SI3216-FTR [SILICON]

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38;
SI3216-FTR
型号: SI3216-FTR
厂家: SILICON    SILICON
描述:

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38

电池 电信 光电二极管 电信集成电路
文件: 总122页 (文件大小:731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3216  
PROSLIC® PROGRAMMABLE WIDEBAND SLIC/CODEC  
WITH RINGING/BATTERY VOLTAGE GENERATION  
Features  
Dual-mode wideband (50 Hz to 7 kHz)/  
narrowband (200 Hz to 3.4 kHz) codec with  
16-bit 16 kHz sampling for enhanced audio  
quality  
Software-programmable features and  
parameters:  
Ringing frequency, amplitude, cadence,  
and waveshape  
Performs all BORSCHT functions  
Ideal for customer premise equipment  
applications  
Software-programmable internal ringing up  
to 90 VPK  
2-wire ac impedance and hybrid  
Constant current feed (20 to 41 mA)  
Loop closure and ring trip thresholds  
Software programmable signal  
generation and audio processing:  
µ-law/A-law companding  
FSK (caller ID) generation  
Dual audio tone generators  
Smooth and abrupt polarity reversal  
100% software-configurable global  
solution  
Ordering Information  
Integrated battery supply with dynamic  
voltage output  
On-chip dc-dc converter continuously  
minimizes power in all operating modes  
Entire solution can be powered from a  
single 3.3 V or 5 V supply  
See page 114.  
Pin Assignments  
3.3 V to 35 V dc input range  
Si3216  
QFN  
Audio loopback, dc, and GR-909  
subscriber line diagnostic capabilities  
Lead-free and RoHS-compliant packages  
available  
Dynamic 0 V to –94.5 V output  
Low-cost inductor and high-efficiency  
transformer versions supported  
Applications  
38 37 36 35 34 33 32  
1
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
IREF  
CAPP  
QGND  
CAPM  
STIPDC  
SRINGDC  
31 SDITHRU  
2
3
4
30  
Voice-over-broadband systems:  
DSL, cable, wireless  
PBX/IP-PBX/key telephone systems  
Terminal adapters: ISDN, Ethernet, USB  
DCDRV  
29 DCFF  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TEST  
GNDD  
VDDD  
ITIPN  
ITIPP  
VDDA2  
IRINGP  
IRINGN  
IGMP  
Description  
5
6
7
The Si3216 ProSLIC® is a low-voltage CMOS device that provides a complete analog  
telephone interface supporting both wideband (50 Hz to 7.0 kHz) and narrowband  
(200 Hz to 3.4 kHz) audio codec modes for enhanced voice quality in Voice-over-IP  
(VoIP) applications. The ProSLIC integrates subscriber line interface circuit (SLIC),  
wideband voice codec, and battery generation functionality into a single fully-  
programmable device for global operation using only one hardware solution. The  
Si3216’s wideband codec provides expanded audio band (50 Hz to 7 kHz), 16 kHz  
sampling rate, and increased dynamic range for improved audio quality over traditional  
telephony codecs. The integrated battery supply continuously adapts its output voltage  
to minimize power and enables the entire solution to be powered from a single 3.3 V  
(Si3216M only) or 5 V supply. Si3216 features include software-configurable 5 REN  
internal ringing up to 90 VPK, DTMF and caller ID generation, and a comprehensive set  
of telephony signaling capabilities including expanded support of Japan and China  
country requirements. The ProSLIC is packaged in a 38-pin QFN and TSSOP, and the  
Si3201 high-voltage line interface device is packaged in a thermally-enhanced 16-pin  
SOIC.  
8
9
10  
11  
12  
13 14 15 16 17 18 19  
U.S. Patent #6,567,521  
U.S. Patent #6,812,744  
Other patents pending  
Functional Block Diagram  
INT RESET  
Si3216  
Line  
Status  
CS  
Control  
Interface  
SCLK  
SDO  
SDI  
TIP  
DTX  
Dual-Mode  
Wideband/  
Narrowband  
Codec  
Linefeed  
Control  
Linefeed  
Interface  
Tone  
Generation  
Prog.  
Hybrid  
PCM  
Interface  
DRX  
RING  
ZS  
FSYNC  
PCLK  
Discrete  
Components  
DC-DC Converter Controller  
PLL  
Rev. 1.0 12/08  
Copyright © 2008 by Silicon Laboratories  
Si3216  
Si3216  
2
Rev. 1.0  
Si3216  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.1. Linefeed Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.2. Battery Voltage Generation and Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2.3. Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
2.4. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2.5. Audio Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2.6. Two-Wire Impedance Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
2.7. Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.8. Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.9. Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
2.10. PCM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
4. Indirect Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
4.1. Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
4.2. Digital Programmable Gain/Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
4.3. SLIC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
4.4. FSK Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109  
5. Pin Descriptions: Si3216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110  
6. Pin Descriptions: Si3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
7. Ordering Guides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114  
8. Package Outline: 38-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
9. Package Outline: 38-Pin TSSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
10. Package Outline: 16-Pin ESOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
11. Silicon Labs Si3216 Support Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122  
Rev. 1.0  
3
Si3216  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings and Thermal Information  
1
Parameter  
Symbol  
Si3216  
Value  
Unit  
DC Supply Voltage  
V
, V  
, V  
DDA2  
–0.5 to 6.0  
±10  
V
mA  
V
DDD  
DDA1  
Input Current, Digital Input Pins  
Digital Input Voltage  
I
IN  
V
–0.3 to (V  
+ 0.3)  
DDD  
IND  
2
Operating Temperature Range  
T
–40 to 100  
C
A
Storage Temperature Range  
T
–40 to 150  
C
STG  
TSSOP-38 Thermal Resistance, Typical  
QFN-38 Thermal Resistance, Typical  
70  
35  
C/W  
C/W  
W
JA  
JA  
2
Continuous Power Dissipation  
P
0.7  
D
Si3201  
DC Supply Voltage  
V
–0.5 to 6.0  
–104  
V
V
DD  
Battery Supply Voltage  
V
BAT  
Input Voltage: TIP, RING, SRINGE, STIPE pins  
Input Voltage: ITIPP, ITIPN, IRINGP, IRINGN pins  
V
(V  
– 0.3) to (V + 0.3)  
V
INHV  
BAT  
DD  
V
–0.3 to (V + 0.3)  
V
IN  
DD  
2
Operating Temperature Range  
T
–40 to 100  
–40 to 150  
55  
C
A
Storage Temperature Range  
T
C
STG  
3
SOIC-16 Thermal Resistance, Typical  
C/W  
W
JA  
2
Continuous Power Dissipation  
P
0.8 at 70 ºC  
0.6 at 85 ºC  
D
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. Operation above 125 ºC junction temperature may degrade device reliability.  
3. Thermal resistance assumes a multi-layer PCB with the exposed pad soldered to a topside PCB pad.  
4
Rev. 1.0  
Si3216  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min*  
Typ  
Max*  
Unit  
o
Ambient Temperature  
Ambient Temperature  
Si3216 Supply Voltage  
T
K-grade  
B-grade  
0
25  
25  
70  
85  
C
A
o
T
–40  
3.13  
C
A
V
,V  
,
3.3/5.0  
5.25  
V
DDD DDA1  
V
DDA2  
Si3201 Supply Voltage  
Si3201 Battery Voltage  
V
3.13  
–96  
3.3/5.0  
5.25  
–10  
V
V
DD  
V
V
= V  
BATH BAT  
BAT  
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
Product specifications are only guaranteed when the typical application circuit (including component tolerances) is  
used.  
Rev. 1.0  
5
Si3216  
Table 3. AC Characteristics—Wideband Audio Mode: Si3216  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance—Wideband Audio Mode  
Overload Level  
THD = 1.5%  
2.5  
V
PK  
1
Single Frequency Distortion  
2-wire – PCM or  
PCM – 2-wire:  
50 Hz–7.0 kHz  
–45  
dB  
2
Signal-to-(Noise + Distortion) Ratio  
50 Hz–7.0 kHz  
D/A or A/D 16-bit  
Active off-hook and OHT,  
Zac = 600   
TBD  
45  
Audio Tone Generator  
0 dBm0, Active off-hook and  
dB  
2
Signal-to-Distortion Ratio  
OHT, Zac = 600   
Intermodulation Distortion  
0
–41  
0.5  
dB  
dB  
2
Gain Accuracy  
2-wire to PCM, 1014 Hz  
–0.5  
Zac = 600   
PCM to 2-wire, 1014 Hz  
–0.5  
0
0.5  
dB  
Zac = 600   
Gain Accuracy Over Frequency  
Group Delay Over Frequency  
Gain Tracking  
Zac = 600   
Figure 1,2  
1014 Hz sine wave, refer-  
ence level –10 dBm  
signal level:  
3 dB to –37 dB  
–37 dB to –50 dB  
–50 dB to –60 dB  
at 1000 Hz  
–0.25  
–0.5  
–1.0  
0.25  
0.5  
dB  
dB  
dB  
s  
1.0  
Round-Trip Group Delay  
Gain Step Accuracy  
1100  
–6 dB to 6 dB  
–0.017  
–0.25  
–0.1  
20  
0.017  
0.25  
0.1  
dB  
dB  
dB  
dB  
Gain Variation with Temperature  
Gain Variation with Supply  
2-Wire Return Loss  
All gain settings  
V
= V  
= 3.3/5 V ±5%  
DDA  
DDA  
50 Hz–7.0 kHz  
25  
Zac = 600   
Transhybrid Balance  
50 Hz–7.0 kHz  
20  
dB  
Zac = 600   
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The level of any unwanted tones within the bandwidth of 0 to 8 kHz does not exceed –55 dBm.  
4. Assumes normal distribution of betas.  
6
Rev. 1.0  
Si3216  
Table 3. AC Characteristics—Wideband Audio Mode: Si3216 (Continued)  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Noise Performance—Wideband Audio Mode  
3
Idle Channel Noise  
7 kHz flat  
40  
40  
40  
23  
dBrn  
dB  
PSRR from V  
PSRR from V  
PSRR from V  
RX and TX, DC to 7 kHz  
RX and TX, DC to 7 kHz  
RX and TX, DC to 7 kHz  
DDA  
DDD  
BAT  
dB  
dB  
Longitudinal Performance—Wideband Audio Mode  
Longitudinal to Metallic or PCM  
Balance  
50 Hz–7.0 kHz,   
60  
dB  
Q1,Q2  
150, 1% mismatch  
4
60 to 240  
40  
60  
60  
dB  
dB  
Q1,Q2  
4
300 to 800  
Q1,Q2  
Metallic to Longitudinal Balance  
Longitudinal Impedance  
50 Hz–7.0 kHz  
dB  
50 Hz–7.0 kHz at TIP or  
RING  
Register selectable  
ETBO/ETBA  
00  
01  
10  
33  
17  
17  
Longitudinal Current per Pin  
Active off-hook  
50 Hz–7.0 kHz  
Register selectable  
ETBO/ETBA  
4
8
8
mA  
mA  
mA  
00  
01  
10  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The level of any unwanted tones within the bandwidth of 0 to 8 kHz does not exceed –55 dBm.  
4. Assumes normal distribution of betas.  
Rev. 1.0  
7
Si3216  
(dB)  
+1  
(Hz)  
50  
100  
6.4k 7k  
8k  
9k  
–1  
–4.5  
–25  
–45  
Figure 1. Transmit and Receive Path Attenuation Distortion—Wideband Mode  
(ms)  
4
2
1
0.25  
(Hz)  
50  
100  
300  
4k  
6.4k  
7k  
Figure 2. Transmit and Receive Path Group Delay Distortion—Wideband Mode  
8
Rev. 1.0  
Si3216  
Table 4. AC Characteristics—Narrowband Audio Mode  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance—Narrowband Audio Mode  
Overload Level  
THD = 1.5%  
2.5  
V
PK  
1
Single Frequency Distortion  
2-wire – PCM or  
PCM – 2-wire:  
200 Hz–3.4 kHz  
–45  
dB  
2
Signal-to-(Noise + Distortion) Ratio  
200 Hz–3.4 kHz  
D/A or A/D 16-bit  
Active off-hook and OHT,  
any Zac  
Figure 3  
45  
Audio Tone Generator  
0 dBm0, Active off-hook and  
OHT, any Zac  
dB  
2
Signal-to-Distortion Ratio  
Intermodulation Distortion  
0
–41  
0.5  
0.5  
dB  
dB  
dB  
2
Gain Accuracy  
2-wire to PCM, 1014 Hz  
PCM to 2-wire, 1014 Hz  
–0.5  
–0.5  
0
Gain Accuracy Over Frequency  
Group Delay Over Frequency  
Figure 5,6  
Figure 7,8  
3
Gain Tracking  
1014 Hz sine wave, refer-  
ence level –10 dBm  
signal level:  
3 dB to –37 dB  
–37 dB to –50 dB  
–50 dB to –60 dB  
at 1000 Hz  
–0.25  
–0.5  
–1.0  
0.25  
0.5  
dB  
dB  
dB  
µs  
1.0  
Round-Trip Group Delay  
Gain Step Accuracy  
Gain Variation with Temperature  
Gain Variation with Supply  
2-Wire Return Loss  
Transhybrid Balance  
Notes:  
1100  
–6 dB to 6 dB  
–0.017  
–0.25  
–0.1  
30  
0.017  
0.25  
0.1  
dB  
dB  
dB  
dB  
dB  
All gain settings  
V
= V  
= 3.3/5 V ±5%  
DDA  
DDA  
200 Hz–3.4 kHz  
200 Hz–3.4 kHz  
35  
30  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking performance  
in the signal range of 3 dB to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM sampling rate.  
4. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
5. Assumes normal distribution of betas.  
Rev. 1.0  
9
Si3216  
Table 4. AC Characteristics—Narrowband Audio Mode (Continued)  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Noise Performance—Narrowband Audio Mode  
4
Idle Channel Noise  
C-Message Weighted  
Psophometric Weighted  
3 kHz flat  
40  
40  
40  
15  
–75  
18  
dBrnC  
dBmP  
dBrn  
dB  
PSRR from VDDA  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
RX and TX, DC to 3.4 kHz  
PSRR from V  
PSRR from V  
dB  
DDD  
BAT  
dB  
Longitudinal Performance—Narrowband Audio Mode  
Longitudinal to Metallic or PCM  
Balance  
200 Hz–3.4 kHz,   
60  
dB  
Q1,Q2  
150, 1% mismatch  
5
60 to 240  
40  
60  
60  
60  
dB  
dB  
dB  
dB  
Q1,Q2  
5
300 to 800  
Q1,Q2  
Using Si3201  
Metallic to Longitudinal Balance  
Longitudinal Impedance  
200 Hz–3.4 kHz  
200 Hz–3.4 kHz  
at TIP or RING  
Register selectable  
ETBO/ETBA  
00  
01  
10  
33  
17  
17  
Longitudinal Current per Pin  
Active off-hook  
200 Hz–3.4 kHz  
Register selectable  
ETBO/ETBA  
4
8
8
mA  
mA  
mA  
00  
01  
10  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should be  
–10 dBm0. The output signal magnitude at any other frequency will be smaller than the maximum value specified.  
2. Analog signal measured as V  
– V  
. Assumes ideal line impedance matching.  
TIP  
RING  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking performance  
in the signal range of 3 dB to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM sampling rate.  
4. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
5. Assumes normal distribution of betas.  
10  
Rev. 1.0  
Si3216  
Figure 3. Transmit and Receive Path SNDR—Narrowband Mode  
9
8
7
6
Fundamental  
Acceptable  
5
Output Power  
Region  
(dBm0)  
4
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 4. Overload Compression Performance  
Rev. 1.0  
11  
Si3216  
Typical Response  
Typical Response  
Figure 5. Transmit Path Frequency Response—Narrowband Mode  
12  
Rev. 1.0  
Si3216  
Figure 6. Receive Path Frequency Response—Narrowband Mode  
Rev. 1.0  
13  
Si3216  
Figure 7. Transmit Group Delay Distortion—Narrowband Mode  
Figure 8. Receive Group Delay Distortion—Narrowband Mode  
14  
Rev. 1.0  
Si3216  
Table 5. Linefeed Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Loop Resistance Range  
R
See Note  
0
160  
10  
4
%
V
LOOP  
DC Loop Current Accuracy  
I
= 29 mA, ETBA = 4 mA  
–10  
–4  
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance  
R
I
< I  
LIM  
–4  
160  
4
V
DO  
LOOP  
DC Open Circuit Voltage—  
Ground Start  
V
R
I
<I ; V  
wrt ground  
RING  
= 48 V  
OCTO  
ROTO  
RING LIM  
V
OC  
DC Output Resistance—  
Ground Start  
I
<I ; RING to ground  
160  
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
150  
–20  
–20  
k  
%
%
TOTO  
Loop Closure/Ring Ground  
Detect Threshold Accuracy  
I
= 11.43 mA  
20  
20  
THR  
Ring Trip Threshold  
Accuracy  
R
= 1100   
THR  
Ring Trip Response Time  
User Programmable Register 70  
and Indirect Register 23  
Ring Amplitude  
V
R
5 REN load; sine wave;  
44  
V
rms  
TR  
R
= 160 V  
= –75 V  
LOOP  
BAT  
Ring DC Offset  
Programmable in Indirect  
Register 6  
0
V
OS  
Trapezoidal Ring Crest  
Factor Accuracy  
Crest factor = 1.3  
–.05  
1.35  
.05  
1.45  
Sinusoidal Ring Crest  
Factor  
R
CF  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
Calibration Time  
f = 20 Hz  
–1  
–50  
1
%
ms  
ms  
%
Accuracy of ON/OFF Times  
CAL to CAL Bit  
50  
600  
25  
Power Alarm Threshold  
Accuracy  
At Power Threshold = 300 mW  
–25  
Note: DC resistance round trip; 160 corresponds to 2 kft 26 gauge AWG.  
Rev. 1.0  
15  
Si3216  
Table 6. Monitor ADC Characteristics  
(VDDA, VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Nonlinearity  
(6-bit resolution)  
DNLE  
–1/2  
1/2  
LSB  
Integral Nonlinearity  
(6-bit resolution)  
INLE  
–1  
1
LSB  
Gain Error (voltage)  
Gain Error (current)  
10  
20  
%
%
Table 7. Si321x DC Characteristics, VDDA = VDDD = 5.0 V  
(VDDA, VDDD = 4.75 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
V
0.7 x V  
0.3 x V  
V
V
V
IH  
DDD  
V
IL  
DDD  
DIO1,DIO2,SDITHRU:IO = –4 mA  
SDO, DTX:IO = –8 mA  
V
V
– 0.6  
OH  
DDD  
DOUT: IO = –40 mA  
V
– 0.8  
V
V
DDD  
DIO1,DIO2,DOUT,SDITHRU:  
IO = 4 mA  
Low Level Output Voltage  
Input Leakage Current  
V
0.4  
OL  
SDO,INT,DTX:IO = 8 mA  
I
–10  
10  
µA  
L
Table 8. Si321x DC Characteristics, VDDA = VDDD = 3.3 V  
(VDDA, VDDD = 3.13 to 3.47 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
V
0.7 x V  
IH  
DDD  
V
0.3 x V  
V
IL  
DDD  
DIO1,DIO2,SDITHRU:IO = –2 mA  
SDO, DTX:IO = –4 mA  
V
V
– 0.6  
V
OH  
DDD  
DOUT: IO = –40 mA  
V
– 0.8  
V
V
DDD  
DIO1,DIO2,DOUT,SDITHRU:  
IO = 2 mA  
Low Level Output Voltage  
Input Leakage Current  
V
0.4  
OL  
SDO,INT,DTX:IO = 4 mA  
I
–10  
10  
A  
L
16  
Rev. 1.0  
Si3216  
Table 9. Power Supply Characteristics  
(VDDA,VDDD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade)  
1
2
Parameter  
Symbol  
I + I  
Test Condition  
Max  
Unit  
Typ  
Typ  
Power Supply Current,  
Analog and Digital  
Sleep (RESET = 0)  
Open  
0.1  
33  
37  
0.13  
42.8  
53  
0.3  
49  
68  
mA  
mA  
mA  
A
D
Active on-hook  
ETBO = 4 mA, codec and Gm  
amplifier powered down  
Active OHT  
ETBO = 4 mA  
Active off-hook  
ETBA = 4 mA, I  
57  
72  
83  
mA  
mA  
= 20 mA  
73  
36  
88  
47  
99  
55  
LIM  
Ground-start  
mA  
Ringing  
mA  
µA  
µA  
µA  
mA  
Sinewave, REN = 1, V = 56 V  
45  
55  
65  
PK  
V
Supply Current (Si3201)  
I
Sleep mode, RESET = 0  
Open (high impedance)  
100  
DD  
VDD  
100  
110  
1
Active on-hook standby  
Forward/reverse active off-hook, no  
I
, ETBO = 4 mA, V  
= –24 V  
LOOP  
BAT  
Forward/reverse OHT, ETBO = 4 mA,  
= –70 V  
1
mA  
V
BAT  
3
V
Supply Current  
I
Sleep (RESET = 0)  
Open (DCOF = 1)  
Active on-hook  
0
0
mA  
mA  
BAT  
BAT  
mA  
mA  
V
= 48 V, ETBO = 4 mA  
3
OC  
Active OHT  
ETBO = 4 mA  
11  
Active off-hook  
ETBA = 4 mA, I  
mA  
mA  
= 20 mA  
30  
2
LIM  
Ground-start  
Ringing  
V
mA  
= 56 V  
,
PK  
5.5  
PK_RING  
sinewave ringing, REN = 1  
V
Supply Slew Rate  
When using Si3201  
10  
V/µs  
BAT  
Notes:  
1. VDDD, VDDA = 3.3 V.  
2. VDDD, VDDA = 5.25 V.  
3. IBAT = current from VBAT (the large negative supply). For a switched-mode power supply regulator efficiency of 71%,  
the user can calculate the regulator current consumption as IBAT x VBAT/(0.71 x VDC).  
Rev. 1.0  
17  
Si3216  
Table 10. Switching Characteristics—General Inputs  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF)  
Parameter  
Symbol  
Min  
Typ  
Max  
20  
Unit  
ns  
Rise Time, RESET  
RESET Pulse Width  
t
r
t
100  
ns  
rl  
Note: All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are  
IH = VD – 0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
V
Table 11. Switching Characteristics—SPI  
VDDA = VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Cycle Time SCLK  
t
0.062  
25  
25  
20  
20  
s  
ns  
ns  
ns  
ns  
c
Rise Time, SCLK  
t
r
Fall Time, SCLK  
t
f
Delay Time, SCLK Fall to SDO Active  
t
t
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
t
25  
20  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
20  
h1  
t
25  
su2  
t
20  
h2  
Delay Time between Chip Selects  
(Continuous SCLK)  
t
440  
cs  
cs  
d4  
Delay Time between Chip Selects  
(Non-continuous SCLK)  
t
220  
ns  
ns  
SDI to SDITHRU Propagation Delay  
t
4
10  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
18  
Rev. 1.0  
Si3216  
tthru  
tc  
tr  
tr  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
Figure 9. SPI Timing Diagram  
Table 12. Switching Characteristics—PCM Highway Serial Interface  
VD = 3.13 to 5.25 V, TA = 0 to 70 °C for K-Grade, –40 to 85 °C for B-Grade, CL = 20 pF  
Parameter  
Test  
Conditions  
1
1
1
Symbol  
Units  
Min  
Typ  
Max  
PCLK Frequency  
1/t  
0.256  
0.512  
0.768  
1.024  
1.536  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
c
PCLK Duty Cycle Tolerance  
PCLK Period Jitter Tolerance  
Rise Time, PCLK  
t
40  
50  
60  
120  
25  
%
ns  
ns  
ns  
ns  
ns  
dty  
t
–120  
jitter  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
2
Delay Time, PCLK Rise to DTX Tri-state  
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
Notes:  
t
25  
20  
25  
20  
20  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
t
h1  
t
su2  
t
h2  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O –0.4 V, VIL = 0.4 V.  
2. Spec applies to PCLK fall to DTX tri-state when that mode is selected (TRI = 0).  
Rev. 1.0  
19  
Si3216  
tr  
tf  
tc  
PCLK  
th1  
tsu1  
FSYNC  
tsu2  
th2  
DRX  
DTX  
td2  
td1  
td3  
Figure 10. PCM Highway Interface Timing Diagram  
VCC  
R1  
200k  
15  
20  
38  
37  
STIPDC  
STIPAC  
SCLK  
SDI  
C24  
0.1 F  
C3  
220 nF  
SPI Bus  
PCM  
VCC  
R8  
4.7K  
36  
1
SDO  
CS  
6
3
4
C18  
4.7 F  
C19  
4.7 F  
FSYNC  
PCLK  
DRX  
15  
29  
ITIPN  
IRINGN  
ITIPP  
ITIPN  
Bus  
VCC  
13  
16  
14  
11  
10  
25  
28  
26  
17  
19  
5
IRINGN  
ITIPP  
DTX  
1
3
TIP  
R322  
10k  
TIP  
C5  
22nF  
IRINGP  
STIPE  
IRINGP  
STIPE  
SRINGE  
Protection  
Circuit  
2
7
R2  
196k  
INT  
Note 2  
C6  
22nF  
RESET  
R4  
196k  
R262  
40.2k  
RING  
RING  
SRINGE  
24  
22  
IGMP  
IGMN  
R15  
243  
R7  
4.02k  
R6  
4.02k  
18  
SVBAT  
11  
12  
14  
R5  
200k  
IREF  
CAPP  
CAPM  
C4  
220 nF  
R9  
4.7K  
R14  
40.2k  
C2  
10 F  
C1  
10 F  
21  
16  
SRINGAC  
SRINGDC  
13  
QGND  
R3  
Notes:  
200k  
L2  
1. Values and configurations for these  
components can be derived from Table 18  
or from App Note 45.  
2. Only one component per system needed.  
3. All circuit ground should have a single-point  
connection to the ground plane.  
4. Si3201 bottom-side exposed pad should be  
electrically and thermally connected to bulk  
ground plane.  
C26  
0.1 F  
VDDA1 VDDA2  
47 H  
VDDD  
GND  
C31  
10 F  
10 V  
Q9  
R21  
15  
C15  
C16  
C17  
C30  
10 F  
2N2222  
0.1 F  
0.1 F 0.1 F  
VCC  
R291  
R281  
VDC  
Note 1  
VBAT  
DC-DC Converter  
Circuit  
VDC  
Figure 11. Si3216(M) Application Circuit Using Si3201  
20  
Rev. 1.0  
Si3216  
Table 13. Si3216(M) + Si3201 External Component Values  
Value  
Component (s)  
Supplier  
C1,C2  
10 µF, 6 V Ceramic or 16 V Low Leakage Electrolytic,  
±20%  
Murata, Nichicon URL1C100MD  
C3,C4  
C5,C6  
220 nF, 100 V, X7R, ±20%  
22 nF, 100 V, X7R, ±20%  
0.1 µF, 6 V, Y5V, ±20%  
4.7 µF Ceramic, 6 V, X7R, ±20%  
0.1 µF, 100 V, X7R, ±20%  
10 µF, 6 V, Electrolytic, ±20%  
47 µH, 150 A  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C15,C16,C17,C24  
C18,C19  
C26  
C30, C31  
L2  
Coilcraft  
R1,R3,R5  
R2,R4  
200 k, 1/10 W, ±1%  
196 k, 1/10 W, ±1%  
4.02 k, 1/10 W, ±1%  
4.7 k, 1/10 W, ±1%  
R6,R7  
R8,R9  
R14,R26*  
R15  
40.2 k, 1/10 W, ±1%  
243 , 1/10 W, ±1%  
R21  
15 , 1/4 W, ±5%  
R28,R29  
1/10 W, 1% (See “AN45: Design Guide for The Si3210  
DC-DC Converter” or Table 18 for value selection)  
R32*  
Q9  
10 k, 1/10 W, ±5%  
60 V, General Purpose Switching NPN  
ON Semi MMBT2222ALT1; Central  
Semi CMPT2222A; Zetex  
FMMT2222  
*Note: Only one component is necessary on each signal in the system.  
Rev. 1.0  
21  
Si3216  
VCC  
GND  
R1  
200k  
38  
37  
SCLK  
SDI  
15  
20  
GND  
STIPDC  
STIPAC  
SPI Bus  
36  
1
SDO  
CS  
R8  
4.7k  
C3  
220nF  
6
3
4
FSYNC  
PCLK  
DRX  
Q4  
5401  
28  
29  
17  
Q1  
5401  
ITIPP  
ITIPN  
STIPE  
R10  
10  
PCM Bus  
C324  
0.1 µF  
Q6  
5551  
TIP  
5
VCC  
DTX  
C8  
220nF  
R102 (100k)  
R13  
5.1k  
C5  
22nF  
R2  
100k  
2
R32  
Protection  
Circuit  
10k  
R6  
80.6  
26  
25  
19  
C6  
22nF  
2
7
IRINGP  
IRINGN  
SRINGE  
INT  
Note 2  
Q2  
5401  
Q3  
5401  
RESET  
RING  
C344  
0.1 µF  
R4  
100k  
R11  
10  
R262  
40.2k  
24  
22  
Q5  
5551  
R104 (100k)  
IGMP  
IGMN  
R15  
243  
C7  
220nF  
R12  
5.1k  
R5  
100k  
C334  
0.1 µF  
18  
R104 (100k)  
SVBAT  
11  
12  
14  
IREF  
CAPP  
CAPM  
R7  
80.6  
C4  
220nF  
R9  
4.7k  
C2  
10uF  
C1  
10uF  
R14  
40.2k  
21  
16  
SRINGAC  
SRINGDC  
Notes:  
13  
1. Values and configurations for these  
components can be derived from Table 18  
or from “AN45: Design Guide for the  
Si3210/15/16 DC-DC Converter”.  
2. Only one component per system needed.  
3. All circuit grounds should have a single-  
point connection to the ground plane.  
4. Optional components to improve idle  
channel noise.  
QGND  
R3  
200k  
C26  
0.1uF  
GND  
L2  
47 H  
R21  
15  
VDDA1 VDDA2  
VDDD  
Q9  
2N2222  
C31  
10 F  
10 V  
VCC  
C15  
0.1 F  
C16  
C17  
C30  
10 F  
VDC  
1
1
R29  
R28  
0.1 F 0.1 F  
Note 1  
DC-DC Converter  
Circuit  
VBAT  
VDC  
Figure 12. Si3216(M) Typical Application Circuit Using Discrete Line Interface Circuit  
Table 14. Si3216(M) External Component Values  
Component  
Value  
Supplier/Part Number  
C1,C2  
10 µF, 6 V Ceramic/Tantalum or 16 V Low Leakage  
Murata, Panasonic, Nichicon  
URL1C100MD  
Electrolytic, 20%  
C3,C4  
C5,C6  
220 nF, 100 V, X7R, 20%  
22 nF, 100 V, X7R, 20%  
220 nF, 50 V, X7R, 20%  
0.1 µF, 6 V, Y5V, 20%  
0.1 µF, 100 V, X7R, 20%  
10 µF, 16 V, Electrolytic, 20%  
47 µH, 150 A  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
C7,C8  
C15,C16,C17  
C26  
C30, C31  
L2  
Coilcraft  
Q1,Q2,Q3,Q4  
120 V, PNP, BJT  
Central Semi CMPT5401; ON Semi  
MMBT5401LT1, 2N5401; Zetex  
FMMT5401;  
Fairchild 2N5401; Samsung 2N5401  
Q5,Q6  
Q9  
120 V, NPN, BJT  
Central Semi CZT5551, ON Semi  
2N5551;  
Fairchild 2N5551; Phillips 2N5551  
NPN General Purpose BJT  
ON Semi MMBT2222ALT1; Central Semi  
CMPT2222A; Zetex FMMT2222  
22  
Rev. 1.0  
Si3216  
Table 14. Si3216(M) External Component Values (Continued)  
R1,R3  
200 k, 1/10 W, 1%  
100 k, 1/10 W, 1%  
R2,R4,R5,  
R102,R104,R105  
R6,R7  
R8,R9  
80.6 , 1/4 W, 1%  
4.7 k, 1/10 W, 1%  
10 , 1/10 W, 5%  
5.1 k, 1/10 W, 5%  
40.2 k, 1/10 W, 1%  
243 , 1/10 W, 1%  
15 , 1/4 W, 1%  
R10,R11  
R12,R13  
R14,R26*  
R15  
R21  
R28,R29  
1/10 W, 1% (See “AN45: Design Guide for The  
Si3210 DC-DC Converter” or Table 18 for value  
selection)  
R32*  
10 k, 1/10 W, 5%  
*Note: Only one component is necessary on each signal in the system.  
VDC  
F1  
SDCH  
SDCL  
R191  
C252  
10 µF  
C142  
0.1 µF  
R181  
Note 1  
R201  
C10  
0.1 µF  
R16  
200  
Q7  
FZT953  
DCFF  
Q8  
2N2222  
D1  
ES1D  
VBAT  
C9  
10 µF  
R17  
L1  
DCDRV  
Note 1  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 20 or from “AN45: Design Guide for the Si3210/15/16  
DC-DC Converter”.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 13. Si321x BJT/Inductor DC-DC Converter Circuit  
Rev. 1.0  
23  
Si3216  
Table 15. Si321x BJT/Inductor DC-DC Converter Component Values  
Component(s)  
Value  
Supplier  
C9  
10 µF, 100 V, Electrolytic, ±20%  
0.1 µF, X7R, ±20%  
Panasonic  
C10*  
C14*  
C25*  
R16  
R17  
Murata, Johanson, Novacap, Venkel  
Murata, Johanson, Novacap, Venkel  
Panasonic  
0.1 µF, X7R, ±20%  
10 F, Electrolytic, ±20%  
200 , 1/10 W, ±5%  
1/10 W, ±5% (See “AN45: Design Guide for The Si3210 DC-  
DC Converter” or Table 20 for value selection)  
R18  
R19,R20  
F1  
1/4 W, ±5% (See AN45 or Table 20 for value selection)  
1/10 W, ±1% (See AN45 or Table 20 for value selection)  
Fuse  
Belfuse SSQ Series  
D1  
Ultra Fast Recovery 200 V, 1 A Rectifier  
General Semi ES1D; Central Semi  
CMR1U-02  
L1  
1A, Shielded Inductor (See AN45 or  
Table 20 for value selection)  
API Delevan SPD127 series, Sumida  
CDRH127 series, Datatronics DR340-1  
series, Coilcraft DS5022  
Q7  
Q8  
120 V, High Current Switching PNP  
60 V, General Purpose Switching NPN  
Zetex FZT953, FZT955, ZTX953,  
ZTX955; Sanyo 2SA1552  
ON Semi MMBT2222ALT1; Central  
Semi CMPT2222A; Zetex FMMT2222  
*Note: Voltage rating of this device must be greater than VDC  
.
VDC  
F1  
SDCH  
R191  
C252  
10 µF  
C142  
0.1 µF  
R181  
Note 1  
R201  
SDCL  
1
2
3
4
R22  
22  
C27  
470 pF  
D1  
ES1D  
VBAT  
6
DCFF  
M1  
IRLL014N  
C9  
10 µF  
10  
1
T1  
Note 1  
R17  
200 k  
DCDRV  
NC  
GND  
Notes:  
1. Values and configurations for these components can be derived  
from Table 19 or from “AN45: Design Guide for the Si3210/15/16  
DC-DC Converter”.  
2. Voltage rating for C14 and C25 must be greater than VDC.  
Figure 14. Si321xM MOSFET/Transformer DC-DC Converter Circuit  
24  
Rev. 1.0  
Si3216  
Table 16. Si321xM MOSFET/Transformer DC-DC Converter Component Values  
Component (s)  
Value  
Supplier  
C9  
10 µF, 100 V, Electrolytic, ±20%  
0.1 µF, X7R, ±20%  
Panasonic  
C14*  
C25*  
C27  
R17  
R18  
Murata, Johanson, Novacap, Venkel  
Panasonic  
10 µF, Electrolytic, ±20%  
470 pF, 100 V, X7R, ±20%  
200 k, 1/10 W, ±5%  
Murata, Johanson, Novacap, Venkel  
1/4 W, ±5% (See “AN45: Design Guide for the Si3210 DC-  
DC Converter” or Table 19 for value selection)  
R19,R20  
1/10 W, ±1% (See AN45 or Table 19  
for value selection)  
R22  
F1  
22 , 1/10 W, ±5%  
Fuse  
Belfuse SSQ Series  
D1  
Ultra Fast Recovery 200 V, 1A Rectifier  
General Semi ES1D; Central Semi  
CMR1U-02  
T1  
Power Transformer  
Coiltronic CTX01-15275;  
Datatronics SM76315;  
Midcom 31353R-02  
M1  
100 V, Logic Level Input MOSFET  
Intl Rect. IRLL014N; Intersil  
HUF76609D3S; ST Micro  
STD5NE10L, STN2NE10L  
*Note: Voltage rating of this device must be greater than VDC  
.
QRDN  
QTDN  
Q3  
Q4  
5401  
5401  
R23  
RRBN0  
3.0k  
R24  
RTBN0  
3.0k  
QRP  
Q5  
QTN  
5551  
Q6  
C8  
CTBN  
100 nF  
5551  
C7  
CRBN  
100 nF  
R7  
RRE  
80.6  
R12  
RRBN  
5.1k  
R6  
RTE  
80.6  
R13  
RTBN  
5.1k  
Figure 15. Si321x Optional Equivalent Q5, Q6 Bias Circuit  
Rev. 1.0  
25  
Si3216  
Table 17. Si321x Optional Bias Component Values  
Component  
C7,C8  
Value  
Supplier/Part Number  
Murata, Johanson, Venkel  
100 nF, 100 V, X7R, 20%  
3.0 k, 1/10 W, 5%  
R23,R24  
The subcircuit above can be substituted into any of the ProSLIC solutions as an optional bias circuit for Q5, Q6. For  
this optional subcircuit, C7 and C8 are different in voltage and capacitance to the standard circuit. R23 and R24 are  
additional components.  
Table 18. Component Value Selection for Si321x/Si321xM  
Component  
Value  
Comments  
R28 = (V + V )/148 µA  
R28  
1/10 W, 1% resistor  
DD  
BE  
For V = 3.3 V: 26.1 k  
where V is the nominal VBE for Q9  
BE  
DD  
For V = 5.0 V: 37.4 k  
DD  
R29  
1/10 W, 1% resistor  
R29 = V  
/148 µA  
CLAMP  
For V  
For V  
For V  
= 80 V: 541 k  
= 85 V: 574 k  
= 100 V: 676 k  
where V  
is the clamping voltage for V  
CLAMP BAT  
CLAMP  
CLAMP  
CLAMP  
Table 19. Component Value Selection Examples for Si321xM MOSFET/Transformer DC-DC Converter  
VDC  
3.3 V  
5.0 V  
12 V  
24 V  
Ringing Load/Loop Resistance  
3 REN/117   
Transformer Ratio  
R18  
R19, R20  
7.15 k  
16.5 k  
56.2 k  
121 k  
1:2  
1:2  
1:3  
1:4  
0.06   
0.10   
0.68   
2.20   
5 REN/117   
5 REN/117   
5 REN/117   
Note: There are other system and software conditions that influence component value selection; so, please refer to “AN45:  
Design Guide for the Si3210 DC-DC Converter” for detailed guidance.  
Table 20. Component Value Selection Examples for Si321x BJT/Inductor DC-DC Converter  
VDC  
5 V  
Ringing Load/Loop Length  
3 REN/117   
L1  
R17  
R18  
R19, R20  
16.5 k  
56.2k  
33 µH  
150 µH  
560 µH  
100   
162   
274   
0.12   
0.56   
2.2   
12 V  
24 V  
5 REN/117   
5 REN/117   
121 k  
Note: There are other system and software conditions that influence component value selection, so please refer to “AN45:  
Design Guide for the Si3210 DC-DC Converter” for detailed guidance.  
26  
Rev. 1.0  
Si3216  
2.1.1. DC Feed Characteristics  
2. Functional Description  
The ProSLIC has programmable constant voltage and  
constant current zones as depicted in Figure 16. Open  
The ProSLIC is a single, low-voltage CMOS device that  
provides all SLIC, codec, DTMF detection, and signal  
generation functions needed for a complete analog  
telephone interface. The ProSLIC performs all battery,  
overvoltage, ringing, supervision, codec, hybrid, and  
test (BORSCHT) functions. The Si3216 supports  
wideband (50 Hz–7 kHz) and narrowband (200 Hz–  
3.4 kHz) audio codec modes to provide an expanded  
audio band at a 16 kHz sample rate for enhanced audio  
quality as well as standard telephony audio  
compatibility. The Si3216 is ideal for Customer Premise  
Equipment (CPE) where enhanced audio quality is  
required.  
circuit TIP-to-RING voltage (V ) defines the constant  
OC  
voltage zone and is programmable from 0 V to 94.5 V in  
1.5 V steps. The loop current limit (I ) defines the  
constant current zone and is programmable from 20 mA  
to 41 mA in 3 mA steps. The ProSLIC has an inherent  
LIM  
dc output resistance (R ) of 160 .  
O
V(TIP-RING) (V)  
Constant  
Voltage  
Zone  
VOC  
Unlike most monolithic SLICs, the ProSLIC does not  
require externally-supplied, high-voltage battery  
supplies. Instead, it generates all necessary battery  
voltages from a positive dc supply using its own dc-dc  
converter controller. Two fully-programmable tone  
generators can produce DTMF tones, phase continuous  
FSK (caller ID) signaling, and call progress tones. Pulse  
metering signal generation is also integrated. The  
Si3201 linefeed interface IC performs all high-voltage  
functions. As an option, the Si3201 can be replaced with  
low-cost discrete components.  
RO=160  
Constant Current  
Zone  
ILIM  
ILOOP(mA)  
Figure 16. Simplified DC Current/Voltage  
Linefeed Characteristic  
The TIP-to-RING voltage (V ) is offset from ground by  
OC  
a programmable voltage (V ) to provide voltage  
CM  
The linefeed provides programmable on-hook voltage,  
programmable off-hook loop current, reverse battery  
operation, loop or ground start operation, and on-hook  
transmission ringing voltage. Loop current and voltage  
are continuously monitored using an integrated A/D  
converter. Balanced 5 REN ringing with or without a  
programmable dc offset is integrated. The available  
offset, frequency, waveshape, and cadence options are  
designed to ring the widest variety of terminal devices  
and to reduce external controller requirements.  
headroom to the positive-most terminal (TIP in forward  
polarity states and RING in reverse polarity states) for  
carrying audio signals. Table 21 summarizes the  
parameters to be initialized before entering an Active  
state.  
Table 21. Programmable Ranges of DC  
Linefeed Characteristics  
Parameter Programmable Default  
Register  
Bits  
Location*  
Range  
Value  
A complete audio transmit and receive path is  
integrated, including ac impedance and hybrid gain.  
These features are software-programmable, allowing  
ILIM  
VOC  
VCM  
20 to 41 mA  
20 mA  
ILIM[2:0]  
VOC[5:0]  
VCM[5:0]  
Direct  
Register 71  
for  
a
single hardware design to meet global  
0 to 94.5 V  
0 to 94.5 V  
48 V  
3 V  
Direct  
Register 72  
requirements. Digital voice data transfer occurs over a  
standard PCM bus. Control data is transferred using a  
standard SPI. The device is available in a 38-pin QFN or  
TSSOP.  
Direct  
Register 73  
*Note: The ProSLIC uses registers that are both directly  
and indirectly mapped. A “direct” register is one that  
is mapped directly.  
2.1. Linefeed Interface  
The ProSLIC’s linefeed interface offers a rich set of  
features and programmable flexibility to meet the  
broadest application requirements. The dc linefeed  
characteristics are software programmable; key current,  
voltage, and power measurements are acquired in real  
time and provided in software registers.  
Rev. 1.0  
27  
Si3216  
2.1.2. Linefeed Architecture  
registers. An internal A/D converter samples the  
measured voltages and currents from the analog sense  
circuitry and translates them into the digital domain. The  
A/D updates the samples at an 800 Hz rate. Two  
derived values are also reported—loop voltage and loop  
The ProSLIC is a low-voltage CMOS device that uses  
either an Si3201 linefeed interface IC or low-cost  
external components to control the high voltages  
required for subscriber line interfaces. Figure 17 is a  
simplified illustration of the linefeed control loop circuit  
for TIP or RING and the external components used.  
current. The loop voltage, V – V  
, is reported as a  
TIP  
RING  
1-bit sign, 6-bit magnitude format. For ground start  
operation, the reported value is the RING voltage. The  
The ProSLIC uses both voltage and current sensing to  
control TIP and RING. DC and ac line voltages on TIP  
and RING are measured through sense resistors R  
loop current, (I – I + I –I )/2, is reported in a 1-  
Q1  
Q2  
Q5 Q6  
bit sign, 6-bit magnitude format. In RING open and TIP  
Open states, the loop current is reported as (I – I ) +  
DC  
Q1  
Q2  
and R , respectively. The ProSLIC uses linefeed  
AC  
(I –I ).  
Q5 Q6  
transistors Q and Q to drive TIP and RING. Q  
P
N
DN  
isolates the high-voltage base of Q from the ProSLIC.  
N
The ProSLIC measures voltage at various nodes in  
order to monitor the linefeed current. R , R , and  
DC  
SE  
R
provide access to these measuring points. The  
BAT  
sense circuitry is calibrated on-chip to guarantee  
measurement accuracy with standard external  
component tolerances. See 2.1.9."Linefeed Calibration"  
on page 33 for details.  
2.1.3. Linefeed Operation States  
The ProSLIC linefeed has eight states of operation as  
shown in Table 22. The state of operation is controlled  
using the Linefeed Control register (direct Register 64).  
The Open state turns off all currents into the external  
bipolar transistors and can be used in the presence of  
fault conditions on the line and to generate Open Switch  
Intervals (OSIs). TIP and RING are tri-stated with a dc  
output impedance of about 150 k. The ProSLIC can  
also automatically enter the Open state if it detects  
excessive power being consumed in the external bipolar  
transistors. See 2.1.5."Power Monitoring and Line Fault  
Detection" on page 30 for more details.  
In the Forward Active and Reverse Active states,  
linefeed circuitry is on, and the audio signal paths are  
disabled. In the forward and reverse on-hook  
transmission states, audio signal paths are enabled to  
provide data transmission during an on-hook loop  
condition.  
The TIP Open state turns off all control currents to the  
external bipolar devices connected to TIP and provides  
an active linefeed on RING for ground start operation.  
The RING Open state provides similar operation with  
the RING drivers off and TIP active.  
The Ringing state drives programmable ringing  
waveforms onto the line.  
2.1.4. Loop Voltage and Current Monitoring  
The ProSLIC continuously monitors the TIP and RING  
voltages and external BJT currents. These values are  
available in registers 78–89. Table 23 on page 30 lists  
the values that are measured and their associated  
28  
Rev. 1.0  
Si3216  
Audio  
Codec  
Monitor A/D  
A/D  
A/D  
D/A  
DSP  
D/A  
SLIC DAC  
Battery Sense  
Emitter Sense  
AC  
Control  
DC  
Control  
AC Sense  
DC Sense  
RAC  
AC  
Control  
Loop  
QDN  
DC  
Control  
Loop  
QP  
CAC  
RBP  
RDC  
RSE  
RBAT  
TIP or  
RING  
QN  
RE  
VBAT  
Figure 17. Simplified ProSLIC Linefeed Architecture for TIP and RING Leads (One Shown)  
Table 22. ProSLIC Linefeed Operations  
LF[2:0]*  
000  
Linefeed State  
Open  
Description  
TIP and RING tri-stated  
001  
Forward Active  
V
V
> V  
> V  
TIP  
TIP  
RING  
RING  
010  
Forward On-Hook Transmission  
TIP Open  
; audio signal paths enabled  
011  
TIP tri-stated, RING active; used for ground start  
Ringing waveform applied to TIP and RING  
100  
Ringing  
101  
Reverse Active  
V
V
> V  
TIP  
RING  
RING  
110  
Reverse On-Hook Transmission  
Ring Open  
> V ; audio signal paths enabled  
TIP  
111  
RING tri-stated, TIP active  
*Note: The Linefeed register (LF) is located in direct Register 64.  
Rev. 1.0  
29  
Si3216  
Table 23. Measured Real Time Linefeed Interface Characteristics  
Parameter  
Measurement  
Range  
Resolution  
Register  
Bits  
Location*  
Loop Voltage Sense (V  
– V  
)
RING  
–94.5 to +94.5 V  
1.5 V  
LVSP,  
Direct Register 78  
TIP  
LVS[6:0]  
Loop Current Sense  
–80 to +80 mA  
1.27 mA  
LCSP,  
Direct Register 79  
LCS[5:0]  
TIP Voltage Sense  
RING Voltage Sense  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to –95.88 V  
0 to 81.35 mA  
0 to 81.35 mA  
0 to 9.59 mA  
0 to 9.59 mA  
0 to 80.58 mA  
0 to 80.58 mA  
0.376 V  
0.376 V  
VTIP[7:0]  
Direct Register 80  
Direct Register 81  
VRING[7:0]  
Battery Voltage Sense 1 (V  
Battery Voltage Sense 2 (V  
)
)
0.376 V  
VBATS1[7:0] Direct Register 82  
VBATS2[7:0] Direct Register 83  
BAT  
BAT  
0.376 V  
Transistor 1 Current Sense  
Transistor 2 Current Sense  
Transistor 3 Current Sense  
Transistor 4 Current Sense  
Transistor 5 Current Sense  
Transistor 6 Current Sense  
0.319 mA  
0.319 mA  
37.6 µA  
IQ1[7:0]  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
Direct Register 84  
Direct Register 85  
Direct Register 86  
Direct Register 87  
Direct Register 88  
Direct Register 89  
37.6 µA  
0.316 mA  
0.316 mA  
*Note: The ProSLIC uses registers that are both directly and indirectly mapped. A direct register is one that is mapped  
directly.  
2.1.5. Power Monitoring and Line Fault Detection  
the type of fault condition present on the line.  
In addition to reporting voltages and currents, the The value of each thermal low-pass filter pole is set  
ProSLIC continuously monitors the power dissipated in according to the following equation:  
each external bipolar transistor. Real time output power  
4096  
800    
3
of any one of the six linefeed transistors can be read by  
setting the Power Monitor Pointer (direct Register 76) to  
point to the desired transistor and then reading the Line  
Power Output Monitor (direct Register 77).  
------------------  
thermal LPF register =  
2  
where is the thermal time constant of the transistor  
package; 4096 is the full range of the 12-bit register, and  
800 is the sample rate in Hertz. Generally = 3 seconds  
for SOT223 packages and 0.16 seconds for SOT23, but  
check with the manufacturer for the thermal time  
constant of a specific device. For example, the power  
alarm threshold and low-pass filter values for Q5 and  
Q6 using an SOT223 package transistor are computed  
as follows:  
The real time power measurements are low-pass  
filtered and compared to a maximum power threshold.  
Maximum power thresholds and filter time constants are  
software-programmable and should be set for each  
transistor pair based on the characteristics of the  
transistors used. Table 24 describes the registers  
associated with this function. If the power in any  
external transistor exceeds the programmed threshold,  
a power alarm event is triggered. The ProSLIC sets the  
Power Alarm register bit, generates an interrupt (if  
enabled), and automatically enters the Open state (if  
AOPN = 1). This feature protects the external  
transistors from fault conditions and, combined with the  
loop voltage and current monitors, allows diagnosis of  
PMAX  
7
1.28  
7
------------------------------  
-----------------  
PPT56 =  
2  
=
2 = 5389 = 150Dh  
Resolution  
0.0304  
Thus, indirect Register 34 should be set to 150Dh.  
Note: The power monitor resolution for Q3 and Q4 is different  
from that of Q1, Q2, Q5, and Q6.  
30  
Rev. 1.0  
Si3216  
Table 24. Associated Power Monitoring and Power Fault Registers  
Parameter  
Description/  
Range  
Resolution  
Register  
Bits  
Location*  
0 to 5 points to Q1  
to Q6, respectively  
N/A  
Power Monitor Pointer  
PWRMP[2:0]  
PWROM[7:0]  
Direct Register 76  
0 to 7.8 W for Q1,  
Q2, Q5, Q6  
0 to 0.9 W for Q3,  
Q4  
30.4 mW  
3.62 mW  
Line Power Monitor Output  
Direct Register 77  
Power Alarm Threshold, Q1 & Q2  
Power Alarm Threshold, Q3 & Q4  
Power Alarm Threshold, Q5 & Q6  
0 to 7.8 W  
0 to 0.9 W  
0 to 7.8 W  
30.4 mW  
3.62 mW  
30.4 mW  
PPT12[7:0]  
PPT34[7:0]  
PPT56[7:0]  
Indirect Register 19  
Indirect Register 20  
Indirect Register 21  
See equation in “2.1.5. Power  
Monitoring and Line Fault Detec-  
tion”  
Thermal LPF Pole, Q1 & Q2  
Thermal LPF Pole, Q3 & Q4  
Thermal LPF Pole, Q5 & Q6  
Power Alarm Interrupt Pending  
NQ12[7:0]  
NQ34[7:0]  
NQ56[7:0]  
Indirect Register 24  
Indirect Register 25  
Indirect Register 26  
Direct Register 19  
See equation in “2.1.5. Power  
Monitoring and Line Fault Detec-  
tion”  
See equation in “2.1.5. Power  
Monitoring and Line Fault Detec-  
tion”  
Bits 2 to 7 corre-  
QnAP[n+1],  
where n = 1 to 6  
spond to Q1 to Q6,  
respectively  
N/A  
N/A  
Bits 2 to 7 corre-  
spond to Q1 to Q6,  
respectively  
QnAE[n+1],  
where n = 1 to 6  
Power Alarm Interrupt Enable  
Direct Register 22  
Direct Register 67  
0 = manual mode  
1 = enter Open  
state upon power  
alarm  
Power Alarm  
Automatic/Manual Detect  
N/A  
AOPN  
*Note: The ProSLIC device uses registers that are both directly and indirectly mapped. A “direct” register is one that is  
mapped directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28  
through 31).  
Rev. 1.0  
31  
Si3216  
LCS  
LVS  
Input  
Signal  
Processor  
ISP_OUT  
Digital  
LPF  
+
LCIP  
LCR  
Debounce  
Filter  
Interrupt  
Logic  
NCLR  
LCDI  
LCIE  
LFS LCVE  
HYSTEN  
Loop Closure  
Threshold  
LCRT LCRTL  
Figure 18. Loop Closure Detection  
2.1.6. Loop Closure Detection  
2.1.8. Voltage-Based Loop Closure Detection  
A loop closure event signals that the terminal equipment An optional voltage-based loop closure detection mode  
has gone off-hook during On-Hook Transmission or On- is enabled by setting LCVE = 1 (direct Register 108,  
Hook Active states. The ProSLIC performs loop closure bit 2). In this mode, the loop voltage is compared to the  
detection digitally using its on-chip monitor A/D loop closure threshold register (LCRT), which  
converter. The functional blocks required to implement represents a minimum voltage threshold instead of a  
loop closure detection are shown in Figure 18. The maximum current threshold. If hysteresis is also  
primary input to the system is the Loop Current Sense enabled, then LCRT represents the upper voltage  
value provided in the LCS register (direct Register 79). boundary and LCRTL represents the lower voltage  
The LCS value is processed in the Input Signal boundary for hysteresis. Although voltage-based loop  
Processor when the ProSLIC is in the On-Hook closure detection is an option, the default current-based  
Transmission or On-Hook Active Linefeed state, as loop closure detection is recommended.  
indicated by the Linefeed Shadow register, LFS[2:0]  
Table 25. Register Set for Loop  
Closure Detection  
(direct Register 64). The data then feeds into a  
programmable digital low-pass filter, which removes  
unwanted ac signal components before threshold  
detection.  
Parameter  
Register  
Location  
The output of the low-pass filter is compared to a  
programmable threshold, LCRT (indirect Register 15).  
The threshold comparator output feeds a programmable  
debouncing filter. The output of the debouncing filter  
remains in its present state unless the input remains in  
the opposite state for the entire period of time  
programmed by the loop closure debounce interval,  
LCDI (direct Register 69). If the debounce interval has  
been satisfied, the LCR bit will be set to indicate that a  
valid loop closure has occurred. A loop closure interrupt  
is generated if enabled by the LCIE bit (direct  
Register 22). Table 25 lists the registers that must be  
written or monitored to correctly detect a loop closure  
condition.  
Loop Closure  
Interrupt Pending  
LCIP  
Direct Reg.19  
Loop Closure  
Interrupt Enable  
LCIE  
Direct Reg. 22  
Loop Closure Threshold LCRT[5:0] Indirect Reg.15  
Loop Closure  
Threshold—Lower  
LCRTL[5:0] Indirect Reg. 66  
Loop Closure Filter  
Coefficient  
NCLR[12:0] Indirect Reg. 22  
Loop Closure Detect  
Status (monitor only)  
LCR  
Direct Reg. 68  
Direct Reg. 69  
Loop Closure Detect  
Debounce Interval  
LCDI[6:0]  
2.1.7. Loop Closure Threshold Hysteresis  
Programmable hysteresis to the loop closure threshold  
can be enabled by setting HYSTEN = 1 (direct  
Register 108, bit 0). The hysteresis is defined by LCRT  
(indirect Register 15) and LCRTL (indirect Register 66),  
which set the upper and lower bounds, respectively.  
Hysteresis Enable  
HYSTEN  
LCVE  
Direct Reg. 108  
Direct Reg. 108  
Voltage-Based Loop  
Closure  
32  
Rev. 1.0  
Si3216  
2.1.9. Linefeed Calibration  
only difference between the two versions is the polarity  
of the DCFF pin with respect to the DCDRV pin. For the  
Si321x, DCDRV and DCFF are opposite polarity. For  
the Si321xM, DCDRV and DCFF are the same polarity.  
Table 26 summarizes these differences.  
An internal calibration algorithm corrects for internal and  
external component errors. The calibration is initiated by  
setting the CAL bit in direct Register 96. Upon  
completion of the calibration cycle, this bit is  
automatically reset.  
Table 26. Si321x and Si321xM Differences  
It is recommended that a calibration be executed  
following system powerup. Upon release of the chip  
reset, the ProSLIC is in the Open state. After powering  
up the dc-dc converter and allowing it to settle for time  
Device  
DCFF Signal  
Polarity  
DCPOL  
Si321x  
0
1
= DCDRV  
= DCDRV  
(T  
) the calibration can be initiated. Additional  
SETTLE  
Si321xM  
calibrations may be performed, but only one calibration  
should be necessary as long as the system remains  
powered up.  
Notes:  
1. DCFF signal polarity with respect to DCDRV signal.  
2. Direct Register 93, bit 5; This is a read-only bit.  
During calibration, V , V , and V voltages are  
RING  
BAT  
TIP  
Extensive design guidance on each of these circuits can  
be obtained from “AN45: Design Guide for the Si3210  
DC-DC Converter” and from an interactive dc-dc  
converter design spreadsheet. Both of these documents  
are available on the Silicon Laboratories website  
(www.silabs.com).  
controlled by the calibration engine to provide the  
correct external voltage conditions for the algorithm.  
Calibration should be performed in the On-Hook state.  
RING or TIP must not be connected to ground during  
the calibration.  
When using the Si3201, automatic calibration routines  
for RING gain mismatch and TIP gain mismatch should  
2.2.2. BJT/Inductor Circuit Option Using Si321x  
not be performed. Instead of running these two The BJT/Inductor circuit option, as defined in Figure 13  
calibrations automatically, consult “AN35: Si321x User’s on page 23, offers a flexible, low-cost solution.  
Quick Reference Guide”, and follow the instructions for Depending on selected L1 inductance value and the  
manual calibration.  
switching frequency, the input voltage (V ) can range  
DC  
from 5 V to 30 V. By nature of a dc-dc converter’s  
operation, peak and average input currents can become  
large with small input voltages. Consider this when  
selecting the appropriate input voltage and power rating  
2.2. Battery Voltage Generation and  
Switching  
The ProSLIC integrates a dc-dc converter controller that  
dynamically regulates a single output voltage. This  
mode eliminates the need to supply large external  
battery voltages. Instead, it converts a single positive  
input voltage into the real-time battery voltage needed  
for any given state according to programmed linefeed  
parameters.  
for the V power supply.  
DC  
For this solution, a PNP power BJT (Q7) switches the  
current flow through low ESR inductor L1. The Si3216  
uses the DCDRV and DCFF pins to switch Q7 on and  
off. DCDRV controls Q7 through NPN BJT Q8. DCFF is  
ac-coupled to Q7 through capacitor C10 to assist R16 in  
turning off Q7. Therefore, DCFF must have opposite  
polarity to DCDRV, and the Si321x (not Si321xM) must  
be used.  
2.2.1. DC-DC Converter General Description  
The dc-dc converter dynamically generates the large  
negative voltages required to operate the linefeed  
interface. The ProSLIC acts as the controller for a buck-  
boost dc-dc converter that converts a positive dc  
voltage into the desired negative battery voltage. In  
addition to eliminating external power supplies, this  
allows the ProSLIC to dynamically control the battery  
voltage to the minimum required for any given mode of  
operation.  
2.2.3. MOSFET/Transformer Circuit Option Using  
Si321xM  
The MOSFET/transformer circuit option, as defined in  
Figure 14 on page 24, offers higher power efficiencies  
across a larger input voltage range. Depending on the  
transformer’s primary inductor value and the switching  
frequency, the input voltage (V ) can range from 3.3 V  
DC  
to 35 V. Therefore, it is possible to power the entire  
ProSLIC solution from a single 3.3 V or 5 V power  
supply. By nature of a dc-dc converter’s operation, peak  
and average input currents can become large with small  
input voltages. Consider this when selecting the  
Two different dc-dc circuit options are offered: a BJT/  
inductor version and a MOSFET/transformer version.  
Due to the differences on the driving circuits, there are  
two different versions of the ProSLIC. The Si321x  
supports the BJT/inductor circuit option, and the  
Si321xM version supports the MOSFET solution. The  
appropriate input voltage and power rating for the V  
DC  
Rev. 1.0  
33  
Si3216  
power supply (number of REN supported).  
the register settings to prevent component damage.  
These inputs should be calibrated by writing the DCCAL  
bit (bit 7) of the dc-dc Converter Switching Delay  
register, direct Register 93, after the dc-dc converter  
has been turned on.  
For this solution, an n-channel power MOSFET (M1)  
switches the current flow through a power transformer  
T1. T1 is specified in “AN45: Design Guide for the  
Si3210/15/16 DC-DC Converter” and includes several  
taps on the primary side to facilitate a wide range of Because the ProSLIC dynamically regulates its own  
input voltages. The “M” version of the ProSLIC must be battery supply voltage using the dc-dc converter  
used for the application circuit depicted in Figure 14 on controller, the battery voltage (V  
) is offset from the  
BAT  
page 24 because the DCFF pin is used to drive M1 negative-most terminal by a programmable voltage  
directly and, therefore, must be the same polarity as (V ) to allow voltage headroom for carrying audio  
OV  
DCDRV. DCDRV is not used in this circuit option; signals.  
connecting DCFF and DCDRV together is not  
recommended.  
As mentioned previously, the ProSLIC dynamically  
adjusts V  
to suit the particular circuit requirement. To  
BAT  
2.2.4. DC-DC Converter Architecture  
illustrate this, the behavior of V  
in the Active state is  
BAT  
shown in Figure 19. In the Active state, the TIP-to-RING  
open circuit voltage is kept at V in the constant  
The control logic for a pulse-width modulated (PWM)  
dc-dc converter is incorporated in the ProSLIC. Output  
pins DCDRV and DCFF are used to switch a bipolar  
transistor or MOSFET. The polarity of DCFF is opposite  
that of DCDRV.  
OC  
voltage region while the regulator output voltage,  
= V + V + V  
V
.
OV  
BAT  
CM  
OC  
When the loop current attempts to exceed I , the dc  
LIM  
line driver circuit enters constant current mode allowing  
The dc-dc converter circuit is powered on when the  
DCOF bit in the powerdown register (direct Register 14,  
bit 4) is cleared to 0. The switching regulator circuit  
within the ProSLIC is a high-performance, pulse-width  
modulation controller. The control pins are driven by the  
PWM controller logic in the ProSLIC. The regulated  
the TIP to RING voltage to track R  
. As the TIP  
LOOP  
terminal is kept at a constant voltage, it is the RING  
terminal voltage that tracks R and, as a result, the  
LOOP  
|V  
|V  
| voltage will also track R  
. In this state,  
+ V . As R  
BAT  
LOOP  
| = I  
x R  
+ V  
BAT  
LIM  
LOOP  
CM OV LOOP  
decreases below the VOC/I  
mark, the regulator  
LIM  
output voltage (V ) is sensed by the SVBAT pin and  
BAT  
output voltage can continue to track  
R
LOOP  
used to detect whether the output voltage is above or  
below an internal reference for the desired battery  
voltage. The dc monitor pins SDCH and SDCL monitor  
input current and voltage to the dc-dc converter external  
circuitry. If an overload condition is detected, the PWM  
controller will turn off the switching transistor for the  
remainder of a PWM period to prevent damage to  
(TRACK = 1), or the R tracking mechanism is  
LOOP  
stopped when |V  
| = |V  
|
(TRACK = 0). The  
BAT  
BATL  
former case is the more common application and  
provides the maximum power dissipation savings. In  
principle, the regulator output voltage can go as low as  
|V  
| = V + V , offering significant power savings.  
BAT  
CM OV  
external components. It is important that the proper When TRACK = 0, |V  
| does not decrease below  
BAT  
value of R18 be selected to ensure safe operation.  
V
. The RING terminal voltage, however, continues  
BATL  
Guidance is given in “AN45: Design Guide for the to decrease with decreasing R  
. The power  
LOOP  
Si3210/15/16 DC-DC Converter”.  
dissipation on the NPN bipolar transistor driving the  
RING terminal can become large and may require a  
higher power rating device. The non-tracking mode of  
operation is required by specific terminal equipment  
which, in order to initiate certain data transmission  
modes, goes briefly on-hook to measure the line voltage  
to determine whether there is any other off-hook  
terminal equipment on the same line. TRACK = 0 mode  
is desired since the regulator output voltage has long  
settling time constants (tens of milliseconds) and cannot  
change rapidly for TRACK = 1 mode. Therefore, the  
brief on-hook voltage measurement would yield  
approximately the same voltage as the off-hook line  
voltage and would cause the terminal equipment to  
incorrectly sense another off-hook terminal.  
The PWM controller operates at a frequency set by the  
dc-dc Converter PWM register (direct Register 92).  
During a PWM period the outputs of the control pins  
DCDRV and DCFF are asserted for a time given by the  
read-only PWM Pulse Width register (direct  
Register 94).  
The dc-dc converter must be off for some time in each  
cycle to allow the inductor or transformer to transfer its  
stored energy to the output capacitor, C9. This minimum  
off time can be set through the dc-dc Converter  
Switching Delay register, (direct Register 93). The  
number of 16.384 MHz clock cycles that the controller is  
off is equal to DCTOF (bits 0 through 4) plus 4. If the dc  
monitor pins detect an overload condition, the dc-dc  
converter interrupts its conversion cycles regardless of  
34  
Rev. 1.0  
Si3216  
VOC  
ILIM  
RLOOP  
Constant I Region  
Constant V Region  
VCM  
VTIP  
VOC  
|VTIP - VRING  
|
VBATL  
TRACK=0  
VOV  
VRING  
VBAT  
VOV  
V
Figure 19. VTIP, VRING, and VBAT in the Forward Active State  
Table 27. Associated Relevant DC-DC Converter Registers  
Parameter  
Range  
Resolution Register Bit  
Location  
DC-DC Converter Power-Off  
Control  
N/A  
N/A  
DCOF  
Direct Register 14  
DC-DC Converter Calibration  
Enable/Status  
N/A  
N/A  
DCCAL  
Direct Register 93  
DC-DC Converter PWM Period  
DC-DC Converter Min. Off Time  
0 to 15.564 µs  
61.035 ns  
61.035 ns  
DCN[7:0]  
Direct Register 92  
Direct Register 93  
(0 to 1.892 µs) +  
4 ns  
DCTOF[4:0]  
High Battery Voltage—V  
Low Battery Voltage—V  
0 to –94.5 V  
0 to –94.5 V  
1.5 V  
1.5 V  
1.5 V  
VBATH[5:0]  
VBATL[5:0]  
Direct Register 74  
Direct Register 75  
BATH  
BATL  
V
0 to –9 V or  
0 to –13.5 V  
VMIND[3:0]  
VOV  
Indirect Register 64  
Direct Register 66  
OV  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through 31).  
Rev. 1.0  
35  
Si3216  
2.2.5. DC-DC Converter Enhancements  
described above.  
The ProSLIC supports two selectable enhancements to  
the dc-dc converter. The first is a multi-threshold error  
control algorithm that enables the dc-dc converter to  
adjust more quickly to voltage changes. This option is  
enabled by setting DCSU = 1 (direct Register 108,  
bit 5). The second enhancement is an audio band filter  
that removes audio band noise from the dc-dc converter  
control loop. This option is enabled by setting DCFIL = 1  
(direct Register 108, bit 1).  
2.3. Tone Generation  
Two digital tone generators are provided in the ProSLIC.  
They allow the generation of a wide variety of single or  
dual tone frequency and amplitude combinations and  
spare the user the effort of generating the required  
POTS signaling tones on the PCM highway. DTMF, FSK  
(caller ID), call progress, and other tones can all be  
generated on-chip. The tones can be sent to either the  
receive or transmit paths. (See Figure 24 on page 44.)  
2.2.6. DC-DC Converter During Ringing  
2.3.1. Tone Generator Architecture  
When the ProSLIC enters the Ringing state, it requires  
voltages well above those used in the active mode. The  
voltage to be generated and regulated by the dc-dc  
A simplified diagram of the tone generator architecture  
is shown in Figure 20. The oscillator, active/inactive  
timers, interrupt block, and signal routing block are  
connected to give the user flexibility in creating audio  
signals. Control and status register bits are placed in the  
figure to indicate their association with the tone  
generator architecture. These registers are described in  
more detail in Table 28 on page 38.  
converter during a ringing burst is set using the V  
BATH  
register (direct Register 74). V  
can be set between  
BATH  
0 and –94.5 V in 1.5 V steps. To avoid clipping the  
ringing signal, V must be set larger than the ringing  
BATH  
amplitude. At the end of each ringing burst the dc-dc  
converter adjusts back to active state regulation as  
16 kHz  
Clock  
8 kHz  
Clock  
OZn  
Zero Cross  
OnE  
OSSn  
to TX Path  
Enable  
Zero  
Cross  
Logic  
Two-Pole  
Resonance  
Oscillator  
16-Bit  
Modulo  
Counter  
OAT  
Expire  
Signal  
Routing  
Register  
Load  
Load  
Logic  
OIT  
Expire  
to RX Path  
OSCn  
OATn  
OITn  
OnIP REL*  
INT  
Logic  
OATnE  
OnSO  
OSCnX  
OSCnY  
OnIE  
OITnE  
OnAP  
INT  
Logic  
OnAE  
*Tone Generator 1 Only  
n = "1" or "2" for Tone Generator 1 and 2, respectively  
Figure 20. Simplified Tone Generator Diagram  
36  
Rev. 1.0  
Si3216  
2.3.2. Oscillator Frequency and Amplitude  
Each of the two-tone generators contains a two-pole Each of the two-tone generators contains two timers,  
resonant oscillator circuit with programmable one for setting the active period and one for setting the  
2.3.3. Tone Generator Cadence Programming  
a
frequency and amplitude. These two-tone generators inactive period. The oscillator signal is generated during  
are programmed via indirect registers OSC1, OSC1X, the active period and suspended during the inactive  
OSC1Y, OSC2, OSC2X, and OSC2Y. The sample rate period. Both the active and inactive periods can be  
for the two oscillators is 16 kHz. The equations are as programmed from 0 to 8 seconds in 125 µs steps. The  
follows:  
active period time interval is set using OAT1 (direct  
registers 36 and 37) for tone generator 1 and OAT2  
(direct registers 40 and 41) for tone generator 2.  
coeff = cos(2f /16 kHz),  
n
n
where f is the frequency to be generated;  
n
To enable automatic cadence for tone generator 1,  
define the OAT1 and OIT1 registers and then set the  
O1TAE bit (direct Register 32, bit 4) and O1TIE bit  
(direct Register 32, bit 3). This enables each of the  
timers to control the state of the Oscillator Enable bit,  
O1E (direct Register 32, bit 2). The 16-bit counter  
begins counting until the active timer expires, at which  
time the 16-bit counter resets to zero and begins  
counting until the inactive timer expires. The cadence  
continues until the user clears the O1TAE and O1TIE  
control bits. The zero crossing detect feature can be  
implemented by setting the OZ1 bit (direct Register 32,  
bit 5). This ensures that each oscillator pulse ends  
without a dc component. The timing diagram in  
Figure 21 is an example of an output cadence using the  
zero crossing feature.  
15  
OSCn = coeff x (2 );  
n
Desired Vrms  
-------------------------------------  
1
4
15  
1 coeff  
1 + coeff  
--  
OSCnX =  
-----------------------  2 1   
1.11 Vrms  
where desired V  
is the amplitude to be generated;  
OSCnY = 0,  
rms  
n = 1 or 2 for oscillator 1 or oscillator 2, respectively.  
For example, to generate a DTMF digit of 8, the two  
required tones are 852 Hz and 1336 Hz. Assuming the  
generation of half-scale values (ignoring twist) is  
desired, the following values are calculated:  
2852  
16000  
----------------  
coeff1 = cos  
= 0.94455  
One-shot oscillation can be achieved by enabling O1E  
and O1TAE. Direct control over the cadence can be  
achieved by controlling the O1E bit (direct Register 32,  
bit 2) directly if O1TAE and O1TIE are disabled.  
OSC1 = 0.94455215= 30951 = 78E6h  
---------------------  215 1  0.5 = 692 = 2B3h  
.05545  
1
--  
OSC1X =  
4
1.94455  
The operation of tone generator 2 is identical to that of  
tone generator 1 using its respective control registers.  
OSC1Y = 0  
Note: Tone Generator 2 should not be enabled simultane-  
ously with the ringing oscillator due to resource sharing  
within the hardware.  
21336  
16000  
--------------------  
coeff2 = cos  
= 0.86550  
15  
OSC2 = 0.86550 (2 ) = 28361 = 6EC8h  
Continuous phase frequency-shift keying (FSK)  
waveforms may be created using tone generator 1 (not  
available on tone generator 2) by setting the REL bit  
(direct Register 32, bit 6), which enables reloading of  
the OSC1, OSC1X, and OSC1Y registers at the  
expiration of the active timer (OAT1).  
1
0.13450  
--  
OSC2X =  
---------------------  215 1  0.5 = 1098 = 44Bh  
4
1.86550  
OSC2Y = 0  
The above computed values are written to the  
corresponding registers to initialize the oscillators. Once  
the oscillators are initialized, the oscillator control  
registers can be accessed to enable the oscillators and  
direct their outputs.  
Rev. 1.0  
37  
Si3216  
Table 28. Associated Tone Generator Registers  
Tone Generator 1  
Parameter  
Description/Range  
Sets oscillator frequency  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 s  
Register Bits  
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OAT1[15:0]  
OIT1[15:0]  
Location  
Oscillator 1 Frequency Coefficient  
Oscillator 1 Amplitude Coefficient  
Oscillator 1 initial phase coefficient  
Oscillator 1 Active Timer  
Indirect Register 0  
Indirect Register 1  
Indirect Register 2  
Direct Registers 36 & 37  
Direct Registers 38 & 39  
Direct Register 32  
Oscillator 1 Inactive Timer  
Oscillator 1 Control  
0 to 8 s  
Status and control  
registers  
OSS1, REL, OZ1,  
O1TAE, O1TIE,  
O1E, O1SO[1:0]  
Tone Generator 2  
Description/Range  
Sets oscillator frequency  
Sets oscillator amplitude  
Sets initial phase  
0 to 8 s  
Parameter  
Register  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
OAT2[15:0]  
OIT2[15:0]  
Location  
Oscillator 2 Frequency Coefficient  
Oscillator 2 Amplitude Coefficient  
Oscillator 2 initial phase coefficient  
Oscillator 2 Active Timer  
Indirect Register 3  
Indirect Register 4  
Indirect Register 5  
Direct Registers 40 & 41  
Direct Registers 42 & 43  
Direct Register 33  
Oscillator 2 Inactive Timer  
Oscillator 2 Control  
0 to 8 s  
Status and control  
registers  
OSS2, OZ2,  
O2TAE, O2TIE,  
O2E, O2SO[1:0]  
O1E  
0,1 ...  
..., OAT1 0,1 ...  
..., OIT1 0,1 ...  
..., OAT1 0,1 ...  
...  
...  
OSS1  
Tone  
Gen. 1  
Signal  
Output  
Figure 21. Tone Generator Timing Diagram  
38  
Rev. 1.0  
Si3216  
2.3.4. Enhanced FSK Waveform Generation  
2.4.1. Ringing Architecture  
Enhanced FSK generation capabilities can be enabled The ringing generator architecture is nearly identical to  
by setting FSKEN = 1 (direct Register 108, bit 6) and that of the tone generator. The sinusoid ringing  
REN = 1 (direct Register 32, bit 6). In this mode, the waveform is generated using an internal two-pole  
user can define mark (1) and space (0) attributes once resonance oscillator circuit with programmable  
during initialization by defining indirect Registers 69–74. frequency and amplitude. However, since ringing  
The user need only indicate 0-to-1 and 1-to-0 transitions frequencies are very low compared to the audio band  
in the information stream. By writing to FSKDAT (direct signaling frequencies, the ringing waveform is  
Register 52), this mode applies a 24 kHz sample rate to generated at a 1 kHz rate instead of 8 kHz.  
tone generator 1 to give additional resolution to timers  
The ringing generator has two timers that function the  
and frequency generation. “AN32: Si321x Frequency  
same as for the tone generator timers. They allow on/off  
Shift Keying (FSK) Modulation” gives detailed  
cadence settings up to 8 seconds on/ 8 seconds off. In  
instructions on how to implement FSK in this mode.  
addition to controlling ringing cadence, these timers  
Additionally, sample source code is available from  
control the transition into and out of the Ringing state.  
Silicon Laboratories upon request.  
Table 29 summarizes the list of registers used for  
2.3.5. Tone Generator Interrupts  
ringing generation.  
Note: Tone generator 2 should not be enabled concurrently  
with the ringing generator due to resource sharing  
within the hardware.  
Both the active and inactive timers can generate their  
own interrupt to signal “on/off” transitions to the  
software. The timer interrupts for tone generator 1 can  
be individually enabled by setting the O1AE and O1IE When the Ringing state is invoked by writing  
bits (direct Register 21, bits 0 and 1, respectively). LF[2:0] = 100 (direct Register 64), the ProSLIC goes  
Timer interrupts for tone generator 2 are O2AE and into the Ringing state and starts the first ring. At the  
O2IE (direct Register 21, bits 2 and 3, respectively). A expiration of RAT, the ProSLIC turns off the ringing  
pending interrupt for each of the timers is determined by waveform and goes to the on-hook transmission state.  
reading the O1AP, O1IP, O2AP, and O2IP bits in the Upon expiration of RIT, ringing again initiates. This  
Interrupt Status 1 register (direct Register 18, bits 0 process continues as long as the two timers are  
through 3, respectively).  
enabled and the Linefeed Control register is set to the  
Ringing state.  
2.4. Ringing Generation  
The ProSLIC provides fully-programmable internal  
balanced ringing with or without a dc offset to ring a  
wide variety of terminal devices. All parameters  
associated with ringing are software-programmable:  
ringing frequency, waveform, amplitude, dc offset, and  
ringing cadence. Both sinusoidal and trapezoidal ringing  
waveforms are supported, and the trapezoidal crest  
factor is programmable. Ringing signals of up to 90 V  
peak or more can be generated, enabling the ProSLIC  
to drive a 5 REN (1380 + 40 µF) ringer load across  
loop lengths of 2000 feet (160 ) or more.  
Rev. 1.0  
39  
Si3216  
Table 29. Registers for Ringing Generation  
Parameter  
Range/ Description  
Register  
Bits  
Location  
Ringing Waveform  
Ringing Voltage Offset Enable  
Sine/Trapezoid  
Enabled/  
Disabled  
Enabled/  
Disabled  
Enabled/  
Disabled  
Enabled/  
Disabled  
0 to 8 s  
TSWS  
RVO  
Direct Register 34  
Direct Register 34  
Ringing Active Timer Enable  
Ringing Inactive Timer Enable  
Ringing Oscillator Enable  
RTAE  
RTIE  
Direct Register 34  
Direct Register 34  
Direct Register 34  
ROE  
Ringing Oscillator Active Timer  
Ringing Oscillator Inactive Timer  
Linefeed Control (Initiates Ringing State)  
RAT[15:0]  
RIT[15:0]  
LF[2:0]  
Direct Registers 48 and  
49  
Direct Registers 50 and  
51  
0 to 8 s  
Direct Register 64  
Ringing State = 100b  
High Battery Voltage  
Ringing dc voltage offset  
Ringing frequency  
Ringing amplitude  
Ringing initial phase  
0 to –94.5 V  
0 to 94.5 V  
15 to 100 Hz  
VBATH[5:0]  
ROFF[15:0]  
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
Direct Register 74  
Indirect Register 6  
Indirect Register 7  
Indirect Register 8  
Indirect Register 9  
0 to 94.5 V  
Sets initial phase for  
sinewave and period  
for trapezoid  
Common Mode Bias Adjust During Ringing  
0 to 22.5 V  
VCMR[3:0]  
Indirect Register 27  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
2.4.2. Sinusoidal Ringing  
equations are as follows:  
To configure the ProSLIC for sinusoidal ringing, the  
frequency and amplitude are initialized by writing to the  
following indirect registers: RCO, RNGX, and RNGY.  
The equations for RCO, RNGX, RNGY are as follows:  
2  20  
1000 Hz  
coeff = cos  
= 0.99211  
----------------------  
RCO = 0.99211  215= 32509 = 7EFDh  
RCO = coeff  215  
1
4
15 70  
0.00789  
1.99211  
--  
------  
= 376 = 0177h  
RNGX =  
--------------------- 2  
96  
where  
RNGY = 0  
2f  
1000 Hz  
----------------------  
coeff = cos  
In addition, the user must select the sinusoidal ringing  
waveform by writing TSWS = 0 (direct Register 34,  
bit 0).  
and f = desired ringing frequency in hertz.  
Desired VPK0 to 94.5 V  
-----------------------------------------------------------------------  
96 V  
1
4
15  
1 coeff  
1 + coeff  
2.4.3. Trapezoidal Ringing  
--  
RNGX =  
----------------------- 2  
In addition to the sinusoidal ringing waveform, the  
ProSLIC supports trapezoidal ringing. Figure 22  
illustrates a trapezoidal ringing waveform with offset  
RNGY = 0  
In selecting a ringing amplitude, the peak TIP-to-RING  
ringing voltage must be greater than the selected on-  
hook line voltage setting (VOC, direct Register 72). For  
V
.
ROFF  
example, to generate a 70 V 20 Hz ringing signal, the  
PK  
40  
Rev. 1.0  
Si3216  
In addition, the user must select the trapezoidal ringing  
waveform by writing TSWS = 1 in direct Register 34.  
VTIP-RING  
2.4.4. Ringing DC Voltage Offset  
A dc offset can be added to the ac ringing waveform by  
defining the offset voltage in ROFF (indirect Register 6).  
The offset, V  
, is added to the ringing signal when  
ROFF  
RVO is set to 1 (direct Register 34, bit 1). The value of  
ROFF is calculated as follows:  
VROFF  
T=1/freq  
VROFF  
15  
-----------------  
ROFF =  
2  
96  
tRISE  
time  
2.4.5. Linefeed Considerations During Ringing  
Care must be taken to keep the generated ringing signal  
within the ringing voltage rails (GNDA and V  
maintains proper biasing of the external bipolar  
) to  
BAT  
Figure 22. Trapezoidal Ringing Waveform  
To configure the ProSLIC for trapezoidal ringing, the transistors. If the ringing signal nears the rails, a  
user should follow the same basic procedure as in the distorted ringing signal and excessive power dissipation  
Sinusoidal Ringing section, but using the following in the external transistors will result.  
equations:  
To prevent this invalid operation, set the V  
value  
BATH  
(direct Register 74) to a value higher than the maximum  
peak ringing voltage. The discussion below outlines the  
considerations and equations that govern the selection  
1
2
--  
RNGY = Period 8000  
of the V  
voltage.  
setting for a particular desired peak ringing  
Desired VPK  
BATH  
 215  
-----------------------------------  
RNGX =  
96 V  
First, the required amount of ringing overhead voltage,  
, is calculated based on the maximum value of  
V
OVR  
2 RNGX  
RCO = --------------------------------  
tRISE 8000  
current through the load, I  
, the minimum current  
LOAD,PK  
gain of Q5 and Q6, and a reasonable voltage required  
to keep Q5 and Q6 out of saturation. For ringing signals  
RCO is a value which is added or subtracted from the  
waveform to ramp the signal up or down in a linear  
fashion. This value is a function of rise time, period, and  
amplitude, where rise time and period are related  
through the following equation for the crest factor of a  
trapezoidal waveform.  
up to V = 87 V, V  
= 7.5 V is a safe value.  
PK  
OVR  
However, to determine V  
equations below.  
for a specific case, use the  
OVR  
VAC,PK  
NREN  
ILOAD,PK = ------------------ + IOS = VAC,PK ----------------- + IOS  
RLOAD  
6.9 k  
3
4
1
--  
tRISE  
=
T 1 ----------  
2  
where:  
is the ringing REN load (max value = 5),  
CF  
N
REN  
where T = ringing period, and CF = desired crest factor.  
I
is the offset current flowing in the line driver circuit  
OS  
For example, to generate a 71 V , 20 Hz ringing  
PK  
(max value = 2 mA), and  
signal, the equations are as follows:  
V
= amplitude of the ac ringing waveform.  
AC,PK  
1
2
1
It is good practice to provide a buffer of a few more  
milliamperes for I to account for possible line  
-- ---------------  
8000 = 200 = C8h  
RNGY20 Hz=  
20 Hz  
LOAD,PK  
leakages, etc. The total I  
smaller than 80 mA.  
current should be  
LOAD,PK  
71  
96  
215= 24235 = 5EABh  
------  
RNGX71 VPK=  
For a crest factor of 1.3 and a period of 0.05 s (20 Hz),  
the rise time requirement is 0.0153 s.  
+ 1  
------------  
80.6 + 1 V  
VOVR = ILOAD,PK  
where is the minimum expected current gain of  
transistors Q5 and Q6.  
RCO20 Hz, 1.3 crest factor  
2 24235  
The minimum value for V  
following equation:  
is, therefore, given by the  
BATH  
-------------------------------------  
=
= 396= 018Ch  
0.0153 8000  
Rev. 1.0  
41  
Si3216  
The primary input to the system is the Loop Current  
Sense (LCS) value provided by the current monitoring  
circuitry and reported in direct Register 79. LCS data is  
processed by the input signal processor when the  
ProSLIC is in the Ringing state as indicated by the  
Linefeed Shadow register (direct Register 64). The data  
then feeds into a programmable digital low pass filter,  
which removes unwanted ac signal components before  
threshold detection.  
VBATH = VAC,PK + VROFF + VOVR  
The ProSLIC is designed to create a fully-balanced  
ringing waveform, meaning that the TIP and RING  
common mode voltage, (V  
+ V  
)/2, is fixed. This  
TIP  
RING  
voltage is referred to as V  
set to the following:  
and is automatically  
CM_RING  
V
BATH VCMR  
VCM_RING = --------------------------------------  
The output of the low-pass filter is compared to a  
programmable threshold, RPTP (indirect Register 16).  
The threshold comparator output feeds a programmable  
debouncing filter. The output of the debouncing filter  
remains in its present state unless the input remains in  
the opposite state for the entire period of time  
programmed by the ring trip debounce interval,  
RTDI[6:0] (direct Register 70). If the debounce interval  
has been satisfied, the RTP bit of direct Register 68 will  
be set to indicate that a valid ring trip has occurred. A  
ring trip interrupt is generated if enabled by the RTIE bit  
(direct Register 22). Table 30 lists the registers that  
must be written or monitored to correctly detect a ring  
trip condition.  
2
V
is an indirect register, which provides the  
headroom by the ringing waveform with respect to the  
rail. The value is set as a 4-bit setting in indirect  
Register 27 with an LSB voltage of 1.5 V/LSB.  
Register 27 should be set with the calculated V  
provide voltage headroom during ringing.  
CMR  
V
BATH  
to  
OVR  
The ProSLIC has a mode to briefly increase the  
maximum differential current limit between the voltage  
transition of TIP and RING from ringing to a dc linefeed  
state. This mode is enabled by setting I  
Register 108, bit 7).  
= 1 (direct  
LIMEN  
2.4.6. Ring Trip Detection  
The recommended values for RPTP, NRTP, and RTDI  
vary according to the programmed ringing frequency.  
Register values for various ringing frequencies are  
given in Table 31.  
A ring trip event signals that the terminal equipment has  
gone off-hook during the Ringing state. The ProSLIC  
performs ring trip detection digitally using its on-chip A/  
D
converter. The functional blocks required to  
implement ring trip detection are shown in Figure 23.  
Input  
Signal  
Processor  
LCS  
ISP_OUT  
Digital  
LPF  
+
DBIRAW  
RTIP  
RTP  
Debounce  
Filter  
Interrupt  
Logic  
NRTP  
RTDI  
RTIE  
LFS  
Ring Trip  
Threshold  
RPTP  
Figure 23. Ring Trip Detector  
42  
Rev. 1.0  
Si3216  
Table 30. Associated Registers for Ring Trip Detection  
Register  
Parameter  
Location  
Ring Trip Interrupt Pending  
Ring Trip Interrupt Enable  
RTIP  
RTIE  
Direct Register 19  
Direct Register 22  
Direct Register 70  
Indirect Register 16  
Indirect Register 23  
Direct Register 68  
Ring Trip Detect Debounce Interval  
Ring Trip Threshold  
RTDI[6:0]  
RPTP[5:0]  
NRTP[12:0]  
RTP  
Ring Trip Filter Coefficient  
Ring Trip Detect Status (monitor only)  
Note: The ProSLIC uses registers that are both directly and indirectly mapped. A “direct” register is one that is mapped  
directly. An “indirect” register is one that is accessed using the indirect access registers (direct registers 28 through  
31).  
Table 31. Recommended Ring Trip Values for Ringing  
Ringing  
NRTP  
RPTP  
RTDI  
Frequency  
Hz  
16.667  
20  
decimal  
64  
hex  
decimal  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
34 mA  
hex  
decimal  
15.4 ms  
12.3 ms  
8.96 ms  
7.5 ms  
5 ms  
hex  
0F  
0B  
09  
07  
05  
05  
0200  
0320  
0380  
0400  
06A8  
0800  
3600  
3600  
3600  
3600  
3600  
3600  
100  
112  
30  
40  
128  
213  
256  
50  
60  
4.8 ms  
noise ratio of the transmit path. After passing through an  
anti-aliasing filter, the analog signal is processed by the  
A/D converter, producing a 16-bit wide, linear PCM data  
stream. The standard requirements for transmit path  
attenuation for signal frequencies above the audio band  
are implemented as part of the combined decimation  
filter characteristic of the A/D converter. An additional  
filter, THPF, implements the high-pass attenuation  
requirements for signals below 50 Hz. The linear PCM  
data stream output from THPF is amplified by the  
2.5. Audio Path  
Unlike traditional SLICs, the codec function is integrated  
into the ProSLIC. The 16-bit codec offers software-  
selectable 200 Hz to 3.4 kHz narrowband and 50 Hz to  
7 kHz (Si3216 only) wideband audio modes,  
programmable gain/attenuation blocks, and several  
loop-back modes. The signal path block diagram is  
shown in Figure 24.  
2.5.1. Transmit Path  
In the transmit path, the analog signal fed by the external transmit-path programmable gain amplifier, ADCG,  
ac coupling capacitors is amplified by the analog which can be programmed from – dB to 6 dB. The final  
transmit amplifier, ATX, prior to the A/D converter. ATX step in the transmit path signal processing is the user-  
has the following gain options: mute, –3.5, 0, and selectable A-law or µ-law compression block. In  
3.5 dB. The main role of ATX is to coarsely adjust the narrowband mode, µ-law or A-law compression can be  
signal swing to be as close as possible to the full-scale selected to reduce the data stream word width to 8 bits.  
input of the A/D converter to maximize the signal-to-  
Rev. 1.0  
43  
Si3216  
44  
Rev. 1.0  
Si3216  
2.5.2. Receive Path  
2.5.5. Loopback Testing  
In the receive path, digital voice is expanded from µ/A- Four loopback test options are available in the ProSLIC:  
law if enabled. DACG is the receive path programmable  
The full analog loopback (ALM2) tests almost all the  
circuitry of both the transmit and receive paths. The  
transmit data stream is fed back serially to the input  
of the receive path expander. (See Figure 24.) The  
signal path starts with the analog signal at the input  
of the transmit path and ends with an analog signal  
at the output of the receive path.  
gain amplifier which can be programmed from –dB to  
6 dB. A 16-bit signal is then provided to a D/A converter.  
The resulting analog signal is amplified by the analog  
receive amplifier, ARX, which has the following gain  
options: mute, –3.5, 0, and 3.5 dB. It is then applied at  
the input of the transconductance amplifier (Gm), which  
drives the off-chip current buffer (I  
).  
BUF  
An additional analog loopback (ALM1) takes the  
digital stream at the output of the A/D converter and  
feeds it back to the D/A converter. (See Figure 24.)  
The signal path starts with the analog signal at the  
input of the transmit path and ends with an analog  
signal at the output of the receive path. This  
loopback option allows testing of the analog signal  
processing circuitry of the ProSLIC completely  
independently of any activity in the DSP.  
2.5.3. Companding  
The ProSLIC supports both µ-255 law and A-law  
companding formats when narrowband mode is  
selected. µ-255 law is more commonly used in North  
America and Japan, while A-law is used primarily in  
Europe. Data format is selected using the PCMF  
register. Tables 32 and 33 define µ-law and A-law  
formats, respectively.  
The full digital loopback tests almost all the circuitry  
of both the transmit and receive paths. The analog  
signal at the output of the receive path is fed back to  
the input of the transmit path by way of the hybrid  
filter path. (See Figure 24.) The signal path starts  
with PCM data input to the receive path and ends  
with PCM data at the output of the transmit path.  
The dominant source of distortion and noise in both the  
transmit and receive paths is the quantization noise  
introduced by the µ-law or the A-law compression  
process. Figure 3 on page 11 specifies the minimum  
signal-to-noise and distortion ratio for either path for a  
sine wave input of 200 Hz to 3400 Hz.  
Both µ-law and A-law speech encoding allow the audio  
codec to transfer and process audio signals larger than  
0 dBm0 without clipping. The maximum PCM code is  
generated for a µ-law encoded sine wave of 3.17 dBm0  
or an A-law encoded sine wave of 3.14 dBm0. The  
ProSLIC overload clipping limits are driven by the PCM  
encoding process. Figure 4 on page 11 shows the  
acceptable limits for the analog-to-analog fundamental  
power transfer function, which bounds the behavior of  
ProSLIC.  
An additional digital loopback (DLM) takes the digital  
stream at the input of the D/A converter in the  
receive path and feeds it back to the transmit A/D  
digital filter. The signal path starts with PCM data  
input to the receive path and ends with PCM data at  
the output of the transmit path. This loopback option  
allows testing of the ProSLIC digital signal  
processing circuitry completely independently of any  
analog signal processing activity.  
2.5.4. Transhybrid Balance  
2.6. Two-Wire Impedance Matching  
The ProSLIC provides programmable transhybrid  
balance with gain block H. (See Figure 24.) In the ideal  
case where the synthesized SLIC impedance exactly  
matches the subscriber loop impedance, the  
transhybrid balance should be set to subtract a –6 dB  
level from the transmit path signal. The transhybrid  
balance gain can be adjusted from –2.77 dB to  
+4.08 dB around the ideal setting of –6 dB by  
programming the HYBA[2:0] bits of the Hybrid Control  
register (direct Register 11). Adjusting any of the analog  
or digital gain blocks does not require any modification  
of the transhybrid balance gain block, as the transhybrid  
gain is subtracted from the transmit path signal prior to  
any gain adjustment stages. The transhybrid balance  
can also be disabled, if desired, using the appropriate  
register setting.  
The ProSLIC provides on-chip programmable two-wire  
impedance settings to meet a wide variety of worldwide  
two-wire return loss requirements. The two-wire  
impedance is programmed by loading one of the eight  
available impedance values into the TISS[2:0] bits of the  
Two-Wire Impedance Synthesis Control register (direct  
Register 10). If direct Register 10 is not user-defined,  
the default setting of 600 will be loaded into the TISS  
register.  
Real and complex two-wire impedances are realized by  
internal feedback of a programmable amplifier (RAC), a  
switched  
capacitor  
network  
(XAC),  
and  
a
transconductance amplifier (G ) (See Figure 24.) RAC  
m
creates the real portion, and XAC creates the imaginary  
portion of the ac impedance. G then creates a current  
m
that models the desired impedance value to the  
subscriber loop. The differential ac current is fed to the  
Rev. 1.0  
45  
Si3216  
subscriber loop via the ITIPP and IRINGP pins through  
2.8. Interrupt Logic  
an off-chip current buffer (I  
), which is implemented  
BUF  
The ProSLIC is capable of generating interrupts for the  
following events:  
using transistors Q1 and Q2 (see Figure on page 22).  
is referenced to an off-chip resistor (R ).  
G
m
15  
Loop current/ring ground detected  
Ring trip detected  
The ProSLIC also provides a means of compensating  
for degraded subscriber loop conditions involving  
excessive line capacitance (leakage). The CLC[1:0] bits  
of direct Register 10 increase the ac signal magnitude  
to compensate for the additional loss at the high end of  
the audio frequency range. The default setting of  
CLC[2:0] assumes no line capacitance.  
Power alarm  
Active timer 1 expired  
Inactive timer 1 expired  
Active timer 2 expired  
Inactive timer 2 expired  
Ringing active timer expired  
Ringing inactive timer expired  
Indirect register access complete  
When 600 + 1 µF or 900 + 2.16 µF impedances are  
selected, an internal reference resistor is removed from  
the impedance synthesis circuit to accommodate an  
external resistor, R  
, inserted into the application  
ZREF  
The interface to the interrupt logic consists of six  
registers. Three interrupt status registers contain 1 bit  
for each of the above interrupt functions. These bits are  
set when an interrupt is pending for the associated  
resource. Three interrupt enable registers also contain 1  
bit for each interrupt function. In the case of the interrupt  
enable registers, the bits are active high. Refer to the  
circuit as shown in Figure 25.  
C3  
R8  
to TIP  
STIPAC  
Si3216  
RZREF  
appropriate  
operational details of the interrupt functions.  
functional  
description  
section  
for  
SRINGAC  
R9  
to RING  
C4  
When a resource reaches an interrupt condition, it  
signals an interrupt to the interrupt control block. The  
interrupt control block then sets the associated bit in the  
interrupt status register if the enable bit for that interrupt  
is set. The INT pin is an open-drain output and a NOR  
of the bits of the interrupt status registers. Therefore, if a  
bit in the interrupt status registers is asserted, IRQ  
asserts low. Upon receiving the interrupt, the interrupt  
handler should read interrupt status registers to  
determine which resource is requesting service. To  
clear a pending interrupt, write the desired bit in the  
appropriate interrupt status register to 1. Writing a 0 has  
no effect. This provides a mechanism for clearing  
individual bits when multiple interrupts occur  
simultaneously. While the interrupt status registers are  
non-zero, the INT pin will remain asserted.  
For 600 + 1 F, RZREF = 12 kand C3, C4 = 100 nF  
For 900 + 2.16 F, RZREF = 18 kand C3, C4 = 220 nF  
Figure 25. RZREF External Resistor Placement  
2.7. Clock Generation  
The ProSLIC generates the necessary internal clock  
frequencies from the PCLK input. PCLK must be  
synchronous to the 8 kHz FSYNC clock and run at one  
of the following rates: 256 kHz, 512 kHz, 768 kHz,  
1.024 MHz, 1.536 MHz, 2.048 MHz, 4.096 MHz, or  
8.192 MHz. The ratio of the PCLK rate to the FSYNC  
rate is determined via a counter clocked by PCLK. The  
three-bit ratio information is automatically transferred  
into an internal register, PLL_MULT, following a reset of  
the ProSLIC. The internal PLL_MULT register is used to  
control the internal PLL, which multiplies PCLK as  
needed to generate the 16.384 MHz rate needed to run  
the internal filters and other circuitry.  
2.9. Serial Peripheral Interface  
The control interface to the ProSLIC is a 4-wire interface  
modeled after commonly-available microcontroller and  
serial peripheral devices. The interface consists of a  
clock (SCLK), chip select (CS), serial data input (SDI),  
and serial data output (SDO). Data is transferred a byte  
at a time with each register access consisting of a pair  
of byte transfers. Figures 26 and 27 illustrate read and  
write operation in the SPI bus.  
The PLL clock synthesizer settles very quickly following  
powerup. However, the settling time depends on the  
PCLK frequency and it can be approximately predicted  
by the following equation:  
The first byte of the pair is the command/address byte.  
The MSB of this byte indicates a register read when 1  
and a register write when 0. The remaining seven bits of  
64  
FPCLK  
TSETTLE = ----------------  
46  
Rev. 1.0  
Si3216  
the command/address byte indicate the address of the  
register to be accessed. The second byte of the pair is  
the data byte. During a read operation, the SDO  
becomes active, and the 8-bit contents of the register  
are driven out MSB first. The SDO will be high  
impedence on either the falling edge of SCLK following  
the LSB or the rising edge of CS, whichever comes first.  
SDI is a “don’t care” during the data portion of read  
operations. During write operations, data is driven into  
the ProSLIC via the SDI pin MSB first. The SDO pin  
remains high-impedance during write operations. Data  
always transitions with the falling edge of the clock and  
is latched on the rising edge. The clock should return to  
a logic high when no transfer is in progress.  
the 8 bit transfer (command/address or data).  
SDI/SDO wired operation. Independent of the  
clocking options described, SDI and SDO can be  
treated as two separate lines or wired together if the  
master is capable of tristating its output during the  
data byte transfer of a read operation.  
Daisy chain mode. This mode allows  
communication with banks of up to eight ProSLIC  
devices using one chip select signal. When the  
SPIDC bit in the SPI Mode Select register is set,  
data transfer mode changes to a 3-byte operation: a  
chip select byte, an address/control byte, and a data  
byte. Using the circuit shown in Figure 28, a single  
device may select from the bank of devices by  
setting the appropriate chip select bit to “1”. Each  
device uses the LSB of the chip select byte, shifts  
the data right by one bit, and passes the chip select  
byte using the SDITHRU pin to the next device in the  
chain. Address/control and data bytes are unaltered.  
There are a number of variations of usage on this four-  
wire interface:  
Continuous clocking. During continuous clocking,  
the data transfers are controlled by the assertion of  
the CS pin. CS must assert before the falling edge of  
SCLK on which the first bit of data is expected during  
a read cycle and must remain low for the duration of  
Don't Care  
SCLK  
CS  
SDI  
a6 a5 a4 a3 a2 a1 a0  
d7 d6 d5 d4 d3 d2 d1 d0  
0
SDO  
High Impedance  
Figure 26. Serial Write 8-Bit Mode  
Don't Care  
SCLK  
CS  
SDI  
Don't Care  
a6 a5 a4 a3 a2 a1 a0  
1
SDO  
d7 d6 d5 d4 d3 d2 d1 d0  
High Impedance  
Figure 27. Serial Read 8-Bit Mode  
Rev. 1.0  
47  
Si3216  
SDI0  
SDO  
CS  
SDI  
CS  
CPU  
SDO  
SDI  
SDITHRU  
SDI1  
SDI2  
SDI3  
SDI  
CS  
SDO  
SDITHRU  
SDI  
CS  
SDO  
SDITHRU  
SDI  
CS  
SDO  
SDITHRU  
Chip Select Byte  
Address Byte  
Data Byte  
SCLK  
C7 C6 C5 C4 C3 C2 C1 C0  
– C7 C6 C5 C4 C3 C2 C1  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
R/W A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
SDI0  
SDI1  
SDI2  
SDI3  
C7 C6 C5 C4 C3 C2  
C7 C6 C5 C4 C3  
Note: During chip select byte, SDITHRU = SDI delayed by one SCLK. Each device daisy-chained looks at the  
LSB of the chip select byte for its chip select.  
Figure 28. SPI Daisy Chain Mode  
48  
Rev. 1.0  
Si3216  
2.10. PCM Interface  
The ProSLIC contains a flexible programmable interface Figure 29 illustrates the use of the PCM in wideband  
for the transmission and reception of digital PCM mode. DTX data is high-impedance except for the  
samples. PCM data transfer is controlled via the PCLK duration of the 16-bit PCM transmit. DTX returns to  
and FSYNC inputs as well as the PCM Mode Select high-impedance either on the negative edge of PCLK  
(direct Register 1), PCM Transmit Start Count (direct during the LSB or on the positive edge of PCLK  
registers 2 and 3), and PCM Receive Start Count (direct following the LSB. This is based on the setting of the  
registers 4 and 5) registers. The interface can be TRI bit of the PCM Mode Select register. Tristating on  
configured to support from 2 to 64 16-bit timeslots in the negative edge allows the transmission of data by  
each frame. This corresponds to PCLK frequencies of multiple sources in adjacent timeslots without the risk of  
256 kHz to 8.192 MHz in power-of-2 increments. driver contention. GCI timing is also supported in which  
(768 kHz and 1.536 MHz are also available.) Timeslots the duration of a data bit is two PCLK cycles. This mode  
for data transmission and reception are independently is also activated via the PCM Mode Select register.  
configured using the TXS and RXS registers. For the Setting the TXS or RXS register greater than the  
Si3216 in wideband mode (WBE = 1, PCMF = 11, and number of PCLK cycles in a sample period stops data  
PCMT = 1), TXS and RXS set the correct starting point transmission because TXS or RXS never equals the  
of the data for the first timeslot within the 8 kHz frame, PCLK count.  
and the second timeslot is set to follow 62.5 µs later.  
PCLK  
FSYNC  
63  
0
1
0
1
2
3
16 17 18  
33 34 35  
48  
49  
PCLK_CNT  
DRX  
Bit Bit  
15 14  
Bit Bit  
Bit Bit  
15 14  
Bit Bit  
1
1
0
0
MSB  
LSB  
Bit Bit  
15 14  
Bit Bit  
Bit Bit  
15 14  
Bit Bit  
DTX  
1
0
1
0
HI-Z  
HI-Z  
MSB  
LSB  
MSB  
LSB  
Figure 29. Wideband PCM Operation Example, Short FSYNC, PCLK = 512 kHz (TXS/RXS = 1)  
Rev. 1.0  
49  
Si3216  
Table 32. µ-Law Encode-Decode Characteristics1,2  
Segment #Intervals X Interval Size  
Number  
Value at Segment Endpoints Digital Code  
Decode Level  
8159  
10000000  
8031  
b
.
.
.
8
16 X 256  
4319  
4063  
10001111  
4191  
2079  
1023  
495  
231  
99  
b
.
.
.
7
6
5
4
3
2
16 X 128  
16 X 64  
16 X 32  
16 X 16  
16 X 8  
2143  
2015  
10011111  
b
.
.
.
1055  
991  
10101111  
b
.
.
.
511  
479  
10111111  
b
.
.
.
239  
223  
11001111  
b
b
b
.
.
.
103  
95  
11011111  
11101111  
11111110  
.
.
.
16 X 4  
15 X 2  
35  
31  
33  
.
.
.
3
1
0
1
2
0
__________________  
1 X 1  
b
b
11111111  
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative analog values.  
2. Digital code includes inversion of all magnitude bits.  
50  
Rev. 1.0  
Si3216  
Table 33. A-Law Encode-Decode Characteristics1,2  
Segment  
Number  
#intervals X interval size Value at segment endpoints Digital Code  
Decode Level  
4096  
3968  
.
.
2176  
2048  
10101010b  
10100101b  
4032  
2112  
7
16 X 128  
.
.
6
5
4
3
2
16 X 64  
16 X 32  
16 X 16  
16 X 8  
16 X 4  
32 X 2  
.
1088  
1024  
10110101b  
10000101b  
10010101b  
11100101b  
11110101b  
11010101b  
1056  
528  
264  
132  
66  
.
.
.
544  
512  
.
.
.
272  
256  
.
.
.
136  
128  
.
.
.
68  
64  
.
.
.
2
0
1
1
Notes:  
1. Characteristics are symmetrical about analog zero with sign bit = 0 for negative values.  
2. Digital code includes inversion of all even numbered bits.  
Rev. 1.0  
51  
Si3216  
3. Control Registers  
Note: Any register not listed here is reserved and must not be written.  
Table 34. Direct Register Summary  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Setup  
PNI[1:0]  
PCME  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
1
2
SPI Mode Select  
SPIDC  
PNI2  
SPIM  
WBE  
RNI[3:0]  
PCM Mode Select  
PCMF[1:0]  
PCMT  
GCI  
TRI  
PCM Transmit Start  
Count—Low Byte  
TXS[7:0]  
3
4
5
6
PCM Transmit Start  
Count—High Byte  
TXS[9:8]  
PCM Receive Start  
Count—Low Byte  
RXS[7:0]  
PCM Receive Start  
Count—High Byte  
RXS[9:8]  
Part Number  
Identification  
PNI[2:0]  
TXHP  
Audio  
8
Audio Path Loopback  
Control  
ALM2  
DLM  
ALM1  
9
Audio Gain Control  
RXHP  
TXM  
RXM  
ATX[1:0]  
TISE  
ARX[1:0]  
TISS[2:0]  
10  
Two-Wire Impedance  
Synthesis Control  
CLC[1:0]  
11  
Hybrid Control  
HYBP[2:0]  
Powerdown  
HYBA[2:0]  
14  
15  
Powerdown Control 1  
Powerdown Control 2  
DCOF  
ADCM ADCON DACM DACON  
Interrupts  
RGIP  
PFR  
BIASOF SLICOF  
GMM  
GMON  
18  
19  
20  
21  
22  
23  
Interrupt Status 1  
Interrupt Status 2  
Interrupt Status 3  
Interrupt Enable 1  
Interrupt Enable 2  
Interrupt Enable 3  
RGAP  
Q3AP  
O2IP  
O2AP  
Q1AP  
O1IP  
LCIP  
INDP  
O1IE  
LCIE  
INDE  
O1AP  
RTIP  
Q6AP  
Q6AE  
Q5AP  
Q4AP  
Q2AP  
RGIE  
Q4AE  
RGAE  
Q3AE  
O2IE  
O2AE  
Q1AE  
O1AE  
RTIE  
Q5AE  
Q2AE  
Indirect Register Access  
28  
29  
30  
Indirect Data Access—  
Low Byte  
IDA[7:0]  
Indirect Data Access—  
High Byte  
IDA[15:8]  
IAA[7:0]  
Indirect Address  
52  
Rev. 1.0  
Si3216  
Table 34. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
31  
Indirect Address Status  
IAS  
Oscillators  
32  
33  
34  
Oscillator 1 Control  
Oscillator 2 Control  
OSS1  
OSS2  
RSS  
REL  
OZ1  
OZ2  
O1TAE O1TIE  
O2TAE O2TIE  
O1E  
O2E  
ROE  
O1SO[1:0]  
O2SO[1:0]  
Ringing Oscillator  
Control  
RDAC  
RTAE  
RTIE  
RVO  
TSWS  
36  
37  
38  
39  
40  
41  
42  
43  
48  
49  
50  
51  
52  
Oscillator 1 Active  
Timer—Low Byte  
OAT1[7:0]  
OAT1[15:8]  
OIT1[7:0]  
OIT1[15:8]  
OAT2[7:0]  
OAT2[15:8]  
OIT2[7:0]  
OIT2[15:8]  
RAT[7:0]  
Oscillator 1 Active  
Timer—High Byte  
Oscillator 1 Inactive  
Timer—Low Byte  
Oscillator 1 Inactive  
Timer—High Byte  
Oscillator 2 Active  
Timer—Low Byte  
Oscillator 2 Active  
Timer—High Byte  
Oscillator 2 Inactive  
Timer—Low Byte  
Oscillator 2 Inactive  
Timer—High Byte  
Ringing Oscillator  
Active Timer—Low Byte  
Ringing Oscillator  
Active Timer—High Byte  
RAT[15:8]  
RIT[7:0]  
Ringing Oscillator Inac-  
tive Timer—Low Byte  
Ringing Oscillator Inac-  
tive Timer—High Byte  
RIT[15:8]  
FSK Data  
FSKDAT  
SLIC  
63  
Loop Closure Debounce  
Interval  
LCD[7:0]  
64  
65  
Linefeed Control  
LFS[2:0]  
CBY  
LF[2:0]  
AOLD  
External Bipolar  
Transistor Control  
SQH  
ETBE  
VOV  
ETBO[1:0]  
FVBAT  
ETBA[1:0]  
66  
67  
Battery Feed Control  
TRACK  
AOPN  
Automatic/Manual  
Control  
MNCM MNDIF SPDS  
AORD  
Rev. 1.0  
53  
Si3216  
Table 34. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
68  
69  
70  
Loop Closure/Ring Trip  
Detect Status  
DBIRAW  
RTP  
LCR  
Loop Closure Debounce  
Interval  
LCDI[6:0]  
RTDI[6:0]  
Ring Trip Detect  
Debounce Interval  
71  
72  
73  
74  
75  
76  
77  
Loop Current Limit  
ILIM[2:0]  
On-Hook Line Voltage  
Common Mode Voltage  
High Battery Voltage  
Low Battery Voltage  
Power Monitor Pointer  
VSGN  
VOC[5:0]  
VCM[5:0]  
VBATH[5:0]  
VBATL[5:0]  
PWRMP[2:0]  
Line Power Output  
Monitor  
PWROM[7:0]  
78  
79  
80  
81  
82  
83  
84  
Loop Voltage Sense  
Loop Current Sense  
TIP Voltage Sense  
LVSP  
LCSP  
LVS[5:0]  
LCS[5:0]  
VTIP[7:0]  
VRING[7:0]  
RING Voltage Sense  
Battery Voltage Sense 1  
Battery Voltage Sense 2  
VBATS1[7:0]  
VBATS2[7:0]  
IQ1[7:0]  
Transistor 1 Current  
Sense  
85  
86  
87  
88  
89  
92  
93  
94  
95  
Transistor 2 Current  
Sense  
IQ2[7:0]  
IQ3[7:0]  
IQ4[7:0]  
IQ5[7:0]  
IQ6[7:0]  
DCN[7:0]  
Transistor 3 Current  
Sense  
Transistor 4 Current  
Sense  
Transistor 5 Current  
Sense  
Transistor 6 Current  
Sense  
DC-DC Converter PWM  
Period  
DC-DC Converter  
Switching Delay  
DCCAL  
DCPOL  
DCTOF[4:0]  
DC-DC Converter PWM  
Pulse Width  
DCPW[7:0]  
Reserved  
54  
Rev. 1.0  
Si3216  
Table 34. Direct Register Summary (Continued)  
Register Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
96  
Calibration Control/  
CAL  
CALSP CALR  
CALT  
CALD  
CALC  
CALIL  
Status Register 1  
CALM1 CALM2 CALDAC CALADC  
CALGMR[4:0]  
97  
Calibration Control/  
Status Register 2  
98  
RING Gain Mismatch  
Calibration Result  
99  
TIP Gain Mismatch  
Calibration Result  
CALGMT[4:0]  
100  
Differential Loop  
Current Gain  
CALGD[4:0]  
Calibration Result  
101  
Common Mode Loop  
Current Gain  
CALGC[4:0]  
Calibration Result  
102  
103  
Current Limit  
Calibration Result  
CALGIL[3:0]  
Monitor ADC Offset  
Calibration Result  
CALMG1[3:0]  
CALMG2[3:0]  
104  
105  
Analog DAC/ADC Offset  
DACP  
DACN  
ADCP  
ADCN  
DAC Offset Calibration  
Result  
DACOF[7:0]  
107  
108  
DC Peak Current Moni-  
tor Calibration Result  
CMDCPK[3:0]  
Enhancement Enable  
ILIMEN FSKEN DCSU  
LCVE  
DCFIL HYSTEN  
Rev. 1.0  
55  
Si3216  
Register 0. SPI Mode Select  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SPIDC  
R/W  
SPIM  
R/W  
PNI[1:0]  
R
RNI[3:0]  
R
Reset settings = 00xx_xxxx  
Bit  
Name  
Function  
7
SPIDC  
SPI Daisy Chain Mode Enable.  
0 = Disable SPI daisy chain mode.  
1 = Enable SPI daisy chain mode.  
6
SPIM  
SPI Mode.  
0 = Causes SDO to tri-state on rising edge of SCLK of LSB.  
1 = Normal operation; SDO tri-states on rising edge of CS.  
5:4  
PNI[1:0]  
Part Number Identification.  
Note: PNI[2:0] can be read in direct register 6.  
00 = Si3216  
01 = Reserved  
10 = Reserved  
11 = Si3216M  
3:0  
RNI[3:0]  
Revision Number Identification.  
0001 = Revision A, 0010 = Revision B, 0011 = Revision C, etc.  
56  
Rev. 1.0  
Si3216  
Register 1. PCM Mode Select  
Bit  
D7  
PNI2  
R
D6  
D5  
D4  
PCMF[1:0]  
R/W  
D3  
D2  
D1  
D0  
TRI  
R/W  
Name  
Type  
WBE  
R/W  
PCME  
R/W  
PCMT  
R/W  
GCI  
R/W  
Reset settings = 1000_1000  
Bit  
Name  
Function  
7
PNI2  
Part Number Identification 2.  
Note: PNI[2:0] can be read in direct Register 6.  
0 = Si3210, Si3211 family.  
1 = Si3216 family.  
6
WBE  
Wideband Enable.  
0 = Narrowband (200 Hz–3.4 kHz) audio filtering at 8 kHz sample rate.  
1 = Wideband (50 Hz–7 kHz) audio filtering at 16 kHz sample rate when PCMF = 11 and  
PCMT = 1.  
5
PCME  
PCM Enable.  
0 = Disable PCM transfers.  
1 = Enable PCM transfers.  
4:3  
PCMF[1:0]  
PCM Format.  
00 = A-Law  
01 = µ-Law  
10 = Reserved  
11 = Linear  
2
1
0
PCMT  
GCI  
PCM Transfer Size.  
0 = 8-bit transfer.  
1 = 16-bit transfer.  
GCI Clock Format.  
0 = 1 PCLK per data bit.  
1 = 2 PCLKs per data bit.  
TRI  
Tri-state Bit 0.  
0 = Tri-state bit 0 on positive edge of PCLK.  
1 = Tri-state bit 0 on negative edge of PCLK.  
Rev. 1.0  
57  
Si3216  
Register 2. PCM Transmit Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
TXS[7:0]  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data trans-  
mission begins. See Figure 29 on page 49.  
Register 3. PCM Transmit Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
TXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
TXS[9:8]  
Read returns zero.  
PCM Transmit Start Count.  
PCM transmit start count equals the number of PCLKs following FSYNC before data  
transmission begins. See Figure 29 on page 49.  
Register 4. PCM Receive Start Count—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RXS[7:0]  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 29 on page 49.  
58  
Rev. 1.0  
Si3216  
Register 5. PCM Receive Start Count—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXS[9:8]  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1:0  
Name  
Function  
Reserved  
RXS[9:8]  
Read returns zero.  
PCM Receive Start Count.  
PCM receive start count equals the number of PCLKs following FSYNC before data  
reception begins. See Figure 29 on page 49.  
Register 6. Part Number Identification  
Bit  
D7  
D6  
PNI[2:0]  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0xx0_0000  
Bit  
Name  
Function  
7:5  
PNI[2:0]  
Part Number Identification.  
Note: PNI[2] can be read in direct Register 1. PNI[1:0] can be read in direct Register 0.  
000 = Reserved  
001 = Reserved  
010 = Reserved  
011 = Reserved  
100 = Si3216  
101 = Reserved  
110 = Reserved  
111 = Si3216M  
4:0  
Reserved  
Read returns zero.  
Rev. 1.0  
59  
Si3216  
Register 8. Audio Path Loopback Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ALM2  
R/W  
DLM  
R/W  
ALM1  
R/W  
Reset settings = 0000_0010  
Bit  
7:3  
2
Name  
Reserved  
ALM2  
Function  
Read returns zero.  
Analog Loopback Mode 2. (See Figure 24 on page 44.)  
0 = Full analog loopback mode disabled.  
1 = Full analog loopback mode enabled.  
1
0
DLM  
Digital Loopback Mode. (See Figure 24 on page 44.)  
0 = Digital loopback disabled.  
1 = Digital loopback enabled.  
ALM1  
Analog Loopback Mode 1. (See Figure 24 on page 44.)  
0 = Analog loopback disabled.  
1 = Analog loopback enabled.  
60  
Rev. 1.0  
Si3216  
Register 9. Audio Gain Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RXHP  
R/W  
TXHP  
R/W  
TXM  
R/W  
RXM  
R/W  
ATX[1:0]  
R/W  
ARX[1:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RXHP  
Receive Path High Pass Filter Disable.  
0 = HPF enabled in receive path, RHDF.  
1 = HPF bypassed in receive path, RHDF.  
6
5
TXHP  
TXM  
Transmit Path High Pass Filter Disable.  
0 = HPF enabled in transmit path, THPF.  
1 = HPF bypassed in transmit path, THPF.  
Transmit Path Mute.  
Refer to position of digital mute in Figure 24 on page 44.  
0 = Transmit signal passed.  
1 = Transmit signal muted.  
4
RXM  
Receive Path Mute.  
Refer to position of digital mute in Figure 24 on page 44.  
0 = Receive signal passed.  
1 = Receive signal muted.  
3:2  
ATX[1:0]  
Analog Transmit Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = ATX gain = 0 dB; analog transmit path muted.  
1:0  
ARX[1:0]  
Analog Receive Path Gain.  
00 = 0 dB  
01 = –3.5 dB  
10 = 3.5 dB  
11 = Analog receive path muted.  
Rev. 1.0  
61  
Si3216  
Register 10. Two-Wire Impedance Synthesis Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
TISS[2:0]  
R/W  
D0  
Name  
Type  
CLC[1:0]  
R/W  
TISE  
R/W  
Reset settings = 0000_1000  
Bit  
7:6  
5:4  
Name  
Reserved Read returns zero.  
Function  
CLC[1:0]  
Line Capacitance Compensation.  
00 = Off  
01 = 4.7 nF  
10 = 10 nF  
11 = Reserved  
3
TISE  
Two-Wire Impedance Synthesis Enable.  
0 = Two-wire impedance synthesis disabled.  
1 = Two-wire impedance synthesis enabled.  
2:0  
TISS[2:0]  
Two-Wire Impedance Synthesis Selection.  
000 = 600   
001 = 900   
010 = Japan (600 + 1 µF); requires external resistor R  
= 12 kand C3, C4 = 100 nF.  
ZREF  
011 = 900 + 2.16 µF; requires external resistor R  
= 18 kand C3, C4 = 220 nF.  
ZREF  
100 = CTR21 (270 + 750 || 150 nF).  
101 = Australia/New Zealand #1 (220 + 820 || 120 nF).  
110 = Slovakia/Slovenia/South Africa (220 + 820 || 115 nF).  
111 = China (200 + 680 || 100 nF).  
62  
Rev. 1.0  
Si3216  
Register 11. Hybrid Control  
Bit  
D7  
D6  
D5  
HYBP[2:0]  
R/W  
D4  
D3  
D2  
D1  
HYBA[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0011_0011  
Bit  
7
Name  
Function  
Reserved  
HYBP[2:0]  
Read returns zero.  
6:4  
Pulse Metering Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
3
Reserved  
HYBA[2:0]  
Read returns zero.  
2:0  
Audio Hybrid Adjustment.  
000 = 4.08 dB  
001 = 2.5 dB  
010 = 1.16 dB  
011 = 0 dB  
100 = –1.02 dB  
101 = –1.94 dB  
110 = –2.77 dB  
111 = Off  
Rev. 1.0  
63  
Si3216  
Register 14. Powerdown Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
BIASOF  
R/W  
D0  
SLICOF  
R/W  
Name  
Type  
DCOF  
R/W  
PFR  
R/W  
Reset settings = 0001_0000  
Bit  
7:5  
4
Name  
Reserved  
DCOF  
Function  
Read returns zero.  
DC-DC Converter Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force dc-dc circuitry off.  
3
PFR  
PLL Free-Run Control.  
0 = Automatic free-run control.  
1 = Override automatic control and force PLL into free-run state.  
2
1
Reserved  
BIASOF  
Read returns zero.  
DC Bias Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force dc bias circuitry off.  
0
SLICOF  
SLIC Power-Off Control.  
0 = Automatic power control.  
1 = Override automatic control and force SLIC circuitry off.  
64  
Rev. 1.0  
Si3216  
Register 15. Powerdown Control 2  
Bit  
D7  
D6  
D5  
D4  
ADCON  
R/W  
D3  
D2  
DACON  
R/W  
D1  
D0  
Name  
Type  
ADCM  
R/W  
DACM  
R/W  
GMM  
R/W  
GMON  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
ADCM  
Function  
Read returns zero.  
Analog to Digital Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; ADCON controls on/off state.  
4
ADCON  
Analog to Digital Converter On/Off Power Control.  
When ADCM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
ADCON has no effect when ADCM = 0.  
3
2
DACM  
Digital to Analog Converter Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; DACON controls on/off state.  
DACON  
Digital to Analog Converter On/Off Power Control.  
When DACM = 1:  
0 = Digital to analog converter powered off.  
1 = Digital to analog converter powered on.  
DACON has no effect when DACM = 0.  
1
0
GMM  
Transconductance Amplifier Manual/Automatic Power Control.  
0 = Automatic power control.  
1 = Manual power control; GMON controls on/off state.  
GMON  
Transconductance Amplifier On/Off Power Control.  
When GMM = 1:  
0 = Analog to digital converter powered off.  
1 = Analog to digital converter powered on.  
GMON has no effect when GMM = 0.  
Rev. 1.0  
65  
Si3216  
Register 18. Interrupt Status 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RGIP  
R/W  
RGAP  
R/W  
O2IP  
R/W  
O2AP  
R/W  
O1IP  
R/W  
O1AP  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
RGIP  
Function  
Read returns zero.  
Ringing Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
4
3
2
1
0
RGAP  
O2IP  
Ringing Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 2 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O2AP  
O1IP  
Oscillator 2 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Oscillator 1 Inactive Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
O1AP  
Oscillator 1 Active Timer Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
66  
Rev. 1.0  
Si3216  
Register 19. Interrupt Status 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AP  
R/W  
Q5AP  
R/W  
Q4AP  
R/W  
Q3AP  
R/W  
Q2AP  
R/W  
Q1AP  
R/W  
LCIP  
R/W  
RTIP  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AP  
Power Alarm Q6 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
6
5
4
3
2
1
0
Q5AP  
Q4AP  
Q3AP  
Q2AP  
Q1AP  
LCIP  
Power Alarm Q5 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q4 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q3 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q2 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Power Alarm Q1 Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Loop Closure Transition Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
RTIP  
Ring Trip Interrupt Pending.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
Rev. 1.0  
67  
Si3216  
Register 20. Interrupt Status 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDP  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1
Name  
Reserved  
INDP  
Function  
Read returns zero.  
Indirect Register Access Serviced Interrupt.  
This bit is set once a pending indirect register service request has been completed.  
Writing 1 to this bit clears a pending interrupt.  
0 = No interrupt pending.  
1 = Interrupt pending.  
0
Reserved  
Read returns zero.  
68  
Rev. 1.0  
Si3216  
Register 21. Interrupt Enable 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RGIE  
R/W  
RGAE  
R/W  
O2IE  
R/W  
O2AE  
R/W  
O1IE  
R/W  
O1AE  
R/W  
Reset settings = 0000_0000  
Bit  
7:6  
5
Name  
Reserved  
RGIE  
Function  
Read/write bit with no function.  
Ringing Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
4
3
2
1
0
RGAE  
O2IE  
Ringing Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 2 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O2AE  
O1IE  
Oscillator 2 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Oscillator 1 Inactive Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
O1AE  
Oscillator 1 Active Timer Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Rev. 1.0  
69  
Si3216  
Register 22. Interrupt Enable 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Q6AE  
R/W  
Q5AE  
R/W  
Q4AE  
R/W  
Q3AE  
R/W  
Q2AE  
R/W  
Q1AE  
R/W  
LCIE  
R/W  
RTIE  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
Q6AE  
Power Alarm Q6 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
6
5
4
3
2
1
0
Q5AE  
Q4AE  
Q3AE  
Q2AE  
Q1AE  
LCIE  
Power Alarm Q5 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q4 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q3 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q2 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Power Alarm Q1 Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Loop Closure Transition Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
RTIE  
Ring Trip Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
70  
Rev. 1.0  
Si3216  
Register 23. Interrupt Enable 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDE  
R/W  
Reset settings = 0000_0000  
Bit  
7:2  
1
Name  
Reserved  
INDE  
Function  
Read returns zero.  
Indirect Register Access Serviced Interrupt Enable.  
0 = Interrupt masked.  
1 = Interrupt enabled.  
0
Reserved  
Read/write bit with no function.  
Rev. 1.0  
71  
Si3216  
Register 28. Indirect Data Access—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IDA[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[7:0]  
Indirect Data Access—Low Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 29. Indirect Data Access—High Byte  
Bit  
D7  
D6  
D5  
D4  
IDA[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
IDA[15:8]  
Indirect Data Access—High Byte.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
72  
Rev. 1.0  
Si3216  
Register 30. Indirect Address  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IAA[7:0]  
R/W  
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IAA[7:0]  
Indirect Address Access.  
A write to IDA followed by a write to IAA will place the contents of IDA into an indirect  
register at the location referenced by IAA at the next indirect register update (16 kHz  
update rate—a write operation). Writing IAA only will load IDA with the value stored at  
IAA at the next indirect memory update (a read operation).  
Register 31. Indirect Address Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
IAS  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Reserved  
IAS  
Function  
Read returns zero.  
Indirect Access Status.  
0 = No indirect memory access pending.  
1 = Indirect memory access pending.  
Rev. 1.0  
73  
Si3216  
Register 32. Oscillator 1 Control  
Bit  
D7  
OSS1  
R
D6  
D5  
D4  
D3  
D2  
D1  
O1SO[1:0]  
R/W  
D0  
Name  
Type  
REL  
R/W  
OZ1  
R/W  
O1TAE  
R/W  
O1TIE  
R/W  
O1E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS1  
Oscillator 1 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
REL  
Oscillator 1 Automatic Register Reload.  
This bit should be set for FSK signaling.  
0 = Oscillator 1 will stop signaling after inactive timer expires.  
1 = Oscillator 1 will continue to read register parameters and output signals.  
5
4
OZ1  
O1TAE  
O1TIE  
Oscillator 1 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing after active timer expires.  
Oscillator 1 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
3
Oscillator 1 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O1E  
Oscillator 1 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O1SO[1:0]  
Oscillator 1 Signal Output Routing.  
00 = Unassigned path (output not connected).  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
74  
Rev. 1.0  
Si3216  
Register 33. Oscillator 2 Control  
Bit  
D7  
OSS2  
R
D6  
D5  
D4  
O2TAE  
R/W  
D3  
D2  
D1  
O2SO[1:0]  
R/W  
D0  
Name  
Type  
OZ2  
R/W  
O2TIE  
R/W  
O2E  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
OSS2  
Oscillator 2 Signal Status.  
0 = Output signal inactive.  
1 = Output signal active.  
6
5
Reserved  
OZ2  
Read returns zero.  
Oscillator 2 Zero Cross Enable.  
0 = Signal terminates after active timer expires.  
1 = Signal terminates at zero crossing.  
4
3
O2TAE  
O2TIE  
Oscillator 2 Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Oscillator 2 Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
2
O2E  
Oscillator 2 Enable.  
0 = Disable oscillator.  
1 = Enable oscillator.  
1:0  
O2SO[1:0]  
Oscillator 2 Signal Output Routing.  
00 = Unassigned path (output not connected).  
01 = Assign to transmit path.  
10 = Assign to receive path.  
11 = Assign to both paths.  
Rev. 1.0  
75  
Si3216  
Register 34. Ringing Oscillator Control  
Bit  
D7  
RSS  
R
D6  
D5  
RDAC  
R
D4  
D3  
D2  
ROE  
R
D1  
D0  
Name  
Type  
RTAE  
R/W  
RTIE  
R/W  
RVO  
R/W  
TSWS  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RSS  
Ringing Signal Status.  
0 = Ringing oscillator output signal inactive.  
1 = Ringing oscillator output signal active.  
6
5
Reserved  
RDAC  
Read returns zero.  
Ringing Signal DAC/Linefeed Cross Indicator.  
For ringing signal start and stop, output to TIP and RING is suspended to ensure conti-  
nuity with dc linefeed voltages. RDAC indicates that ringing signal is actually present at  
TIP and RING.  
0 = Ringing signal not present at TIP and RING.  
1 = Ringing signal present at TIP and RING.  
4
3
2
1
0
RTAE  
RTIE  
ROE  
Ringing Active Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Inactive Timer Enable.  
0 = Disable timer.  
1 = Enable timer.  
Ringing Oscillator Enable.  
0 = Ringing oscillator disabled.  
1 = Ringing oscillator enabled.  
RVO  
Ringing Voltage Offset.  
0 = No dc offset added to ringing signal.  
1 = DC offset added to ringing signal.  
TSWS  
Trapezoid/Sinusoid Waveshape Select.  
0 = Sinusoid.  
1 = Trapezoid.  
76  
Rev. 1.0  
Si3216  
Register 36. Oscillator 1 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[7:0]  
Oscillator 1 Active Timer.  
LSB = 125 µs  
Register 37. Oscillator 1 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT1[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT1[15:8]  
Oscillator 1 Active Timer.  
Register 38. Oscillator 1 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[7:0]  
Oscillator 1 Inactive Timer.  
LSB = 125 µs  
Rev. 1.0  
77  
Si3216  
Register 39. Oscillator 1 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT1[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT1[15:8]  
Oscillator 1 Inactive Timer.  
Register 40. Oscillator 2 Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OAT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[7:0]  
Oscillator 2 Active Timer.  
LSB = 125 µs  
Register 41. Oscillator 2 Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
OAT2[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OAT2[15:8]  
Oscillator 2 Active Timer.  
78  
Rev. 1.0  
Si3216  
Register 42. Oscillator 2 Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[7:0]  
Oscillator 2 Inactive Timer.  
LSB = 125 µs  
Register 43. Oscillator 2 Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
OIT2[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
OIT2[15:8]  
Oscillator 2 Inactive Timer.  
Register 48. Ringing Oscillator Active Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RAT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[7:0]  
Ringing Active Timer.  
LSB = 125 µs  
Rev. 1.0  
79  
Si3216  
Register 49. Ringing Oscillator Active Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
RAT[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RAT[15:8]  
Ringing Active Timer.  
Register 50. Ringing Oscillator Inactive Timer—Low Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RIT[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[7:0]  
Ringing Inactive Timer.  
LSB = 125 µs  
Register 51. Ringing Oscillator Inactive Timer—High Byte  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RIT[15:8]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
RIT[15:8]  
Ringing Inactive Timer.  
80  
Rev. 1.0  
Si3216  
Register 52. FSK Data  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FSKDAT  
R/W  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FSKDAT  
Read returns zero.  
FSK Data.  
When FSKEN = 1 (direct Register 108, bit 6) and REL = 1 (direct Register 32, bit 6), this  
bit serves as the buffered input for FSK generation bit stream data.  
Register 63. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCD[7:0]  
Reset settings = 0101_0100  
Bit  
Name  
Function  
7:0  
LCD[7:0]  
Loop Closure Debounce Interval for Automatic Ringing.  
This register sets the loop closure debounce interval for the ringing silent period when  
using automatic ringing cadences. The value may be set between 0 ms (0x00) and  
159 ms (0x7F) in 1.25 ms steps.  
Rev. 1.0  
81  
Si3216  
Register 64. Linefeed Control  
Bit  
D7  
D6  
D5  
LFS[2:0]  
R
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LF[2:0]  
R/W  
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LFS[2:0]  
Function  
Read returns zero.  
6:4  
Linefeed Shadow.  
This register reflects the actual real time linefeed state. Automatic operations may cause  
actual linefeed state to deviate from the state defined by linefeed register (e.g., when  
linefeed equals Ringing state, LFS will equal on-hook transmission state during ringing  
silent period and Ringing state during ring burst).  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
3
Reserved  
LF[2:0]  
Read returns zero.  
2:0  
Linefeed.  
Writing to this register sets the linefeed state.  
000 = Open  
001 = Forward active  
010 = Forward on-hook transmission  
011 = TIP open  
100 = Ringing  
101 = Reverse active  
110 = Reverse on-hook transmission  
111 = RING open  
82  
Rev. 1.0  
Si3216  
Register 65. External Bipolar Transistor Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ETBA[1:0]  
R/W  
D0  
Name  
Type  
SQH  
R/W  
CBY  
R/W  
ETBE  
R/W  
ETBO[1:0]  
R/W  
Reset settings = 0110_0001  
Bit  
7
Name  
Reserved  
SQH  
Function  
Read returns zero.  
6
Audio Squelch.  
0 = No squelch.  
1 = STIPAC and SRINGAC pins squelched.  
5
4
CBY  
ETBE  
Capacitor Bypass.  
0 = Capacitors CP (C1) and CM (C2) in circuit.  
1 = Capacitors CP (C1) and CM (C2) bypassed.  
External Transistor Bias Enable.  
0 = Bias disabled.  
1 = Bias enabled.  
3:2  
ETBO[1:0]  
External Transistor Bias Levels—On-Hook Transmission State.  
DC bias current which flows through external BJTs in the on-hook transmission state.  
Increasing this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
1:0  
ETBA[1:0]  
External Transistor Bias Levels—Active Off-Hook State.  
DC bias current which flows through external BJTs in the active off-hook state. Increasing  
this value increases the compliance of the ac longitudinal balance circuit.  
00 = 4 mA  
01 = 8 mA  
10 = 12 mA  
11 = Reserved  
Rev. 1.0  
83  
Si3216  
Register 66. Battery Feed Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TRACK  
R/W  
Name  
Type  
VOV  
R/W  
FVBAT  
R/W  
Reset settings = 0000_0011  
Bit  
7:5  
4
Name  
Reserved  
VOV  
Function  
Read returns zero.  
Overhead Voltage Range Increase. (See Figure 19 on page 35.)  
This bit selects the programmable range for V , which is defined in indirect Register 41.  
OV  
0 = V = 0 V to 9 V  
OV  
1 = V = 0 V to 13.5 V  
OV  
3
FVBAT  
V
Manual Setting.  
BAT  
0 = Normal operation.  
1 = V tracks VBATH register.  
BAT  
2:1  
0
Reserved  
TRACK  
Read returns zero.  
DC-DC Converter Tracking Mode.  
0 = |V  
1 = V  
| will not decrease below VBATL.  
BAT  
BAT  
tracks V  
.
RING  
84  
Rev. 1.0  
Si3216  
Register 67. Automatic/Manual Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MNCM  
R/W  
MNDIF  
R/W  
SPDS  
R/W  
AORD  
R/W  
AOLD  
R/W  
AOPN  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
MNCM  
Function  
Read returns zero.  
6
Common Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control, in which TIP (forward) or RING (reverse) forces voltage to follow  
VCM value.  
5
4
MNDIF  
SPDS  
Differential Mode Manual/Automatic Select.  
0 = Automatic control.  
1 = Manual control (forces differential voltage to follow VOC value).  
Speed-Up Mode Enable.  
0 = Speed-up disabled.  
1 = Automatic speed-up.  
3
2
Reserved  
AORD  
Read returns zero.  
Automatic/Manual Ring Trip Detect.  
0 = Manual mode.  
1 = Enter off-hook Active state automatically upon ring trip detect.  
1
0
AOLD  
AOPN  
Automatic/Manual Loop Closure Detect.  
0 = Manual mode.  
1 = Enter off-hook Active state automatically upon loop closure detect.  
Power Alarm Automatic/Manual Detect.  
0 = Manual mode.  
1 = Enter Open state automatically upon power alarm.  
Rev. 1.0  
85  
Si3216  
Register 68. Loop Closure/Ring Trip Detect Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
DBIRAW  
R
D1  
RTP  
R
D0  
LCR  
R
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2
Name  
Function  
Reserved  
DBIRAW  
Read returns zero.  
Ring Trip/Loop Closure Unfiltered Output.  
The state of this bit reflects the real time output of ring trip and loop closure detect circuits  
before debouncing.  
0 = Ring trip/loop closure threshold exceeded.  
1 = Ring trip/loop closure threshold not exceeded.  
1
0
RTP  
LCR  
Ring Trip Detect Indicator (Filtered Output).  
0 = Ring trip detect has not occurred.  
1 = Ring trip detect occurred.  
Loop Closure Detect Indicator (Filtered Output).  
0 = Loop closure detect has not occurred.  
1 = Loop closure detect has occurred.  
Register 69. Loop Closure Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
LCDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
LCDI[6:0]  
Read returns zero.  
6:0  
Loop Closure Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. Value  
may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
86  
Rev. 1.0  
Si3216  
Register 70. Ring Trip Detect Debounce Interval  
Bit  
D7  
D6  
D5  
D4  
D3  
RTDI[6:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_1010  
Bit  
7
Name  
Function  
Reserved  
RTDI[6:0]  
Read returns zero.  
6:0  
Ring Trip Detect Debounce Interval.  
The value written to this register defines the minimum steady state debounce time. The  
value may be set between 0 ms (0x00) to 159 ms (0x7F) in 1.25 ms steps. Default  
value = 12.5 ms.  
Register 71. Loop Current Limit  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
ILIM[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
ILIM[2:0]  
Read returns zero.  
Loop Current Limit.  
The value written to this register sets the constant loop current. The value may be set  
between 20 mA (0x00) and 41 mA (0x07) in 3 mA steps.  
Rev. 1.0  
87  
Si3216  
Register 72. On-Hook Line Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VSGN  
R/W  
VOC[5:0]  
R/W  
Reset settings = 0010_0000  
Bit  
7
Name  
Reserved  
VSGN  
Function  
Read returns zero.  
6
On-Hook Line Voltage.  
The value written to this bit sets the on-hook line voltage polarity (V –V  
).  
RING  
TIP  
0 = V –V  
is positive.  
is negative.  
TIP  
RING  
RING  
1 = V –V  
TIP  
5:0  
VOC[5:0]  
On-Hook Line Voltage.  
The value written to this register sets the on-hook line voltage (V –V  
). Value may  
RING  
TIP  
be set between 0 V (0x00) and 94.5 V (0x3F) in 1.5 V steps. Default value = 48 V.  
Register 73. Common Mode Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VCM[5:0]  
R/W  
Reset settings = 0000_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VCM[5:0]  
Read returns zero.  
Common Mode Voltage.  
The value written to this register sets V  
for forward active and forward on-hook trans-  
TIP  
mission states and V  
for reverse active and reverse on-hook transmission states.  
RING  
The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V steps. Default  
value = –3 V.  
88  
Rev. 1.0  
Si3216  
Register 74. High Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATH[5:0]  
R/W  
Reset settings = 0011_0010  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATH[5:0]  
Read returns zero.  
High Battery Voltage.  
The value written to this register sets high battery voltage. V  
must be greater than or  
BATH  
equal to V  
. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V  
BATL  
steps. Default value = –75 V.  
Register 75. Low Battery Voltage  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATL[5:0]  
R/W  
Reset settings = 0001_0000  
Bit  
7:6  
5:0  
Name  
Function  
Reserved  
VBATL[5:0]  
Read returns zero.  
Low Battery Voltage.  
The value written to this register sets low battery voltage. V  
must be greater than or  
BATH  
equal to V  
. The value may be set between 0 V (0x00) and –94.5 V (0x3F) in 1.5 V  
BATL  
steps. Default value = –24 V.  
Rev. 1.0  
89  
Si3216  
Register 76. Power Monitor Pointer  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PWRMP[2:0]  
R/W  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
Read returns zero.  
PWRMP[2:0] Power Monitor Pointer.  
Selects the external transistor from which to read power output. The power of the  
selected transistor is read in the PWROM register.  
000 = Q1  
001 = Q2  
010 = Q3  
011 = Q4  
100 = Q5  
101 = Q6  
110 = Undefined  
111 = Undefined  
Register 77. Line Power Output Monitor  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PWROM[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
PWROM[7:0] Line Power Output Monitor.  
Function  
7:0  
This register reports the real time power output of the transistor selected using PWRMP.  
The range is 0 W (0x00) to 7.8 W (0xFF) in 30.4 mW steps for Q1, Q2, Q5, and Q6.  
The range is 0 W (0x00) to 0.9 W (0xFF) in 3.62 mW steps for Q3 and Q4.  
90  
Rev. 1.0  
Si3216  
Register 78. Loop Voltage Sense  
Bit  
D7  
D6  
LVSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LVS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LVSP  
Function  
Read returns zero.  
6
Loop Voltage Sense Polarity.  
This register reports the polarity of the differential loop voltage (V  
– V  
).  
TIP  
RING  
0 = Positive loop voltage (V  
> V  
).  
RING  
TIP  
1 = Negative loop voltage (V  
< V  
).  
RING  
TIP  
5:0  
LVS[5:0]  
Loop Voltage Sense Magnitude.  
This register reports the magnitude of the differential loop voltage (V – V  
). The  
TIP  
RING  
range is 0 V to 94.5 V in 1.5 V steps.  
Register 79. Loop Current Sense  
Bit  
D7  
D6  
LCSP  
R
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LCS[5:0]  
R
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
LCSP  
Function  
Read returns zero.  
6
Loop Current Sense Polarity.  
This register reports the polarity of the loop current.  
0 = Positive loop current (forward direction).  
1 = Negative loop current (reverse direction).  
5:0  
LCS[5:0]  
Loop Current Sense Magnitude.  
This register reports the magnitude of the loop current. The range is 0 mA to 78.75 mA in  
1.25 mA steps.  
Rev. 1.0  
91  
Si3216  
Register 80. TIP Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VTIP[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VTIP[7:0]  
TIP Voltage Sense.  
This register reports the real time voltage at TIP with respect to ground. The range is 0 V  
(0x00) to –95.88 V (0xFF) in. 376 V steps.  
Register 81. RING Voltage Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VRING[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
VRING[7:0]  
RING Voltage Sense.  
This register reports the real time voltage at RING with respect to ground. The range is  
0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
Register 82. Battery Voltage Sense 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS1[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS1[7:0] Battery Voltage Sense 1.  
Function  
7:0  
This register is one of two registers that reports the real time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
92  
Rev. 1.0  
Si3216  
Register 83. Battery Voltage Sense 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VBATS2[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
VBATS2[7:0] Battery Voltage Sense 2.  
Function  
7:0  
This register is one of two registers that reports the real time voltage at V  
to ground. The range is 0 V (0x00) to –95.88 V (0xFF) in .376 V steps.  
with respect  
BAT  
Register 84. Transistor 1 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ1[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ1[7:0]  
Transistor 1 Current Sense.  
This register reports the real time current through Q1. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
Register 85. Transistor 2 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ2[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ2[7:0]  
Transistor 2 Current Sense.  
This register reports the real time current through Q2. The range is 0 A (0x00) to  
81.35 mA (0xFF) in .319 mA steps. If ETBE = 1, the reported value does not include the  
additional ETBO/A current.  
Rev. 1.0  
93  
Si3216  
Register 86. Transistor 3 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ3[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ3[7:0]  
Transistor 3 Current Sense.  
This register reports the real time current through Q3. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 87. Transistor 4 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ4[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ4[7:0]  
Transistor 4 Current Sense.  
This register reports the real time current through Q4. The range is 0 A (0x00) to  
9.59 mA (0xFF) in 37.6 µA steps.  
Register 88. Transistor 5 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ5[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ5[7:0]  
Transistor 5 Current Sense.  
This register reports the real time current through Q5. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
94  
Rev. 1.0  
Si3216  
Register 89. Transistor 6 Current Sense  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IQ6[7:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:0  
IQ6[7:0]  
Transistor 6 Current Sense.  
This register reports the real time current through Q6. The range is 0 A (0x00) to  
80.58 mA (0xFF) in .316 mA steps.  
Register 92. DC-DC Converter PWM Period  
Bit  
Name DCN[7]  
Type R/W  
D7  
D6  
1
D5  
D4  
D3  
D2  
D1  
D0  
DCN[5:0]  
R
R/W  
Reset settings = 1111_1111  
Bit  
Name  
Function  
7:0  
DCN[7:0]  
DC-DC Converter Period.  
This register sets the PWM period for the dc-dc converter. The range is 3.906 µs (0x40)  
to 15.564 µs (0xFF) in 61.035 ns steps.  
Bit 6 is fixed to one and read-only, so there are two ranges of operation:  
3.906–7.751 µs, used for MOSFET transistor switching (Si3216M).  
11.719–15.564 µs, used for BJT transistor switching (Si3216).  
Rev. 1.0  
95  
Si3216  
Register 93. DC-DC Converter Switching Delay  
Bit  
Name DCCAL  
Type R/W  
D7  
D6  
D5  
DCPOL  
R
D4  
D3  
D2  
DCTOF[4:0]  
R/W  
D1  
D0  
Reset settings = 0001_0100 (Si3216)  
Reset settings = 0011_0100 (Si3216M)  
Bit  
Name  
Function  
7
DCCAL  
DC-DC Converter Peak Current Monitor Calibration Status.  
Writing a one to this bit starts the dc-dc converter peak current monitor calibration rou-  
tine.  
0 = Normal operation.  
1 = Calibration being performed.  
6
5
Reserved  
DCPOL  
Read returns zero.  
DC-DC Converter Feed Forward Pin (DCFF) Polarity.  
This read-only register bit indicates the polarity relationship of the DCFF pin to the  
DCDRV pin. Two versions of the Si3216 are offered to support the two relationships.  
0 = DCFF pin polarity is opposite of DCDRV pin (Si3216).  
1 = DCFF pin polarity is same as DCDRV pin (Si3216M).  
4:0  
DCTOF[4:0]  
DC-DC Converter Minimum Off Time.  
This register sets the minimum off time for the pulse width modulated dc-dc  
converter control. T  
= (DCTOF + 4)x61.035 ns.  
OFF  
Register 94. DC-DC Converter PWM Pulse Width  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DCPW[7:0]  
R
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DCPW[7:0]  
DC-DC Converter Pulse Width.  
Pulse width of DCDRV is given by PW = (DCPW – DCTOF – 4) x 61.035 ns.  
96  
Rev. 1.0  
Si3216  
Register 96. Calibration Control/Status Register 1  
Bit  
D7  
D6  
D5  
CALSP  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CAL  
R/W  
CALR  
R/W  
CALT  
R/W  
CALD  
R/W  
CALC  
R/W  
CALIL  
R/W  
Reset settings = 0001_1111  
Bit  
7
Name  
Reserved  
CAL  
Function  
Read returns zero.  
6
Calibration Control/Status Bit.  
Setting this bit begins calibration of the entire system.  
0 = Normal operation or calibration complete.  
1 = Calibration in progress.  
5
4
3
CALSP  
CALR  
CALT  
Calibration Speedup.  
Setting this bit shortens the time allotted for V  
calibration cycle.  
0 = 300 ms  
1 = 30 ms  
settling at the beginning of the  
BAT  
RING Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow the instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
TIP Gain Mismatch Calibration.  
For use with discrete solution only. When using the Si3201, consult “AN35: Si321x  
User’s Quick Reference Guide” and follow the instructions for manual calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
2
1
0
CALD  
CALC  
CALIL  
Differential DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Common Mode DAC Gain Calibration.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
I
Calibration.  
LIM  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Rev. 1.0  
97  
Si3216  
Register 97. Calibration Control/Status Register 2  
Bit  
D7  
D6  
D5  
D4  
CALM1  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CALM2 CALDAC CALADC  
R/W  
R/W  
R/W  
Reset settings = 0001_1110  
Bit  
7:5  
4
Name  
Reserved  
CALM1  
Function  
Read returns zero.  
Monitor ADC Calibration 1.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
3
2
CALM2  
Monitor ADC Calibration 2.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
CALDAC  
DAC Calibration.  
Setting this bit begins calibration of the audio DAC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
1
0
CALADC  
Reserved  
ADC Calibration.  
Setting this bit begins calibration of the audio ADC offset.  
0 = Normal operation or calibration complete.  
1 = Calibration enabled or in progress.  
Read returns zero.  
98  
Rev. 1.0  
Si3216  
Register 98. RING Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMR[4:0]  
R/W  
D1  
D1  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMR[4:0] Gain Mismatch of IE Tracking Loop for RING Current.  
Register 99. TIP Gain Mismatch Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGMT[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0000  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
Read returns zero.  
CALGMT[4:0] Gain Mismatch of IE Tracking Loop for TIP Current.  
Register 100. Differential Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGD[4:0]  
R/W  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGD[4:0]  
Read returns zero.  
Differential DAC Gain Calibration Result.  
Rev. 1.0  
99  
Si3216  
Register 101. Common Mode Loop Current Gain Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGC[4:0]  
R/W  
D1  
D0  
D0  
D0  
Name  
Type  
Reset settings = 0001_0001  
Bit  
7:5  
4:0  
Name  
Function  
Reserved  
CALGC[4:0]  
Read returns zero.  
Common Mode DAC Gain Calibration Result.  
Register 102. Current Limit Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
CALGIL[3:0]  
R/W  
D1  
Name  
Type  
Reset settings = 0000_1000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
CALGIL[3:0]  
Read returns zero.  
Current Limit Calibration Result.  
Register 103. Monitor ADC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
Name  
Type  
CALMG1[3:0]  
R/W  
CALMG2[3:0]  
R/W  
Reset settings = 1000_1000  
Bit  
7:4  
3:0  
Name  
Function  
CALMG1[3:0] Monitor ADC Offset Calibration Result 1.  
CALMG2[3:0] Monitor ADC Offset Calibration Result 2.  
100  
Rev. 1.0  
Si3216  
Register 104. Analog DAC/ADC Offset  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACP  
R/W  
DACN  
R/W  
ADCP  
R/W  
ADCN  
R/W  
Reset settings = 0000_0000  
Bit  
7:4  
3
Name  
Reserved  
DACP  
Function  
Read returns zero.  
Positive Analog DAC Offset.  
Negative Analog DAC Offset.  
Positive Analog ADC Offset.  
Negative Analog ADC Offset.  
2
DACN  
1
ADCP  
0
ADCN  
Register 105. DAC Offset Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DACOF[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
DACOF[7:0]  
DAC Offset Calibration Result.  
Register 107. DC Peak Current Monitor Calibration Result  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CMDCPK[3:0]  
R/W  
Reset settings = 0000_1000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
Read returns zero.  
CMDCPK[3:0] DC Peak Current Monitor Calibration Result.  
Rev. 1.0  
101  
Si3216  
Register 108. Enhancement Enable  
Bit  
Name ILIMEN  
Type R/W  
D7  
D6  
FSKEN  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
HYSTEN  
R/W  
DCSU  
R/W  
LCVE  
R/W  
DCFIL  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
ILIMEN  
Current Limit Increase.  
When enabled, this bit temporarily increases the maximum differential current limit at the  
end of a ring burst to enable a faster settling time to a dc linefeed state.  
0 = The value programmed in ILIM (direct Register 71) is used.  
1 = The maximum differential loop current limit is temporarily increased to 41 mA.  
6
FSKEN  
FSK Generation Enhancement.  
When enabled, this bit will increase the clocking rate of tone generator 1 to 24 kHz only  
when the REL bit (direct Register 32, bit 6) is set. Also, dedicated oscillator registers are  
used for FSK generation (indirect registers 99–104). Audio tones are generated using  
this new higher frequency, and oscillator 1 active and inactive timers have a finer bit res-  
olution of 41.67 µs. This provides greater resolution during FSK caller ID signal genera-  
tion.  
0 = Tone generator always clocked at 8 kHz; OSC1, OSC1X., and OSC1Y are always  
used.  
1 = Tone generator module clocked at 24 kHz and dedicated FSK registers used only  
when REL = 1; otherwise clocked at 8 kHz.  
5
DCSU  
DC-DC Converter Control Speedup.  
When enabled, this bit invokes a multi-threshold error control algorithm which allows the  
dc-dc converter to adjust more quickly to voltage changes.  
0 = Normal control algorithm used.  
1 = Multi-threshold error control algorithm used.  
4
3
2
Reserved  
Reserved  
LCVE  
Write has no effect.  
Read returns zero.  
Voltage-Based Loop Closure.  
Enables loop closure to be determined by the TIP-to-RING voltage rather than loop cur-  
rent.  
0 = Loop closure determined by loop current.  
1 = Loop closure determined by TIP-to-RING voltage.  
102  
Rev. 1.0  
Si3216  
Bit  
Name  
Function  
1
DCFIL  
DC-DC Converter Squelch.  
When enabled, this bit squelches noise in the audio band from the dc-dc converter con-  
trol loop.  
0 = Voice band squelch disabled.  
1 = Voice band squelch enabled.  
0
HYSTEN  
Loop Closure Hysteresis Enable.  
When enabled, this bit allows hysteresis to the loop closure calculation. The upper and  
lower hysteresis thresholds are defined by Indirect Registers 28 and 43, respectively.  
0 = Loop closure hysteresis disabled.  
1 = Loop closure hysteresis enabled.  
Rev. 1.0  
103  
Si3216  
4. Indirect Registers  
Indirect registers are not directly mapped into memory but are accessible through the IDA and IAA registers. A  
write to IDA followed by a write to IAA is interpreted as a write request to an indirect register. In this case, the  
contents of IDA are written to indirect memory at the location referenced by IAA at the next indirect register update.  
A write to IAA without first writing to IDA is interpreted as a read request from an indirect register. In this case, the  
value located at IAA is written to IDA at the next indirect register update. Indirect registers are updated at a rate of  
16 kHz. For pending indirect register transfers, IAS (direct Register 31) will be one until serviced. In addition, an  
interrupt, IND (Register 20), can be generated upon completion of the indirect transfer.  
The indirect memory map is different from what is described in the data sheet. The indirect memory map is as  
follows:  
Table 35. Si3210 to Si3216 Indirect Register Cross Reference  
Si3210  
Indirect  
Register  
Si3216  
Indirect  
Register  
Indirect  
Register  
Si3210  
Indirect  
Register  
Si3216  
Indirect  
Register  
Indirect  
Register  
Name  
Si3210  
Indirect  
Register  
Si3216  
Indirect  
Register  
Indirect  
Register  
Name  
Name  
OSC1  
OSC1X  
OSC1Y  
OSC2  
OSC2X  
OSC2Y  
ROFF  
RCO  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
26  
0
1
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
ADCG  
LCRT  
RPTP  
CML  
38  
39  
25  
26  
27  
64  
66  
69  
70  
71  
72  
73  
74  
NQ34  
NQ56  
2
40  
VCMR  
VMIND  
LCRTL  
FSK0X  
FSK0  
3
41  
4
CMH  
43  
5
PPT12  
PPT34  
PPT56  
NCLR  
NRTP  
NQ12  
99  
6
100  
101  
102  
103  
104  
7
FSK1X  
FSK1  
8
RNGX  
RNGY  
DACG  
9
FSK01  
FSK10  
13  
4.1. Oscillators  
See functional description sections of tone generation, ringing, and pulse metering for guidelines on computing  
register values. All values are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 36. Oscillator Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
2
3
4
5
OSC1[15:0]  
OSC1X[15:0]  
OSC1Y[15:0]  
OSC2[15:0]  
OSC2X[15:0]  
OSC2Y[15:0]  
6
ROFF[5:0]  
104  
Rev. 1.0  
Si3216  
Table 36. Oscillator Indirect Registers Summary (Continued)  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7
8
9
RCO[15:0]  
RNGX[15:0]  
RNGY[15:0]  
Table 37. Oscillator Indirect Registers Description  
Description  
Addr.  
Reference  
Page  
0
Oscillator 1 Frequency Coefficient.  
37  
37  
37  
37  
37  
37  
39  
Sets tone generator 1 frequency.  
1
2
3
4
5
6
Oscillator 1 Amplitude Register.  
Sets tone generator 1 signal amplitude.  
Oscillator 1 Initial Phase Register.  
Sets initial phase of tone generator 1 signal.  
Oscillator 2 Frequency Coefficient.  
Sets tone generator 2 frequency.  
Oscillator 2 Amplitude Register.  
Sets tone generator 2 signal amplitude.  
Oscillator 2 Initial Phase Register.  
Sets initial phase of tone generator 2 signal.  
Ringing Oscillator DC Offset.  
Sets dc offset component (V –V  
) to ringing waveform. The range is 0 to 94.5 V in  
RING  
TIP  
1.5 V increments.  
7
8
9
Ringing Oscillator Frequency Coefficient.  
39  
39  
39  
Sets ringing generator frequency.  
Ringing Oscillator Amplitude Register.  
Sets ringing generator signal amplitude.  
Ringing Oscillator Initial Phase Register.  
Sets initial phase of ringing generator signal.  
4.2. Digital Programmable Gain/Attenuation  
See functional description sections of digital programmable gain/attenuation for guidelines on computing register  
values. All values are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeros.  
Table 38. Digital Programmable Gain/Attenuation Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
13  
14  
DACG[11:0]  
ADCG[11:0]  
Rev. 1.0  
105  
Si3216  
Table 39. Digital Programmable Gain/Attenuation Indirect Registers Description  
Addr.  
Description  
Reference  
Page  
13 Receive Path Digital to Analog Converter Gain/Attenuation.  
43  
This register sets gain/attenuation for the receive path. The digitized signal is effectively mul-  
tiplied by DACG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
14 Transmit Path Analog to Digital Converter Gain/Attenuation.  
43  
This register sets gain/attenuation for the transmit path. The digitized signal is effectively  
multiplied by ADCG to achieve gain/attenuation. A value of 0x00 corresponds to –dB gain  
(mute). A value of 0x400 corresponds to unity gain. A value of 0x7FF corresponds to a gain  
of 6 dB.  
106  
Rev. 1.0  
Si3216  
4.3. SLIC Control  
See descriptions of linefeed interface and power monitoring for guidelines on computing register values. All values  
are represented in 2s-complement format.  
Note: The values of all indirect registers are undefined following the reset state. Shaded areas denote bits that can be read  
and written but should be written to zeroes.  
Table 40. SLIC Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
LCRT[5:0]  
RPTP[5:0]  
CML[5:0]  
CMH[5:0]  
PPT12[7:0]  
PPT34[7:0]  
PPT56[7:0]  
NCLR[12:0]  
NRTP[12:0]  
NQ12[12:0]  
NQ34[12:0]  
NQ56[12:0]  
VCMR[3:0]  
64  
66  
VMIND[3:0]  
LCRTL[5:0]  
Table 41. SLIC Control Indirect Registers Description  
Description  
Addr.  
Reference Page  
15 Loop Closure Threshold.  
32  
Loop closure detection threshold. This register defines the upper bounds threshold if hys-  
teresis is enabled (direct Register 108, bit 0). The range is 0–80 mA in 1.27 mA steps.  
16 Ring Trip Threshold.  
42  
Ring trip detection threshold during ringing.  
17 Common Mode Minimum Threshold for Speed-Up.  
This register defines the negative common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
18 Common Mode Maximum Threshold for Speed-Up.  
This register defines the positive common mode voltage threshold. Exceeding this  
threshold enables a wider bandwidth of dc linefeed control for faster settling times. The  
range is 0–23.625 V in 0.375 V steps.  
Rev. 1.0  
107  
Si3216  
Table 41. SLIC Control Indirect Registers Description (Continued)  
Description  
Addr.  
Reference Page  
19 Power Alarm Threshold for Transistors Q1 and Q2.  
20 Power Alarm Threshold for Transistors Q3 and Q4.  
21 Power Alarm Threshold for Transistors Q5 and Q6.  
22 Loop Closure Filter Coefficient.  
30  
30  
30  
32  
42  
30  
30  
30  
23 Ring Trip Filter Coefficient.  
24 Thermal Low Pass Filter Pole for Transistors Q1 and Q2.  
25 Thermal Low Pass Filter Pole for Transistors Q3 and Q4.  
26 Thermal Low Pass Filter Pole for Transistors Q5 and Q6.  
27 Common Mode Bias Adjust During Ringing.  
39  
Recommended value of 0 decimal.  
DC-DC Converter V Voltage.  
33  
OV  
This register sets the overhead voltage, V , to be supplied by the dc-dc converter.  
OV  
64  
66  
When the VOV bit = 0 (direct Register 66, bit 4), V should be set between 0 and 9 V  
OV  
(VMIND = 0 to 6h). When the VOV bit = 1, V should be set between 0 and 13.5 V  
OV  
(VMIND = 0 to 9h).  
Loop Closure Threshold—Lower Bound.  
This register defines the lower threshold for loop closure hysteresis, which is enabled in  
bit 0 of direct Register 108. The range is 0–80 mA in 1.27 mA steps.  
32  
108  
Rev. 1.0  
Si3216  
4.4. FSK Control  
For detailed instructions on FSK signal generation, refer to “Application Note 32: FSK Generation” (AN32). These  
registers support enhanced FSK generation mode, which is enabled by setting FSKEN = 1 (direct Register 108,  
bit 6) and REL = 1 (direct Register 32, bit 6).  
Table 42. FSK Control Indirect Registers Summary  
Addr. D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
69  
70  
71  
72  
73  
74  
FSK0X[15:0]  
FSK0[15:0]  
FSK1X[15:0]  
FSK1[15:0]  
FSK01[15:0]  
FSK10[15:0]  
Table 43. FSK Control Indirect Registers Description  
Description  
Addr.  
Reference Page  
FSK Amplitude Coefficient for Space.  
69  
39 and AN32  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a space or 0. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
FSK Frequency Coefficient for Space.  
70  
71  
72  
39 and AN32  
39 and AN32  
39 and AN32  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a space or 0. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
FSK Amplitude Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the amplitude to be used when gener-  
ating a mark or 1. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1X.  
FSK Frequency Coefficient for Mark.  
When FSKEN = 1 and REL = 1, this register sets the frequency to be used when gener-  
ating a mark or 1. When the active timer (OAT1) expires, the value of this register is  
loaded into oscillator 1 instead of OSC1.  
FSK Transition Parameter from 0 to 1.  
73  
74  
39 and AN32  
39 and AN32  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a space (0) to a mark (1).  
FSK Transition Parameter from 1 to 0.  
When FSKEN = 1 and REL = 1, this register defines a gain correction factor that is  
applied to signal amplitude when transitioning from a mark (1) to a space (0).  
Rev. 1.0  
109  
Si3216  
5. Pin Descriptions: Si3216  
QFN  
TSSOP  
38  
37  
1
2
CS  
INT  
SCLK  
SDI  
PCLK  
DRX  
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
IREF  
CAPP  
QGND  
CAPM  
36 SDO  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
38 37 36 35 34 33 32  
1
2
3
4
DTX  
FSYNC  
RESET  
SDCH  
SDCL  
VDDA1  
IREF  
CAPP  
QGND  
CAPM  
STIPDC  
31 SDITHRU  
35  
34  
33  
32  
31  
30  
SDITHRU  
DCDRV  
DCFF  
TEST  
GNDD  
VDDD  
30  
DCDRV  
29  
DCFF  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TEST  
GNDD  
VDDD  
ITIPN  
ITIPP  
VDDA2  
IRINGP  
IRINGN  
IGMP  
5
6
7
29 ITIPN  
8
28  
27  
ITIPP  
VDDA2  
9
10  
11  
26 IRINGP  
25  
24  
23  
22  
21  
20  
IRINGN  
IGMP  
GNDA  
IGMN  
SRINGAC  
STIPAC  
SRINGDC 12  
13 14 15 16 17 18 19  
STIPDC 15  
SRINGDC 16  
STIPE  
SVBAT 18  
SRINGE  
17  
19  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
35  
1
CS  
Chip Select.  
Active low. When inactive, SCLK and SDI are ignored and SDO is high-impedance.  
When active, the serial port is operational.  
36  
37  
38  
1
2
3
4
5
6
INT  
PCLK  
DRX  
DTX  
Interrupt.  
Maskable interrupt output. Open drain output for wire-ORed operation.  
PCM Bus Clock.  
Clock input for PCM bus timing.  
Receive PCM Data.  
Input data from PCM bus.  
Transmit PCM Data.  
Output data to PCM bus.  
2
FSYNC Frame Synch.  
8 kHz frame synchronization signal for the PCM bus. May be short or long pulse for-  
mat.  
3
4
7
8
RESET Reset.  
Active low input. Hardware reset used to place all control registers in the default  
state.  
SDCH  
DC Monitor.  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter.  
110  
Rev. 1.0  
Si3216  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
5
9
SDCL  
DC Monitor.  
DC-DC converter monitor input used to detect overcurrent situations in the con-  
verter.  
6
7
8
10  
11  
12  
VDDA1 Analog Supply Voltage.  
Analog power supply for internal analog circuitry.  
Current Reference.  
IREF  
Connects to an external resistor used to provide a high accuracy reference current.  
CAPP  
SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
9
13  
14  
QGND Component Reference Ground.  
10  
CAPM SLIC Stabilization Capacitor.  
Capacitor used in low pass filter to stabilize SLIC feedback loops.  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
STIPDC TIP Sense.  
Analog current input used to sense voltage on the TIP lead.  
SRINGDC RING Sense.  
Analog current input used to sense voltage on the RING lead.  
STIPE TIP Emitter Sense.  
Analog current input used to sense voltage on the Q6 emitter lead.  
SVBAT VBAT Sense.  
Analog current input used to sense voltage on dc-dc converter output voltage lead.  
SRINGE RING Emitter Sense.  
Analog current input used to sense voltage on the Q5 emitter lead.  
STIPAC TIP Transmit Input.  
Analog ac input used to detect voltage on the TIP lead.  
SRINGAC RING Transmit Input.  
Analog ac input used to detect voltage on the RING lead.  
IGMN  
Transconductance Amplifier External Resistor.  
Negative connection for transconductance gain setting resistor.  
GNDA Analog Ground.  
Ground connection for internal analog circuitry.  
IGMP  
Transconductance Amplifier External Resistor.  
Positive connection for transconductance gain setting resistor.  
IRINGN Negative Ring Current Control.  
Analog current output driving Q3.  
IRINGP Positive Ring Current Control.  
Analog current output driving Q2.  
VDDA2 Analog Supply Voltage.  
Analog power supply for internal analog circuitry.  
Rev. 1.0  
111  
Si3216  
Pin #  
QFN TSSOP  
Pin #  
Name  
Description  
24  
25  
26  
27  
28  
28  
29  
30  
31  
32  
ITIPP  
Positive TIP Current Control.  
Analog current output driving Q1.  
ITIPN  
Negative TIP Current Control.  
Analog current output driving Q4.  
VDDD  
Digital Supply Voltage.  
Digital power supply for internal digital circuitry.  
GNDD Digital Ground.  
Ground connection for internal digital circuitry.  
Test.  
TEST  
Enables test modes for Silicon Labs internal testing. This pin should always be tied  
to ground for normal operation.  
29  
33  
DCFF  
DC Feed-Forward/High Current General Purpose Output.  
Feed-forward drive of external bipolar transistors to improve dc-dc converter  
efficiency.  
30  
31  
32  
33  
34  
34  
35  
36  
37  
38  
DCDRV DC Drive/Battery Switch.  
DC-DC converter control signal output which drives external bipolar transistor.  
SDITHRU SDI Passthrough.  
Cascaded SDI output signal for daisy-chain mode.  
Serial Port Data Out.  
SDO  
SDI  
Serial port control data output.  
Serial Port Data In.  
Serial port control data input.  
SCLK  
Serial Port Bit Clock Input.  
Serial port clock input. Controls the serial data on SDO and latches the data on SDI.  
112  
Rev. 1.0  
Si3216  
6. Pin Descriptions: Si3201  
TIP  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
ITIPP  
ITIPN  
IRINGP  
IRINGN  
NC  
RING  
VBAT  
VBATH  
NC  
STIPE  
SRINGE  
NC  
GND  
VDD  
Pin #  
Name  
Input/  
Description  
Output  
1
TIP  
NC  
I/O  
I/O  
TIP Output—Connect to the TIP lead of the subscriber loop.  
2, 6, 9, 12  
No Internal Connection—Do not connect to any electrical signal.  
RING Output—Connect to the RING lead of the subscriber loop.  
Operating Battery Voltage—Connect to the battery supply.  
High Battery Voltage—This pin is internally connected to VBAT.  
Ground—Connect to a low impedance ground plane.  
3
4
5
7
8
RING  
VBAT  
VBATH  
GND  
VDD  
Supply Voltage—Main power supply for all internal circuitry. Connect to a  
3.3 V or 5 V supply. Decouple locally with a 0.1 F/6 V capacitor.  
10  
SRINGE  
O
RING Emitter Sense Output—Connect to the SRINGE pin of the Si321x  
pin.  
11  
13  
STIPE  
O
I
TIP Emitter Sense Output—Connect to the STIPE pin of the Si321x pin.  
IRINGN  
Negative RING Current Control—Connect to the IRINGN lead of the  
Si321x.  
14  
15  
16  
IRINGP  
ITIPN  
I
I
I
Positive RING Current Drive—Connect to the IRINGP lead of the Si321x.  
Negative TIP Current Control—Connect to the ITIPN lead of the Si321x.  
Positive TIP Current Control—Connect to the ITIPP lead of the Si321x.  
Exposed Thermal Pad—Connect to the bulk ground plane.  
ITIPP  
Bottom-Side  
Exposed Pad  
Rev. 1.0  
113  
Si3216  
7. Ordering Guides  
Table 44. Device Ordering Guide  
Package  
Device  
Description Wideband DCFF Pin  
Lead-Free and  
Temperature  
Codec  
Output  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
DCDRV  
N/A  
RoHS-Compliant  
Si3216-C-FM  
Si3216-C-GM  
Si3216M-C-FM  
Si3216M-C-GM  
Si3216-KT  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
ProSLIC  
QFN-38  
QFN-38  
Yes  
Yes  
Yes  
Yes  
No  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
QFN-38  
QFN-38  
–40 to 85 °C  
0 to 70 °C  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
TSSOP-38  
SOIC-16  
Si3216-BT  
No  
–40 to 85 °C  
0 to 70 °C  
Si3216-FT  
Yes  
Yes  
No  
Si3216-GT  
–40 to 85 °C  
0 to 70 °C  
Si3216M-KT  
Si3216M-BT  
Si3216M-FT  
Si3216M-GT  
Si3201-KS  
No  
–40 to 85 °C  
0 to 70 °C  
Yes  
Yes  
No  
–40 to 85 °C  
0 to 70 °C  
Linefeed  
Interface  
Si3201-BS  
Si3201-FS  
Si3201-GS  
Linefeed  
Interface  
N/A  
N/A  
N/A  
SOIC-16  
SOIC-16  
SOIC-16  
No  
Yes  
Yes  
–40 to 85 °C  
0 to 70 °C  
Linefeed  
Interface  
Linefeed  
Interface  
–40 to 85 °C  
Note: Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
114  
Rev. 1.0  
Si3216  
Table 45. Evaluation Kit Ordering Guide  
Item  
Supported  
ProSLIC  
Description  
Linefeed  
Interface  
Discrete  
Si3201  
Si3216PPQX-EVB  
Si3216PPQ1-EVB  
Si3216DCQX-EVB  
Si3216DCQ1-EVB  
Si3216MPPQX-EVB  
Si3216MPPQ1-EVB  
Si3216MDCQ1-EVB  
Si3216MDCQX-EVB  
Si3216PPTX-EVB  
Si3216PPT1-EVB  
Si3216DCX-EVB  
Si3216-QFN  
Si3216-QFN  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Si3216-QFN  
Discrete  
Si3201  
Si3216-QFN  
Daughter Card Only  
Si3216M-QFN  
Si3216M-QFN  
Si3216M-QFN  
Si3216M-QFN  
Si3216-TSSOP  
Si3216-TSSOP  
Si3216-TSSOP  
Si3216-TSSOP  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Discrete  
Si3201  
Si3201  
Daughter Card Only  
Discrete  
Discrete  
Si3201  
Eval Board, Daughter Card  
Eval Board, Daughter Card  
Daughter Card Only  
Discrete  
Si3201  
Si3216DC1-EVB  
Daughter Card Only  
Rev. 1.0  
115  
Si3216  
8. Package Outline: 38-Pin QFN  
Figure 30 illustrates the package details for the Si321x. Table 46 lists the values for the dimensions shown in the  
illustration.  
Figure 30. 38-Pin Quad Flat No-Lead Package (QFN)  
Table 46. Package Diagram Dimensions1,2,3  
Millimeters  
Symbol  
Min  
0.75  
0.00  
0.18  
Nom  
0.85  
Max  
0.95  
0.05  
0.30  
A
A1  
b
0.01  
0.23  
D
5.00 BSC.  
3.20  
D2  
e
3.10  
3.30  
0.50 BSC.  
7.00 BSC.  
5.20  
E
E2  
L
5.10  
0.35  
0.03  
5.30  
0.55  
0.08  
0.10  
0.10  
0.08  
0.10  
0.45  
L1  
0.05  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless  
otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1982.  
3. Recommended card reflow profile is per the JEDEC/IPC  
J-STD-020C specification for Small Body Components.  
116  
Rev. 1.0  
Si3216  
9. Package Outline: 38-Pin TSSOP  
Figure 31 illustrates the package details for the Si321x. Table 47 lists the values for the dimensions shown in the  
illustration.  
B
E/2  
2x  
E1  
E
L
C
2x  
B A  
ddd  
e
ccc  
A
D
C
aaa  
C
A
Seating Plane  
b
A1  
C
38x  
M
bbb  
C B A  
Approximate device weight is 115.7 mg  
Figure 31. 38-Pin Thin Shrink Small Outline Package (TSSOP)  
Table 47. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Nom  
Max  
1.20  
0.15  
0.27  
0.20  
9.80  
A
A1  
b
0.05  
0.17  
0.09  
9.60  
c
D
9.70  
e
E
0.50 BSC  
6.40 BSC  
4.40  
E1  
L
4.30  
0.45  
0°  
4.50  
0.75  
8°  
0.60  
aaa  
bbb  
ccc  
ddd  
0.10  
0.08  
0.05  
0.20  
Rev. 1.0  
117  
Si3216  
10. Package Outline: 16-Pin ESOIC  
Figure 32 illustrates the package details for the Si3201. Table 48 lists the values for the dimensions shown in the  
illustration.  
16  
9
8
x45°  
h
E
H
.25 M B M  
–B–  
1
L
B
Bottom Side  
Exposed Pad  
2.3 x 3.6 mm  
.25 M C A M B S  
Detail F  
–A–  
D
C
A
–C–  
See Detail F  
A1  
e
Seating Plane  
Weight: Approximate device weight is 0.15 grams.  
Figure 32. 16-Pin Thermal Enhanced Small Outline Integrated Circuit (ESOIC) Package  
Table 48. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
1.35  
0
Max  
1.75  
0.15  
.51  
A
A1  
B
C
D
E
e
.33  
.19  
.25  
9.80  
3.80  
10.00  
4.00  
1.27 BSC  
H
h
5.80  
.25  
.40  
6.20  
.50  
L
1.27  
0.10  
8º  
0º  
118  
Rev. 1.0  
Si3216  
11. Silicon Labs Si3216 Support Documentation  
AN32: Si321x Frequency Shift Keying (FSK) Modulation  
AN33: Si321x Neon Flashing  
AN34: Si321x Hardware Reference Guide  
AN35: Si321x User’s Quick Reference Guide  
AN39: Connecting the ProSLIC to the W & G PCM-4  
AN45: Design Guide for the Si321x DC-DC Converter  
AN46: Demonstration Software Guide for the Si3210 DC-DC Converter  
AN47: Si321x Linefeed Power Monitoring and Protection  
Si321xPPT-EVB: Evaluation board data sheet  
Note: Refer to www.silabs.com for a current list of support documents for this chipset.  
Rev. 1.0  
119  
Si3216  
DOCUMENT CHANGE LIST  
Revision 0.61 to Revision 0.9  
Separated the Si3216/15 document into two data  
sheets.  
Added Quad Flat No-Lead (QFN) package.  
Removed references to Si3215.  
Updated Figure 11 on page 20.  
Changed C18, C19 from 1.0 µF to 4.7 µF.  
Updated Figure 13 on page 23.  
Changed C10 from 22 nF to 0.1 µF.  
Updated Table 11 on page 18.  
Changed delay time between chip selects, tcs, from 220 ns to  
440 ns  
Updated Table 41 on page 107.  
Changed recommended values for Indirect Register 27 from 6 to  
0.  
Updated 7."Ordering Guides" on page 114.  
Revision 0.9 to Revision 0.91  
Figure 12 on page 22.  
Added optional components to application schematic to improve  
idle channel noise.  
Table 14 on page 22.  
Added TO-92 transistor suppliers to BOM.  
Table 45, “Evaluation Kit Ordering Guide,” on  
page 115.  
Updated to include Si3216M-QFN daughter card.  
Table 48, “Package Diagram Dimensions,” on  
page 118.  
Changed A1 from 0.10 to 0.15.  
7."Ordering Guides" on page 114.  
Updated table to include product revision designator.  
Rev. C Si3216 Silicon:  
Register 14. Powerdown Control 1 on page 64.  
Changed Bit 3 from “Monitor ADC Power-Off Control” to “PLL  
Free-Run Control”  
Revision 0.91 to Revision 1.0  
Added chamfered Pin 1 identifier option to Package  
Outline: 38-Pin QFN.  
Clarified Ordering Guide  
Replaced "X" with revision letter "C" in all ordering codes  
requiring a revision letter.  
Removed Note 2 from Ordering Guide  
120  
Rev. 1.0  
Si3216  
NOTES:  
Rev. 1.0  
121  
Si3216  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: ProSLICinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ProSLIC are registered trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
122  
Rev. 1.0  

相关型号:

SI3216-GTR

暂无描述
SILICON

SI3216-KTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, TSSOP-38
SILICON

SI3216M-FTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON

SI3216M-GT

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON

SI3216M-GTR

Programmable Codec, A/MU-Law, 1-Func, CMOS, PDSO38, ROHS COMPLIANT, TSSOP-38
SILICON

SI3216MPPQ1-EVB

EVALUATION BOARD FOR THE Si3210/15/16 PROSLIC
SILICON

SI3216MPPQX-EVB

EVALUATION BOARD FOR THE Si3210/15/16 PROSLIC
SILICON

SI3216PPQ1-EVB

EVALUATION BOARD FOR THE Si3210/15/16 PROSLIC
SILICON

SI3216PPQX-EVB

EVALUATION BOARD FOR THE Si3210/15/16 PROSLIC
SILICON

SI32170-B-FM1

Telecom Circuit,
SILICON

SI32170-B-FM1R

Telecom Circuit,
SILICON

SI32170-B-GMR

Telecom Circuit,
SILICON