SI3406-A-GM [SILICON]

Power Supply Support Circuit,;
SI3406-A-GM
型号: SI3406-A-GM
厂家: SILICON    SILICON
描述:

Power Supply Support Circuit,

文件: 总36页 (文件大小:1055K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3406x Family Data Sheet  
Fully-Integrated IEEE 802.3-Compliant POE+ PD Interface and  
High-Efficiency Switching Regulators with Transistor Bypass,  
Sleep, Wake, and LED Drive  
KEY FEATURES  
• Type 1 (PoE) or Type 2 (PoE+) power  
• Full IEEE 802.3at compliance  
• Synchronous secondary FET driver  
• Current mode dc-dc converter  
• Tunable switching frequency  
The Si3406x family integrates all power management and control functions required in  
a Power-over-Ethernet Plus (PoE+) powered device (PD) application. These devices  
convert the high voltage supplied over the 10/100/1000BASE-T Ethernet connection to  
a regulated, low-voltage output supply. The optimized architecture of this device family  
minimizes the solution footprint and external BOM cost and enables the use of low-cost  
external components while maintaining high performance. The Si3406x family integra-  
tes the required diode bridges and transient surge suppressor, thus enabling direct  
connection of the IC to the Ethernet RJ-45 connector. The switching power FET and all  
associated functions are also integrated. The integrated, current mode controlled  
switching regulator supports isolated or non-isolated flyback and buck converter topolo-  
gies. The switching frequency for the regulator is tunable with a simple external resistor  
value to help avoid unwanted harmonics for better emissions control. A synchronous  
driver is provided to optionally drive a secondary side FET to improve efficiency of pow-  
er conversion. Connection to the PSE switch is maintained during sleep by an optional  
automated maintain-power-signature (MPS) signal.  
• Auxiliary transformer winding support  
• Auxiliary adapter support  
• Internal hotswap and switching FET bypass  
support  
• Automated maintain-power-signature (MPS)  
support  
• Sleep mode augmented with wake pin,  
mode control, and LED driver  
• 120 V Absolute Max voltage performance  
• Extended –40 to +85 °C temperature  
• Compact ROHS-compliant 5 mm x 5 mm  
QFN Package  
These devices fully support the IEEE 802.3at specification for the cases of single or  
two event classification. Standard external resistors provide the proper IEEE 802.3 sig-  
natures for the detection function and programming of the classification mode, and in-  
ternal startup circuits ensure well-controlled soft-start initial operation of both the hots-  
wap switch and the voltage regulator.  
APPLICATIONS  
• Voice over IP telephones  
• Wireless access points  
• Security and surveillance IP cameras  
• Lighting luminaires  
The Si34061 and Si34062 add main transformer bias winding support for ultra-high-effi-  
ciency operation.  
The Si34061 includes support for external augmentation or full bypass of the internal  
hotswap and/or switching FET for best power handling and thermal management at the  
high end of Class 4, plus offers a further boost in power conversion efficiency when  
needed.  
• Point-of-sale terminals  
• Internet appliances  
• Network devices  
The Si34062 includes support for sleep modes with wake function, as well as LED drive  
capability. These features can be utilized to minimize standby current, control sleep  
and wake states, and provide application status information using a solid or blinking  
LED.  
The Si3406 is available in a low-profile, 20-pin, 5 x 5 mm QFN package, and the  
Si34061 and Si34062 are available in low-profile, 24-pin, 5 x 5 mm QFN packages.  
silabs.com | Building a more connected world.  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Preliminary Rev. 0.5  
Si3406x Family Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Si3406x Ordering Guide  
Ordering Part Number  
Package  
Temperature Range (Ambient)  
Applications  
5 x 5 mm 20-QFN  
Pb-free, RoHS-compliant  
5 x 5 mm 24-QFN  
Si3406-A-GM  
–40 to 85 °C Extended  
All Purposes  
Any high-power, high-efficiency  
uses, such as Wireless Access  
Points and IP Cameras  
Si34061-A-GM  
Si34062-A-GM  
–40 to 85 °C Extended  
–40 to 85 °C Extended  
Pb-free, RoHS-compliant  
5 x 5 mm 24-QFN  
IP Phones or other uses with  
Sleep/Green mode  
Pb-free, RoHS-compliant  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 2  
 
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.1 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2.2 Power over Ethernet (PoE) Line-Side Interface. . . . . . . . . . . . . . . . . . . 5  
2.2.1 Surge Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2.2 Telephony Protection . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.2.3 Detection and Classification . . . . . . . . . . . . . . . . . . . . . . . 6  
2.3 Hotswap Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.4 HSSW State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.4.1 External HSSW FET Driver . . . . . . . . . . . . . . . . . . . . . . . 7  
2.5 DC to DC Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.5.1 Average Current Sensing, Overcurrent, and Low-Current Detection. . . . . . . . . . 9  
2.5.2 Sync FET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.6 External HSSW FET Driver . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.7 Tunable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.8 Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.9 Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.10 Extended Sleep Mode. . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.11 External Wall Support . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3. Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 Detailed Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .21  
6. Packaging  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6.1 Package Outline: Si3406 . . . . . . . . . . . . . . . . . . . . . . . . . .26  
6.2 Land Pattern: Si3406 . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
6.3 Package Outline: Si34061/62. . . . . . . . . . . . . . . . . . . . . . . . .29  
6.4 Land Pattern: Si34061/62 . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7.1 Si3406 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
7.2 Si34061 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
7.3 Si34062 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 3  
Si3406x Family Data Sheet  
System Overview  
2. System Overview  
The following Block Diagrams will give the designer a sense for the internal arrangement of functional blocks, plus their relationships to  
external pins. The Block Diagrams are followed by a description of the features of these integrated circuits.  
2.1 Block Diagrams  
RFREQ  
RDET  
V11  
VDD  
VPOS  
CT1  
11V  
REGULATOR  
5V  
REGULATOR  
250kHz  
OSCs  
fixed: 250kHz  
adjustable: 100...500kHz  
THERMAL  
PROTECTION  
IBIAS  
FBH  
VPOS-1.32V  
FBL  
VSS+1.32V  
CT2  
SP1  
Start  
DETECTION  
EROUT  
PoE  
CONTROLLER  
250kHz  
CLASS  
&
MPS  
SWO  
VSS  
DC/DC  
SW  
CURRENT  
THERMAL  
PROTECTION  
MODE  
PWM  
SP2  
HOT-SWAP  
CONTROLLER  
TVS  
CONTROLLER  
100V  
VNEG  
HSSW  
IAVG  
ISNS  
HSO  
V11  
DRV  
SYNCL  
RCL  
nT2P  
nSLEEP  
Figure 2.1. Si3406 Block Diagram  
RFREQ  
RDET  
VT15  
V11  
VDD  
AUX  
WINDING  
SUPPORT  
VPOS  
CT1  
11V  
REGULATOR  
5V  
REGULATOR  
250kHz  
OSCs  
fixed: 250kHz  
adjustable: 100...500kHz  
THERMAL  
PROTECTION  
IBIAS  
FBL  
VSS+1.32V  
CT2  
SP1  
Start  
DETECTION  
EROUT  
SWO  
PoE  
CONTROLLER  
250kHz  
CLASS  
&
MPS  
DC/DC  
SW  
CURRENT  
THERMAL  
PROTECTION  
MODE  
PWM  
VSS  
SP2  
HOT-SWAP  
CONTROLLER  
TVS  
CONTROLLER  
100V  
V11  
DRV  
EXTGD  
VNEG  
HSSW  
IPK  
SWISNS  
ISNS  
IAVG  
HSO  
V11  
SYNCL  
DRV  
RCL  
EXTHSW  
ASUP  
nT2P  
nSLEEP  
Figure 2.2. Si34061 Block Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 4  
 
 
Si3406x Family Data Sheet  
System Overview  
RFREQ  
RDET  
VT15  
V11  
VDD  
AUX  
WINDING  
SUPPORT  
VPOS  
CT1  
11V  
REGULATOR  
5V  
REGULATOR  
250kHz  
OSCs  
fixed: 250kHz  
adjustable: 100...500kHz  
THERMAL  
PROTECTION  
IBIAS  
FBH  
VPOS-1.32V  
FBL  
VSS+1.32V  
CT2  
SP1  
Start  
DETECTION  
EROUT  
PoE  
CONTROLLER  
250kHz  
CLASS  
&
MPS  
SWO  
VSS  
DC/DC  
SW  
CURRENT  
THERMAL  
PROTECTION  
MODE  
PWM  
SP2  
HOT-SWAP  
CONTROLLER  
TVS  
CONTROLLER  
100V  
VNEG  
HSSW  
IAVG  
ISNS  
HSO  
V11  
DRV  
SYNCL  
RCL  
WAKE  
MODE  
LED  
nT2P  
nSLEEP  
Figure 2.3. Si34062 Block Diagram  
2.2 Power over Ethernet (PoE) Line-Side Interface  
The PoE line interface consists of diode bridges, internal surge protection, and the protocol interface support for detection and classifi-  
cation.  
Internal diode bridge maximum current is given by the specification, IRECT. If the application needs to consume more current from the  
power interface, an external diode bridge has to be used. The external bridge should be connected in parallel to the internal bridge and  
the designer must ensure that the internal bridge will not conduct significant current by using low-voltage-drop external diodes.  
The chip features active protection against surge transients and accidentally applied telephony voltages.  
2.2.1 Surge Protection  
The surge protection circuit is activated if the VPOS-VNEG voltage exceeds TPROT and the hotswap switch is off (dc-dc is not pow-  
ered). If the hotswap switch is on, the surge power is sunk in the dcdc’s capacitance.  
The internal surge protection can be overridden with an external TVS if higher than specified surge conditions need be tolerated. The  
external surge device must be connected in parallel to the internal one; therefore, the designer must ensure that the external surge  
protection will activate prior to the internal surge protection.  
2.2.2 Telephony Protection  
The Si3406x provides protection against telephony ringing voltage. The telephony ringing is much longer than the surge pulse but it has  
less energy, therefore, the Si3406x has a switch parallel with the supply (VPOS and VNEG). When the protection circuit is activated, it  
turns ON the telephony switch; the ringing energy then dissipates on this switch and ringing generator resistance (> 400 Ω).  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 5  
 
 
 
Si3406x Family Data Sheet  
System Overview  
2.2.3 Detection and Classification  
When si3406x is connected to the Ethernet cable it has to provide a characteristic resistance (~25 kΩ) to the PSE in a given voltage  
range (2.7–10.1 V). This is called detection. After thePSE detects the PD, the PSE increases the voltage above the classification  
threshold 14.5 V. Then, the PD provides the classification current to inform the PSE about its required power class (Class 1, 2, 3, or 4).  
Type 1 PSEs cannot provide enough power for a Class4 PD. Type 2 PSEs have additional voltage steps before switching on the PD.  
After an initial classification voltage pulse, the Type 2 PSE reduces the voltage below the mark threshold level (10 V) then raises it up  
again to the Class event range. Last, before switching ON the DCDC it reduces the voltage again. This sequence is recognized by the  
si3406x and its pull down its nT2P pin to inform the application about the higher available power; otherwise, the application will need to  
operate in a reduced power consumption state (Type 1) if the PSE is incapable of delivering Class 4 power.  
Figure 2.4. Powered Device Voltages  
2.3 Hotswap Switch  
The internal hotswap switch (HSSW) is turned on (conducting) when the PoE interface voltage goes above VUVLO_R. It provides limited  
inrush current until the dcdc side capacitor is charged. The hotswap switch turns off (open) if voltage on the HSSW switch (HSO-VNEG)  
is greater than VHSSW_OFF  
.
In overload, the hotswap switch goes into current-limiting mode with a current limit of IOVL. It will turn back ON after TWAITHSSW elap-  
ses and the dc-dc input capacitor is recharged, meaning the HSO-VNEG voltage is less than VHSSW_ON  
.
The hotswap switch (if it is in the on state and conducting) can detect if the current is lower than IMPSth. In this case, the chip turns on  
MPS pulse generation, which ensures that the PSE will not disconnect.  
With the Si34061, an external hotswap switch can be used to improve efficiency and reduce thermal stress in high current applications.  
For Class 3 applications, using an external hotswap switch is recommended; for Class 4, it is mandatory because the internal hotswap  
switch otherwise generates significant heat. When an external hotswap switch is used, intelligent switch control ensures that inrush cur-  
rent limiting and automatic MPS request of the internal switch are still supported.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 6  
 
 
Si3406x Family Data Sheet  
System Overview  
2.4 HSSW State Machine  
The HSSW operates as simple 4-state state machine:  
Figure 2.5. Hotswap Switch 4-State Machine  
Note: Internal signal names are shown in this Figure, not to be confused with external pin names. For the below discussion, ILOAD is  
the switch current, and VHSSW is the voltage drop of the switch. In other words, VHSSW = HSO – VNEG. All the voltage, current and  
time limits of the above diagram are typical values.  
OFF State  
HSSW turn-on is controlled by UVLO, the undervoltage lockout feature. When UVLO is engaged, the HSSW is OFF. In this state, the  
HSSW is in idle mode, VNEG and HSO pins are disconnected. In normal operation, a complete detect/classification procedure pre-  
cedes the HSSW turn-on, and the control of this sequence is implemented in the state machine logic of the chip.  
INRUSH State  
After the controller enables the HSSW, the block starts operation in the INRUSH state. In this state the switch itself is not directly turned  
on, but operating in a closed-loop current limit mode to avoid high current peaks during the charging of the primary bypass cap of the dc  
to dc converter.  
If the VHSSW voltage drops below 380 mV (meaning the bypass cap is 99% charged), the HSSW will change state to ON either in  
Type1 classification immediately, or in Type2 classification if the HSSW has been in the INRUSH state for at least 80 ms.  
ON State  
In ON state, the HSSW switch is directly turned on. The HSSW circuit continuously monitors VHSSW. HSSW will change to OVERLOAD  
state if VHSSW voltage increases over 3.6 V for at least 140 µs.  
OVERLOAD State  
In OVERLOAD state the HSSW operates in closed-loop low current limit mode. If the VHSSW voltage drops below 360 mV again, and  
the HSSW has been in the OVERLOAD state for at least 80 ms, the HSSW will change back to the ON state.  
2.4.1 External HSSW FET Driver  
An external HSSW FET may be used to improve thermal operation of an Si34061 at very high power loading levels (the top end of  
Class 4).  
With the Si34061, the chip automatically detects if the EXTHSW pin is connected to VNEG or to a FET gate at startup. If the external  
hotswap FET driver will not be used, the EXTHSW pin must be tied to VNEG.  
For further information on using an external HSSW FET, please refer to "AN1130: Using the Si3406/Si34061/Si34062 PoE+ and Si3404  
PoE PD Controller In Isolated and Non-Isolated Designs".  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 7  
 
 
Si3406x Family Data Sheet  
System Overview  
2.5 DC to DC Converter  
The dc-to-dc converter is current-controlled for easier compensation and more robust protection of circuit magnetics. The controller has  
the following features:  
• High- and low-side feedback (supports buck and flyback topologies).  
• <1 Ω internal switching FET  
• Driver for optional synchronous rectification  
• Overcurrent detection  
• Low current detection  
• Cycle skipping at low current and short circuit conditions  
• Optional external switching FET driver (Si34061)  
• Automatic non-overlap control  
VPOS  
VDD  
VPOS  
1.32V  
VDD  
gmh  
100µS  
SOFT START  
VEROUT LIMIT  
FBH  
RESET  
PD  
CSOFTS  
SHORT  
DETECT  
IPEAK  
EROUT  
FBL  
LOOP COMP  
PD  
LIMIT  
gmpeak  
50µS  
SHORT  
DETECT  
SLOPE  
COMPENSATION  
gml  
100µS  
IAVG LIMIT  
BLANKING  
TIME  
COMP  
COMP  
1.32V  
270mV  
CLIPPING  
1:1072  
SWO  
VDD  
OR  
R
S
Q
Q
VSS  
COMP  
VDD  
DRV  
50mV  
V11  
DRV  
OSC  
LOW CURRENT  
DETECT  
SYNCL  
NON OVERLAP  
DRIVER  
ISNS  
LPF  
AND  
Figure 2.6. Si3406x DC-DC Converter  
When the internal switching FET is used with the converter, internal peak current detection is employed. When the EXTGD pin and an  
external FET are used with Si34061, an external current sense resistor is used to measure the peak current connected to the SWISNS  
pin. Changing that resistor allows the application to set the converter maximum peak current to protect the magnetic components (like  
the transformer) from saturation.  
Feedback to the dcdc converter can be provided in three ways:  
• High side, referenced to VPOS, connected to FBH pin (buck converter)  
• Low side, referenced to VSS, connected to FBL pin (nonisolated flyback)  
• Directly to EROUT pin by a voltage to current converter (isolated flyback)  
The EROUT pin provides current output (if FBL or FBH is used) and voltage input. Also, the loop compensation impedance is connec-  
ted to EROUT. The active voltage range is VEROUT, which is proportional to the converter peak current.  
The converter startup is not configurable; soft start is accomplished by internal circuitry. Soft start time is TSOFTSTART. The intelligent  
soft start circuit dynamically adjusts the soft start time depending on the connected load.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 8  
 
Si3406x Family Data Sheet  
System Overview  
2.5.1 Average Current Sensing, Overcurrent, and Low-Current Detection  
The application average current is sensed by an external resistor (RSENSE) connected between VSS and ISNS. Overcurrent is detected  
and triggered when the voltage on the sense resistor exceeds VISNS_OVC. Sizing the resistor allows the designer to set the overcurrent  
limit according to application needs. When overcurrent is triggered, the dcdc controller goes into reset until the overcurrent resolves.  
When the overcurrent is no longer present, the controller starts up again with softstart.  
This external sense resistor is also used to detect a low current situation. When the voltage on the sense resistor goes below VISNS_LC  
,
the dcdc controller disables the sync FET and the external hotswap switch, allowing very low current consumption—the internal hots-  
wap switch then measures the chip current internally. If the average current is lower than the PoE maintain power signature (MPS) limit,  
and if automatic sleep mode is enabled, the chip turns on the MPS generation. See the sleep mode section for further detail.  
2.5.2 Sync FET Driver  
With the Si3406x family, an optional synchronous rectifying FET may be used in place of an output rectifier diode for improved power  
conversion efficiency.  
A gate driver is provided for this purpose. The synchronous rectifying FET driver is enabled by default in Si3406x configurations, but, if  
a synchronous FET is not used in the design, the SYNCL pin must not be connected (do not connect SYNCL to any power or ground  
rail). The synchronous rectifying FET driver is disabled only when the dcdc converter measures low average current (meaning lower  
than VISNS_LC on ISNS). This ensures low sleep mode current consumption.  
2.6 External HSSW FET Driver  
An external HSSW FET may be used to improve thermal operation of an Si34061 at very high power loading levels (the top end of  
Class 4).  
With the Si34061, the chip automatically detects if the EXTHSW pin is connected to VNEG or to a FET gate at startup. If the external  
hotswap FET driver will not be used, the EXTHSW pin must be tied to VNEG.  
For further information on using an external HSSW FET, please refer to "AN1130: Using the Si3406/Si34061/Si34062 PoE+ and Si3404  
PoE PD Controller In Isolated and Non-Isolated Designs".  
2.7 Tunable Oscillator  
The dcdc frequency can be fixed to 250 kHz or tunable by an external resistor.  
The tuning resistor must be connected between the RFREQ pin and VPOS. If RFREQ is shorted to VPOS, the fixed frequency oscillator  
will provide the clock, FOSCINT, to the dcdc converter; otherwise, the resistor will determine the frequency as shown in the curve below.  
Figure 2.7. RFREQ Frequency Selector Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 9  
 
 
 
 
Si3406x Family Data Sheet  
System Overview  
2.8 Regulators  
The chip provides a 5 V output to power LEDs or optocouplers. This is a closed-loop regulator, which ensures accurate output voltage.  
The 5 V regulator is supplied by an internal 11 V open loop regulator, which also provides power for the external FET gate drivers. The  
11 V regulator is supplied by a coarse regulator, which is also open-loop. With the Si34061 and Si34062, the VT15 pin can be used to  
supply this regulator from an optional auxiliary transformer winding. The advantage of doing so is additional power saving since the  
external FET drivers’ current is not generated from the PoE 50 V but, rather, from a transformer-provided 12–16 V. The application  
must be designed to ensure that the absolute maximum rating voltage for the VT15 pin is not exceeded.  
2.9 Sleep Mode  
The Si3406, Si34061, and Si34062 have automatic (consumption-based) and non-automatic sleep modes. When SLEEPb is tied to  
ground, the automatic sleep mode is enabled, meaning that if the current consumption is lower than IMPSth, the chip will automatically  
generate MPS pulses to the PSE. If SLEEPb is tied to VDD, then it will not generate MPS pulses, and the PSE will disconnect if total  
application current consumption drops below 5–10 mA.  
For non-automatic sleep mode, tie SLEEPb high at initial startup (right after the hotswap switch turns on). The chip turns OFF automatic  
mode, but pulling SLEEPb low will force MPS generation as long as the pin is held low. Using this mode, the designer can control MPS  
generation.  
2.10 Extended Sleep Mode  
In the Si34062, an extended sleep mode is available which includes LED, WAKE, and MODE pin support. The LED pin drives a light  
emitting diode to (for example) illuminate a button on the primary side of the application. The WAKE pin triggers wakeup, and the  
MODE button controls if MPS generation is enabled in sleep. In the Si34062 case, nSLEEP is used to initiate sleep.  
The sleep mode is initiated by a negative transition on nSLEEP. It is latched at that negative transition event together with MODE, so  
their status is kept until wakeup even if the input changes on these pins due to the secondary side losing power. MPS generation is  
enabled if MODE = 0 at the nSLEEP transition. The following figure shows the Si34062 sleep mode behavior.  
Chip Awake,  
DCDC Runs  
NSLEEP Neg.Edge  
Low  
Turn MPS  
Generation ON  
Mode?  
High  
Chip Sleep,  
DCDC Off  
Figure 2.8. Si34062 Extended Sleep Mode Behavior  
Refer to Figure 3.3 Si34062 ISO Flyback Application Diagram on page 13, which shows shows the connectivity for the Si34062 with  
the extended sleep mode.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 10  
 
 
 
Si3406x Family Data Sheet  
System Overview  
2.11 External Wall Support  
The Si3406x supports using a wide voltage range of external wall adapters as a primary or secondary supply. For details on options  
and supported modes of adapter connection, please refer to "AN1130: Using the Si3406/Si34061/Si34062 PoE+ and Si3404 PoE PD  
Controller In Isolated and Non-Isolated Designs".  
RASUP  
VAUX  
12V-57V  
VPOS  
ASUP  
HSO  
VPOS  
C
100k  
SWO  
VSS  
From PSE  
Si34061  
RISNS  
ISNS  
HSO  
HSO  
VNEG  
VNEG  
Figure 2.9. Example Auxiliary Wall Adapter Connection  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 11  
 
Si3406x Family Data Sheet  
Application Examples  
3. Application Examples  
The following diagrams demonstrate the ease of use and straightforward BOM of the Si3406x Powered Device ICs. Detailed reference  
designs are available in Evaluation KIT User Guides. Also refer to "AN1130: Using the Si3406/Si34061/Si34062 PoE+ and Si3404 PoE  
PD Controller In Isolated and Non-Isolated Designs".  
VPOS  
VOUT  
RFREQ  
CIN  
RSENSE  
COUT  
CDET  
VSS  
syncFET  
RFREQ  
VPOS  
RDET  
HSO ISNS VSS  
SWO  
ct1  
RDET  
VSS  
CT1  
ct2  
R1  
R2  
SYNCL  
CT2  
Si3406  
FBL  
SP1  
sp1  
EROUT  
SP2  
RCLASS  
RCLASS  
sp2  
RCOMP  
CCOMP  
VNEG  
VDD  
C
VSS  
VSS  
VSS  
VNEG  
Figure 3.1. Si3406 Non-ISO Flyback Application Diagram  
VPOS  
VOUT  
RFREQ  
VSS  
CIN  
COUT  
VIN  
syncFET  
GNDI  
RFREQ  
VPOS  
VSS SWO  
RDET  
RDET  
VT15  
BIAS  
CT1  
CT2  
SP1  
SP2  
CDET  
Si34061  
VSS  
SYNCL  
VDD  
RCLASS  
RCLASS  
VDD  
C
VIN  
VNEG EXTHSW  
HSO  
ISNS EROUT  
VSS  
GNDI  
VSS  
RCOMP1  
R1  
R2  
CCOMP1  
RCOMP2  
CCOMP2  
RSENSE  
VNEG  
TLV431  
EXTHSW  
GNDI  
VSS  
VSS  
*GNDI = ISOLATED GROUND  
GNDI  
Figure 3.2. Si34061 ISO Flyback Application Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 12  
 
Si3406x Family Data Sheet  
Application Examples  
VPOS  
VOUT  
RFREQ  
VSS  
CIN  
COUT  
syncFET  
CDET  
GNDI  
ct1  
BIAS  
RFREQ  
VPOS  
VSS SWO  
VT15  
RDET  
RDET  
CT1  
CT2  
SP1  
SP2  
ct2  
VSS  
SYNCL  
VDD  
sp1  
wake  
mode  
nsleep  
Si34062  
WAKE  
MODE  
NSLEEP  
VDD  
C
sp2  
RCLASS  
VSS  
GNDI  
RCLASS  
VNEG  
EROUT  
LED  
HSO ISNS  
VSS  
RCOMP1  
LED  
R1  
R2  
RCOMP2  
CCOMP2  
VNEG  
CCOMP1  
VDD  
TLV431  
GNDI  
RSENSE  
VSS  
VSS  
'wake'  
GNDI  
VOUT  
wake  
VDD  
VOUT  
GNDI  
GNDI  
VSS  
mode  
VDD  
SLEEP  
GNDI  
VSS  
VOUT  
nsleep  
GNDI  
*GNDI = ISOLATED GROUND  
VSS  
Figure 3.3. Si34062 ISO Flyback Application Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 13  
 
Si3406x Family Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
Table 4.1. Absolute Maximum Ratings1  
Type  
Description  
CT1–CT2 or SP1–SP2  
Min  
–100  
–0.7  
–0.7  
–1  
Max  
100  
100  
120  
1
Units  
V
V
V
V
VNEG-VSS, VPOS- VNEG, HSO2, RDET3  
SWO-VSS  
ISNS, SWISNS  
Voltage  
Low Voltage pins: FBH3, EROUT, FBL,  
NSLEEP, RCL2, RFREQ3, ASUP3, WAKE,  
MODE, LED  
–0.7  
–0.7  
6
V
V
Mid Voltage pins: SYNCL,VT15, EXTGD,  
EXTHSW  
18  
Other Mid Voltage pin: V11  
CT1, CT2, SP1, SP2, VPOS  
CT1, CT2, SP1, SP2  
–0.7  
–TBD  
–0.2  
–65  
12  
TBD  
0.2  
V
A
A
Peak Current  
DC Current4  
Storage Temperature  
150  
85  
Temperature  
°C  
Ambient Operating Temperature  
–40  
Note:  
1. Unless otherwise noted, all voltages referenced to VSS. Permanent device damage may occur if the maximum ratings are excee-  
ded. Functional operation should be restricted to those conditions specified in the operational sections of this data sheet. Expo-  
sure to absolute maximum rating conditions for extended periods may adversely affect device reliability.  
2. Voltage referenced to VNEG.  
3. Voltage referenced to VPOS.  
4. Higher dc current is possible in the application, but only utilizing external bridge diodes. Refer to reference design documentation  
and AN1130 for further details.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 14  
 
 
 
 
 
 
Si3406x Family Data Sheet  
Electrical Specifications  
Table 4.2. Recommended Operating Conditions  
Symbol  
Parameter (Condition)  
Min  
Typ  
Max  
Unit  
VPORT  
|CT1 – CT2| or |SP1 – SP2|  
2.7  
57  
V
VNEG-VSS, VNEG-HSO, VPOS-  
VSS  
VHV_OP  
2.7  
57  
0
V
V
VPOS referred low voltage pins:  
RFREQ, RDET, FBH  
VLV_OP  
–5.5  
VSS referred low voltage pins: VDD,  
FBL, EROUT, ASUP, nSLEEP,  
nT2P, ASUP, WAKE, MODE, LED  
VLV_OP  
0
3
5.5  
V
V
VOH_DIG  
VOH of ASUP and nT2P relative to  
VSS.  
VSS referred current sensing pins:  
ISNS, SWISNS  
VISNS_OP  
–0.5  
0
0.5  
5.5  
13  
V
V
V
V
VNEG referred low voltage pins:  
RCL  
VLV_OP  
VSS referred medium voltage pins  
SYNCL, EXTGD, EXTHSW  
VMV_OP  
0
VSS referred medium voltage pin  
VT151  
VMV_VT15  
12  
14.5  
16.5  
On chip rectifier current on CT1,  
CT2, SP1, SP2—steady state2  
IRECT  
VRECT  
IRECT_PK  
IAVG  
1.8  
176  
mA  
V
On chip rectifier voltage @ 200 mA,  
2 diodes  
Peak rectifier current Max 75 ms 5%  
Duty Cycle3  
231  
600  
683  
mA  
mA  
mA  
Allowable continuous current on  
SWO, VSS, HSO, VNEG  
Peak current on SWO, VSS, HSO,  
VNEG Max 75 ms 5% Duty Cycle  
IPEAK  
Note:  
1. VMV_VT15 is relevant for Si34061 and Si34062 only when an external auxiliary winding from the primary side of the transformer is  
being used to improve power conversion efficiency. This can be left undriven, in which case an internal regulator will be used.  
2. For Class 3 and above operation, use external diode bridge rectifiers to bypass the internal input diode bridge rectifiers.  
3. The IEEE 802.3at specification allows for higher peak current for transients.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 15  
 
 
 
 
Si3406x Family Data Sheet  
Electrical Specifications  
Table 4.3. Electrical Characteristics  
Symbol  
PoE PROTOCOL  
Detection  
VDET  
Parameter (Condition)  
Min  
Typ  
Max  
Unit  
Detection Voltage (at VPORT  
)
2.7  
10.1  
V
Classification  
VRESET  
Classification Reset (at VPORT  
)
0
14.5  
0
2.81  
20.5  
4
V
VCLASS  
Classification Voltage (at VPORT  
Class 0 (RCLASS > 681 Ω)  
)
V
mA  
mA  
mA  
mA  
mA  
Class 1 (RCLASS = 140 Ω @ 1%)  
Class 2 (RCLASS = 75 Ω @ 1%)  
Class 3 (RCLASS = 48.7 Ω @ 1%)  
Class 4 (RCLASS = 33.2 Ω @ 1 %)  
9
12  
IPortCLASS  
17  
26  
36  
20  
30  
44  
Type 2 Classification  
VMARK  
Mark event voltage (at VPORT  
Mark event current  
)
6.9  
10.1  
4
V
IMARK  
0.25  
TBD  
mA  
Power On and UVLO  
VUVLO_R  
VUVLO_F  
Hotswap closed and converter on  
Hotswap open and converter off  
37  
32  
V
V
Thermal Characteristics  
Tshd  
Thermal shutdown  
160  
20  
°C  
°C  
THYST  
Thermal shutdown hysteresis  
On-Chip Transient Voltage Suppression/Protection  
TVS protection activation voltage  
TPROT  
100  
V
(VPOS-VNEG)  
Hotswap Switch  
Iinrush  
Inrush current  
100  
170  
200  
600  
mA  
mA  
mV  
V
Maximum continuous operating cur-  
rent  
IMAXHSSW  
VHSSW_ON  
VHSSW_OFF  
Switch ON voltage  
380  
3.5  
Switch OFF voltage, HSSW goes to  
overload cycle  
Switch current limit in OVERLOAD  
State  
IOVL  
8.7  
14  
10.5  
20  
12.4  
26  
mA  
mA  
mA  
MPS signal request current level  
threshold  
IMPSth  
External hotswap driver peak current  
on EXTHSW pin  
IEXT_DRV  
10  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 16  
 
Si3406x Family Data Sheet  
Electrical Specifications  
Symbol  
Parameter (Condition)  
Min  
Typ  
Max  
Unit  
External hotswap driver voltage on  
EXTHSW pin  
VEXT_DRV  
9
11  
V
Wait time in OVERLOAD and type 2  
inrush  
TWAITHSSW  
RONHSSW  
80  
96  
116  
2.9  
ms  
Internal hotswap drain-source resist-  
ance while ON  
0.65  
1.5  
DC-DC  
ISWOPEAK  
Peak current limit of internal FET  
(SWO pin)  
2.1  
9
2.7  
13  
A
V
External FET driver voltage (EXTGD  
pin)  
VEXTGD  
11  
External FET driver peak current  
(EXTGD pin)  
IEXTGD  
FOSCINT  
FOSCEXT  
DUC  
250  
500  
mA  
kHz  
kHz  
%
Using internal Oscillator  
Using external Oscillator, tunable on  
pin RFREQ  
100  
500  
75  
Output duty cycle of PWM  
TBD  
10.7  
DCDC UVLO level (Minimum adapt-  
er voltage)  
VDCDCUVLO  
10.2  
11.3  
V
FBH (referenced to VPOS) and FBL  
(referenced to VSS) reference volt-  
age  
VFBREF  
1.32  
V
Operating voltage range of error in-  
put  
VEROUT  
VISNS_OVC  
VISNS_LC  
1
4
V
Overcurrent limit voltage on ISNS  
(ref. to VSS)  
–270  
–30  
mV  
mV  
Low current limit voltage on ISNS  
(ref. to VSS)  
VSWISNSMAX  
TSOFTSTART  
RONDCDC  
External FET current sense  
Startup time  
240  
4
mV  
ms  
Internal DCDC switching FET drain-  
source resistance while ON  
0.9  
1.2  
Regulators  
Override internal regulator with  
transformer winding  
VT15  
13  
16.5  
V
VDD  
VDDILIM  
CREG  
High accuracy 5 V  
DC current limit of VDD  
4.85  
9.7  
5.1  
11.2  
100  
5.46  
12.9  
V
mA  
nF  
Filter capacitor on VDD and V11  
LED pin max current, reduces  
VDDILIM  
IMAXLED  
2
5
mA  
mA  
Digital output max current (NT2P),  
reduces VDDILIM  
IMAXDO  
2.5  
Power Dissipation  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 17  
Si3406x Family Data Sheet  
Electrical Specifications  
Symbol  
PINTMAX  
PMAX  
Parameter (Condition)  
DC-DC max power internal FET  
Total chip power  
Min  
Typ  
1.2  
Max  
1.5  
Unit  
W
TBD  
TBD  
W
Operating current (VPORT 57 V; 250  
kHz)  
IPortOP  
3
4
mA  
Package Thermal Characteristics  
θJA-EFF  
θJA-EFF  
QFN20  
QFN24  
44  
C°/W  
C°/W  
TBD  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 18  
Si3406x Family Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
Si3406 Pinout  
(Top View)  
Si34061 Pinout  
(Top View)  
Si34062 Pinout  
(Top View)  
20 19  
24 23 22 21  
16 15  
20 19 18 17  
20 19  
24 23 22 21  
1
2
3
4
5
6
18 VT15  
FBH  
EROUT  
FBL  
1
2
3
4
5
6
18 VT15  
ISNS  
EROUT  
FBL  
CT1  
14  
13  
12  
17  
FBH  
1
2
3
4
nT2P  
17  
16  
15  
14  
13  
nT2P  
CT1  
CT2  
16  
CT1  
EROUT  
FBL  
VNEG  
(ePad)  
VNEG  
(ePad)  
VNEG  
(ePad)  
VPOS  
VDD  
CT2  
VDD  
15  
14  
13  
CT2  
VPOS  
11 SP1  
EXTHSW  
VPOS  
VDD  
LED  
ASUP  
SP1  
WAKE  
SP1  
7
8
9
10 11 12  
5
6
7
8
9
10  
7
8
9
10 11 12  
Table 5.1. Pin Descriptions  
Dir. Vrange  
'06  
'061  
'062  
Name  
Ref  
Description  
Pins  
Pins  
Pins  
24  
1
24  
SWISNS  
ISNS  
VSS  
VSS  
I
I
0–0.5 External FET peak current sense resistor voltage input  
-0.5–0 Chip average current sense resistor input  
20  
1
1
2
3
FBH  
VPOS  
VSS  
I
0–5  
0–5  
0–5  
High side (VPOS referred) dcdc feedback (buck converter)  
Error amplifier current output, compensation impedance input  
2
2
3
EROUT  
FBL  
IO  
I
3
VSS  
Low side (ground referenced) dcdc feedback (flyback convert-  
er)  
4
4
5
4
5
VDD  
LED  
VSS  
VSS  
O
O
O
I
0–5  
0–5  
5V regulator output  
Output to drive sleep LED  
EXTHSW VNEG  
0–11 External hotswap switch drive  
6
WAKE  
ASUP  
nSLEEP  
RDET  
HSO  
VSS  
VSS  
0–5  
0–5  
0–5  
Wakeup from sleep mode  
6
7
I
AUX auxiliary adapter present  
Sleep, with pull-up, driven by open drain  
5
6
7
8
9
7
8
VSS  
I
8
VPOS  
VNEG  
VNEG  
VPOS  
IO  
IO  
IO  
IO  
0–100 Detection resistor  
9
9
0–100 Hotswap switch output  
10  
11  
10  
11  
RCL  
0–5  
0–5  
Classification resistor  
RFREQ  
Oscillator frequency tuning resistor, tie to VPOS to select de-  
fault freq  
10  
11  
12  
13  
14  
12  
13  
14  
15  
16  
12  
13  
14  
15  
16  
SP2  
SP1  
SP1  
SP2  
I
I
0 - 100 High-voltage supply input from spare pair; polarity-insensitive  
0–100 High-voltage supply input from spare pair; polarity-insensitive  
0–100 Rectified high-voltage supply positive rail  
VPOS  
CT2  
IO  
I
CT1  
CT2  
0–100 High-voltage supply input from main pair; polarity-insensitive  
0 - 100 High-voltage supply input from main pair; polarity-insensitive  
CT1  
I
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 19  
 
Si3406x Family Data Sheet  
Pin Descriptions  
'06  
'061  
'062  
Name  
Ref  
Dir. Vrange  
Description  
Pins  
Pins  
Pins  
15  
17  
18  
19  
20  
21  
17  
18  
19  
20  
nT2P  
VT15  
VSS  
VSS  
VSS  
VSS  
VSS  
O
I
0–5  
Type II classification was successful  
0–16.5 Dcdc transformer bias winding input  
16  
17  
SYNCL  
V11  
O
IO  
O
0–11 Gate driver for synchronous rectification FET  
0–11 11 V regulator output for filter cap.  
EXTGD  
0–11 External FET gate drive.  
When internal switching FET is in use, tie to VSS.  
21  
22  
MODE  
SWO  
VSS  
VSS  
VSS  
I
0–5  
Controls MPS and LED switch behavior  
18  
19  
22  
23  
O
0–120 Internal dcdc switch output (NMOS drain)  
23  
IO  
IO  
0
0
Dcdc converter primary ground  
ePad  
ePad  
ePad  
VNEG  
Rectified high voltage supply ground  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 20  
Si3406x Family Data Sheet  
Pin Descriptions  
5.1 Detailed Pin Descriptions  
Table 5.2. Circuit Equivalent and Description of Die Pads  
Detailed Description  
Pin Name  
Circuit Detail  
External dcdc switching FET peak current sense resistor input. The maxi-  
mum current of the switching FET should correspond to voltage VSWISN-  
SWISNS  
.
SMAX  
Average current sense resistor input. The resistor value will set the maxi-  
mum allowed average current for the application. The overcurrent threshold  
voltage VISNS_OVC. Note that this pin voltage goes below VSS.  
ISNS  
High side dcdc feedback input. Need to be tied to VPOS when not used.  
See VFBREF.  
FBH  
dcdc converter error output; current out, voltage sense. Loop compensating  
impedance should be connected here.  
EROUT  
IEROUT = (VFBH – VFBREF) x 50 μA or  
IEROUT = (VFBL – VFBREF) x 50 μA  
Low side dcdc feedback input. Need to be tied to VSS when not used. See  
VFBREF  
FBL  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 21  
 
Si3406x Family Data Sheet  
Pin Descriptions  
Pin Name  
Detailed Description  
Circuit Detail  
Regulated 5 V relative to VSS. There is no foldback characteristic, reaching  
VDDILIM the output voltage decreases.  
VDD  
The regulator needs CREG external capacitance.  
LED driver output Max current is IMAXLED  
LED  
WAKE  
ASUP  
Wake-up input pin for sleep mode, used only in Si34062.  
Auxiliary supply adapter is present. Enables the operation of the dcdc con-  
troller without PoE supply being present.  
nSLEEP  
Sleep function input, see description in Sleep mode section.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 22  
Si3406x Family Data Sheet  
Pin Descriptions  
Pin Name  
Detailed Description  
Circuit Detail  
Classification resistor input. For class 0 this pin can be left floating. Pin is  
active only at time of classification.  
RCL  
Used for adjusting the oscillator frequency.  
RFREQ  
The frequency is inversely proportional to the value of the connected resis-  
tor.  
SP1, SP2  
CT1, CT2  
Main power inputs, goes to diode bridge producing VPOS and VNEG.  
VPOS,  
VNEG  
Main chip power output generated by the diode bridge. Note that VNEG  
(the ePad on the bottom of the chip) also provides thermal relief.  
Pin main function is digital output; it is low if Type 2 classification was suc-  
cessful and the application is allowed to draw class 4 current.  
nT2P  
Output current is IMAXDO, but the load (e.g. an LED) should connected to  
VDD not VSS; otherwise, it can cause false operation.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 23  
Si3406x Family Data Sheet  
Pin Descriptions  
Pin Name  
Detailed Description  
Circuit Detail  
Hotswap Switch Output. The switch shorts the VNEG and HSO pins, and in-  
cludes several other functions. See hotswap switch section for details.  
HSO  
EXTGD: Optional external switch driver of the dc/dc converter. When the in-  
ternal switch is used this pin should be tied to VSS. This driver controls the  
external switch with 10 V logic level, relative to VSS.  
EXTGD,  
SYNCL  
SYNCL: Optional synchronous rectifier switch driver of the dc/dc converter.  
When not used the pin must be left floating. This driver controls the external  
synchronous switch with 10 V logic level, relative to VSS.  
Optional external hotswap switch output. The maximum current of the inter-  
nal hotswap switch is IMAXHSSW, for higher currents an external NMOS FET  
should be used parallel to the internal HSSW (VNEG-HSO). When EXTGD  
is not used the pin should be tied to VNEG. This driver controls the external  
switch with 10 V logic level, relative to VNEG.  
EXTHSW  
The user has to tie the RDET resistor between this pin and VPOS. During  
detection, a high voltage switch pulls down RDET to VNEG. After detection,  
the reference block uses RDET as absolute chip current reference, forcing  
–750 mV relative to VPOS, creating 30 µA for the internal blocks.  
RDET  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 24  
Si3406x Family Data Sheet  
Pin Descriptions  
Pin Name  
Detailed Description  
Circuit Detail  
VT15 is input for an optional 15 V supply generated by an auxiliary trans-  
former bias winding. If the bias winding voltage is lower than VT15, the in-  
ternal 15 V coarse regulator will provide the current for the 11 V regulator.  
VT15,  
V11  
The V11 pin is for filtering capacitor for the 11 V regulator. A capacitor of  
value CREG is required.  
MODE  
MPS mode control, used in Si34062.  
SWO  
Dcdc converter switching transistor drain output, Vmax = 120 V.  
VSS  
DC-DC converter ground.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 25  
Si3406x Family Data Sheet  
Packaging  
6. Packaging  
6.1 Package Outline: Si3406  
The figure below illustrates the package details for the Si3406. The table lists the values for the dimensions shown in the illustration.  
Figure 6.1. 20-Pin, QFN Package  
Table 6.1. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.25  
Nom  
0.85  
Max  
0.90  
0.05  
0.35  
A
A1  
b
0.02  
0.30  
D
5.00 BSC.  
2.70  
D2  
e
2.60  
2.80  
0.80 BSC.  
5.00 BSC.  
2.70  
E
E2  
L
2.60  
0.50  
0.00  
2.80  
0.60  
0.10  
0.10  
0.10  
0.08  
0.10  
0.55  
L1  
aaa  
bbb  
ccc  
ddd  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 26  
 
 
Si3406x Family Data Sheet  
Packaging  
Dimension  
Min  
Nom  
Max  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VHHB-1.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 27  
Si3406x Family Data Sheet  
Packaging  
6.2 Land Pattern: Si3406  
The figure below illustrates the land pattern details for the Si3406. The table lists the values for the dimensions shown in the illustration.  
Figure 6.2. 20-Pin, QFN Land Pattern  
Table 6.2. Land Pattern Dimensions  
Dimension  
Max  
4.70  
4.70  
0.35  
2.80  
1.00  
2.80  
0.80  
C1  
C2  
X1  
X2  
Y1  
Y2  
e
Note:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 28  
 
Si3406x Family Data Sheet  
Packaging  
6.3 Package Outline: Si34061/62  
The figure below illustrates the package details for the Si34061/62. The table lists the values for the dimensions shown in the illustra-  
tion.  
Figure 6.3. 24-Pin, QFN Package  
Table 6.3. Package Diagram Dimensions  
Symbol  
Min  
0.80  
0.00  
0.25  
Nom  
0.85  
Max  
0.90  
0.05  
0.35  
A
A1  
b
0.02  
0.30  
A3  
D
0.20 REF  
5.00 BSC.  
0.65 BSC.  
5.00 BSC.  
e
E
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 29  
 
Si3406x Family Data Sheet  
Packaging  
Symbol  
D2  
Min  
2.90  
2.90  
0.35  
0.20  
Nom  
3.00  
3.00  
0.40  
Max  
3.10  
3.10  
0.45  
E2  
L
K
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 30  
Si3406x Family Data Sheet  
Packaging  
6.4 Land Pattern: Si34061/62  
The figure below illustrates the land pattern details for the Si34061/62. The table lists the values for the dimensions shown in the illus-  
tration.  
Figure 6.4. 24-Pin, QFN Land Pattern  
Table 6.4. Land Pattern Dimensions  
Dimension  
mm  
4.90  
4.90  
0.35  
3.10  
0.85  
3.10  
0.65  
C1  
C2  
X1  
X2  
Y1  
Y2  
e
Note:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted  
2. This land pattern design is based on the IPC-7351 guidelines  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release  
2. The stencil thickness should be 0.125 mm (5 mils)  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 31  
 
Si3406x Family Data Sheet  
Top Markings  
7. Top Markings  
7.1 Si3406 Top Marking  
Figure 7.1. Si3406 Top Marking  
Table 7.1. Si3406 Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Circle = 0.50 mm Diameter (Lower-Left Corner)  
2.0 Point (28 mils)  
Font Size:  
Line 1 Mark Format:  
Line 2 Mark Format:  
Device Part Number  
Si3406  
Device Type  
A = Device Revision A  
G = Extended temperature range  
M = QFN package  
Line 3 Mark Format:  
Line 4 Mark Format:  
TTTTTT  
Manufacturing Trace Code (assigned at assembly)  
Assembly Year  
YY = Year  
WW = Work Week  
Assembly Week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 32  
 
 
Si3406x Family Data Sheet  
Top Markings  
7.2 Si34061 Top Marking  
Figure 7.2. Si34061 Top Marking  
Table 7.2. Si34061 Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Circle = 0.50 mm Diameter (Lower-Left Corner)  
2.0 Point (28 mils)  
Font Size:  
Line 1 Mark Format:  
Line 2 Mark Format:  
Device Part Number  
Si34061  
Device Type  
A = Device Revision A  
G = Extended temperature range  
M = QFN package  
Line 3 Mark Format:  
Line 4 Mark Format:  
TTTTTT  
Manufacturing Trace Code (assigned at assembly)  
Assembly Year  
YY = Year  
WW = Work Week  
Assembly Week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 33  
 
Si3406x Family Data Sheet  
Top Markings  
7.3 Si34062 Top Marking  
Figure 7.3. Si34062 Top Marking  
Table 7.3. Si34062 Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Circle = 0.50 mm Diameter (Lower-Left Corner)  
2.0 Point (28 mils)  
Font Size:  
Line 1 Mark Format:  
Line 2 Mark Format:  
Device Part Number  
Si34062  
Device Type  
A = Device Revision A  
G = Extended temperature range  
M = QFN package  
Line 3 Mark Format:  
Line 4 Mark Format:  
TTTTTT  
Manufacturing Trace Code (assigned at assembly)  
Assembly Year  
YY = Year  
WW = Work Week  
Assembly Week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 34  
 
Si3406x Family Data Sheet  
Revision History  
8. Revision History  
Revision 0.5  
February, 2018  
• Updated 2. System Overview and 3. Application Examples.  
• Added theory of operation and application content.  
Updated Table 4.1 Absolute Maximum Ratings1 on page 14, Table 4.2 Recommended Operating Conditions on page 15, and Table  
4.3 Electrical Characteristics on page 16.  
• Clarified multiple parameters.  
• Added 5.1 Detailed Pin Descriptions.  
• Added 6. Packaging including outline and land pattern.  
Revision 0.1  
August, 2016  
• Initial release.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.5 | 35  
 
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si34061-A-GM

Security and surveillance IP cameras
SILICON

SI34062-A-GM

Power Supply Support Circuit,
SILICON

SI3406X

Security and surveillance IP cameras
SILICON

SI3407-TP

Small Signal Field-Effect Transistor,
MCC

SI3407DV

P-Channel 20-V (D-S) MOSFET
VISHAY

SI3407DV-T1-E3

P-Channel 20-V (D-S) MOSFET
VISHAY

SI3410DV

N-Channel 30-V (D-S) MOSFET
VISHAY

SI3410DV-T1-E3

N-Channel 30-V (D-S) MOSFET
VISHAY

SI3410DV-T1-GE3

TRANSISTOR 8 A, 30 V, 0.0195 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, TSOP-6, FET General Purpose Power
VISHAY

SI3410DV_09

N-Channel 30-V (D-S) MOSFET
VISHAY

SI3415-TP

Small Signal Bipolar Transistor,
MCC

SI3415-TP-HF

Small Signal Bipolar Transistor,
MCC