SI3227-A-FQ [SILICON]

SLIC, PQFP64, ROHS COMPLIANT, MS-026ACD, TQFP-64;
SI3227-A-FQ
型号: SI3227-A-FQ
厂家: SILICON    SILICON
描述:

SLIC, PQFP64, ROHS COMPLIANT, MS-026ACD, TQFP-64

CD 电信 电信集成电路
文件: 总38页 (文件大小:669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3226/7  
Si3208/9  
DUAL PROSLIC® WITH DC-DC CONTROLLER  
Features  
Performs all BORSCHT functions  
Ideal for short- or long-loop applicationsOn-hook transmission  
Internal balanced or unbalanced ringingLoop or ground start operation  
Low power consumption  
Low-power sleep mode  
Smooth polarity reversal  
Software-programmable parameters: DTMF generator/decoder  
Ringing frequency, amplitude,  
cadence, and waveshape  
Two-wire ac impedance  
A-Law/µ-Law companding,  
linear PCM  
PCM and SPI bus digital interfaces  
with programmable interrupts  
GCI/IOM-2 mode support  
3.3 V operation  
GR-909 loop diagnostics  
Audio diagnostics with loopback  
Pb-free/RoHS-compliant packaging  
Transhybrid balance  
DC current loop feed (10–45 mA)  
Loop closure and ring trip thresholds  
Ground key detect threshold  
Integrated dc-dc controller  
Wideband CODEC (Si3227)  
Applications  
Customer Premises Equipment (CPE) Private Branch Exchange (PBX)  
Ordering Information  
Optical Network Terminals (ONT)  
Cable EMTAs, ATAs, VoIP  
Gateways  
See page 33.  
Description  
Patents pending  
The Dual ProSLIC® is a family of low-voltage CMOS devices that integrate both  
SLIC and CODEC functionality into a single IC. In combination with a linefeed IC  
(LFIC), they provide a complete two-channel analog telephone interface in  
accordance with all relevant LSSGR, ITU, and ETSI specifications. The Dual  
ProSLIC devices (Si3226/7) operate from a single 3.3 V supply and interface to  
standard PCM/SPI or GCI bus digital interfaces. The LFICs (Si3208/9) perform all  
high-voltage functions and operate from a 3.3 V supply as well as high-voltage  
battery supplies. The Si3208 is rated for –110 V, and the Si3209 is rated for –  
135 V. The Dual ProSLIC devices are available in a 64-pin thin quad flat package  
(TQFP), and the LFICs are available in a 40-pin, quad flat no-lead package  
(QFN).  
Functional Block Diagram  
Si3226/7  
Si32068/9  
CODEC  
SLIC  
Linefeed  
Control  
PCM/  
GCI  
Interface  
FSYNC  
DRX  
DTMF &  
Tone Gen  
TIP  
ADC  
DTX  
Channel 1  
RING  
Caller ID  
Linefeed  
Monitor  
CS  
SDI  
DAC  
SPI  
Control  
Interface  
Ringing  
Generator  
SDO  
SCLK  
INT  
SLIC  
Linefeed  
Control  
CODEC  
DSP  
TIP  
Line Diagnostics  
ADC  
RST  
Channel 2  
RING  
Linefeed  
Monitor  
DAC  
PCLK  
DC-DC Controllers  
PLL  
VBAT  
DC-DC BOM  
VDC  
Preliminary Rev. 0.33 6/07  
Copyright © 2007 by Silicon Laboratories  
Si3226/7 Si3208/9  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si3226/7  
Si3208/9  
2
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.1. DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.2. Linefeed Operating States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.3. Line Voltage and Current Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.4. Power Monitoring and Power Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.5. Thermal Overload Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.6. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.7. Loop Closure Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.8. Ground Key Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.9. Ringing Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.10. Polarity Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.11. Two-Wire Impedance Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.12. Transhybrid Balance Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.13. Tone Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.14. DTMF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.15. DC-DC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.16. Wideband Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.17. SPI Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.18. PCM Interface and Companding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.19. General Circuit Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.20. Metallic Loop Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5. Pin Descriptions: Si3226/7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
6. Pin Descriptions: Si3208/9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
8. Package Outline: 64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
9. Package Outline: 40-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Preliminary Rev. 0.33  
3
Si3226/7  
Si3208/9  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings and Thermal Information1  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
°C  
Operating Temperature Range  
Storage Temperature Range  
T
–40 to 85  
–55 to 150  
A
T
°C  
STG  
2
Thermal Resistance, Typical  
θ
25  
1.6  
32  
°C/W  
W
JA  
TQFP-64  
3
Continuous Power Dissipation  
TQFP-64  
P
T = 85 °C  
A
D
2
Thermal Resistance, Typical  
QFN-40  
θ
°C/W  
W
JA  
4
Continuous Power Dissipation  
QFN-40  
P
T = 85 °C  
1.7  
D
A
Si3226/7  
Supply Voltage  
V
V
–0.5 to 4.0  
–0.3 to 3.6  
V
V
DD1 – DD4  
Digital Input Voltage  
V
IND  
Si3208  
Supply Voltage  
V
–0.5 to 4.0  
+0.4 to –110  
+0.4 to –118  
±100  
V
V
DD  
V
Continuous  
BAT  
5
Battery Supply Voltage  
Pulse < 10 µs  
V
TIP, RING Current  
Supply Voltage  
I
, I  
mA  
TIP RING  
Si3209  
V
–0.5 to 4.0  
+0.4 to –135  
+0.4 to –143  
±100  
V
V
DD  
Continuous  
5
High Battery Supply Voltage  
V
BAT  
Pulse < 10 µs  
V
TIP, RING Current  
I
, I  
mA  
TIP RING  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet.  
2. The thermal resistance of an exposed pad package is assured when the recommended printed circuit board layout  
guidelines are followed correctly. The specified performance requires that the exposed pad be soldered to an exposed  
copper surface of at least equal size and that multiple vias are added to enable heat transfer between the top-side  
copper surface and a large internal/bottom copper plane.  
3. Operation of the Si3226 or Si3227 above 125 °C junction temperature may degrade device reliability.  
4. Si3208 and Si3209 are equipped with on-chip thermal limiting circuitry that shuts down the circuit when the junction  
temperature exceeds the thermal shutdown threshold. The thermal shutdown threshold should normally be set to 145  
°C; when in the ringing state the thermal shutdown may be set to 200 °C. For optimal reliability long term operation of  
the Si3208/Si3209 above 150 °C junction temperature should be avoided.  
5. The dv/dt of the voltage applied to the VBAT pins must be limited to 10 V/µs.  
4
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Table 2. Recommended Operating Conditions  
Parameter  
Symbol  
Test  
Min*  
Typ  
Max*  
Unit  
Condition  
o
Ambient Temperature  
T
F-grade  
G-grade  
0
25  
25  
3.3  
3.3  
70  
C
A
o
Ambient Temperature  
T
–40  
3.13  
3.13  
–9  
85  
C
A
Supply Voltage, Si3226/7  
Supply Voltage, Si3208/Si3209  
Battery Voltage, Si3208  
Battery Voltage, Si3209  
V
–V  
3.47  
3.47  
–110  
–135  
V
V
V
V
DD1  
DD4  
V
DD  
VBAT  
VBAT  
–9  
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
Table 3. 3.3 V Power Supply Characteristics1  
(VDD = 3.3 V, TA = 0 to 70 ºC for F-Grade, –40 to 85 ºC for G-Grade)  
Parameter  
High Impedance,  
Symbol  
Test Condition  
Min  
Typ  
2.4  
0
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
I
V and V = Hi-Z  
DD  
T
R
Reset  
RST = 0  
I
I
I
I
I
I
I
I
VBAT  
High Impedance,  
Open Current  
I
V and V = Hi-Z  
9.7  
0.6  
15  
DD  
VBAT  
T
R
Forward/Reverse Sleep,  
On-hook Current  
I
V
= –48 V  
DD  
TR  
TR  
1.2  
24  
VBAT  
Forward/Reverse Active,  
On-hook Current  
I
V
= –48 V  
DD  
1.2  
43  
VBAT  
Forward/Reverse Active,  
Off-hook Current  
I
I
= 30 mA  
DD  
LOOP  
R
= 50 Ω  
LOAD  
3.1 + I  
VBAT  
LOOP  
Forward/Reverse OHT,  
On-hook Current  
I
V
= –48 V  
TR  
43  
1.6  
DD  
VBAT  
Tip/Ring Open,  
On-hook Current  
I
V or V = –48 V  
23  
DD  
T
R
V or V = Hi-Z  
R
T
0.6  
VBAT  
Ringing Current  
I
V
= 55 V  
+ 0 V  
DC  
26  
DD  
TR  
RMS  
balanced, sinusoidal, f = 20 Hz  
= 5 REN = 1400 Ω  
2.3 + I  
VBAT  
AVE  
R
LOAD  
Notes:  
1. All specifications are for a single channel of Si3226/7 using Si3208/9 linefeed IC and based on measurements with all  
channels in the same operating state.  
2. ILOOP is the dc current in the subscriber loop during the off-hook state.  
3. IAVE is the average of the full-wave rectified current in the subscriber loop during ringing (IAVE = IPEAK x 2/π).  
Preliminary Rev. 0.33  
5
Si3226/7  
Si3208/9  
Table 4. AC Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Overload Level  
Test Condition  
Min  
Typ  
Max  
Unit  
TX/RX Performance  
2.5  
Figure 6  
V
PK  
Overload Compression  
2-Wire – PCM  
2-Wire – PCM or PCM – 2-Wire:  
200 Hz to 3.4 kHz  
1
Single Frequency Distortion  
–65  
dB  
dB  
PCM – 2-Wire – PCM:  
200 Hz – 3.4 kHz,  
16-bit Linear mode  
–65  
Signal-to-(Noise + Distortion)  
200 Hz to 3.4 kHz  
D/A or A/D 8-bit  
Figure 5  
2
Ratio  
Active off-hook, and OHT, any Z  
T
Audio Tone Generator Signal-to-  
Distortion Ratio  
0 dBm0, Active off-hook, and  
46  
dB  
dB  
2
OHT, any Z  
T
Intermodulation Distortion  
–41  
2
Gain Accuracy  
2-Wire to PCM or PCM to 2-Wire  
1014 Hz, Any gain setting  
V
– V  
= 3.3 V ± 5%  
DD4  
–0.2  
0.2  
dB  
DD1  
Attenuation Distortion vs. Freq.  
Group Delay vs. Frequency  
0 dBm 0  
See AN317  
3
Gain Tracking  
1014 Hz sine wave,  
reference level –10 dBm  
Signal level:  
3 dB to –37 dB  
0.25  
0.5  
dB  
dB  
dB  
µs  
–37 dB to –50 dB  
–50 dB to –60 dB  
1.0  
Round-Trip Group Delay  
1014 Hz, Within same time-slot  
450  
500  
Crosstalk between channels  
TX or RX to TX  
0 dBm0,  
300 Hz to 3.4 kHz  
300 Hz to 3.4 kHz  
26  
26  
30  
30  
–75  
–75  
dB  
dB  
dB  
dB  
TX or RX to RX  
4
2-Wire Return Loss  
200 Hz to 3.4 kHz  
300 Hz to 3.4 kHz  
4
Transhybrid Balance  
Noise Performance  
C-Message weighted  
Psophometric weighted  
RX and TX, dc to 3.4 kHz  
5
Idle Channel Noise  
40  
8
12  
–78  
dBrnC  
dBmP  
dB  
–80  
PSRR from V  
–V  
DD4  
DD1  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. VDD1–VDD4 = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 Ω, ZS = 600 Ω synthesized using RS register  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
6
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Table 4. AC Characteristics (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Longitudinal Performance  
200 Hz to 1 kHz  
Longitudinal to Metallic/PCM  
Balance (forward or reverse)  
58  
53  
40  
60  
58  
dB  
dB  
dB  
1 kHz to 3.4 kHz  
Metallic/PCM to Longitudinal Bal-  
ance  
200 Hz to 3.4 kHz  
Longitudinal Impedance  
200 Hz to 3.4 kHz at TIP or RING  
50  
Ω
Longitudinal Current per Pin  
Active off-hook  
30  
mA  
200 Hz to 3.4 kHz  
DC Current  
Differential  
Common Mode  
45  
30  
45  
mA  
mA  
mA  
Differential + Common Mode  
Notes:  
1. The input signal level should be 0 dBm0 for frequencies greater than 100 Hz. For 100 Hz and below, the level should  
be –10 dBm0. The output signal magnitude at any other frequency is smaller than the maximum value specified.  
2. Analog signal measured as VTIP – VRING. Assumes ideal line impedance matching.  
3. The quantization errors inherent in the µ/A-law companding process can generate slightly worse gain tracking  
performance in the signal range of 3 to –37 dB for signal frequencies that are integer divisors of the 8 kHz PCM  
sampling rate.  
4. VDD1–VDD4 = 3.3 V, VBAT = –52 V, no fuse resistors; RL = 600 Ω, ZS = 600 Ω synthesized using RS register  
coefficients.  
5. The level of any unwanted tones within the bandwidth of 0 to 4 kHz does not exceed –55 dBm.  
Preliminary Rev. 0.33  
7
Si3226/7  
Si3208/9  
Table 5. Linefeed Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
= 430 Ω  
Min  
Typ  
Max  
Unit  
Maximum Loop Resistance  
R
R
2000  
Ω
LOOP  
DC,MAX  
I
= 18 mA, V  
= –52V  
LOOP  
BAT  
DC Loop Current Accuracy  
I
= 18 mA  
10  
4
%
V
LIM  
DC Open Circuit Voltage  
Accuracy  
Active Mode; V = 48 V,  
OC  
V
– V  
TIP  
RING  
DC Differential Output  
Resistance  
R
I
< I  
160  
640  
4
Ω
DO  
LOOP  
LIM  
DC On-Hook Voltage  
Accuracy—Ground Start  
V
R
I
<I ; V wrt ground,  
RING  
V
OHTO  
ROTO  
RING LIM  
V
= –51 V  
RING  
DC Output  
Resistance—Ground Start  
I
<I ; RING to ground  
160  
400  
640  
10  
10  
4
Ω
kΩ  
%
RING LIM  
DC Output Resistance—  
Ground Start  
R
TIP to ground  
TOTO  
Loop Closure Detect  
Threshold Accuracy  
I
I
= 13 mA  
= 13 mA  
THR  
THR  
Ground Key Detect  
Threshold Accuracy  
%
Ring Trip  
AC detection,  
mA  
Threshold Accuracy  
V
= 70 Vpk, no offset,  
RING  
I
= 80mA  
TH  
DC detection,  
1
3
mA  
mA  
20 V dc offset, I = 13 mA  
TH  
DC Detection,  
48 V DC offset, R  
= 1500 Ω  
loop  
Ringing Amplitude  
V
Open circuit, V  
= –110 V  
108  
99  
V
V
RING  
BAT  
PK  
PK  
5 REN load, R  
= 0 Ω,  
LOOP  
V
= –110 V, R = 160 Ω  
BAT  
DO  
Open Circuit, V  
= –135 V  
133  
121  
V
V
BAT  
PK  
PK  
5 REN load, R  
= 0 Ω,  
LOOP  
V
= –130 V, R = 160 Ω  
BAT  
DO  
Sinusoidal Ringing Total  
Harmonic Distortion  
R
2
%
THD  
Ringing Frequency Accuracy  
Ringing Cadence Accuracy  
Calibration Time  
f = 16 Hz to 100 Hz  
2
1
50  
%
ms  
ms  
%
Accuracy of ON/OFF times  
CAL to CAL bit  
TBD  
4
Loop Voltage Sense  
Accuracy  
Accuracy of boundaries for  
each output Code;  
V
– V  
= 48 V  
TIP  
RING  
*Note: Ringing amplitude is set for 93 V peak and measured at TIP-RING using no series protection resistance.  
8
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Table 5. Linefeed Characteristics (Continued)  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Loop Current  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Accuracy of boundaries for  
each output code;  
7
10  
%
Sense Accuracy  
I
= 18 mA  
LOOP  
Power Alarm  
Power Threshold = 300 mW  
25  
%
Threshold Accuracy  
*Note: Ringing amplitude is set for 93 V peak and measured at TIP-RING using no series protection resistance.  
Table 6. Monitor ADC Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Nonlinearity  
(8-bit resolution)  
DNLE  
1
LSB  
Integral Nonlinearity  
(8-bit resolution)  
INLE  
1
5
LSB  
%
Gain Error  
Table 7. Si3208/Si3209 Characteristics  
(VDD = 3.13 to 3.47 V, VBAT = –15 to –130 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
– V (Forward)  
Min  
Typ Max Unit  
TIP/RING Pull-down Transistor  
Saturation Voltage  
V
V
RING  
V
CM  
BAT  
– V  
(Reverse)  
BAT  
TIP  
V
= 2.5 V  
PK  
AC  
I
I
= 22 mA  
= 60 mA  
3
3.5  
V
V
OUT  
OUT  
TIP/RING Pull-up Transistor  
Saturation Voltage  
V
GND – V  
(Forward)  
(Reverse)  
OV  
TIP  
GND – V  
RING  
V
= 2.5 V  
PK  
AC  
I
I
= 22 mA  
= 60 mA  
3
3.5  
V
V
OUT  
OUT  
OPEN State TIP/RING Leakage Current  
I
R = 0Ω  
150  
µA  
LKG  
L
Preliminary Rev. 0.33  
9
Si3226/7  
Si3208/9  
Table 8. DC Characteristics  
(VDD = 3.13 to 3.47 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
V
0.7 x V  
5.25  
0.3 x V  
V
V
V
IH  
DD  
V
IL  
DD  
High Level Output  
Voltage  
V
I = 4 mA  
V
– 0.6  
DD  
OH  
O
Low Level Output  
Voltage  
V
DTX, SDO, INT,  
SDITHRU:  
0.4  
V
OL  
I = –4 mA  
O
GPIO1 a/b, GPIO2 a/b:  
35  
50  
63  
11  
0.72  
I = –40 mA  
O
SDITHRU internal pullup  
resistance  
kΩ  
Ω
Relay Driver Source  
Impedance  
R
V
V
–V = 3.13 V  
DD4  
IO < 28 mA  
OUT  
DD1  
Relay Driver Sink  
Impedance  
R
–V = 3.13 V  
Ω
IN  
L
DD1  
DD4  
IO < 85 mA  
Input Leakage Current  
I
10  
µA  
Table 9. Switching Characteristics—General Inputs1  
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
Parameter  
Rise Time, RESET  
RESET Pulse Width, GCI Mode  
Symbol  
Min  
Typ  
Max  
Unit  
t
5
ns  
µs  
µs  
r
2,3  
t
t
33/PCLK  
33/PCLK  
rl  
rl  
3
RESET Pulse Width, SPI Daisy Chain Mode  
Notes:  
1. All timing (except Rise and Fall time) is referenced to the 50% level of the waveform. Input test levels are  
VIH = VDD – 0.4 V, VIL = 0.4 V. Rise and Fall times are referenced to the 20% and 80% levels of the waveform.  
2. The minimum RESET pulse width assumes the SDITHRU pin is tied to ground via a pulldown resistor no greater than  
10 kΩ per device.  
3. The minimum RESET pulse width is 33/PCLK frequency (i.e. 33/8.192 MHz = 4 µs).  
10  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Table 10. Switching Characteristics—SPI  
(VDDA = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
Parameter  
Cycle Time SCLK  
Symbol  
Test Conditions  
Min  
62  
Typ  
Max  
Unit  
ns  
t
c
Rise Time, SCLK  
t
25  
ns  
r
Fall Time, SCLK  
t
25  
ns  
f
Delay Time, SCLK Fall to SDO Active  
t
20  
ns  
d1  
d2  
Delay Time, SCLK Fall to SDO  
Transition  
t
t
20  
ns  
Delay Time, CS Rise to SDO Tri-state  
Setup Time, CS to SCLK Fall  
25  
20  
25  
20  
220  
4
20  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
d3  
t
su1  
Hold Time, CS to SCLK Rise  
t
h1  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time between Chip Selects  
SDI to SDITHRU Propagation Delay  
t
su2  
t
h2  
t
cs  
t
d4  
Note: All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VDDD –0.4 V, VIL = 0.4 V  
tc  
tr  
tf  
SCLK  
CS  
tsu1  
th1  
tcs  
tsu2  
th2  
SDI  
td1  
td3  
td2  
SDO  
td4  
SDITHRU  
Figure 1. SPI Timing Diagram  
Preliminary Rev. 0.33  
11  
Si3226/7  
Si3208/9  
Table 11. Switching Characteristics—PCM Highway Interface  
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade, CL = 20 pF)  
1
1
1
Parameter  
Symbol  
Test  
Conditions  
Units  
Min  
Typ  
Max  
PCLK Period  
t
122  
3906  
ns  
p
Valid PCLK Inputs  
512  
768  
kHz  
kHz  
1.024  
1.536  
1.544  
2.048  
4.096  
8.192  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
2
FSYNC Period  
t
40  
125  
50  
60  
µs  
%
fs  
PCLK Duty Cycle Tolerance  
FSYNC Jitter Tolerance  
Rise Time, PCLK  
t
dty  
t
±120  
25  
ns  
ns  
ns  
ns  
ns  
jitter  
t
r
Fall Time, PCLK  
t
25  
f
Delay Time, PCLK Rise to DTX Active  
t
t
20  
d1  
d2  
Delay Time, PCLK Rise to DTX  
Transition  
20  
Delay Time, PCLK Rise to DTX  
Tristate  
t
20  
ns  
d3  
3
Setup Time, FSYNC to PCLK Fall  
Hold Time, FSYNC to PCLK Fall  
Setup Time, DRX to PCLK Fall  
Hold Time, DRX to PCLK Fall  
FSYNC Pulse Width  
t
25  
20  
25  
20  
ns  
ns  
ns  
ns  
su1  
t
h1  
t
su2  
t
h2  
t
t
125 µs–t  
p
wfs  
p
Notes:  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH – VI/O – 0.4 V, VIL = 0.4 V.  
2. FSYNC source is assumed to be 8 kHz under all operating conditions.  
3. Spec applies to PCLK fall to DTX tristate when that mode is selected.  
12  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
tr  
tf  
tp  
PCLK  
th1  
twfs  
tsu1  
tfs  
FSYNC  
tsu2  
th2  
DRX  
DTX  
td2  
td1  
td3  
Figure 2. PCM Highway Interface Timing Diagram  
Table 12. Switching Characteristics—GCI Highway Serial Interface  
(VDD = 3.13 to 5.25 V, TA = 0 to 70 °C for F-Grade, –40 to 85 °C for G-Grade)  
1
Symbol  
Test  
Conditions  
Min  
Typ  
Max  
Units  
Parameter  
PCLK Period (2.048 MHz PCLK Mode)  
PCLK Period (4.096 MHz PCLK Mode)  
t
t
40  
25  
20  
25  
20  
488  
244  
125  
50  
ns  
ns  
µs  
%
p
p
2
FSYNC Period  
t
fs  
PCLK Duty Cycle Tolerance  
FSYNC Jitter Tolerance  
t
60  
±120  
25  
25  
20  
20  
20  
dty  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
jitter  
Rise Time, PCLK  
t
r
Fall Time, PCLK  
t
f
Delay Time, PCLK Rise to DTX Active  
Delay Time, PCLK Rise to DTX Transition  
t
t
t
d1  
d2  
d3  
3
Delay Time, PCLK Rise to DTX Tristate  
Setup Time, FSYNC Rise to PCLK Fall  
Hold Time, PCLK Fall to FSYNC Fall  
Setup Time, DRX Transition to PCLK Fall  
Hold Time, PCLK Falling to DRX Transition  
FSYNC Pulse Width  
t
su1  
t
h1  
t
su2  
t
h2  
t
t /2  
wfs  
p
Notes:  
1. All timing is referenced to the 50% level of the waveform. Input test levels are VIH = VO – 0.4 V and VIL = 0.4 V.  
Rise and fall times are referenced to the 20% and 80% levels of the waveform.  
2. FSYNC source is assumed to be 8 kHz under all operating conditions.  
3. Specification applies to PCLK fall to DTX tristate when that mode is selected.  
Preliminary Rev. 0.33  
13  
Si3226/7  
Si3208/9  
tr  
tf  
tp  
PCLK  
th1  
tsu1  
tfs  
FSYNC  
tsu2  
th2  
Frame 0,  
Bit 0  
DRX  
DTX  
td1  
td2  
td3  
Frame 0,  
Bit 0  
Figure 3. GCI Highway Interface Timing Diagram (2.048 MHz PCLK Mode)  
tr  
tf  
tc  
PCLK  
th1  
tfs  
tsu1  
FSYNC  
tsu2  
th2  
Frame 0,  
Bit 0  
DRX  
DTX  
td1  
td3  
td2  
Frame 0,  
Bit 0  
Figure 4. GCI Highway Interface Timing Diagram (4.096 MHz PCLK Mode)  
14  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Acceptable  
Figure 5. Transmit and Receive Path SNDR  
9
8
7
6
5
4
Fundamental  
Output Power  
(dBm0)  
Acceptable  
Region  
3
2.6  
2
1
0
1
2
3
4
5
6
7
8
9
Fundamental Input Power (dBm0)  
Figure 6. Overload Compression Performance  
Preliminary Rev. 0.33  
15  
Si3226/7  
Si3208/9  
2. Typical Application Circuits  
V B R N G  
V B A T  
R B N V G  
V B A T b  
V B R N G  
R B N V G  
E G N D  
E G N D  
V B A T  
V B A T a  
b
a
V B A T  
V B A T  
V C C  
V B A T b  
V B A T a  
V C  
D
G N  
C
V D D R E G  
V D D A  
N D G D  
N D G A  
D V D A  
V D D D  
V D D C  
S V D C  
D V D D  
D V D C  
D
G N  
D
G N  
16  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
4
3
6
1
Preliminary Rev. 0.33  
17  
Si3226/7  
Si3208/9  
4
3
6
1
18  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
V D D  
N D D G  
A G N D  
V B A T a  
V B A T b  
_ 1  
_ 2  
V B A T  
V B A T  
Preliminary Rev. 0.33  
19  
Si3226/7  
Si3208/9  
20  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Preliminary Rev. 0.33  
21  
Si3226/7  
Si3208/9  
22  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Preliminary Rev. 0.33  
23  
Si3226/7  
Si3208/9  
24  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
When in the active state, each ProSLIC channel  
operates in one of three dc linefeed operating regions: a  
4. Functional Description  
®
The Dual ProSLIC chipset includes the Si3226/7 low- constant-voltage region, a constant-current region, or a  
voltage IC and the Si3208/9 high-voltage linefeed IC. resistive region, as shown in Figure 11. The constant-  
The Dual ProSLIC provides all SLIC, codec, DTMF voltage region has a low resistance, typically 160 Ω.  
detection, and signal generation functions needed for The constant-current region approximates infinite  
two complete analog telephone interfaces. The Dual resistance.  
ProSLIC performs all battery, over-voltage, ringing,  
I_ILIM  
supervision, codec, hybrid, and test (BORSCHT)  
functions; it also supports extensive metallic loop testing  
capabilities.  
I_RFEED  
I_VLIM  
ILOOP (mA)  
The Si3226 provides a standard voice-band (200 Hz–  
3.4 kHz) audio codec. The Si3227 provides an audio  
CODEC with both wideband (50 Hz–7 kHz) and  
standard voice-band (200 Hz– 3.4 kHz) modes. The  
wideband mode provides an expanded audio band with  
a 16 kHz sample rate for enhanced audio quality while  
the standard voice-band mode provides standard  
telephony audio compatibility. The Si3226/7 provides  
two independent, programmable, dc-dc converter  
controllers, each of which reacts to line conditions to  
provide the optimal battery voltage required for each  
line-state.  
V_ILIM  
Resistive Region  
V_RFEED  
V_VLIM  
Constant V Region  
VTR(V)  
Figure 11. Dual ProSLIC DC Feed  
Characteristics  
The linefeed chips (Si3208/9) provide programmable  
on-hook voltage, programmable off-hook loop current,  
reverse battery operation, loop or ground start  
operation, and on-hook transmission. Loop current and  
voltage are continuously monitored using an A/D  
converter in the Si3226/7. The Si3208 supports battery  
voltages up to 110 V, sufficient for most ringing signals.  
The Si3209 supports battery voltages up to 130 V for  
higher-voltage ringing applications.  
4.2. Linefeed Operating States  
The linefeed interface includes eight different register-  
programmable operating states as listed in Table 16.  
The Open state is the default condition in the absence  
of any preloaded register settings. The device may also  
automatically enter the open state in the event of a  
linefeed fault condition.  
The Dual ProSLIC supports balanced 5 REN ringing  
with or without a programmable dc offset. The available  
offset, frequency, waveshape, and cadence options are  
designed to ring the widest variety of terminal devices  
and to reduce external controller requirements.  
4.3. Line Voltage and Current Monitoring  
The Dual ProSLIC continuously monitors the TIP, RING,  
and battery voltages and currents via an on-chip ADC  
and stores the resulting values in individual register  
addresses. Additionally, the loop voltage (V –V  
),  
A complete audio transmit and receive path is  
integrated, including ac impedance and hybrid gain.  
These features are software-programmable, allowing a  
single hardware design to meet global requirements.  
Digital voice data transfer occurs over a standard PCM  
bus. Control data is transferred using a standard SPI.  
TIP  
RING  
loop current, and longitudinal current values are  
calculated based on the TIP and RING measurements  
and are stored in unique register locations for further  
processing. The ADC updates all registers at a rate of  
2 kHz or greater.  
The Si3226/7 is available in a 64-pin TQFP; the Si3208  
is available in a 32-pin QFN, and the Si3209 is available  
in a 40-pin QFN or a 48-pin eTQFP.  
4.4. Power Monitoring and Power Fault  
Detection  
The Dual ProSLIC's line monitoring functions are used  
to continuously protect the linefeed IC (LFIC) against  
excessive power conditions. The LFIC contains an on-  
chip, analog sensing diode that provides real-time  
temperature data to the Si3226/7 and turns off the LFIC  
when a preset threshold is exceeded. The LFIC status  
is reflected in a Si3226/7 register bit.  
4.1. DC Feed Characteristics  
Dual ProSLIC internal linefeed circuitry provides  
completely programmable dc feed characteristics.  
Linefeed characteristics for each channel are  
independently configurable.  
Preliminary Rev. 0.33  
25  
Si3226/7  
Si3208/9  
If the Si3226/7 detects a fault condition or overpower  
condition on any channel, it automatically sets that  
channel to the open state and generates a "power  
alarm" interrupt. The interrupt can be masked, but the  
automatic transition to open cannot be masked. The  
various power alarms and linefeed faults supporting  
automatic intervention are described below.  
4.5. Thermal Overload Shutdown  
If the LFIC die temperature exceeds the maximum  
junction temperature threshold, TJmax, of 145 °C or  
200 ºC or other programmed temperature threshold  
range, the LFIC has the ability to shut itself down to a  
low-power state without any assistance from the  
Si3226/7. The thermal shutdown circuit contains a  
sufficient amount of hysteresis and/or turn-on delay time  
1. LFIC total power exceeded.  
2. Power exceeded in one or more transistors of a LFIC so as to remain shut down during a power cross event,  
internal transistor group (if capable of measuring  
individual power consumption).  
where 50 Hz or 60 Hz, 600 V, is connected to TIP and/  
or RING.  
3. Excessive foreign current or voltage on TIP and/or  
RING.  
4. LFIC thermal shutdown event; this event is  
automatically performed, and no intervention by the  
Si3226/7 is required.  
Table 16. Linefeed Operating States  
Linefeed State  
Description  
Open  
Output is high-impedance, and all line supervision functions are powered down. Audio is  
powered down. This is the default state after powerup or following a hardware reset. This  
state can also be used in the presence of line fault conditions and to generate open switch  
intervals (OSIs). This state is used in line diagnostics mode as a high-Z state during line-  
feed testing. A power fault condition may also force the device into the open state.  
Forward Active  
Reverse Active  
Linefeed circuitry and audio are active. In Forward Active state, the TIP lead is more posi-  
tive than the RING lead; in Reverse Active state, the RING lead is more positive than the  
TIP lead. Loop closure and ground key detect circuitry are active.  
Forward OHT  
Reverse OHT  
Provides data transmission during an on-hook loop condition (e.g., transmitting caller ID  
data between ringing bursts). Linefeed circuitry and audio are active. In Forward OHT  
state, the TIP lead is more positive than the RING lead; in Reverse OHT state, the RING  
lead is more positive than the TIP lead.  
TIP Open  
Provides an active linefeed on the RING lead and sets the TIP lead to high impedance  
(>400 kΩ) for ground start operation in forward polarity. Loop closure and ground key  
detect circuitry are active.  
RING Open  
Provides an active linefeed on the TIP lead and sets the RING lead to high impedance  
(>400 kΩ) for ground start operation in reverse polarity. Loop closure and ground key  
detect circuitry are active.  
Ringing  
Drives programmable ringing signal onto TIP and RING leads with or without dc offset.  
Line Diagnostics  
The channel selected is put into diagnostic mode. In this mode, the selected channel has  
special diagnostic resources available.  
4.6. Power Dissipation Considerations  
4.7. Loop Closure Detection  
The Dual ProSLIC is designed to source loops up to The Dual ProSLIC provides a completely programmable  
20 kft as well as short loop applications. The LFIC loop closure detection mechanism. The loop closure  
provides all battery sourcing functions and is, therefore, detection scheme provides two unique thresholds to  
the determining factor regarding power dissipation in a allow hysteresis, and also includes a programmable  
specific application. The Dual ProSLIC provides an on- debounce filter to eliminate false detection. A loop  
chip dc-dc controller that can dynamically reduce the closure detect status bit provides continuous status, and  
battery supply to ideally match the required line feed a maskable interrupt bit is also provided.  
voltage.  
26  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
4.8. Ground Key Detection  
4.13. Tone Generators  
The Dual ProSLIC includes two digital tone generators  
that allow a wide variety of single- or dual-tone  
frequency and amplitude combinations. Each tone  
generator has its own set of registers that hold the  
desired frequency, amplitude, and cadence to allow  
generation of DTMF and call progress tones for different  
requirements. The tones can be directed to either  
receive or transmit paths.  
The Dual ProSLIC provides a ground key detect  
mechanism using a programmable architecture similar  
to the loop closure scheme. The ground key detect  
scheme provides two unique thresholds to allow  
hysteresis and also includes a programmable debounce  
filter to eliminate false detection. A ground key detect  
status bit provides continuous status, and a maskable  
interrupt bit is also provided.  
4.14. DTMF Detection  
4.9. Ringing Generation  
In DTMF, two tones generate a DTMF digit. One tone is  
chosen from the four possible row tones, and one tone  
is chosen from the four possible column tones. The sum  
of these tones constitutes one of 16 possible DTMF  
digits. The Dual ProSLIC performs DTMF detection  
using an algorithm to compute the DFT for each of the  
eight DTMF frequencies and their second harmonics. At  
the end of the DFT computation, the squared  
magnitudes of the DFT results for the 8 DTMF  
fundamental tones are computed. The row and column  
results are sorted to determine the strongest tones, and  
checks are made to determine if the strongest row and  
column tones constitute a DTMF digit.  
The Dual ProSLIC provides the ability to generate a  
programmable sinusoidal or trapezoidal ringing  
waveform, with or without dc offset. The ringing  
frequency, wave shape, cadence, and offset are all  
register-programmable. Using  
a
balanced ringing  
scheme, the ringing signal is applied to both the TIP and  
RING leads using dual ringing waveforms that are 180°  
out of phase with each other. The resulting ringing  
signal seen across TIP-RING is twice the amplitude of  
the ringing waveform on either the TIP or RING lead,  
which allows the ringing circuitry to be forced to  
withstand only half the total ringing amplitude seen  
across TIP-RING.  
4.15. DC-DC Controller  
4.10. Polarity Reversal  
The controller converts a single positive dc input voltage  
into an independent negative battery voltage for each  
channel. The controller operates a dc-dc converter  
circuit that converts a single positive dc input voltage  
into an independent negative battery voltage for each  
channel. In addition to eliminating external high-voltage  
power supplies, the dc-dc controller allows the Dual  
ProSLIC to dynamically control the battery voltage to  
the minimum required for any given operating state  
according to the programmed linefeed parameters.  
The Dual ProSLIC supports polarity reversal for  
message waiting and various other signaling modes.  
The ramp rate can be programmed for a smooth or  
abrupt transition to accommodate different application  
requirements.  
4.11. Two-Wire Impedance Synthesis  
The ac two-wire impedance synthesis is generated on-  
chip using a DSP-based scheme to optimally match the  
output impedance of the Dual ProSLIC to the  
impedance of the subscriber loop and minimize the  
receive path signal reflected back onto the transmit  
path. Most real or complex two-wire impedances can be  
generated by using the coefficient generator software to  
simulate the desired line conditions and generate the  
required register coefficients.  
4.16. Wideband Audio  
The Si3226 supports a narrowband (200 Hz–3.4 kHz)  
audio codec. The Si3227 supports  
a software-  
selectable wideband (50 Hz–7 kHz) and narrowband  
(200 Hz–3.4 kHz) audio codec. The Si3227 wideband  
mode provides an expanded audio band at a 16-bit,  
16 kHz sample rate for enhanced audio quality while  
maintaining standard telephony audio compatibility.  
Wideband audio samples are transmitted and received  
on the PCM interface using two consecutive 8 kHz  
frames.  
4.12. Transhybrid Balance Filter  
The trans-hybrid balance function is implemented on-  
chip using a DSP-based scheme to effectively cancel  
the reflected receive path signal from the transmit path.  
The coefficient generator software is used to optimize  
the filter coefficients.  
Preliminary Rev. 0.33  
27  
Si3226/7  
Si3208/9  
4.17. SPI Control Interface  
4.20. Metallic Loop Testing  
The controller interface to the Dual ProSLIC is a 4-wire  
interface modeled after microcontroller and serial  
peripheral devices. The interface consists of a clock  
(SCLK), chip select (CS), serial data input (SDI), and  
serial data output (SDO). In addition, the Dual ProSLIC  
devices feature a serial data through output (SDITHRU)  
to support operation of up to eight devices (up to 16  
channels) using a single chip select line. The device  
operates with both 8-bit and 16-bit SPI controllers.  
The Dual ProSLIC includes the ability to detect multiple  
fault conditions within the line card as well as on the T/R  
pair.  
1. Hazardous Potential Test—This test checks for ac  
voltage >50 V  
or dc voltage >135 V on T-G or R-  
rms  
G. If a hazardous voltage is encountered, test access  
MUST release within two seconds of the time when it  
was initiated using a preset threshold.  
2. Foreign ElectroMotive Force Test—Checks T-G or  
4.18. PCM Interface and Companding  
R-G for ac voltage >10 V , dc voltage >6 V. Uses  
rms  
same threshold as for hazardous voltage test.  
The Dual ProSLIC contains a flexible, programmable  
interface for the transmission and reception of digital  
PCM samples. PCM data transfer is controlled by the  
PCM clock (PCLK) and frame sync (FSYNC) inputs as  
well as the PCM Mode Select, PCM Transmit Start, and  
PCM Receive Start settings.  
3. Resistive Faults Test—Checks for dc resistance from  
T-R, T-G or R-G. Any measurement <150 kΩ is  
considered a resistive fault.  
4. Receiver-Off-Hook Test—Distinguishes between a  
T-R resistive fault and an off-hook condition.  
The interface can be configured to support from four to  
128 8-bit time slots in each 125 µs frame,  
corresponding to a PCM clock (PCLK) frequency range  
of 256 kHz to 8.192 MHz. 1.544 MHz is also supported.  
5. Ringers Test—Checks for the presence of REN  
across T-R. Result are >0.175REN and <5REN for a  
valid load.  
6. AC Line Impedance (line length)—T-R, T-G, and  
R-G. Generate a tone at several specific frequencies  
(audio band) and measure the reflected signal  
amplitude (complex spectrum) that comes back (with  
transhybrid balance filter disabled). The reflected  
signal is then used to calculate the line impedance  
based on certain assumptions of wire gauge, etc.  
The Dual ProSLIC supports both µ-255 Law (µ-Law)  
and A-law companding formats in addition to 16-bit  
linear data mode with no companding.  
4.19. General Circuit Interface  
The  
Dual  
ProSLIC  
supports  
an  
alternative  
communication interface to the SPI and PCM control  
and data interface. The General Circuit Interface (GCI)  
is used for transmission and reception of both control  
and data information onto a GCI bus. The PCM and GCI  
interfaces are both 4-wire interfaces and share the  
same pins. In GCI mode, the four-wire SPI control  
interface is used as hard-wired channel selector pins.  
The selection between PCM and GCI modes is  
performed when coming out of reset using the  
SDITHRU pin.  
7. Line Capacitance—T-R, T-G, R-G. Generate a linear  
ramp function with polarity reversal, and measure  
the time constant.  
8. Ringer Capacitance—This test uses the same  
procedure as the ringer test above but also  
measures the V/I phase relationship of the received  
signal (dc path) and then subtracts the delay to  
calculate the ringer capacitance.  
9. Ringing Voltage Verification—Uses current voltage  
sensing capability.  
10.Test-In Diagnostics—The Dual ProSLIC can switch  
in a preset load impedance to test the SLIC/codec  
functionality using a known set of conditions.  
28  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
5. Pin Descriptions: Si3226/7  
Table 17. Si3226/7 Pin Descriptions  
Pin  
Symbol  
I/O  
Description  
Number  
1
2
SRINGDCa  
SRINGACa  
STIPACa  
I
RING DC Sense Input.  
RING AC Sense Input.  
TIP AC Sense Input.  
TIP DC Sense Input.  
I
I
3
4
STIPDCa  
CAPPa  
I
5
I/O  
I/O  
I
Metallic Loop Filter Capacitor-Positive Terminal.  
Metallic Loop Filter Capacitor-Negative Terminal.  
Battery Sensing Input.  
6
CAPMa  
7
SVBATa  
8
SVDC  
I
DC-DC Input Power Rail Sensor.  
9
GPIO3a / PWROa  
I/O  
I/O  
General Purpose I/O / Power Offloading Output.  
10  
GPIO2a / SRINGCa /  
TRD2a  
General Purpose I/O / TIP Course Sense Input / Test Relay  
Driver.  
11  
GPIO1a / STIPCa / TRD1a  
I/O  
General Purpose I/O / TIP Course Sense Input / Test Relay  
Driver.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CS  
I
Chip Select Input.  
FSYNC  
SDI  
I
Frame Sync Clock Input.  
I
Serial Port Data Input.  
HVCLKa  
SCLK  
O
Line-Driver IC Clock Output.  
Serial Port Bit Clock Input.  
Line-Driver IC Data Output  
Serial Data Daisy Chain Output.  
Serial Port Data Output.  
I
HVDATA  
SDITHRU  
SDO  
O
O
O
DCFFa  
SDCHa  
SDCLa  
DCDRVa  
VDDC  
I/O  
DC-DC BJT Drive Monitor.  
DC-DC Current Monitor Input-High Terminal.  
DC-DC Current Monitor Input-Low Terminal.  
DC-DC Drive Output.  
I
I
I/O  
PWR  
O
DC-DC Switch Driver Power Supply.  
DC-DC Drive Output.  
DCDRVb  
SDCLb  
SDCHb  
DCFFb  
GNDD  
VDDD  
I
DC-DC Current Monitor Input-Low Terminal.  
DC-DC Current Monitor Input-High Terminal.  
DC-DC BJT Drive Monitor.  
Digital Ground.  
I
I/O  
GND  
PWR  
I
Digital Supply Voltage.  
PCLK  
PCM Bus Clock Input.  
HVCLKb  
O
Line-Driver IC Clock Output.  
Preliminary Rev. 0.33  
29  
Si3226/7  
Si3208/9  
Table 17. Si3226/7 Pin Descriptions (Continued)  
Pin  
Symbol  
I/O  
Description  
Number  
33  
34  
35  
36  
37  
38  
DTXEN  
DTX  
O
O
I
Transmit PCM Enable Output.  
Transmit PCM Data Output.  
Receive PCM Data Input.  
Interrupt Output.  
DRX  
INT  
O
I
RST  
Reset Input.  
VDDREG  
I/O  
I/O  
Regulated Core Power Supply.  
39  
GPIO1b / STIPCb / TRD1b  
General Purpose I/O / TIP Course Sense Input / Test Relay  
Driver.  
40  
GPIO2b / SRINGCb /  
TRD2b  
I/O  
General Purpose I/O / TIP Course Sense Input / Test Relay  
Driver.  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GPIO3b / PWROb  
SVBATb  
CAPMb  
CAPPb  
STIPDCb  
STIPACb  
SRINGACb  
SRINGDCb  
DRINGb  
URINGb  
DTIPb  
I/O  
General Purpose I/O / Power Offloading Output.  
Battery Sensing Input.  
I
I/O  
I/O  
I
Differential Loop Filter Capacitor-Negative Term.  
Differential Loop Filter Capacitor-Positive Term.  
TIP DC Sense Input.  
I
TIP AC Sense Input.  
I
RING AC Sense Input.  
I
RING DC Sense Input.  
O
RING Pull-Down Current Driver Output.  
RING Pull-Up Current Driver Output.  
TIP Pull-Down Current Driver Output.  
TIP Pull-Up Current Driver Output.  
Line Driver IC Bias Current Output.  
Longitudinal Balance Calibration Capacitor.  
Current Reference Input.  
O
O
UTIPb  
O
IBIASb  
O
CAPLB  
IREF  
O
I
QGND  
I
Quiet Ground Reference Input.  
Analog Ground.  
GNDA  
GND  
PWR  
I/O  
O
VDDA  
Analog Supply Voltage.  
ISNS  
Line Current Sense Input.  
IBIASa  
Line Driver IC Bias Current Output.  
TIP Pull-Up Current Driver Output.  
TIP Pull-Down Current Driver Output.  
RING Pull-Up Current Driver Output.  
RING Pull-Down Current Driver Output.  
UTIPa  
O
DTIPa  
O
URINGa  
DRINGa  
O
O
30  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
6. Pin Descriptions: Si3208/9  
Table 18. Si3208/9 Pin Descriptions  
QFN Pin #  
1
Symbol  
IC  
I/O  
Description  
Internal connection; leave to float.  
No Connect.  
2
NC  
3
RING_1  
NC  
I/O  
I/O  
Ring Channel 1 Input/Output.  
No Connect.  
4
5
TIP_1  
NC  
Tip Channel 1 Input/Output.  
6
No Connect.  
7
IC  
Internal connection; leave to float.  
Negative Ring Current Control Channel 1 Input.  
Positive Ring Current Control Channel 1 Input.  
Negative Tip Current Control Channel 1 Input.  
Positive Tip Current Control Channel 1 Input.  
Current Bias Channel 1 Input.  
Current Sense Output.  
8
IRINGN_1  
IRINGP_1  
ITIPN_1  
ITIPP_1  
IBIAS_1  
ISNS  
I
9
I
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
I
I
I
O
VDD  
I
IC Supply Voltage Input.  
HVCLK_1  
HVDATA  
HVCLK_2  
DGND  
IBIAS_2  
ITIPP_2  
ITIPN_2  
IRINGP_2  
IRINGN_2  
IC  
I
High-Voltage IC Clock Channel 1 Input.  
High-Voltage IC Data Input/Output.  
High-Voltage IC Clock Channel 2 Input.  
Digital Ground.  
I/O  
I
I
I
I
I
I
I
Current Bias Channel 2 Input.  
Positive Tip Current Control Channel 1 Input.  
Negative Tip Current Control Channel 2 Input.  
Positive Ring Current Control Channel 2 Input.  
Negative Ring Current Control Channel 2 Input.  
Internal connection; leave to float.  
No Connect.  
NC  
TIP_2  
NC  
I/O  
I/O  
Tip Channel 2 Input/Output.  
No Connect.  
RING_2  
NC  
Ring Channel 2 Input/Output.  
No Connect.  
IC  
Internal connection; leave to float.  
Internal connection; leave to float.  
Operating Battery Voltage Channel 2 Input.  
No Connect.  
IC  
VBAT_2  
NC  
I
IC  
Internal connection; leave to float.  
Preliminary Rev. 0.33  
31  
Si3226/7  
Si3208/9  
Table 18. Si3208/9 Pin Descriptions (Continued)  
QFN Pin #  
Symbol  
NC  
I/O  
Description  
35  
36  
No Connect.  
AGND  
IC  
I
Analog Ground.  
37  
Internal connection; leave to float.  
Internal connection; leave to float.  
Operating Battery Voltage Channel 1 Input.  
Internal connection; leave to float.  
38  
IC  
39  
VBAT_1  
IC  
I
40  
epad  
Exposed Die Attach Paddle.  
For adequate thermal management, the exposed die paddle  
should be soldered to a printed circuit board pad that is connected  
to an electrically-isolated low-impedance inner layer and/or back-  
side thermal plane(s) using multiple thermal vias. Do not connect  
this pad to ground.  
32  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
7. Ordering Guide  
Device  
Description  
Wideband  
Audio  
Package  
Temp Range  
Si3226-X-FQ  
Si3226-X-GQ  
Si3227-X-FQ  
Si3227-X-GQ  
Si3208-X-FM  
Si3208-X-GM  
Si3209-X-FM  
Si3209-X-GM  
Notes:  
Dual ProSLIC  
Dual ProSLIC  
No  
No  
Yes  
Yes  
TQFP-64  
TQFP-64  
TQFP-64  
TQFP-64  
QFN-40  
QFN-40  
QFN-40  
QFN-40  
0 to 70 °C  
–40 to 85 °C  
0 to 70 °C  
Dual ProSLIC  
Dual ProSLIC  
–40 to 85 °C  
0 to 70 °C  
110 V Dual LFIC  
110 V Dual LFIC  
135 V Dual LFIC  
135 V Dual LFIC  
–40 to 85 °C  
0 to 70 °C  
–40 to 85 °C  
1. All devices are lead-free and RoHS compliant.  
2. “X” denotes product revision (A, B, C, etc.).  
3. Add an R at the end of the device to denote tape and reel options.  
Preliminary Rev. 0.33  
33  
Si3226/7  
Si3208/9  
8. Package Outline: 64-Pin TQFP  
Figure 12 illustrates the package details for the Si3226/7. Table 19 lists the values for the dimensions shown in the  
illustration.  
Figure 12. 64-Pin Thin Quad Flat Package (TQFP)  
34  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
Table 19. 64-Pin TQFP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
A
A1  
A2  
b
0.05  
0.95  
0.17  
0.09  
1.00  
0.22  
c
D
12.00 BSC.  
10.00 BSC.  
0.50 BSC.  
12.00 BSC.  
10.00 BSC.  
0.60  
D1  
e
E
E1  
L
0.45  
0.75  
0.20  
0.20  
0.08  
0.08  
7°  
aaa  
bbb  
ccc  
ddd  
Q
0°  
3.5°  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant ACD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C  
specification for small body components.  
Preliminary Rev. 0.33  
35  
Si3226/7  
Si3208/9  
9. Package Outline: 40-Pin QFN  
Figure 13 illustrates the package details for the Si3208/9. Table 20 lists the values for the dimensions shown in the  
illustration.  
Figure 13. 40-Pin QFN Package  
Table 20. 40-Pin QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.90  
Max  
1.00  
0.05  
0.30  
Dimension  
Min  
4.10  
0.30  
0.03  
Nom  
4.30  
0.40  
0.05  
Max  
4.40  
0.50  
0.08  
0.10  
0.10  
0.08  
0.10  
A
E2  
L
A1  
0.02  
b
0.25  
L1  
D
6.00 BSC.  
4.30  
aaa  
bbb  
ccc  
ddd  
D2  
4.10  
4.40  
e
E
0.50 BSC.  
6.00 BSC.  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD-2.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for small body components.  
36  
Preliminary Rev. 0.33  
Si3226/7  
Si3208/9  
DOCUMENT CHANGE LIST  
Revision 0.2 to Revision 0.32  
Added Si3208 and Si3209.  
Removed Si3203, Si3205, and Si3206.  
Added pin-outs and package drawings for Si3208  
and Si3209.  
Updated pin-out for Si3226.  
Updated bill of materials.  
Updated “2. Typical Application Circuits” and added  
dc-dc converter schematics.  
Updated tables.  
Revision 0.32 to Revision 0.33  
Changed package type for Si3208.  
Deleted QFN-32 drawing.  
Updated dc-dc converter schematic.  
Updated bills of materials.  
Updated max V  
values.  
BAT  
Updated thermal shutdown thresholds.  
Updated Si3208/9 pin descriptions.  
Preliminary Rev. 0.33  
37  
Si3226/7  
Si3208/9  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: ProSLICinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and ProSLIC are trademarks of Silicon Laboratories Inc.  
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holders.  
38  
Preliminary Rev. 0.33  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY