins, SDCH and SDCL, monitor input current  
and voltage to the dc-dc converter external circuitry. If  
an overload condition is detected, the PWM controller  
will turn off the switching transistor for the remainder of  
a PWM period to prevent damage to external  
components. It is important that the proper value of R18  
be selected to ensure safe operation. Guidance is given  
in AN45.  
switching frequency, the input voltage (V ) can range  
DC  
from 5 V to 30 V. By nature of a dc-dc converter’s  
operation, peak and average input currents can become  
large with small input voltages. Consider this when  
selecting the appropriate input voltage and power rating  
for the V power supply.  
DC  
For this solution, a PNP power BJT (Q7) switches the  
current flow through low ESR inductor L1. The Si3215  
uses the DCDRV and DCFF pins to switch Q7 on and  
off. DCDRV controls Q7 through NPN BJT Q8. DCFF is  
ac coupled to Q7 through capacitor C10 to assist R16 in  
turning off Q7. Therefore, DCFF must have opposite  
polarity to DCDRV, and the Si3215 (not Si3215M) must  
be used.  
The PWM controller operates at a frequency set by the  
dc-dc Converter PWM register (direct Register 92).  
During a PWM period, the outputs of the control pins,  
DCDRV and DCFF, are asserted for a time given by the  
read-only PWM Pulse Width register (direct  
Register 94).  
2.3.3. MOSFET/Transformer Circuit Option Using  
Si3215M  
The MOSFET/transformer circuit option, as defined in  
Figure 11, offers higher power efficiencies across a  
larger input voltage range. Depending on the  
transformers primary inductor value and the switching  
The dc-dc converter must be off for some time in each  
cycle to allow the inductor or transformer to transfer its  
stored energy to the output capacitor, C9. This minimum  
off time can be set through the dc-dc Converter  
Switching Delay register, (direct Register 93). The  
number of 16.384 MHz clock cycles that the controller is  
off is equal to DCTOF (bits 0 through 4) plus 4. If the dc  
Monitor pins detect an overload condition, the dc-dc  
converter interrupts its conversion cycles regardless of  
the register settings to prevent component damage.  
These inputs should be calibrated by writing the DCCAL  
bit (bit 7) of the dc-dc Converter Switching Delay  
register, direct Register 93, after the dc-dc converter  
has been turned on.  
frequency, the input voltage (V ) can range from 3.3 V  
DC  
to 35 V. Therefore, it is possible to power the entire  
ProSLIC solution from a single 3.3 V or 5 V power  
supply. By nature of a dc-dc converter’s operation, peak  
and average input currents can become large with small  
input voltages. Consider this when selecting the  
appropriate input voltage and power rating for the V  
power supply (number of REN supported).  
DC  
For this solution, an n-channel power MOSFET (M1)  
switches the current flow through a power transformer  
T1. T1 is specified in “AN45: Design Guide for the  
Si3210 DC-DC Converter” and includes several taps on  
the primary side to facilitate a wide range of input  
voltages. The Si3215M must be used for the application  
circuit depicted in Figure 11 on page 19 because the  
DCFF pin is used to drive M1 directly and, therefore,  
must be the same polarity as DCDRV. DCDRV is not  
used in this circuit option; connecting DCFF and  
DCDRV together is not recommended.  
Because the Si3215 dynamically regulates its own  
battery supply voltage using the dc-dc converter  
controller, the battery voltage (V ) is offset from the  
BAT  
negative-most terminal by a programmable voltage  
(V ) to allow voltage headroom for carrying audio  
OV  
signals.  
As mentioned previously, the Si3215 dynamically  
adjusts V  
to suit the particular circuit requirement. To  
BAT  
illustrate this, the behavior of V  
in the active state is  
BAT  
2.3.4. DC-DC Converter Architecture  
shown in Figure 17. In the active state, the TIP-to-RING  
open circuit voltage is kept at V in the constant  
The control logic for a pulse width modulated (PWM) dc-  
dc converter is incorporated in the Si3215. Output pins,  
DCDRV and DCFF, are used to switch a bipolar  
transistor or MOSFET. The polarity of DCFF is opposite  
that of DCDRV.  
OC  
voltage region while the regulator output voltage,  
= V + V + V  
V
.
OV  
BAT  
CM  
OC  
When the loop current attempts to exceed I , the dc  
LIM  
line driver circuit enters constant current mode allowing  
The dc-dc converter circuit is powered on when the  
DCOF bit in the Powerdown Register (direct  
Register 14, bit 4) is cleared to 0. The switching  
the TIP to RING voltage to track R  
. As the TIP  
LOOP  
terminal is kept at a constant voltage, it is the RING  
30  
Rev. 0.92  
Si3215  
terminal voltage that tracks R  
, and, as a result, the RING terminal can become large and may require a  
LOOP  
|V  
|V  
| voltage will also track R  
. In this state, higher power rating device. The non-tracking mode of  
decreases operation is required by specific terminal equipment,  
LOOP  
BAT  
LOOP  
| = I  
R
+ V  
+V . As R  
BAT  
LIM x LOOP  
CM  
OV  
below the VOC/I  
mark, the regulator output voltage which, in order to initiate certain data transmission  
LIM  
can continue to track R  
tracking mechanism is stopped when |V | = |V  
(TRACK = 1), or the R  
modes, goes briefly on-hook to measure the line voltage  
to determine whether there is any other off-hook  
LOOP  
LOOP  
|
BAT  
BATL  
(TRACK = 0). The former case is the more common terminal equipment on the same line. TRACK = 0 mode  
application and provides the maximum power is desired since the regulator output voltage has long  
dissipation savings. In principle, the regulator output settling time constants (on the order of tens of  
voltage can go as low as |V  
significant power savings.  
| = V + V , offering milliseconds) and cannot change rapidly for TRACK = 1  
BAT  
CM OV  
mode. Therefore, the brief on-hook voltage  
measurement would yield approximately the same  
voltage as the off-hook line voltage and cause the  
terminal equipment to incorrectly sense another off-  
hook terminal.  
When TRACK = 0, |V  
| will not decrease below  
BAT  
V
. The RING terminal voltage, however, continues  
BATL  
to decrease with decreasing R  
dissipation on the NPN bipolar transistor driving the  
. The power  
LOOP  
VOC  
ILIM  
RLOOP  
Constant I Region  
Constant V Region  
VCM  
VTIP  
VOC  
|VTIP - VRING  
|
VBATL  
TRACK=0  
VOV  
VRING  
VBAT  
VOV  
V
Figure 17. V , V  
, and V  
in the Forward Active State  
BAT  
TIP RING  
Rev. 0.92  
31  
Si3215  
Table 26. Associated Relevant DC-DC Converter Registers  
Parameter  
Range  
Resolution Register Bit  
Location  
DC-DC Converter Power-Off  
Control  
N/A  
N/A  
DCOF  
Direct Register 14  
DC-DC Converter Calibration  
Enable/Status  
N/A  
N/A  
DCCAL  
Direct Register 93  
DC-DC Converter PWM Period  
0 to 15.564 µs  
61.035 ns  
61.035 ns  
1.5 V  
DCN[7:0]  
DCTOF[4:0]  
VBATH[5:0]  
VBATL[5:0]  
Direct Register 92  
Direct Register 93  
Direct Register 74  
Direct Register 75  
DC-DC Converter Min. Off Time (0 to 1.892 µs) + 4 ns  
High Battery Voltage—V  
Low Battery Voltage—V  
0 to –94.5 V  
0 to –94.5 V  
BATH  
BATL  
1.5 V  
V
0 to –9 V or  
0 to –13.5 V  
1.5 V  
VMIND[3:0]  
VOV  
Indirect Register 64  
Direct Register 66  
OV  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
2.3.5. DC-DC Converter Enhancements  
2.4. Tone Generation  
The Si3215 supports two enhancements to the dc-dc  
Two digital tone generators are provided in the ProSLIC.  
converter. The first is a multi-threshold error control  
They allow the generation of a wide variety of single- or  
algorithm that enables the dc-dc converter to adjust  
dual-tone frequency and amplitude combinations and  
more quickly to voltage changes. This option is enabled  
spare the user the effort of generating the required  
by setting DCSU = 1 (direct Register 108, bit 5). The  
POTS signaling tones on the PCM highway. DTMF, FSK  
second enhancement is an audio band filter that  
(caller ID), call progress, and other tones can all be  
removes audio band noise from the dc-dc converter  
generated on-chip. The tones can be sent to either the  
control loop. This option is enabled by setting DCFIL = 1  
receive or transmit paths (see Figure 22 on page 40).  
(direct Register 108, bit 1).  
2.4.1. Tone Generator Architecture  
2.3.6. DC-DC Converter During Ringing  
A simplified diagram of the tone generator architecture  
When the ProSLIC enters the ringing state, it requires  
is shown in Figure 18. The oscillator, active/inactive  
voltages well above those used in the active mode. The  
timers, interrupt block, and signal routing block are  
voltage to be generated and regulated by the dc-dc  
connected to give the user flexibility in creating audio  
converter during a ringing burst is set using the V  
BATH  
signals. Control and status register bits are placed in the  
figure to indicate their association with the tone  
generator architecture. These registers are described in  
more detail in Table 27.  
register (direct Register 74). V  
can be set between  
BATH  
0 and –94.5 V in 1.5 V steps. To avoid clipping the  
ringing signal, V must be set larger than the ringing  
BATH  
amplitude. At the end of each ringing burst, the dc-dc  
converter adjusts back to active state regulation as  
described above.  
32  
Rev. 0.92  
Si3215  
16 kHz  
Clock  
8 kHz  
Clock  
OZn  
Zero Cross  
OSSn  
OnE  
to TX Path  
to RX Path  
Enable  
Zero  
Two-Pole  
Resonance  
Register Oscillator  
16-Bit  
Modulo  
Counter  
Cross  
Logic  
OAT  
Expire  
Signal  
Routing  
OIT  
Load  
Logic  
Load  
Expire  
OSCn  
OATn  
OITn  
OnIP REL*  
INT  
Logic  
OATnE  
OITnE  
OnSO  
OSCnX  
OSCnY  
OnIE  
OnAP  
INT  
Logic  
OnAE  
*Tone Generator 1 Only  
n = "1" or "2" for Tone Generator 1 and 2, respectively  
Figure 18. Simplified Tone Generator Diagram  
2.4.2. Oscillator Frequency and Amplitude  
Each of the two-tone generators contains a two-pole  
resonate oscillator circuit with programmable  
2π1336  
16000  
= 0.86550  
--------------------  
coeff2 = cos  
a
15  
OSC2 = 0.86550 (2 ) = 28361 = 6EC8h  
frequency and amplitude, which are programmed via  
indirect registers OSC1, OSC1X, OSC1Y, OSC2,  
OSC2X, and OSC2Y. The sample rate for the two  
oscillators is 16 kHz. The equations are as follows:  
1
4
0.13450  
1.86550  
--  
OSC2X =  
×
--------------------- × (215 1) × 0.5 = 1098 = 44Bh  
OSC2Y = 0  
coeff = cos(2π f /16 kHz),  
n
n
The computed values above would be written to the  
corresponding registers to initialize the oscillators. Once  
the oscillators are initialized, the oscillator control  
registers can be accessed to enable the oscillators and  
direct their outputs.  
where f is the frequency to be generated;  
n
15  
OSCn = coeff x (2 );  
n
Desired Vrms  
-------------------------------------  
1.11 Vrms  
1
4
15  
1 coeff  
1 + coeff  
--  
OSCnX =  
× ----------------------- × (2 1) ×  
2.4.3. Tone Generator Cadence Programming  
where desired Vrms is the amplitude to be generated;  
OSCnY = 0,  
Each of the two tone generators contains two timers,  
one for setting the active period and one for setting the  
inactive period. The oscillator signal is generated during  
the active period and suspended during the inactive  
period. Both the active and inactive periods can be  
programmed from 0 to 8 seconds in 125 µs steps. The  
active period time interval is set using OAT1 (direct  
registers 36 and 37) for tone generator 1 and OAT2  
(direct registers 40 and 41) for tone generator 2.  
n = 1 or 2 for oscillator 1 or oscillator 2, respectively.  
For example, in order to generate a DTMF digit of 8, the  
two required tones are 852 Hz and 1336 Hz. Assuming  
the generation of half-scale values (ignoring twist) is  
desired, the following values are calculated:  
2π852  
16000  
----------------  
coeff1 = cos  
= 0.94455  
To enable automatic cadence for tone generator 1,  
define the OAT1 and OIT1 registers and then set the  
O1TAE bit (direct Register 32, bit 4) and O1TIE bit  
(direct Register 32, bit 3). This enables each of the  
timers to control the state of the Oscillator Enable bit,  
O1E (direct Register 32, bit 2). The 16-bit counter will  
begin counting until the active timer expires, at which  
time the 16-bit counter will reset to zero and begin  
OSC1 = 0.94455(215) = 30951= 78E6h  
1
4
--------------------- × (215 1) × 0.5 = 692 = 2B3h  
0.05545  
1.94455  
--  
OSC1X =  
×
OSC1Y = 0  
Rev. 0.92  
33  
Si3215  
counting until the inactive timer expires. The cadence The operation of tone generator 2 is identical to that of  
continues until the user clears the O1TAE and O1TIE tone generator 1 using its respective control registers.  
control bits. The zero crossing detect feature can be  
implemented by setting the OZ1 bit (direct Register 32,  
bit 5). This ensures that each oscillator pulse ends  
without a dc component. The timing diagram in  
Figure 19 is an example of an output cadence using the  
zero crossing feature.  
Note: Tone Generator 2 should not be enabled simulta-  
neously with the ringing oscillator due to resource shar-  
ing within the hardware.  
Continuous-phase  
frequency-shift  
keying  
(FSK)  
waveforms may be created using tone generator 1 (not  
available on tone generator 2) by setting the REL bit  
One-shot oscillation can be achieved by enabling O1E (direct Register 32, bit 6), which enables reloading of  
and O1TAE. Direct control over the cadence can be the OSC1, OSC1X, and OSC1Y registers at the  
achieved by controlling the O1E bit (direct Register 32, expiration of the active timer (OAT1).  
bit 2) directly if O1TAE and O1TIE are disabled.  
Table 27. Associated Tone Generator Registers  
Tone Generator 1  
Parameter  
Description / Range  
Register Bits  
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OAT1[15:0]  
OIT1[15:0]  
Location  
Oscillator 1 Frequency Coefficient Sets oscillator frequency  
Indirect Register 0  
Indirect Register 1  
Indirect Register 2  
Direct Registers 36 & 37  
Direct Register 38 & 39  
Direct Register 32  
Oscillator 1 Amplitude Coefficient  
Oscillator 1 initial phase coefficient  
Oscillator 1 Active Timer  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 seconds  
Oscillator 1 Inactive Timer  
Oscillator 1 Control  
0 to 8 seconds  
Status and control  
registers  
OSS1, REL, OZ1,  
O1TAE, O1TIE,  
O1E, O1SO[1:0]  
Tone Generator 2  
Description/Range  
Parameter  
Register  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
OAT2[15:0]  
OIT2[15:0]  
Location  
Oscillator 2 Frequency Coefficient Sets oscillator frequency  
Indirect Register 3  
Indirect Register 4  
Indirect Register 5  
Direct Registers 40 & 41  
Direct Register 42 & 43  
Direct Register 33  
Oscillator 2 Amplitude Coefficient  
Oscillator 2 initial phase coefficient  
Oscillator 2 Active Timer  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 seconds  
Oscillator 2 Inactive Timer  
Oscillator 2 Control  
0 to 8 seconds  
Status and control  
registers  
OSS2, OZ2,  
O2TAE, O2TIE,  
O2E, O2SO[1:0]  
34  
Rev. 0.92  
Si3215  
O1E  
0,1 ...  
..., OAT1 0,1 ...  
..., OIT1 0,1 ...  
..., OAT1 0,1 ...  
...  
...  
OSS1  
Tone  
Gen. 1  
Signal  
Output  
Figure 19. Tone Generator Timing Diagram  
2.4.4. Enhanced FSK Waveform Generation  
2.5. Ringing Generation  
Enhanced FSK generation capabilities can be enabled  
by setting FSKEN = 1 (direct Register 108, bit 6) and  
REN = 1 (direct Register 32, bit 6). In this mode, the  
user can define mark (1) and space (0) attributes once  
during initialization by defining indirect registers 69–74.  
The user need only indicate 0-to-1 and 1-to-0 transitions  
in the information stream. By writing to FSKDAT (direct  
Register 52), this mode applies a 24 kHz sample rate to  
tone generator 1 to give additional resolution to timers  
and frequency generation. “AN32: Si321x Frequency  
Shift Keying (FSK) Modulation” gives detailed  
instructions on how to implement FSK in this mode.  
Additionally, sample source code is available from  
Silicon Laboratories upon request.  
The ProSLIC provides fully-programmable internal  
balanced ringing with or without a dc offset to ring a  
wide variety of terminal devices. All parameters  
associated with ringing, including ringing frequency,  
waveform, amplitude, dc offset, and ringing cadence,  
are software-programmable. Both sinusoidal and  
trapezoidal ringing waveforms are supported, and the  
trapezoidal crest factor is programmable. Ringing  
signals of up to 88 V peak or more can be generated,  
enabling the ProSLIC to drive a 5 REN (1380 +  
40 µF) ringer load across loop lengths of 2000 feet  
(160 ) or more.  
2.5.1. Ringing Architecture  
The ringing generator architecture is nearly identical to  
that of the tone generator. The sinusoid ringing  
waveform is generated using an internal two-pole  
resonance oscillator circuit with programmable  
frequency and amplitude. However, since ringing  
frequencies are very low compared to the audio band  
signaling frequencies, the ringing waveform is  
generated at a 1 kHz rate instead of 8 kHz.  
2.4.5. Tone Generator Interrupts  
Both the active and inactive timers can generate their  
own interrupt to signal “on/off” transitions to the  
software. The timer interrupts for tone generator 1 can  
be individually enabled by setting the O1AE and O1IE  
bits (direct Register 21, bits 0 and 1, respectively).  
Timer interrupts for tone generator 2 are O2AE and  
O2IE (direct Register 21, bits 2 and 3, respectively). A  
pending interrupt for each of the timers is determined by  
reading the O1AP, O1IP, O2AP, and O2IP bits in the  
Interrupt Status 1 register (direct Register 18, bits 0  
through 3, respectively).  
The ringing generator has two timers that function the  
same as for the tone generator timers. They allow on/off  
cadence settings up to 8 seconds on/ 8 seconds off. In  
addition to controlling ringing cadence, these timers  
control the transition into and out of the ringing state.  
Table 28 summarizes the list of registers used for  
ringing generation.  
Note: Tone generator 2 should not be enabled concurrently  
with the ringing generator due to resource sharing  
within the hardware.  
Rev. 0.92  
35  
Si3215  
Table 28. Registers for Ringing Generation  
Parameter  
Range/ Description  
Register  
Bits  
Location  
Ringing Waveform  
Ringing Voltage Offset Enable  
Sine/Trapezoid  
Enabled/  
TSWS  
RVO  
Direct Register 34  
Direct Register 34  
Disabled  
Ringing Active Timer Enable  
Ringing Inactive Timer Enable  
Ringing Oscillator Enable  
Enabled/  
Disabled  
Enabled/  
Disabled  
RTAE  
RTIE  
ROE  
Direct Register 34  
Direct Register 34  
Direct Register 34  
Enabled/  
Disabled  
Ringing Oscillator Active Timer  
Ringing Oscillator Inactive Timer  
Linefeed Control (Initiates Ringing State)  
High Battery Voltage  
0 to 8 seconds  
0 to 8 seconds  
Ringing State = 100b  
0 to –94.5 V  
0 to 94.5 V  
15 to 100 Hz  
0 to 94.5 V  
Sets initial phase for  
sinewave and period  
for  
RAT[15:0]  
RIT[15:0]  
LF[2:0]  
VBATH[5:0]  
ROFF[15:0]  
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
Direct Registers 48 and 49  
Direct Registers 50 and 51  
Direct Register 64  
Direct Register 74  
Indirect Register 6  
Indirect Register 7  
Indirect Register 8  
Ringing dc voltage offset  
Ringing frequency  
Ringing amplitude  
Ringing initial phase  
Indirect Register 9  
trapezoid  
Common Mode Bias Adjust During Ringing  
0 to 22.5 V  
VCMR[3:0]  
Indirect Register 27  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A direct register is one that is mapped  
directly. An indirect register is one that is accessed using the indirect access registers (direct registers 28 through 31).  
When the ringing state is invoked by writing  
LF[2:0] = 100 (direct Register 64), the ProSLIC will go  
into the ringing state and start the first ring. At the  
expiration of RAT, the ProSLIC will turn off the ringing  
waveform and go to the on-hook transmission state. At  
the expiration of RIT, ringing will again be initiated. This  
process will continue as long as the two timers are  
enabled and the Linefeed Control register is set to the  
ringing state.  
Desired VPK(0 to 94.5 V)  
-----------------------------------------------------------------------  
96 V  
1
4
15  
1 coeff  
1 + coeff  
--  
RNGX =  
×
----------------------- × 2  
×
RNGY = 0  
In selecting a ringing amplitude, the peak TIP-to-RING  
ringing voltage must be greater than the selected on-  
hook line voltage setting (VOC, direct Register 72). For  
example, to generate a 70 V , 20 Hz ringing signal,  
PK  
the equations are as follows:  
2π × 20  
1000 Hz  
= 0.99211  
2.5.2. Sinusoidal Ringing  
----------------------  
coeff = cos  
To configure the ProSLIC for sinusoidal ringing, the  
frequency and amplitude are initialized by writing to the  
following indirect registers: RCO, RNGX, and RNGY.  
The equations for RCO, RNGX, and RNGY are as  
follows:  
RCO = 0.99211 × (215) = 32509 = 7EFDh  
1
15 70  
0.00789  
1.99211  
--  
------  
= 376 = 0177h  
RNGX =  
×
--------------------- × 2  
×
4
96  
RCO = coeff × (215  
)
RNGY = 0  
where  
In addition, the user must select the sinusoidal ringing  
waveform by writing TSWS = 0 (direct Register 34,  
bit 0).  
2πf  
----------------------  
coeff = cos  
1000 Hz  
and f = desired ringing frequency in hertz.  
36  
Rev. 0.92  
Si3215  
2.5.3. Trapezoidal Ringing  
(20 Hz), the rise time requirement is 0.0153 seconds.  
In addition to the sinusoidal ringing waveform, the  
ProSLIC supports trapezoidal ringing. Figure 20  
illustrates a trapezoidal ringing waveform with offset  
RCO(20 Hz, 1.3 crest factor)  
2 × 24235  
-------------------------------------  
=
= 396= 018Ch  
V
.
ROFF  
0.0153 × 8000  
In addition, the user must select the trapezoidal ringing  
waveform by writing TSWS = 1 in direct Register 34.  
VTIP-RING  
2.5.4. Ringing DC voltage Offset  
A dc offset can be added to the ac ringing waveform by  
defining the offset voltage in ROFF (indirect Register 6).  
The offset, V  
, is added to the ringing signal when  
ROFF  
VROFF  
RVO is set to 1 (direct Register 34, bit 1). The value of  
ROFF is calculated as follows:  
T=1/freq  
VROFF  
15  
-----------------  
ROFF =  
× 2  
96  
tRISE  
time  
2.5.5. Linefeed Considerations During Ringing  
Care must be taken to keep the generated ringing signal  
within the ringing voltage rails (GNDA and V  
) to  
BAT  
Figure 20. Trapezoidal Ringing Waveform  
maintain proper biasing of the external bipolar  
transistors. If the ringing signal nears the rails, a  
distorted ringing signal and excessive power dissipation  
in the external transistors will result.  
To configure the ProSLIC for trapezoidal ringing, the  
user should follow the same basic procedure as in the  
Sinusoidal Ringing section, but using the following  
equations:  
To prevent this invalid operation, set the V  
value  
BATH  
(direct Register 74) to a value higher than the maximum  
peak ringing voltage. The following discussion outlines  
the considerations and equations that govern the  
1
2
--  
RNGY = × Period × 8000  
Desired VPK  
-----------------------------------  
96 V  
selection of the V  
setting for a particular desired  
15  
BATH  
RNGX =  
× (2 )  
peak ringing voltage.  
First, the required amount of ringing overhead voltage,  
V , is calculated based on the maximum value of  
OVR  
2 × RNGX  
--------------------------------  
RCO =  
tRISE × 8000  
current through the load, I  
, the minimum current  
LOAD,PK  
gain of Q5 and Q6, and a reasonable voltage required  
to keep Q5 and Q6 out of saturation. For ringing signals  
RCO is a value that is added or subtracted from the  
waveform to ramp the signal up or down in a linear  
fashion. This value is a function of rise time, period, and  
amplitude, where rise time and period are related  
through the following equation for the crest factor of a  
trapezoidal waveform.  
up to V = 87 V, V  
= 7.5 V is a safe value.  
PK  
OVR  
However, to determine V  
following equations.  
for a specific case, use the  
OVR  
VAC,PK  
NREN  
------------------  
-----------------  
+ IOS  
ILOAD,PK  
=
+ IOS = VAC,PK  
×
RLOAD  
6.9 kΩ  
3
4
1
CF2  
--  
----------  
tRISE  
=
T 1 –  
where:  
is the ringing REN load (max value = 5),  
where T = ringing period, and CF = desired crest factor.  
N
REN  
For example, to generate a 71 V , 20 Hz ringing  
signal, the equations are as follows:  
PK  
I
is the offset current flowing in the line driver circuit  
OS  
(max value = 2 mA), and  
V
= amplitude of the ac ringing waveform.  
AC,PK  
1
2
1
-- ---------------  
× 8000 = 200 = C8h  
RNGY(20 Hz) =  
×
It is good practice to provide a buffer of a few more  
milliamperes for I to account for possible line  
20 Hz  
LOAD,PK  
× 215= 24235 = 5EABh  
71  
96  
leakages, etc. The total I  
smaller than 80 mA.  
current should be  
LOAD,PK  
------  
RNGX(71 VPK) =  
For a crest factor of 1.3 and a period of 0.05 seconds  
Rev. 0.92  
37  
Si3215  
2.5.6. Ring Trip Detection  
β + 1  
β
------------  
VOVR = ILOAD,PK  
×
× (80.6 + 1 V)  
A ring trip event signals that the terminal equipment has  
gone off-hook during the ringing state. The ProSLIC  
performs ring trip detection digitally using its on-chip  
A/D converter. The functional blocks required to  
implement ring trip detection are shown in Figure 21.  
The primary input to the system is the loop current  
sense (LCS) value provided by the current monitoring  
circuitry and reported in direct Register 79. LCS data is  
processed by the input signal processor when the  
ProSLIC is in the ringing state as indicated by the  
Linefeed Shadow register (direct Register 64). The data  
then feeds into a programmable digital low-pass filter,  
which removes unwanted ac signal components before  
threshold detection.  
where β is the minimum expected current gain of  
transistors Q5 and Q6.  
The minimum value for V  
following:  
is, therefore, given by the  
BATH  
VBATH = VAC,PK + VROFF + VOVR  
The ProSLIC is designed to create a fully balanced  
ringing waveform, meaning that the TIP and RING  
common mode voltage, (V  
voltage is referred to as VCM_RING and is  
automatically set to the following:  
+ V  
)/2, is fixed. This  
TIP  
RING  
The output of the low-pass filter is compared to a  
programmable threshold, RPTP (indirect Register 16).  
The threshold comparator output feeds a programmable  
debouncing filter. The output of the debouncing filter  
remains in its present state unless the input remains in  
the opposite state for the entire period of time  
programmed by the ring trip debounce interval,  
RTDI[6:0] (direct Register 70). If the debounce interval  
has been satisfied, the RTP bit of direct Register 68 will  
be set to indicate that a valid ring trip has occurred. A  
ring trip interrupt is generated if enabled by the RTIE bit  
(direct Register 22). Table 29 lists the registers that  
must be written or monitored to correctly detect a ring  
trip condition.  
VBATH VCMR  
---------------------------------------------  
VCM_RING =  
2
V
is an indirect register that provides the headroom  
by the ringing waveform with respect to the V  
The value is set as a 4-bit setting in indirect Register 27  
with an LSB voltage of 1.5 V/LSB. Register 27 should  
CMR  
rail.  
BATH  
be set with the calculated V  
headroom during ringing.  
to provide voltage  
OVR  
The ProSLIC has a mode to briefly increase the  
maximum differential current limit between the voltage  
transition of TIP and RING from ringing to a dc linefeed  
state. This mode is enabled by setting ILIMEN = 1  
(direct Register 108, bit 7).  
The recommended values for RPTP, NRTP, and RTDI  
vary according to the programmed ringing frequency.  
Register values for various ringing frequencies are  
given in Table 30.  
Input  
Signal  
Processor  
LCS  
ISP_OUT  
Digital  
LPF  
+
DBIRAW  
RTP  
RTIP  
Debounce  
Filter  
Interrupt  
Logic  
NRTP  
RTDI  
RTIE  
LFS  
Ring Trip  
Threshold  
RPTP  
Figure 21. Ring Trip Detector  
38  
Rev. 0.92  
Si3215  
Table 29. Associated Registers for Ring Trip Detection  
Parameter  
Register  
RTIP  
Location  
Ring Trip Interrupt Pending  
Ring Trip Interrupt Enable  
Direct Register 19  
Direct Register 22  
Direct Register 70  
Indirect Register 16  
Indirect Register 23  
Direct Register 68  
RTIE  
Ring Trip Detect Debounce Interval  
Ring Trip Threshold  
RTDI[6:0]  
RPTP[5:0]  
NRTP[12:0]  
RTP  
Ring Trip Filter Coefficient  
Ring Trip Detect Status (monitor only)  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
Table 30. Recommended Ring Trip Values for Ringing  
Ringing Frequency  
NRTP  
RPTP  
RTDI  
Hz  
16.667  
20  
decimal  
64  
hex  
decimal  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
hex  
decimal  
15.4 ms  
12.3 ms  
8.96 ms  
7.5 ms  
5 ms  
hex  
0F  
0B  
09  
07  
05  
05  
0200  
0320  
0380  
0400  
06A8  
0800  
3600  
3600  
3600  
3600  
3600  
3600  
100  
112  
30  
40  
128  
213  
256  
50  
60  
4.8 ms  
data stream. The standard requirements for transmit  
path attenuation for signals above 3.4 kHz are  
implemented as part of the combined decimation filter  
characteristic of the A/D converter. One more digital  
filter is available in the transmit path, THPF. THPF  
implements the high-pass attenuation requirements for  
signals below 65 Hz. The linear PCM data stream  
2.6. Audio Path  
Unlike traditional SLICs, the codec function is integrated  
into the ProSLIC. The 16-bit codec offers programmable  
gain/attenuation blocks and several loop-back modes.  
The signal path block diagram is shown in Figure 22.  
2.6.1. Transmit Path  
In the transmit path, the analog signal fed by the output from THPF is amplified by the transmit-path  
external ac coupling capacitors is amplified by the programmable gain amplifier, ADCG, which can be  
analog transmit amplifier, ATX, prior to the A/D programmed from –dB to 6 dB. The final step in the  
converter. The gain of the ATX is user-selectable to one transmit path signal processing is the user-selectable  
of mute/–3.5/0/3.5 dB options. The main role of ATX is A-law or µ-law compression, which can reduce the data  
to coarsely adjust the signal swing to be as close as stream word width to 8 bits. Depending on the  
possible to the full-scale input of the A/D converter in PCM_Mode register selection, every 8-bit compressed  
order to maximize the signal-to-noise ratio of the serial data word will occupy one time slot on the PCM  
transmit path. After passing through an anti-aliasing highway, or every 16-bit uncompressed serial data  
filter, the analog signal is processed by the A/D word will occupy two time slots on the PCM highway.  
converter, producing an 8 kHz, 16-bit wide, linear PCM  
Rev. 0.92  
39  
Si3215  
40  
Rev. 0.92  
Si3215  
2.6.2. Receive Path  
frequencies greater than 4 kHz, the plot in Figure 4  
should be interpreted as the maximum allowable  
magnitude of any spurious signals that are generated  
when a PCM data stream representing a sine wave  
signal in the range of 300 Hz to 3.4 kHz at a level of  
0 dBm0 is applied at the digital input.  
In the receive path, the optionally-compressed 8-bit  
data is first expanded to 16-bit words. The PCMF  
register bit can bypass the expansion process, in  
which case two 8-bit words are assembled into one 16-  
bit word. DACG is the receive path programmable gain  
amplifier, which can be programmed from –dB to The group delay distortion in either path is limited to no  
6 dB. An 8 kHz, 16-bit signal is then provided to a D/A more than the levels indicated in Figure 5 on page 10.  
converter. The resulting analog signal is amplified by The reference in Figure 5 on page 10 is the smallest  
the analog receive amplifier, ARX, which is user- group delay for a sine wave in the range of 500 Hz to  
selectable to one of mute/–3.5/0/3.5 dB options. It is 2500 Hz at 0 dBm0.  
then applied at the input of the transconductance  
The block diagram for the voice-band signal processing  
amplifier (Gm), which drives the off-chip current buffer  
paths are shown in Figure 22. Both the receive and the  
(I  
).  
BUF  
transmit paths employ the optimal combination of  
analog and digital signal processing to provide the  
maximum performance while, at the same time, offering  
sufficient flexibility to allow users to optimize for their  
particular application of the ProSLIC. All programmable  
signal-processing blocks are symbolically indicated in  
Figure 22 by a dashed arrow across them. The two-wire  
(TIP/RING) voice-band interface to the ProSLIC is  
2.6.3. Audio Characteristics  
The dominant source of distortion and noise in both the  
transmit and receive paths is the quantization noise  
introduced by the µ-law or the A-law compression  
process. Figure 1 on page 7 specifies the minimum  
signal-to-noise-and-distortion ratio for either path for a  
sine wave input of 200 Hz to 3400 Hz.  
implemented using  
a small number of external  
Both the µ-law and the A-law speech encoding allow the  
audio codec to transfer and process audio signals larger  
than 0 dBm0 without clipping. The maximum PCM code  
is generated for a µ-law encoded sine wave of  
3.17 dBm0 or an A-law encoded sine wave of  
3.14 dBm0. The ProSLIC overload clipping limits are  
driven by the PCM encoding process. Figure 2 on page  
components. The receive path interface consists of a  
unity-gain current buffer, I , while the transmit path  
BUF  
interface is simply an ac coupling capacitor. Signal  
paths, although implemented differentially, are shown  
as single-ended for simplicity.  
2.6.4. Transhybrid Balance  
7 shows the acceptable limits for the analog-to-analog The ProSLIC provides programmable transhybrid  
fundamental power transfer-function, which bounds the balance with gain block H. (See Figure 22.) In the ideal  
behavior of ProSLIC.  
case where the synthesized SLIC impedance matches  
exactly the subscriber loop impedance, the transhybrid  
balance should be set to subtract a –6 dB level from the  
transmit path signal. The transhybrid balance gain can  
be adjusted from –2.77 dB to +4.08 dB around the ideal  
setting of –6 dB by programming the HYBA[2:0] bits of  
the Hybrid Control register (direct Register 11). Note  
that adjusting any of the analog or digital gain blocks will  
not require any modification of the transhybrid balance  
gain block, as the transhybrid gain is subtracted from  
the transmit path signal prior to any gain adjustment  
stages. The transhybrid balance can also be disabled, if  
desired, using the appropriate register setting.  
The transmit path gain distortion versus frequency is  
shown in Figure 3 on page 8. The same figure also  
presents the minimum required attenuation for any out-  
of-band analog signal that may be applied on the line.  
Note the presence of a high-pass filter transfer-function,  
which ensures at least 30 dB of attenuation for signals  
below 65 Hz. The low-pass filter transfer function that  
attenuates signals above 3.4 kHz has to exceed the  
requirements specified by the equations in Figure 3 on  
page 8, and it is implemented as part of the A-to-D  
converter.  
The receive path transfer function requirement, shown  
in Figure 4 on page 9, is very similar to the transmit path  
2.6.5. Loopback Testing  
transfer function. The most notable difference is the Four loopback test options are available in the ProSLIC:  
absence of the high-pass filter portion. The only other  
The full analog loopback (ALM2) tests almost all the  
differences are the maximum 2 dB attenuation at  
circuitry of both the transmit and receive paths. The  
200 Hz (as opposed to 3 dB for the transmit path) and  
compressed 8-bit word transmit data stream is fed  
the 28 dB of attenuation for any frequency above  
back serially to the input of the receive path  
4.6 kHz. The PCM data rate is 8 kHz and, thus, no  
expander. (See Figure 22.) The signal path starts  
frequencies greater than 4 kHz can be digitally encoded  
with the analog signal at the input of the transmit  
in the data stream. From this point of view, at  
path and ends with an analog signal at the output of  
Rev. 0.92  
41  
Si3215  
the receive path.  
The ProSLIC also provides a means of compensating  
for degraded subscriber loop conditions involving  
excessive line capacitance (leakage). The CLC[1:0] bits  
of direct Register 10 increase the ac signal magnitude  
to compensate for the additional loss at the high end of  
the audio frequency range. The default setting of  
CLC[2:0] assumes no line capacitance.  
An additional analog loopback (ALM1) takes the  
digital stream at the output of the A/D converter and  
feeds it back to the D/A converter. (See Figure 22.)  
The signal path starts with the analog signal at the  
input of the transmit path and ends with an analog  
signal at the output of the receive path. This  
loopback option allows the testing of the analog  
signal processing circuitry of the Si3215 completely  
independently of any activity in the DSP.  
The Si3215 supports the option to remove the internal  
reference resistor used to synthesize ac impedances for  
600 + 1 µF and 900 + 2.16 µF settings so that an  
external resistor reference may be used. This option is  
enabled by setting ZSEXT = 1 (direct Register 108,  
bit 4). When 600 + 1 µF or 900 + 2.16 µF impedances  
are selected, an internal reference resistor is removed  
from the impedance synthesis circuit to accommodate  
The full digital loopback tests almost all the circuitry  
of both the transmit and receive paths. The analog  
signal at the output of the receive path is fed back to  
the input of the transmit path by way of the hybrid  
filter path. (See Figure 22.) The signal path starts  
with 8-bit PCM data input to the receive path and  
ends with 8-bit PCM data at the output of the  
an external resistor, R  
, which is inserted into the  
ZREF  
application circuit as shown in Figure 23.  
transmit path. The user can bypass the companding  
process and interface directly to the 16-bit data.  
C3  
R8  
to TIP  
An additional digital loopback (DLM) takes the digital  
stream at the input of the D/A converter in the  
receive path and feeds it back to the transmit A/D  
digital filter. The signal path starts with 8-bit PCM  
data input to the receive path and ends with 8-bit  
PCM data at the output of the transmit path. This  
loopback option allows the testing of the digital  
signal processing circuitry of the Si3215 completely  
independently of any analog signal processing  
activity. The user can bypass the companding  
process and interface directly to the 16-bit data.  
STIPAC  
RZREF  
Si3215  
SRINGAC  
R9  
to RING  
C4  
For 600 + 1 µF, RZREF = 12 kand C3, C4 = 100 nF.  
For 900 + 2.16 µF, RZREF = 12 kand C3, C4 = 220 nF.  
Figure 23. R  
External Resistor Placement  
ZREF  
2.7. Two-Wire Impedance Matching  
2.8. Clock Generation  
The ProSLIC provides on-chip, programmable two-wire  
impedance settings to meet a wide variety of worldwide  
two-wire return loss requirements. The two-wire  
impedance is programmed by loading one of the eight  
available impedance values into the TISS[2:0] bits of the  
Two-Wire Impedance Synthesis Control register (direct  
Register 10). If direct Register 10 is not user-defined,  
the default setting of 600 will be loaded into the TISS  
register.  
The ProSLIC will generate the necessary internal clock  
frequencies from the PCLK input. PCLK must be  
synchronous to the 8 kHz FSYNC clock and run at one  
of the following rates: 256 kHz, 512 kHz, 768 kHz,  
1.024 MHz, 1.536 MHz, 2.048 MHz, 4.096 MHz, or  
8.192 MHz. The ratio of the PCLK rate to the FSYNC  
rate is determined via a counter clocked by PCLK. The  
three-bit ratio information is automatically transferred  
into an internal register, PLL_MULT, following a reset of  
the ProSLIC. The PLL_MULT is used to control the  
internal PLL, which multiplies PCLK as needed to  
generate 16.384 MHz rate needed to run the internal  
filters and other circuitry.  
Real and complex two-wire impedances are realized by  
internal feedback of a programmable amplifier (RAC) a  
switched  
capacitor  
network  
(XAC)  
and  
a
transconductance amplifier (G ). (See Figure 22.) RAC  
m
creates the real portion and XAC creates the imaginary  
portion of G ’s input. G then creates a current that  
The PLL clock synthesizer settles very quickly following  
powerup. However, the settling time depends on the  
PCLK frequency, and it can be approximately predicted  
by the following equation:  
m
m
models the desired impedance value to the subscriber  
loop. The differential ac current is fed to the subscriber  
loop via the ITIPP and IRINGP pins through an off-chip  
current buffer (I  
), which is implemented using  
BUF  
transistor Q1 and Q2 (see Figure on page 20). G is  
64  
FPCLK  
m
----------------  
=
TSETTLE  
referenced to an off-chip resistor (R ).  
15  
42  
Rev. 0.92  
Si3215  
The first byte of the pair is the command/address byte.  
The MSB of this byte indicates a register read when 1  
and a register write when 0. The remaining seven bits of  
the command/address byte indicate the address of the  
register to be accessed. The second byte of the pair is  
the data byte. Because the falling edge of CS provides  
resynchronization of the SPI state machine in the event  
of a framing error, it is recommended (but not required)  
that CS be taken high between byte transfers as shown  
in Figures 24 and 25. During a read operation, the SDO  
becomes active, and the 8-bit contents of the register  
are driven out MSB first. The SDO will be high  
impedence on either the falling edge of SCLK following  
the LSB or the rising of CS as specified by the SPIM bit  
(direct Register 0, bit 6). SDI is a “don’t care” during the  
data portion of read operations. During write operations,  
data is driven into the ProSLIC via the SDI pin MSB first.  
The SDO pin will remain high impedance during write  
operations. Data always transitions with the falling edge  
of the clock and is latched on the rising edge. The clock  
should return to a logic high when no transfer is in  
progress.  
2.9. Interrupt Logic  
The ProSLIC is capable of generating interrupts for the  
following events:  
Loop current/ring ground detected  
Ring trip detected  
Power alarm  
Active timer 1 expired  
Inactive timer 1 expired  
Active timer 2 expired  
Inactive timer 2 expired  
Ringing active timer expired  
Ringing inactive timer expired  
Pulse metering active timer expired  
Pulse metering inactive timer expired  
Indirect register access complete  
The interface to the interrupt logic consists of six  
registers. Three interrupt status registers contain one bit  
for each of the above interrupt functions. These bits will  
be set when an interrupt is pending for the associated  
resource. Three interrupt enable registers also contain  
one bit for each interrupt function. In the case of the  
interrupt enable registers, the bits are active high. Refer  
to the appropriate functional description section for  
operational details of the interrupt functions.  
Indirect registers are accessed through direct registers  
29 through 30. Instructions on how to access them are  
presented in “3.Control Registers” beginning on page  
50.  
There are a number of variations of usage on this four-  
wire interface:  
When a resource reaches an interrupt condition, it will  
signal an interrupt to the interrupt control block. The  
interrupt control block will then set the associated bit in  
the interrupt status register if the enable bit for that  
interrupt is set. The INT pin is a NOR of the bits of the  
interrupt status registers. Therefore, if a bit in the  
interrupt status registers is asserted, IRQ will assert low.  
Upon receiving the interrupt, the interrupt handler  
should read interrupt status registers to determine  
which resource is requesting service. To clear a pending  
interrupt, write the desired bit in the appropriate  
interrupt status register to 1. Writing a 0 has no effect.  
This provides a mechanism for clearing individual bits  
when multiple interrupts occur simultaneously. While the  
interrupt status registers are non-zero, the INT pin will  
remain asserted.  
Continuous clocking. During continuous clocking,  
the data transfers are controlled by the assertion of  
the CS pin. CS must assert before the falling edge of  
SCLK on which the first bit of data is expected during  
a read cycle, and must remain low for the duration of  
the 8-‘bit transfer (command/address or data).  
SDI/SDO wired operation. Independent of the  
clocking options described, SDI and SDO can be  
treated as two separate lines or wired together if the  
master is capable of tristating its output during the  
data byte transfer of a read operation.  
Daisy chain mode. This mode allows  
communication with banks of up to eight ProSLIC  
devices using one chip select signal. When the  
SPIDC bit in the SPI Mode Select register is set,  
data transfer mode changes to a 3-byte operation: a  
chip select byte, an address/control byte, and a data  
byte. Using the circuit shown in Figure 26, a single  
device may select from the bank of devices by  
setting the appropriate chip select bit to 1. Each  
device uses the LSB of the chip select byte, shifts  
the data right by one bit, and passes the chip select  
byte using the SDITHRU pin to the next device in the  
chain. Address/control and data bytes are unaltered.  
2.10. Serial Peripheral Interface  
The control interface to the ProSLIC is a 4-wire interface  
modeled after commonly-available microcontroller and  
serial peripheral devices. The interface consists of a  
clock (SCLK), chip select (CS), serial data input (SDI),  
and serial data output (SDO). Data is transferred a byte  
at a time with each register access consisting of a pair  
of byte transfers. Figures 24 and 25 illustrate read and  
write operation in the SPI bus.  
Rev. 0.92  
43  
Si3215  
Don't  
Care  
SCLK  
CS  
SDI  
a6 a5 a4 a3 a2 a1 a0  
d7 d6 d5 d4 d3 d2 d1 d0  
0
SDO  
High Impedance  
Figure 24. Serial Write 8-Bit Mode  
Don't  
Care  
SCLK  
CS  
SDI  
Don't Care  
a6 a5 a4 a3 a2 a1 a0  
1
SDO  
d7 d6 d5 d4 d3 d2 d1 d0  
High Impedance  
Figure 25. Serial Read 8-Bit Mode  
44  
Rev. 0.92  
Si3215  
SDI0  
SDO  
CS  
SDI  
CS  
CPU  
SDO  
SDI  
SDITHRU  
SDI1  
SDI2  
SDI3  
SDI  
CS  
SDO  
SDITHRU  
SDI  
CS  
SDO  
SDITHRU  
SDI  
CS  
SDO  
SDITHRU  
Chip Select Byte  
Address Byte  
Data Byte  
SCLK  
SDI0  
SDI1  
SDI2  
SDI3  
C7 C6 C5 C4 C3 C2 C1 C0  
– C7 C6 C5 C4 C3 C2 C1  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
C7 C6 C5 C4 C3 C2  
C7 C6 C5 C4 C3  
Note: During chip select byte, SDITHRU = SDI delayed by one SCLK. Each device daisy-chained looks at the  
LSB of the chip select byte for its chip select.  
Figure 26. SPI Daisy Chain Mode  
Rev. 0.92  
45  
Si3215  
2.11. PCM Interface  
The ProSLIC contains a flexible programmable interface high impedance either on the negative edge of PCLK  
for the transmission and reception of digital PCM during the LSB or on the positive edge of PCLK  
samples. PCM data transfer is controlled via the PCLK following the LSB. This is based on the setting of the  
and FSYNC inputs as well as the PCM Mode Select TRI bit of the PCM Mode Select register. Tristating on  
(direct Register 1), PCM Transmit Start Count (direct the negative edge allows the transmission of data by  
registers 2 and 3), and PCM Receive Start Count (direct multiple sources in adjacent timeslots without the risk of  
registers 4 and 5) registers. The interface can be driver contention. In addition to 8-bit data modes, there  
configured to support from 4 to 128 8-bit timeslots in is a 16-bit mode provided. This mode can be activated  
each frame. This corresponds to PCLK frequencies of via the PCMT bit of the PCM Mode Select register. GCI  
256 kHz to 8.192 MHz in power-of-2 increments. timing is also supported in which the duration of a data  
(768 kHz and 1.536 MHz are also available.) Timeslots bit is two PCLK cycles. This mode is also activated via  
for data transmission and reception are independently the PCM Mode Select register. Setting the TXS or RXS  
configured using the TXS and RXS registers. By setting register greater than the number of PCLK cycles in a  
the correct starting point of the data, the ProSLIC can sample period will stop data transmission because TXS  
be configured to support long FSYNC and short FSYNC or RXS will never equal the PCLK count. Figures 27–30  
variants as well as IDL2 8-bit, 10-bit, B1 and B2 channel illustrate the usage of the PCM highway interface to  
time slots. DTX data is high-impedance except for the adapt to common PCM standards.  
duration of the 8-bit PCM transmit. DTX will return to  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
MSB  
LSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 27. Example, Timeslot 1, Short FSYNC (TXS/RXS = 1)  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
MSB  
LSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 28. Example, Timeslot 1, Long FSYNC (TXS/RXS = 0)  
46  
Rev. 0.92  
Si3215  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
MSB  
LSB  
DTX  
HI-Z  
HI-Z  
LSB  
Figure 29. Example, IDL2 Long FSYNC, B2, 10-Bit Mode (TXS/RXS = 10)  
PCLK  
FSYNC  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
PCLK_CNT  
DRX  
MSB  
LSB  
DTX  
HI-Z  
HI-Z  
Figure 30. GCI Example, Timeslot 1 (TXS/RXS = 0)  
2.12. Companding  
The ProSLIC supports both µ-255 Law and A-Law companding formats in addition to linear data. These 8-bit  
companding schemes follow a segmented curve formatted as a sign bit, three chord bits, and four step bits. µ-255  
Law is more commonly used in North America and Japan, while A-Law is primarily used in Europe. Data format is  
selected via the PCMF register. Tables 31 and 32 define the µ-Law and A-Law encoding formats.  
Rev. 0.92  
47  
Si3215  
Table 31. µ-Law Encode-Decode Characteristics1,2  
Segment #Intervals X Interval Size Value at Segment Endpoints Digital Code  
Number  
Decode Level  
8159  
10000000b  
8031  
.
.
.
8
16 X 256  
4319  
4063  
10001111b  
4191  
2079  
1023  
495  
231  
99  
.
.
.
7
6
5
4
3
16 X 128  
16 X 64  
16 X 32  
16 X 16  
16 X 8  
2143  
2015  
10011111b  
10101111b  
10111111b  
11001111b  
11011111b  
11101111b  
.
.
.
1055  
991  
.
.
.
511  
479  
.
.
.
239  
223  
.
.
.
103  
95  
.
.
.
2
1
16 X 4  
15 X 2  
35  
31  
33  
.
.
.
3
1
0
__________________  
1 X 1  
11111110b  
11111111b  
2
0
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
48  
Rev. 0.92  
Si3215  
Table 32. A-Law Encode-Decode Characteristics1,2  
Segment #intervals X interval size Value at segment endpoints  
Number  
Digital Code  
Decode Level  
4096  
3968  
.
10101010b  
10100101b  
4032  
7
16 X 128  
.
2176  
2048  
2112  
1056  
528  
264  
132  
66  
.
.
.
6
5
4
3
2
16 X 64  
16 X 32  
16 X 16  
16 X 8  
1088  
1024  
10110101b  
10000101b  
10010101b  
11100101b  
11110101b  
11010101b  
.
.
.
544  
512  
.
.
.
272  
256  
.
.
.
136  
128  
.
.
.
16 X 4  
32 X 2  
68  
64  
.
.
.
2
0
1
1
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative values.  
2. Digital code includes inversion of all even numbered bits.  
Rev. 0.92  
49  
Si3215  
3. Control Registers  
Note: Any register not listed here is reserved and must not be written.  
Table 33. Direct Register Summary  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Setup  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
2
SPI Mode Select  
SPIDC  
PNI2  
SPIM  
PNI[1:0]  
PCME  
RNI[3:0]  
PCM Mode Select  
PCMF[1:0]  
PCMT  
GCI  
TRI  
PCM Transmit Start  
Count—Low Byte  
TXS[7:0]  
3
4
5
6
PCM Transmit Start  
Count—High Byte  
TXS[9:8]  
PCM Receive Start  
Count—Low Byte  
RXS[7:0]  
PCM Receive Start  
Count—High Byte  
RXS[9:8]  
Part Number Identification  
PNI[2:0]  
Audio  
8
Audio Path Loopback  
Control  
ALM2  
DLM  
ALM1  
9
Audio Gain Control  
RXHP  
TXHP  
TXM  
RXM  
ATX[1:0]  
TISE  
ARX[1:0]  
TISS[2:0]  
10  
Two-Wire Impedance  
Synthesis Control  
CLC[1:0]  
11  
Hybrid Control  
HYBP[2:0]  
Powerdown  
HYBA[2:0]  
14  
15  
Powerdown Control 1  
Powerdown Control 2  
DCOF  
ADCM ADCON DACM DACON  
Interrupts  
RGIP  
PFR  
BIASOF SLICOF  
GMM  
GMON  
18  
19  
20  
21  
22  
23  
Interrupt Status 1  
Interrupt Status 2  
Interrupt Status 3  
Interrupt Enable 1  
Interrupt Enable 2  
Interrupt Enable 3  
RGAP  
Q3AP  
O2IP  
O2AP  
Q1AP  
O1IP  
LCIP  
INDP  
O1IE  
LCIE  
INDE  
O1AP  
RTIP  
Q6AP  
Q6AE  
Q5AP  
Q4AP  
Q2AP  
RGIE  
Q4AE  
RGAE  
Q3AE  
O2IE  
O2AE  
Q1AE  
O1AE  
RTIE  
Q5AE  
Q2AE  
Indirect Register Access  
28  
29  
30  
Indirect Data Access—  
Low Byte  
IDA[7:0]  
Indirect Data Access—  
High Byte  
IDA[15:8]  
IAA[7:0]  
Indirect Address  
50  
Rev. 0.92  
Si3215  
Table 33. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
31  
Indirect Address Status  
IAS  
Oscillators  
32  
33  
34  
Oscillator 1 Control  
Oscillator 2 Control  
OSS1  
OSS2  
RSS  
REL  
OZ1  
OZ2  
O1TAE O1TIE  
O2TAE O2TIE  
O1E  
O2E  
ROE  
O1SO[1:0]  
O2SO[1:0]  
Ringing Oscillator  
Control  
RDAC  
RTAE  
RTIE  
RVO  
TSWS  
36  
37  
38  
39  
40  
41  
42  
43  
48  
49  
50  
51  
52  
Oscillator 1 Active  
Timer—Low Byte  
OAT1[7:0]  
OAT1[15:8]  
OIT1[7:0]  
OIT1[15:8]  
OAT2[7:0]  
OAT2[15:8]  
OIT2[7:0]  
OIT2[15:8]  
RAT[7:0]  
Oscillator 1 Active  
Timer—High Byte  
Oscillator 1 Inactive  
Timer—Low Byte  
Oscillator 1 Inactive  
Timer—High Byte  
Oscillator 2 Active  
Timer—Low Byte  
Oscillator 2 Active  
Timer—High Byte  
Oscillator 2 Inactive  
Timer—Low Byte  
Oscillator 2 Inactive  
Timer—High Byte  
Ringing Oscillator  
Active Timer—Low Byte  
Ringing Oscillator  
Active Timer—High Byte  
RAT[15:8]  
RIT[7:0]  
Ringing Oscillator Inac-  
tive Timer—Low Byte  
Ringing Oscillator Inac-  
tive Timer—High Byte  
RIT[15:8]  
FSK Data  
FSKDAT  
SLIC  
63  
Loop Closure Debounce  
Interval for Automatic  
Ringing  
LCD[7:0]  
64  
65  
Linefeed Control  
LFS[2:0]  
CBY  
LF[2:0]  
AOLD  
External Bipolar  
Transistor Control  
SQH  
ETBE  
VOV  
ETBO[1:0]  
FVBAT  
ETBA[1:0]  
66  
67  
Battery Feed Control  
TRACK  
AOPN  
Automatic/Manual  
Control  
MNCM MNDIF SPDS  
AORD  
Rev. 0.92  
51  
Si3215  
Table 33. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
68  
69  
70  
Loop Closure/Ring Trip  
Detect Status  
DBIRAW  
RTP  
LCR  
Loop Closure Debounce  
Interval  
LCDI[6:0]  
RTDI[6:0]  
Ring Trip Detect  
Debounce Interval  
71  
72  
73  
74  
75  
76  
77  
Loop Current Limit  
ILIM[2:0]  
On-Hook Line Voltage  
Common Mode Voltage  
High Battery Voltage  
Low Battery Voltage  
Power Monitor Pointer  
VSGN  
VOC[5:0]  
VCM[5:0]  
VBATH[5:0]  
VBATL[5:0]  
PWRMP[2:0]  
Line Power Output  
Monitor  
PWROM[7:0]  
78  
79  
80  
81  
82  
83  
84  
Loop Voltage Sense  
Loop Current Sense  
TIP Voltage Sense  
LVSP  
LCSP  
LVS[5:0]  
LCS[5:0]  
VTIP[7:0]  
VRING[7:0]  
RING Voltage Sense  
Battery Voltage Sense 1  
Battery Voltage Sense 2  
VBATS1[7:0]  
VBATS2[7:0]  
IQ1[7:0]  
Transistor 1 Current  
Sense  
85  
86  
87  
88  
89  
92  
93  
Transistor 2 Current  
Sense  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
DCN[7:0]  
Transistor 3 Current  
Sense  
Transistor 4 Current  
Sense  
Transistor 5 Current  
Sense  
Transistor 6 Current  
Sense  
DC-DC Converter PWM  
Period  
DC-DC Converter Switch- DCCAL  
ing Delay  
DCPOL  
DCTOF[4:0]  
94  
95  
PWM Pulse Width  
Reserved  
DCPW[7:0]  
52  
Rev. 0.92  
Si3215  
Table 33. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
96  
Calibration Control/  
CAL  
CALSP CALR  
CALT  
CALD  
CALC  
CALIL  
Status Register 1  
CALM1 CALM2 CALDAC CALADC CALCM  
97  
Calibration Control/  
Status Register 2  
98  
RING Gain Mismatch Cal-  
ibration Result  
CALGMR[4:0]  
CALGMT[4:0]  
CALGD[4:0]  
99  
TIP Gain Mismatch  
Calibration Result  
100  
Differential Loop  
Current Gain  
Calibration Result  
101  
Common Mode Loop Cur-  
rent Gain  
CALGC[4:0]  
Calibration Result  
102  
103  
Current Limit  
Calibration Result  
CALGIL[3:0]  
Monitor ADC Offset  
Calibration Result  
CALMG1[3:0]  
CALMG2[3:0]  
104  
105  
Analog DAC/ADC Offset  
DACP  
DACN  
ADCP  
ADCN  
DAC Offset Calibration  
Result  
DACOF[7:0]  
107  
108  
DC Peak Current Monitor  
Calibration Result  
CMDCPK[3:0]  
Enhancement Enable  
ILIMEN FSKEN DCSU  
LCVE  
DCFIL HYSTEN  
Rev. 0.92  
53  
Si3215  
Register 0. SPI Mode Select  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SPIDC  
R/W  
SPIM  
R/W  
PNI[1:0]  
R
RNI[3:0]  
R
Reset settings = 00xx_xxxx  
Bit  
Name  
Function  
7
SPIDC  
SPI Daisy Chain Mode Enable.  
0 = Disable SPI daisy chain mode.  
1 = Enable SPI daisy chain mode.  
6
SPIM  
SPI Mode.  
0 = Causes SDO to tri-state on rising edge of SCLK of LSB.  
1 = Normal operation; SDO tri-states on rising edge of CS.  
5:4  
PNI[1:0]  
Part Number Identification.  
00 = Si3215  
01 = Unused  
10 = Unused  
11 = Si3215M  
3:0  
RNI[3:0]  
Revision Number Identification.  
0001 = Revision A, 0010 = Revision B, 0011 = Revision C, etc.  
54  
Rev. 0.92  
Si3215  
Register 1. PCM Mode Select  
Bit  
D7  
PNI2  
R
D6  
D5  
D4  
PCMF[1:0]  
R/W  
D3  
D2  
D1  
GCI  
R/W  
D0  
TRI  
R/W  
Name  
Type  
PCME  
R/W  
PCMT  
R/W  
Reset settings = 1000_1000  
Bit  
Name  
Function  
7
PNI2  
Part Number Identification 2.  
0 = Si3210 family  
1 = Si3215 family  
Read returns zero.  
PCM Enable.  
6
5
Reserved  
PCME  
0 = Disable PCM transfers.  
1 = Enable PCM transfers.  
PCM Format.  
4:3  
PCMF[1:0]  
00 = A-Law  
01 = µ-Law  
10 = Reserved  
11 = Linear  
2
1
0
PCMT  
GCI  
PCM Transfer Size.  
0 = 8-bit transfer.  
1 = 16-bit transfer.  
GCI Clock Format.  
0 = 1 PCLK per data bit.  
1 = 2 PCLKs per data bit.  
Tri-state Bit 0.  
TRI  
0 = Tri-state bit 0 on positive edge of PCLK.  
1 = Tri-state bit 0 on negative edge of PCLK.  
Register 2. PCM Transmit Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
TXS[7:0]  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data trans-  
mission begins. See Figure 27 on page 46.  
Rev. 0.92  
55  
Si3215  
Register 3. PCM Transmit Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
TXS[9:8]  
Read returns zero.  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data  
transmission begins. See Figure 27 on page 46.  
Register 4. PCM Receive Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RXS[7:0]  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 27 on page 46.  
Register 5. PCM Receive Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
RXS[9:8]  
Read returns zero.  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 27 on page 46.  
56  
Rev. 0.92  
Si3215  
Register 6. Part Number Identification  
Bit  
D7  
D6  
PNI[2:0]  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0xx0_0000  
Bit  
Name  
Function  
7:5  
PNI[2:0]  
Part Number Identification.  
Note: PNI[2] can be read in direct Register 1. PNI[1:0] can be read in direct Register 0.  
000 = Si3215  
100 = Reserved  
101 = Reserved  
110 = Reserved  
111 = Reserved  
001 = Reserved  
010 = Reserved  
011 = Si3215M  
4:0  
Reserved  
Read returns zero.  
Register 8. Audio Path Loopback Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ALM2  
R/W  
DLM  
R/W  
ALM1  
R/W  
Reset settings = 0000_0010  
Bit  
7:3  
2
Name  
Reserved  
ALM2  
Function  
Read returns zero.  
Analog Loopback Mode 2. (See Figure 22 on page 40.)  
0 = Full analog loopback mode disabled.  
1 = Full analog loopback mode enabled.  
1
0
DLM  
Digital Loopback Mode. (See Figure 22 on page 40.)  
0 = Digital loopback disabled.  
1 = Digital loopback enabled.  
ALM1  
Analog Loopback Mode 1. (See Figure 22 on page 40.)  
0 = Analog loopback disabled.  
1 = Analog loopback enabled.  
Rev. 0.92  
57  
Si3215  
Register 9. Audio Gain Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXHP  
R/W  
TXHP  
R/W  
TXM  
R/W  
RXM  
R/W  
ATX[1:0]  
R/W  
ARX[1:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RXHP  
Receive Path High Pass Filter Disable.  
0 = HPF enabled in receive path, RHDF.  
1 = HPF bypassed in receive path, RHDF.  
6
5
TXHP  
TXM  
Transmit Path High Pass Filter Disable.  
0 = HPF enabled in transmit path, THPF.  
1 = HPF bypassed in transmit path, THPF.  
Transmit Path Mute.  
Refer to position of digital mute in Figure 22 on page 40.  
0 = Transmit signal passed.  
1 = Transmit signal muted.  
4
RXM  
Receive Path Mute.  
Refer to position of digital mute in Figure 22 on page 40.  
0 = Receive signal passed.  
1 = Receive signal muted.  
3:2  
ATX[1:0]  
Analog Transmit Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = ATX gain = 0 dB; analog transmit path muted.  
1:0  
ARX[1:0]  
Analog Receive Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = Analog receive path muted.  
58  
Rev. 0.92  
Si3215  
Register 10. Two-Wire Impedance Synthesis Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TISS[2:0]  
R/W  
D0  
Name  
Type  
CLC[1:0]  
R/W  
TISE  
R/W  
Reset settings = 0000_1000  
Bit  
7:6  
5:4  
Name  
Reserved Read returns zero.  
Function  
CLC[1:0]  
Line Capacitance Compensation.  
00 = Off  
01 = 4.7 nF  
10 = 10 nF  
11 = Reserved  
3
TISE  
Two-Wire Impedance Synthesis Enable.  
0 = Two-wire impedance synthesis disabled.  
1 = Two-wire impedance synthesis enabled.  
2:0  
TISS[2:0] Two-Wire Impedance Synthesis Selection.  
000 = 600 Ω  
001 = 900 Ω  
010 = Japan (600 + 1 µF); requires external resistor R  
= 12 kand C3, C4 = 100 nF.  
ZREF  
011 = 900 + 2.16 µF; requires external resistor R  
= 18 kand C3, C4 = 220 nF.  
ZREF  
100 = CTR21 270 + (750 || 150 nF)  
101 = Australia/New Zealand 220 + (820 || 120 nF)  
110 = Slovakia/Slovenia/South Africa 220 + (820 || 115 nF)  
111 = China 200 + (680 || 100 nF)  
Rev. 0.92  
59  
Si3215  
Register 11. Hybrid Control  
Bit  
D7  
D6  
D5  
HYBP[2:0]  
R/W  
D4  
D3  
D2  
D1  
HYBA[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0011_0011  
Bit  
7
Name  
Function  
Reserved  
HYBP[2:0]  
Read returns zero.  
6:4  
Pulse Metering Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
3
Reserved  
HYBA[2:0]  
Read returns zero.  
2:0  
Audio Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
60  
Rev. 0.92  
Si3215  
Register 14. Powerdown Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
BIASOF  
R/W  
D0  
Name  
Type  
DCOF  
R/W  
PFR  
R/W  
SLICOF  
R/W  
Reset settings = 0001_0000  
Bit  
7:5  
4
Name  
Reserved  
DCOF  
Function  
Read returns zero.  
DC-DC Converter Power-Off Control  
0 = Automatic power control.  
1 = Override automatic control and force dc-dc circuitry off.  
3
PFR  
PLL Free-Run Control.  
0 = Automatic free-run control.  
1 = Override automatic control and force PLL into free-run state.  
2
1
Reserved  
BIASOF  
Read returns zero.  
DC Bias Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force dc bias circuitry off.  
0
SLICOF  
SLIC Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force SLIC circuitry off.  
Rev. 0.92  
61  
Si3215  
Register 15. Powerdown Control 2  
Bit  
D7  
D6  
D5  
D4  
ADCON  
R/W  
D3  
D2  
DACON  
R/W  
D1  
D0  
Name  
Type  
ADCM  
R/W  
DACM  
R/W  
GMM  
R/W  
GMON  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
ADCM  
Function  
Read returns zero.  
Analog to Digital Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; ADCON controls on/off state.  
4
ADCON  
Analog to Digital Converter On/Off Power Control.  
When ADCM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
ADCON has no effect when ADCM = 0.  
3
2
DACM  
Digital to Analog Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; DACON controls on/off state.  
DACON  
Digital to Analog Converter On/Off Power Control.  
When DACM = 1:  
0 = Digital to analog converter powered off.  
1 = Digital to analog converter powered on.  
DACON has no effect when DACM = 0.  
1
0
GMM  
Transconductance Amplifier Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; GMON controls on/off state.  
GMON  
Transconductance Amplifier On/Off Power Control.  
When GMM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
GMON has no effect when GMM = 0.  
62  
Rev. 0.92  
Si3215  
Register 18. Interrupt Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RGIP  
R/W  
RGAP  
R/W  
O2IP  
R/W  
O2AP  
R/W  
O1IP  
R/W  
O1AP  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
RGIP  
Function  
Read returns zero.  
Ringing Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
4
3
2
1
0
RGAP  
O2IP  
Ringing Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 2 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O2AP  
O1IP  
Oscillator 2 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 1 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O1AP  
Oscillator 1 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Rev. 0.92  
63  
Si3215  
Register 19. Interrupt Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AP  
R/W  
Q5AP  
R/W  
Q4AP  
R/W  
Q3AP  
R/W  
Q2AP  
R/W  
Q1AP  
R/W  
LCIP  
R/W  
RTIP  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AP  
Power Alarm Q6 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
6
5
4
3
2
1
0
Q5AP  
Q4AP  
Q3AP  
Q2AP  
Q1AP  
LCIP  
Power Alarm Q5 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q4 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q3 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q2 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q1 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Loop Closure Transition Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
RTIP  
Ring Trip Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
64  
Rev. 0.92  
Si3215  
Register 20. Interrupt Status 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDP  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1
Name  
Reserved  
INDP  
Function  
Read returns zero.  
Indirect Register Access Serviced Interrupt.  
This bit is set once a pending indirect register service request has been completed. Writ-  
ing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
0
Reserved  
Read returns zero.  
Rev. 0.92  
65  
Si3215  
Register 21. Interrupt Enable 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RGIE  
R/W  
RGAE  
R/W  
O2IE  
R/W  
O2AE  
R/W  
O1IE  
R/W  
O1AE  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
RGIE  
Function  
Read returns zero.  
Ringing Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
4
3
2
1
0
RGAE  
O2IE  
Ringing Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 2 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O2AE  
O1IE  
Oscillator 2 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 1 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O1AE  
Oscillator 1 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
66  
Rev. 0.92  
Si3215  
Register 22. Interrupt Enable 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AE  
R/W  
Q5AE  
R/W  
Q4AE  
R/W  
Q3AE  
R/W  
Q2AE  
R/W  
Q1AE  
R/W  
LCIE  
R/W  
RTIE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AE  
Power Alarm Q6 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
6
5
4
3
2
1
0
Q5AE  
Q4AE  
Q3AE  
Q2AE  
Q1AE  
LCIE  
Power Alarm Q5 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q4 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q3 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q2 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q1 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Loop Closure Transition Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
RTIE  
Ring Trip Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Rev. 0.92  
67  
Si3215  
Register 23. Interrupt Enable 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDE  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1
Name  
Reserved  
INDE  
Function  
Read returns zero.  
Indirect Register Access Serviced Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
0
Reserved  
Read returns zero.  
68  
Rev. 0.92  
Si3215  
Register 28. Indirect Data Access—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IDA[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[7:0]  
Indirect Data Access—Low Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 29. Indirect Data Access—High Byte  
Bit  
D7  
D6  
D5  
D4  
IDA[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[15:8]  
Indirect Data Access—High Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Rev. 0.92  
69  
Si3215  
Register 30. Indirect Address  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IAA[7:0]  
R/W  
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IAA[7:0]  
Indirect Address Access.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 31. Indirect Address Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IAS  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Reserved  
IAS  
Function  
Read returns zero.  
Indirect Access Status.  
0 = No indirect memory access pending.  
1 = Indirect memory access pending.  
70  
Rev. 0.92  
Si3215  
Register 32. Oscillator 1 Control  
Bit  
D7  
OSS1  
R
D6  
D5  
D4  
D3  
D2  
D1  
O1SO[1:0]  
R/W  
D0  
Name  
Type  
REL  
R/W  
OZ1  
R/W  
O1TAE  
R/W  
O1TIE  
R/W  
O1E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS1  
Oscillator 1 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
REL  
Oscillator 1 Automatic Register Reload.  
This bit should be set for FSK signaling.  
0 = Oscillator 1 will stop signaling after inactive timer expires.  
1 = Oscillator 1 will continue to read register parameters and output signals.  
5
4
OZ1  
O1TAE  
O1TIE  
Oscillator 1 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing after active timer expires.  
Oscillator 1 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
3
Oscillator 1 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O1E  
Oscillator 1 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O1SO[1:0]  
Oscillator 1 Signal Output Routing.  
00 = Unassigned path (output not connected).  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
Rev. 0.92  
71  
Si3215  
Register 33. Oscillator 2 Control  
Bit  
D7  
OSS2  
R
D6  
D5  
D4  
O2TAE  
R/W  
D3  
D2  
D1  
O2SO[1:0]  
R/W  
D0  
Name  
Type  
OZ2  
R/W  
O2TIE  
R/W  
O2E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS2  
Oscillator 2 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
5
Reserved  
OZ2  
Read returns zero.  
Oscillator 2 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing.  
4
3
O2TAE  
O2TIE  
Oscillator 2 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Oscillator 2 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O2E  
Oscillator 2 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O2SO[1:0]  
Oscillator 2 Signal Output Routing.  
00 = Unassigned path (output not connected)  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
72  
Rev. 0.92  
Si3215  
Register 34. Ringing Oscillator Control  
Bit  
D7  
RSS  
R
D6  
D5  
RDAC  
R
D4  
D3  
D2  
ROE  
R
D1  
D0  
Name  
Type  
RTAE  
R/W  
RTIE  
R/W  
RVO  
R/W  
TSWS  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RSS  
Ringing Signal Status.  
0 = Ringing oscillator output signal inactive.  
1 = Ringing oscillator output signal active.  
6
5
Reserved  
RDAC  
Read returns zero.  
Ringing Signal DAC/Linefeed Cross Indicator.  
For ringing signal start and stop, output to TIP and RING is suspended to ensure conti-  
nuity with dc linefeed voltages. RDAC indicates that ringing signal is actually present at  
TIP and RING.  
0 = Ringing signal not present at TIP and RING.  
1 = Ringing signal present at TIP and RING.  
4
3
2
1
0
RTAE  
RTIE  
ROE  
Ringing Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Oscillator Enable.  
0 = Ringing oscillator disabled.  
1 = Ringing oscillator enabled.  
RVO  
Ringing Voltage Offset.  
0 = No dc offset added to ringing signal.  
1 = DC offset added to ringing signal.  
TSWS  
Trapezoid/Sinusoid Waveshape Select.  
0 = Sinusoid  
1 = Trapezoid  
Rev. 0.92  
73  
Si3215  
Register 36. Oscillator 1 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[7:0]  
Oscillator 1 Active Timer.  
LSB = 125 µs  
Register 37. Oscillator 1 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT1[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[15:8]  
Oscillator 1 Active Timer.  
Register 38. Oscillator 1 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[7:0]  
Oscillator 1 Inactive Timer.  
LSB = 125 µs  
74  
Rev. 0.92  
Si3215  
Register 39. Oscillator 1 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[15:8]  
Oscillator 1 Inactive Timer.  
Register 40. Oscillator 2 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[7:0]  
Oscillator 2 Active Timer.  
LSB = 125 µs  
Register 41. Oscillator 2 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT2[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[15:8]  
Oscillator 2 Active Timer.  
Rev. 0.92  
75  
Si3215  
Register 42. Oscillator 2 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[7:0]  
Oscillator 2 Inactive Timer.  
LSB = 125 µs  
Register 43. Oscillator 2 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[15:8]  
Oscillator 2 Inactive Timer.  
Register 48. Ringing Oscillator Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RAT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[7:0]  
Ringing Active Timer.  
LSB = 125 µs  
76  
Rev. 0.92  
Si3215  
Register 49. Ringing Oscillator Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
RAT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[15:8]  
Ringing Active Timer.  
Register 50. Ringing Oscillator Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RIT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[7:0]  
Ringing Inactive Timer.  
LSB = 125 µs  
Register 51. Ringing Oscillator Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RIT[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[15:8]  
Ringing Inactive Timer.  
Rev. 0.92  
77  
Si3215  
Register 52. FSK Data  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FSKDAT  
R/W  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FSKDAT  
Read returns zero.  
FSK Data.  
When FSKEN = 1 (direct Register 108, bit 6) and REL = 1 (direct Register 32, bit 6), this  
bit serves as the buffered input for FSK generation bit stream data.  
Register 63. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCD[7:0]  
Reset settings = 0101_0100  
Bit  
Name  
Function  
7:0  
LCD[7:0]  
Loop Closure Debounce Interval for Automatic Ringing.  
This register sets the loop closure debounce interval for the ringing silent period when  
using automatic ringing cadences. The value may be set between 0 ms (0x00) and  
159 ms (0x7F) in 1.25 ms steps.  
78  
Rev. 0.92  
Si3215  
Register 64. Linefeed Control  
Bit  
D7  
D6  
D5  
LFS[2:0]  
R
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LF[2:0]  
R/W  
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LFS[2:0]  
Function  
Read returns zero.  
6:4  
Linefeed Shadow.  
This register reflects the actual real time linefeed state. Automatic operations may cause  
actual linefeed state to deviate from the state defined by linefeed register (e.g., when  
linefeed equals ringing state, LFS will equal on-hook transmission state during ringing  
silent period and ringing state during ring burst).  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
3
Reserved  
LF[2:0]  
Read returns zero.  
2:0  
Linefeed.  
Writing to this register sets the linefeed state.  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
Rev. 0.92  
79  
Si3215  
Register 65. External Bipolar Transistor Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ETBA[1:0]  
R/W  
D0  
Name  
Type  
SQH  
R/W  
CBY  
R/W  
ETBE  
R/W  
ETBO[1:0]  
R/W  
Reset settings = 0110_0001  
Bit  
7
Name  
Reserved  
SQH  
Function  
Read returns zero.  
6
Audio Squelch.  
0 = No squelch.  
1 = STIPAC and SRINGAC pins squelched.  
5
4
CBY  
ETBE  
Capacitor Bypass.  
0 = Capacitors CP (C1) and CM (C2) in circuit.  
1 = Capacitors CP (C1) and CM (C2) bypassed.  
External Transistor Bias Enable.  
0 = Bias disabled.  
1 = Bias enabled.  
3:2  
ETBO[1:0]  
External Transistor Bias Levels—On-Hook Transmission State.  
DC bias current which flows through external BJTs in the on-hook transmission state.  
Increasing this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
1:0  
ETBA[1:0]  
External Transistor Bias Levels—Active Off-Hook State.  
DC bias current which flows through external BJTs in the active off-hook state. Increasing  
this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
80  
Rev. 0.92  
Si3215  
Register 66. Battery Feed Control  
Bit  
D7  
D6  
D5  
D4  
D3  
FVBAT  
R/W  
D2  
D1  
D0  
Name  
Type  
VOV  
R/W  
TRACK  
R/W  
Reset settings = 0000_0011  
Bit  
7:5  
4
Name  
Reserved  
VOV  
Function  
Read returns zero.  
Overhead Voltage Range Increase.  
This bit selects the programmable range for V , which is defined in indirect Register 64.  
OV  
0 = V = 0 V to 9 V  
OV  
1 = V = 0 V to 13.5 V  
OV  
3
FVBAT  
V
Manual Setting.  
BAT  
0 = Normal operation  
1 = V tracks V  
register.  
BATH  
BAT  
2:1  
0
Reserved  
TRACK  
Read returns zero.  
DC-DC Converter Tracking Mode.  
0 = |V | will not decrease below V  
.
BATL  
BAT  
1 = V  
tracks V  
.
RING  
BAT  
Rev. 0.92  
81  
Si3215  
Register 67. Automatic/Manual Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MNCM  
R/W  
MNDIF  
R/W  
SPDS  
R/W  
AORD  
R/W  
AOLD  
R/W  
AOPN  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
MNCM  
Function  
Read returns zero.  
6
Common Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control, in which TIP (forward) or RING (reverse) forces voltage to follow  
VCM value.  
5
4
MNDIF  
SPDS  
Differential Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control (forces differential voltage to follow VOC value).  
Speed-Up Mode Enable.  
0 = Speed-up disabled.  
1 = Automatic speed-up.  
3
2
Reserved  
AORD  
Read returns zero.  
Automatic/Manual Ring Trip Detect.  
0 = Manual mode.  
1 = Enter off-hook active state automatically upon ring trip detect.  
1
0
AOLD  
AOPN  
Automatic/Manual Loop Closure Detect.  
0 = Manual mode.  
1 = Enter off-hook active state automatically upon loop closure detect.  
Power Alarm Automatic/Manual Detect.  
0 = Manual mode.  
1 = Enter open state automatically upon power alarm.  
82  
Rev. 0.92  
Si3215  
Register 68. Loop Closure/Ring Trip Detect Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
DBIRAW  
R
D1  
RTP  
R
D0  
LCR  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2
Name  
Function  
Reserved  
DBIRAW  
Read returns zero.  
Ring Trip/Loop Closure Unfiltered Output.  
State of this bit reflects the real time output of ring trip and loop closure detect circuits  
before debouncing.  
0 = Ring trip/loop closure threshold exceeded.  
1 = Ring trip/loop closure threshold not exceeded.  
1
0
RTP  
LCR  
Ring Trip Detect Indicator (Filtered Output).  
0 = Ring trip detect has not occurred.  
1 = Ring trip detect occurred.  
Loop Closure Detect Indicator (Filtered Output).  
0 = Loop closure detect has not occurred.  
1 = Loop closure detect has occurred.  
Register 69. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
LCDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
LCDI[6:0]  
Read returns zero.  
6:0  
Loop Closure Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. Value  
may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
Rev. 0.92  
83  
Si3215  
Register 70. Ring Trip Detect Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
RTDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
RTDI[6:0]  
Read returns zero.  
6:0  
Ring Trip Detect Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. The  
value may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
Register 71. Loop Current Limit  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ILIM[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
ILIM[2:0]  
Read returns zero.  
Loop Current Limit.  
The value written to this register sets the constant loop current. The value may be set  
between 20 mA (0x00) and 41 mA (0x07) in 3 mA steps.  
84  
Rev. 0.92  
Si3215  
Register 72. On-Hook Line Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VSGN  
R/W  
VOC[5:0]  
R/W  
Reset settings = 0010_0000  
Bit  
7
Name  
Reserved  
VSGN  
Function  
Read returns zero.  
6
On-Hook Line Voltage.  
The value written to this bit sets the on-hook line voltage polarity (V –V  
).  
RING  
TIP  
0 = V –V  
is positive  
is negative  
TIP  
RING  
RING  
1 = V –V  
TIP  
5:0  
VOC[5:0]  
On-Hook Line Voltage.  
The value written to this register sets the on-hook line voltage (V –V  
). Value may  
RING  
TIP  
be set between 0 V (0x00) and 94.5 V (0x3F) in 1.5 V steps. Default value = 48 V.  
Register 73. Common Mode Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VCM[5:0]  
R/W  
Reset settings = 0000_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VCM[5:0]  
Read returns zero.  
Common Mode Voltage.  
The value written to this register sets V  
for forward active and forward on-hook trans-  
TIP  
mission states and V  
for reverse active and reverse on-hook transmission states.  
RING  
The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V steps. Default  
value = –3 V.  
Rev. 0.92  
85  
Si3215  
Register 74. High Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATH[5:0]  
R/W  
Reset settings = 0011_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATH[5:0]  
Read returns zero.  
High Battery Voltage.  
The value written to this register sets high battery voltage. VBATH must be greater than  
or equal to VBATL. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in  
1.5 V steps. Default value = –75 V. For Si3211, VBATH must be set equal to externally  
supplied V  
input voltage.  
BATH  
Register 75. Low Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATL[5:0]  
R/W  
Reset settings = 0001_0000  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATL[5:0]  
Read returns zero.  
Low Battery Voltage.  
The value written to this register sets low battery voltage. VBATH must be greater than or  
equal to VBATL. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V  
steps. Default value = –24 V. For Si3211, VBATL must be set equal to externally supplied  
V
input voltage.  
BATL  
86  
Rev. 0.92  
Si3215  
Register 76. Power Monitor Pointer  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PWRMP[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Read returns zero.  
PWRMP[2:0] Power Monitor Pointer.  
Selects the external transistor from which to read power output. The power of the  
selected transistor is read in the PWROM register.  
000 = Q1  
001 = Q2  
010 = Q3  
011 = Q4  
100 = Q5  
101 = Q6  
110 = Undefined  
111 = Undefined  
Register 77. Line Power Output Monitor  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PWROM[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
PWROM[7:0] Line Power Output Monitor.  
Function  
7:0  
This register reports the real time power output of the transistor selected using PWRMP.  
The range is 0 W (0x00) to 7.8 W (0xFF) in 30.4 mW steps for Q1, Q2, Q5, and Q6.  
The range is 0 W (0x00) to 0.9 W (0xFF) in 3.62 mW steps for Q3 and Q4.  
Rev. 0.92  
87  
Si3215  
Register 78. Loop Voltage Sense  
Bit  
D7  
D6  
LVSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LVS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LVSP  
Function  
Read returns zero.  
6
Loop Voltage Sense Polarity.  
This register reports the polarity of the differential loop voltage (V  
– V  
).  
TIP  
RING  
0 = Positive loop voltage (V  
> V  
).  
RING  
TIP  
1 = Negative loop voltage (V  
< V  
).  
RING  
TIP  
5:0  
LVS[5:0]  
Loop Voltage Sense Magnitude.  
This register reports the magnitude of the differential loop voltage (V –V  
). The  
TIP  
RING  
range is 0 V to 94.5 V in 1.5 V steps.  
Register 79. Loop Current Sense  
Bit  
D7  
D6  
LCSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LCSP  
Function  
Read returns zero.  
6
Loop Current Sense Polarity.  
This register reports the polarity of the loop current.  
0 = Positive loop current (forward direction).  
1 = Negative loop current (reverse direction).  
5:0  
LCS[5:0]  
Loop Current Sense Magnitude.  
This register reports the magnitude of the loop current. The range is 0 mA to 78.75 mA in  
1.25 mA steps.  
88  
Rev. 0.92  
Si3215  
Register 80. TIP Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VTIP[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VTIP[7:0]  
TIP Voltage Sense.  
This register reports the real time voltage at TIP with respect to ground. The range is 0 V  
(0x00) to –95.88 V (0xFF) in .376 V steps.  
Register 81. RING Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VRING[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VRING[7:0]  
RING Voltage Sense.  
This register reports the real time voltage at RING with respect to ground. The range is  
0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
Register 82. Battery Voltage Sense 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS1[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS1[7:0] Battery Voltage Sense 1.  
Function  
7:0  
This register is one of two registers that reports the real time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
Rev. 0.92  
89  
Si3215  
Register 83. Battery Voltage Sense 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS2[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS2[7:0] Battery Voltage Sense 2.  
Function  
7:0  
This register is one of two registers that reports the real time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
Register 84. Transistor 1 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ1[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ1[7:0]  
Transistor 1 Current Sense.  
This register reports the real time current through Q1. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
Register 85. Transistor 2 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ2[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ2[7:0]  
Transistor 2 Current Sense.  
This register reports the real time current through Q2. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
90  
Rev. 0.92  
Si3215  
Register 86. Transistor 3 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ3[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ3[7:0]  
Transistor 3 Current Sense.  
This register reports the real time current through Q3. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 87. Transistor 4 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ4[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ4[7:0]  
Transistor 4 Current Sense.  
This register reports the real time current through Q4. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 88. Transistor 5 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ5[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ5[7:0]  
Transistor 5 Current Sense.  
This register reports the real time current through Q5. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
Rev. 0.92  
91  
Si3215  
Register 89. Transistor 6 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ6[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ6[7:0]  
Transistor 6 Current Sense.  
This register reports the real time current through Q6. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
Register 92. DC-DC Converter PWM Period  
Bit  
Name DCN[7]  
Type R/W  
D7  
D6  
1
D5  
D4  
D3  
D2  
D1  
D0  
DCN[5:0]  
R
R/W  
Reset settings = 1111_1111  
Bit  
Name  
Function  
7:0  
DCN[7:0]  
DC-DC Converter Period.  
This register sets the PWM period for the dc-dc converter. The range is 3.906 µs (0x40)  
to 15.564 µs (0xFF) in 61.035 ns steps.  
Bit 6 is fixed to one and read-only, so there are two ranges of operation:  
3.906–7.751 µs, used for MOSFET transistor switching.  
11.719–15.564 µs, used for BJT transistor switching.  
92  
Rev. 0.92  
Si3215  
Register 93. DC-DC Converter Switching Delay  
Si3215  
D4  
Bit  
Name DCCAL  
Type R/W  
D7  
D6  
D5  
DCPOL  
R
D3  
D2  
DCTOF[4:0]  
R/W  
D1  
D0  
Reset settings = 0001_0100 (Si3215)  
Reset settings = 0011_0100 (Si3215M)  
Bit  
Name  
Function  
DC-DC Converter Peak Current Monitor Calibration Status.  
7
DCCAL  
Writing a one to this bit starts the dc-dc converter peak current monitor calibration routine.  
0 = Normal operation.  
1 = Calibration being performed.  
6
5
Reserved  
DCPOL  
Read returns zero.  
DC-DC Converter Feed Forward Pin (DCFF) Polarity.  
This read-only register bit indicates the polarity relationship of the DCFF pin to the DCDRV  
pin. Two versions of the Si3215 are offered to support the two relationships.  
0 = DCFF pin polarity is opposite of DCDRV pin (Si3215).  
1 = DCFF pin polarity is same as DCDRV pin (Si3215M).  
4:0  
DCTOF[4:0] DC-DC Converter Minimum Off Time.  
This register sets the minimum off time for the pulse width modulated dc-dc  
converter control. T  
= (DCTOF + 4) 61.035 ns.  
OFF  
Rev. 0.92  
93  
Si3215  
Register 94. DC-DC Converter PWM Pulse Width  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DCPW[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DCPW[7:0]  
DC-DC Converter Pulse Width.  
Pulse width of DCDRV is given by PW = (DCPW – DCTOF – 4) x 61.035 ns.  
94  
Rev. 0.92  
Si3215  
Register 96. Calibration Control/Status Register 1  
Bit  
D7  
D6  
D5  
CALSP  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CAL  
R/W  
CALR  
R/W  
CALT  
R/W  
CALD  
R/W  
CALC  
R/W  
CALIL  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
CAL  
Function  
Read returns zero.  
6
Calibration Control/Status Bit.  
Setting this bit begins calibration of the entire system.  
0 = Normal operation or calibration complete.  
1 = Calibration in progress.  
5
4
3
CALSP  
CALR  
CALT  
Calibration Speedup.  
Setting this bit shortens the time allotted for V  
calibration cycle.  
0 = 300 ms  
1 = 30 ms  
settling at the beginning of the  
BAT  
RING Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
TIP Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
2
1
0
CALD  
CALC  
CALIL  
Differential DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Common Mode DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
I
Calibration.  
LIM  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Rev. 0.92  
95  
Si3215  
Register 97. Calibration Control/Status Register 2  
Bit  
D7  
D6  
D5  
D4  
CALM1  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CALM2 CALDAC CALADC CALCM  
R/W  
R/W  
R/W  
R/W  
Reset settings = 0001_1111  
Bit  
7:5  
4
Name  
Reserved  
CALM1  
Function  
Read returns zero.  
Monitor ADC Calibration 1.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
3
2
CALM2  
Monitor ADC Calibration 2.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
CALDAC  
DAC Calibration.  
Setting this bit begins calibration of the audio DAC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
1
0
CALADC  
CALCM  
ADC Calibration.  
Setting this bit begins calibration of the audio ADC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Common Mode Balance Calibration.  
Setting this bit begins calibration of the ac longitudinal balance.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
96  
Rev. 0.92  
Si3215  
Register 98. RING Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMR[4:0]  
R/W  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMR[4:0] Gain Mismatch of IE Tracking Loop for RING Current.  
Register 99. TIP Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMT[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMT[4:0] Gain Mismatch of IE Tracking Loop for TIP Current.  
Register 100. Differential Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGD[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGD[4:0]  
Read returns zero.  
Differential DAC Gain Calibration Result.  
Rev. 0.92  
97  
Si3215  
Register 101. Common Mode Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGC[4:0]  
R/W  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGC[4:0]  
Read returns zero.  
Common Mode DAC Gain Calibration Result.  
Register 102. Current Limit Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGIL[3:0]  
R/W  
D1  
Name  
Type  
Reset settings = 0000_1000  
Bit  
7:5  
3:0  
Name  
Function  
Reserved  
CALGIL[3:0]  
Read returns zero.  
Current Limit Calibration Result.  
Register 103. Monitor ADC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
CALMG1[3:0]  
R/W  
CALMG2[3:0]  
R/W  
Reset settings = 1000_1000  
Bit  
7:4  
3:0  
Name  
Function  
CALMG1[3:0] Monitor ADC Offset Calibration Result 1.  
CALMG2[3:0] Monitor ADC Offset Calibration Result 2.  
98  
Rev. 0.92  
Si3215  
Register 104. Analog DAC/ADC Offset  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACP  
R/W  
DACN  
R/W  
ADCP  
R/W  
ADCN  
R/W  
Reset settings = 0000_0000  
Bit  
7:4  
3
Name  
Reserved  
DACP  
Function  
Read returns zero.  
Positive Analog DAC Offset.  
Negative Analog DAC Offset.  
Positive Analog ADC Offset.  
Negative Analog ADC Offset.  
2
DACN  
1
ADCP  
0
ADCN  
Register 105. DAC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACOF[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DACOF[7:0]  
DAC Offset Calibration Result.  
Register 107. DC Peak Current Monitor Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CMDCPK[3:0]  
R/W  
Reset settings = 0000_1000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Read returns zero.  
CMDCPK[3:0] DC Peak Current Monitor Calibration Result.  
Rev. 0.92  
99  
Si3215  
Register 108. Enhancement Enable  
Bit  
Name ILIMEN  
Type R/W  
D7  
D6  
FSKEN  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
HYSTEN  
R/W  
DCSU  
R/W  
LCVE  
R/W  
DCFIL  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
ILIMEN  
Current Limit Increase.  
When enabled, this bit temporarily increases the maximum differential current limit at the  
end of a ring burst to enable a faster settling time to a dc linefeed state.  
0 = The value programmed in ILIM (direct Register 71) is used.  
1 = The maximum differential loop current limit is temporarily increased to 41 mA.  
6
FSKEN  
FSK Generation Enhancement.  
When enabled, this bit will increase the clocking rate of tone generator 1 to 24 kHz only  
when the REL bit (direct Register 32, bit 6) is set. Also, dedicated oscillator registers are  
used for FSK generation (indirect registers 69–74). Audio tones are generated using this  
new higher frequency, and oscillator 1 active and inactive timers have a finer bit resolu-  
tion of 41.67 µs. This provides greater resolution during FSK caller ID signal generation.  
0 = Tone generator always clocked at 8 kHz; OSC1, OSC1X., and OSC1Y are always  
used.  
1 = Tone generator module clocked at 24 kHz and dedicated FSK registers used only  
when REL = 1; otherwise clocked at 8 kHz.  
5
DCSU  
DC-DC Converter Control Speedup.  
When enabled, this bit invokes a multi-threshold error control algorithm which allows the  
dc-dc converter to adjust more quickly to voltage changes.  
0 = Normal control algorithm used.  
1 = Multi-threshold error control algorithm used.  
4:3  
2
Reserved  
LCVE  
Read returns zero.  
Voltage-Based Loop Closure.  
Enables loop closure to be determined by the TIP-to-RING voltage rather than loop cur-  
rent.  
0 = Loop closure determined by loop current.  
1 = Loop closure determined by TIP-to-RING voltage.  
1
0
DCFIL  
DC-DC Converter Squelch.  
When enabled, this bit squelches noise in the audio band from the dc-dc converter con-  
trol loop.  
0 = Voice band squelch disabled.  
1 = Voice band squelch enabled.  
HYSTEN  
Loop Closure Hysteresis Enable.  
When enabled, this bit allows hysteresis to the loop closure calculation. The upper and  
lower hysteresis thresholds are defined by indirect registers 15 and 66, respectively.  
0 = Loop closure hysteresis disabled.  
1 = Loop closure hysteresis enabled.  
100  
Rev. 0.92  
Si3215  
4. Indirect Registers  
Indirect registers are not directly mapped into memory but are accessible through the IDA and IAA registers. A  
write to IDA followed by a write to IAA is interpreted as a write request to an indirect register. In this case, the  
contents of IDA are written to indirect memory at the location referenced by IAA at the next indirect register update.  
A write to IAA without first writing to IDA is interpreted as a read request from an indirect register. In this case, the  
value located at IAA is written to IDA at the next indirect register update. Indirect registers are updated at a rate of  
16 kHz. For pending indirect register transfers, IAS (direct Register 31) will be one until serviced. In addition an  
interrupt, IND (Register 20), can be generated upon completion of the indirect transfer.  
Table 34. Si3210 to Si3215 Indirect Register Cross Reference  
Si3210  
Indirect  
Register  
Si3215  
Indirect  
Register  
Indirect  
Register  
Si3210  
Indirect  
Register  
Si3215  
Indirect  
Register  
Indirect  
Register  
Name  
Si3210  
Indirect  
Register  
Si3215  
Indirect  
Register  
Indirect  
Register  
Name  
Name  
OSC1  
OSC1X  
OSC1Y  
OSC2  
OSC2X  
OSC2Y  
ROFF  
RCO  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
26  
0
1
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
ADCG  
LCRT  
RPTP  
CML  
38  
39  
25  
26  
27  
64  
66  
69  
70  
71  
72  
73  
74  
NQ34  
NQ56  
2
40  
VCMR  
VMIND  
LCRTL  
FSK0X  
FSK0  
3
41  
4
CMH  
43  
5
PPT12  
PPT34  
PPT56  
NCLR  
NRTP  
NQ12  
99  
6
100  
101  
102  
103  
104  
7
FSK1X  
FSK1  
8
RNGX  
RNGY  
DACG  
9
FSK01  
FSK10  
13  
Rev. 0.92  
101  
Si3215  
4.1. Oscillators  
See functional description sections of tone generation, ringing, and pulse metering for guidelines on computing  
register values. All values are represented in twos-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 35. Oscillator Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
2
3
4
5
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
6
7
8
9
ROFF[5:0]  
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
Table 36. Oscillator Indirect Registers Description  
Description  
Address  
Reference Page  
0
Oscillator 1 Frequency Coefficient.  
33  
Sets tone generator 1 frequency.  
1
2
3
4
5
6
Oscillator 1 Amplitude Register.  
33  
33  
33  
33  
33  
35  
Sets tone generator 1 signal amplitude.  
Oscillator 1 Initial Phase Register.  
Sets initial phase of tone generator 1 signal.  
Oscillator 2 Frequency Coefficient.  
Sets tone generator 2 frequency.  
Oscillator 2 Amplitude Register.  
Sets tone generator 2 signal amplitude.  
Oscillator 2 Initial Phase Register.  
Sets initial phase of tone generator 2 signal.  
Ringing Oscillator DC Offset.  
Sets dc offset component (V –V  
) to ringing waveform.  
RING  
TIP  
The range is 0 to 94.5 V in 1.5 V increments.  
102  
Rev. 0.92  
Si3215  
Table 36. Oscillator Indirect Registers Description (Continued)  
Address  
Description  
Reference Page  
7
Ringing Oscillator Frequency Coefficient.  
35  
35  
35  
Sets ringing generator frequency.  
8
9
Ringing Oscillator Amplitude Register.  
Sets ringing generator signal amplitude.  
Ringing Oscillator Initial Phase Register.  
Sets initial phase of ringing generator signal.  
4.2. Digital Programmable Gain/Attenuation  
See functional description sections of digital programmable gain/attenuation for guidelines on computing register  
values. All values are represented in twos-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 37. Digital Programmable Gain/Attenuation Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13  
14  
DACG[11:0]  
ADCG[11:0]  
Table 38. Digital Programmable Gain/Attenuation Indirect Registers Description  
Addr.  
Description  
Reference  
Page  
13 Receive Path Digital to Analog Converter Gain/Attenuation.  
39  
This register sets gain/attenuation for the receive path. The digitized signal is effectively mul-  
tiplied by DACG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
14 Transmit Path Analog to Digital Converter Gain/Attenuation.  
39  
This register sets gain/attenuation for the transmit path. The digitized signal is effectively  
multiplied by ADCG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
Rev. 0.92  
103  
Si3215  
4.3. SLIC Control  
See descriptions of linefeed interface and power monitoring for guidelines on computing register values. All values  
are represented in twos-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 39. SLIC Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
64  
LCRT[5:0]  
RPTP[5:0]  
CML[5:0]  
CMH[5:0]  
PPT12[7:0]  
PPT34[7:0]  
PPT56[7:0]  
NCLR[12:0]  
NRTP[12:0]  
NQ12[12:0]  
NQ34[12:0]  
NQ56[12:0]  
VCMR[3:0]  
VMIND[3:0]  
66  
LCRTL[5:0]  
Table 40. SLIC Control Indirect Registers Description  
Description  
Addr.  
Reference Page  
15 Loop Closure Threshold.  
28  
Loop closure detection threshold. This register defines the upper bounds threshold if hys-  
teresis is enabled (direct Register 108, bit 0). The range is 0–80 mA in 1.27 mA steps.  
16 Ring Trip Threshold.  
38  
Ring trip detection threshold during ringing.  
17 Common Mode Minimum Threshold for Speed-Up.  
This register defines the negative common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
18 Common Mode Maximum Threshold for Speed-Up.  
This register defines the positive common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
19 Power Alarm Threshold for Transistors Q1 and Q2.  
27  
104  
Rev. 0.92  
Si3215  
Table 40. SLIC Control Indirect Registers Description (Continued)  
Description  
Addr.  
Reference Page  
20 Power Alarm Threshold for Transistors Q3 and Q4.  
27  
27  
28  
38  
27  
27  
27  
35  
21 Power Alarm Threshold for Transistors Q5 and Q6.  
22 Loop Closure Filter Coefficient.  
23 Ring Trip Filter Coefficient.  
24 Thermal Low Pass Filter Pole for Transistors Q1 and Q2.  
25 Thermal Low Pass Filter Pole for Transistors Q3 and Q4.  
26 Thermal Low Pass Filter Pole for Transistors Q5 and Q6.  
27 Common Mode Bias Adjust During Ringing.  
Recommended value of 0 decimal.  
64 DC-DC Converter V Voltage.  
29  
OV  
This register sets the overhead voltage, V , to be supplied by the dc-dc converter.  
OV  
When the VOV bit = 0 (direct Register 66, bit 4), V should be set between 0 and 9 V  
OV  
(VMIND = 0 to 6h). When the VOV bit = 1, V should be set between 0 and 13.5 V  
OV  
(VMIND = 0 to 9h).  
66 Loop Closure Threshold—Lower Bound.  
28  
This register defines the lower threshold for loop closure hysteresis, which is enabled in  
bit 0 of direct Register 108. The range is 0–80 mA in 1.27 mA steps.  
4.4. FSK Control  
For detailed instructions on FSK signal generation, refer to “AN32: FSK Generation”. These registers support  
enhanced FSK generation mode, which is enabled by setting FSKEN = 1 (direct Register 108, bit 6) and REL = 1  
(direct Register 32, bit 6).  
Table 41. FSK Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
69  
70  
71  
72  
73  
74  
FSK0X[15:0]  
FSK0[15:0]  
FSK1X[15:0]  
FSK1[15:0]  
FSK01[15:0]  
FSK10[15:0]  
Rev. 0.92  
105  
Si3215  
Table 42. FSK Control Indirect Registers Description  
Description  
Addr  
Reference Page  
69 FSK Amplitude Coefficient for Space.  
35 and AN32  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a space or “0”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
70 FSK Frequency Coefficient for Space.  
35 and AN32  
35 and AN32  
35 and AN32  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a space or “0”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
71 FSK Amplitude Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a mark or “1”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
72 FSK Frequency Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a mark or “1”. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
73 FSK Transition Parameter from 0 to 1.  
35 and AN32  
35 and AN32  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a space (0) to a mark (1).  
74 FSK Transition Parameter from 1 to 0.  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a mark (1) to a space (0).  
106  
Rev. 0.92  
Si3215  
5. Pin Descriptions: Si3215  
QFN  
TSSOP  
38  
37  
1
2
CS  
INT  
SCLK  
SDI  
PCLK  
DRX  
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
IREF  
CAPP  
QGND  
CAPM  
36 SDO  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
38 37 36 35 34 33 32  
1
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
31 SDITHRU  
35  
34  
33  
32  
31  
30  
SDITHRU  
30  
2
3
4
DCDRV  
DCDRV  
DCFF  
TEST  
GNDD  
VDDD  
29  
DCFF  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TEST  
GNDD  
VDDD  
ITIPN  
ITIPP  
5
6
7
IREF  
CAPP  
QGND  
CAPM  
STIPDC  
SRINGDC  
29 ITIPN  
8
28  
27  
ITIPP  
VDDA2  
9
VDDA2  
10  
11  
12  
26 IRINGP  
IRINGP  
IRINGN  
IGMP  
25  
24  
23  
22  
21  
20  
IRINGN  
IGMP  
GNDA  
IGMN  
SRINGAC  
STIPAC  
STIPDC 15  
SRINGDC 16  
STIPE  
SVBAT 18  
SRINGE  
13 14 15 16 17 18 19  
17  
19  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
35  
1
CS  
Chip Select.  
Active low. When inactive, SCLK and SDI are ignored and SDO is high impedance.  
When active, the serial port is operational.  
36  
37  
38  
1
2
3
4
5
6
INT  
PCLK  
DRX  
DTX  
Interrupt.  
Maskable interrupt output. Open drain output for wire-ORed operation.  
PCM Bus Clock.  
Clock input for PCM bus timing.  
Receive PCM Data.  
Input data from PCM bus.  
Transmit PCM Data.  
Output data to PCM bus.  
2
FSYNC Frame Synch.  
8 kHz frame synchronization signal for the PCM bus. May be short or long pulse for-  
mat.  
3
4
7
8
RESET Reset.  
Active low input. Hardware reset used to place all control registers in the default  
state.  
SDCH  
DC Monitor.  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter.  
Rev. 0.92  
107  
Si3215  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
5
9
SDCL  
DC Monitor.  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter.  
6
7
8
10  
11  
12  
V
Analog Supply Voltage.  
DDA1  
Analog power supply for internal analog circuitry.  
IREF  
Current Reference.  
Connects to an external resistor used to provide a high accuracy reference current.  
CAPP  
SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
9
13  
14  
QGND Component Reference Ground.  
10  
CAPM SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
STIPDC TIP Sense.  
Analog current input used to sense voltage on the TIP lead.  
SRINGDC RING Sense.  
Analog current input used to sense voltage on the RING lead.  
STIPE TIP Emitter Sense.  
Analog current input used to sense voltage on the Q6 emitter lead.  
SVBAT VBAT Sense.  
Analog current input used to sense voltage on dc-dc converter output voltage lead.  
SRINGE RING Emitter Sense.  
Analog current input used to sense voltage on the Q5 emitter lead.  
STIPAC TIP Transmit Input.  
Analog ac input used to detect voltage on the TIP lead.  
SRINGAC RING Transmit Input.  
Analog ac input used to detect voltage on the RING lead.  
IGMN  
Transconductance Amplifier External Resistor.  
Negative connection for transconductance gain setting resistor.  
GNDA Analog Ground.  
Ground connection for internal analog circuitry.  
IGMP  
Transconductance Amplifier External Resistor.  
Positive connection for transconductance gain setting resistor.  
IRINGN Negative Ring Current Control.  
Analog current output driving Q3.  
IRINGP Positive Ring Current Control.  
Analog current output driving Q2.  
V
Analog Supply Voltage.  
DDA2  
Analog power supply for internal analog circuitry.  
108  
Rev. 0.92  
Si3215  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
24  
25  
26  
27  
28  
28  
29  
30  
31  
32  
ITIPP  
Positive TIP Current Control.  
Analog current output driving Q1.  
ITIPN  
Negative TIP Current Control.  
Analog current output driving Q4.  
VDDD  
Digital Supply Voltage.  
Digital power supply for internal digital circuitry.  
GNDD Digital Ground.  
Ground connection for internal digital circuitry.  
Test.  
TEST  
Enables test modes for Silicon Labs internal testing. This pin should always be tied  
to ground for normal operation.  
29  
33  
DCFF  
DC Feed-Forward/High Current General Purpose Output.  
Feed-forward drive of external bipolar transistors to improve dc-dc converter  
efficiency.  
30  
31  
32  
33  
34  
34  
35  
36  
37  
38  
DCDRV DC Drive/Battery Switch.  
DC-DC converter control signal output which drives external bipolar transistor.  
SDITHRU SDI Passthrough.  
Cascaded SDI output signal for daisy-chain mode.  
Serial Port Data Out.  
SDO  
SDI  
Serial port control data output.  
Serial Port Data In.  
Serial port control data input.  
SCLK  
Serial Port Bit Clock Input.  
Serial port clock input. Controls the serial data on SDO and latches the data on SDI.  
Rev. 0.92  
109  
Si3215  
6. Pin Descriptions: Si3201  
TIP  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ITIPP  
ITIPN  
IRINGP  
IRINGN  
NC  
RING  
VBAT  
VBATH  
NC  
STIPE  
SRINGE  
NC  
GND  
VDD  
Pin #  
Name  
Input/  
Description  
Output  
1
TIP  
NC  
I/O  
I/O  
TIP Output—Connect to the TIP lead of the subscriber loop.  
No Internal Connection—Do not connect to any electrical signal.  
RING Output—Connect to the RING lead of the subscriber loop.  
Operating Battery Voltage—Connect to the battery supply.  
High Battery Voltage—This pin is internally connected to VBAT.  
Ground—Connect to a low impedance ground plane.  
2, 6, 9, 12  
3
4
5
7
8
RING  
VBAT  
VBATH  
GND  
VDD  
Supply Voltage—Main power supply for all internal circuitry. Connect to a  
3.3 V or 5 V supply. Decouple locally with a 0.1 µF/6 V capacitor.  
10  
SRINGE  
O
RING Emitter Sense Output—Connect to the SRINGE pin of the Si321x  
pin.  
11  
13  
STIPE  
O
I
TIP Emitter Sense Output—Connect to the STIPE pin of the Si321x pin.  
IRINGN  
Negative RING Current Control—Connect to the IRINGN lead of the  
Si321x.  
14  
15  
16  
IRINGP  
ITIPN  
I
I
Positive RING Current Drive—Connect to the IRINGP lead of the Si321x.  
Negative TIP Current Control—Connect to the ITIPN lead of the Si321x.  
Positive TIP Current Control—Connect to the ITIPP lead of the Si321x.  
Exposed Thermal Pad—Connect to the bulk ground plane.  
ITIPP  
I
Bottom-Side  
Exposed Pad  
110  
Rev. 0.92  
Si3215  
7. Ordering Guide  
Device  
Description  
DCFF Pin  
Package  
Lead-Free and  
Temp Range  
RoHS-Compliant  
Si3215-X-FM  
Si3215-X-GM  
Si3215M-X-FM  
Si3215M-X-GM  
Si3215-FT  
ProSLIC  
ProSLIC  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
N/A  
QFN-38  
QFN-38  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
ProSLIC  
QFN-38  
ProSLIC  
QFN-38  
–40 to 85 °C  
0 to 70 °C  
ProSLIC  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
SOIC-16  
Si3215-GT  
ProSLIC  
–40 to 85 °C  
0 to 70 °C  
Si3215M-FT  
Si3215M-GT  
Si3215-KT  
ProSLIC  
ProSLIC  
–40 to 85 °C  
0 to 70 °C  
ProSLIC  
Si3215-BT  
ProSLIC  
No  
–40 to 85 °C  
0 to 70 °C  
Si3215M-KT  
Si3215M-BT  
Si3201-FS  
ProSLIC  
No  
ProSLIC  
No  
–40 to 85 °C  
0 to 70 °C  
Line Interface  
Line Interface  
Line Interface  
Line Interface  
Yes  
Yes  
No  
Si3201-GS  
N/A  
SOIC-16  
–40 to 85 °C  
0 to 70 °C  
Si3201-KS  
N/A  
SOIC-16  
Si3201-BS  
N/A  
SOIC-16  
No  
–40 to 85 °C  
Notes:  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
Rev. 0.92  
111  
Si3215  
Table 43. Evaluation Kit Ordering Guide  
Item  
Supported  
ProSLIC  
Description  
Linefeed  
Interface  
Si3215PPQX-EVB  
Si3215PPQ1-EVB  
Si3215DCQX-EVB  
Si3215DCQ1-EVB  
Si3215MPPQX-EVB  
Si3215MPPQ1-EVB  
Si3215MDCQX-EVB  
Si3215MDCQ1-EVB  
Si3215-QFN  
Si3215-QFN  
Si3215-QFN  
Si3215-QFN  
Si3215M-QFN  
Si3215M-QFN  
Si3215M-QFN  
Si3215M-QFN  
Evaluation Board, Daughter Card  
Evaluation Board, Daughter Card  
Daughter Card Only  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Discrete  
Si3201  
Daughter Card Only  
Evaluation Board, Daughter Card  
Evaluation Board, Daughter Card  
Daughter Card Only  
Daughter Card Only  
112  
Rev. 0.92  
Si3215  
8. Package Outline: 38-Pin QFN  
Figure 31 illustrates the package details for the Si321x. Table 44 lists the values for the dimensions shown in the  
illustration.  
Bottom Side  
Exposed Pad  
3.2 x 5.2 mm  
Figure 31. 38-Pin Quad Flat No-Lead Package (QFN)  
Table 44. Package Diagram Dimensions1,2,3  
Millimeters  
Symbol  
Min  
0.75  
0.00  
0.18  
Nom  
0.85  
Max  
0.95  
0.05  
0.30  
A
A1  
b
0.01  
0.23  
D
5.00 BSC.  
3.20  
D2  
e
3.10  
3.30  
0.50 BSC.  
7.00 BSC.  
5.20  
E
E2  
L
5.10  
0.35  
0.03  
5.30  
0.55  
0.08  
0.10  
0.10  
0.08  
0.10  
0.45  
L1  
0.05  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless  
otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1982.  
3. Recommended card reflow profile is per the JEDEC/IPC  
J-STD-020C specification for Small Body Components.  
Rev. 0.92  
113  
Si3215  
9. Package Outline: 38-Pin TSSOP  
Figure 32 illustrates the package details for the Si321x. Table 45 lists the values for the dimensions shown in the  
illustration.  
B
E/2  
2x  
E1  
E
θ
L
C
2x  
B A  
ddd  
e
ccc  
A
D
C
aaa  
C
A
Seating Plane  
b
A1  
C
38x  
M
bbb  
C B A  
Approximate device weight is 115.7 mg  
Figure 32. 38-Pin Thin Shrink Small Outline Package (TSSOP)  
Table 45. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Nom  
Max  
1.20  
0.15  
0.27  
0.20  
9.80  
A
A1  
b
0.05  
0.17  
0.09  
9.60  
c
D
9.70  
e
E
0.50 BSC  
6.40 BSC  
4.40  
E1  
L
4.30  
0.45  
0°  
4.50  
0.75  
8°  
0.60  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.05  
0.20  
114  
Rev. 0.92  
Si3215  
10. Package Outline: 16-Pin ESOIC  
Figure 33 illustrates the package details for the Si3201. Table 46 lists the values for the dimensions shown in the  
illustration.  
16  
9
8
x45°  
h
E
H
.25 M B M  
–B–  
θ
1
L
B
Bottom Side  
Exposed Pad  
2.3 x 3.6 mm  
.25 M C A M B S  
Detail F  
–A–  
D
C
A
–C–  
See Detail F  
A1  
e
γ
Seating Plane  
Weight: Approximate device weight is 0.15 grams.  
Figure 33. 16-Pin Thermal Enhanced Small Outline Integrated Circuit (ESOIC) Package  
Table 46. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
1.35  
0
Max  
1.75  
0.15  
.51  
A
A1  
B
C
D
E
e
.33  
.19  
.25  
9.80  
3.80  
10.00  
4.00  
1.27 BSC  
H
h
5.80  
.25  
.40  
6.20  
.50  
L
1.27  
0.10  
8º  
γ
θ
0º  
Rev. 0.92  
115  
Si3215  
DOCUMENT CHANGE LIST  
Revision 0.9 to Revision 0.91  
Separated the Si3216/15 document into two data  
sheets.  
Added QFN package graphic to cover page.  
Corrected EVB ordering part numbers.  
Revision 0.91 to Revision 0.92  
Figure 12, “Si3215/Si3215M Typical Application  
Circuit Using Discrete Components,” on page 20.  
Added optional components to application schematic to  
improve idle channel noise.  
"Register 10. Two-Wire Impedance Synthesis  
Control" on page 59.  
Corrected description for China impedance from  
“(200 + 600 || 100 nF)” to “200 + (680 ||  
100 nF)”.  
"7. Ordering Guide" on page 111.  
Updated to include product revision designator  
Table 43, “Evaluation Kit Ordering Guide,” on  
page 112.  
Updated to include “M” version of device.  
Table 15, “Si3215/Si3215M External Component  
Values—Discrete Solution,” on page 20.  
Added TO-92 transistor suppliers to BOM.  
Table 46, “Package Diagram Dimensions,” on  
page 115  
Changed A1 max from 0.10 to 0.15.  
Rev. C Si3215 Silicon:  
Register 14, “Powerdown Control 1,” on page 61.  
Changed Bit 3 from “Monitor ADC Power-Off Control” to  
“PLL Free-Run Control”.  
116  
Rev. 0.92  
Si3215  
NOTES:  
Rev. 0.92  
117  
Si3215  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: ProSLICinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ProSLIC are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
118  
Rev. 0.92  

相关型号:

SI3215MDCQ1-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3215MDCQX-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3215MPPQ1-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3215MPPQX-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3215PPQ1-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3215PPQX-EVB

PROSLIC㈢ PROGRAMMABLE CMOS SLIC/CODEC WITH RINGING/BATTERY VOLTAGE GENERATION
SILICON

SI3216

Broadband AND Voice Telephony Solutions
SILICON

SI3216-FTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON

SI3216-GTR

暂无描述
SILICON

SI3216-KTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, TSSOP-38
SILICON

SI3216M-FTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON

SI3216M-GT

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON