SI3410DV-T1-GE3 [VISHAY]

TRANSISTOR 8 A, 30 V, 0.0195 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, TSOP-6, FET General Purpose Power;
SI3410DV-T1-GE3
型号: SI3410DV-T1-GE3
厂家: VISHAY    VISHAY
描述:

TRANSISTOR 8 A, 30 V, 0.0195 ohm, N-CHANNEL, Si, POWER, MOSFET, HALOGEN FREE AND ROHS COMPLIANT, TSOP-6, FET General Purpose Power

开关 脉冲 光电二极管 晶体管
文件: 总11页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3410DV  
Vishay Siliconix  
N-Channel 30-V (D-S) MOSFET  
FEATURES  
PRODUCT SUMMARY  
Halogen-free According to IEC 61249-2-21  
VDS (V)  
RDS(on) (Ω)  
Qg (Typ.)  
I
D (A)a  
Definition  
TrenchFET® Power MOSFET  
Compliant to RoHS Directive 2002/95/EC  
0.0195 at VGS = 10 V  
0.023 at VGS = 4.5 V  
8
8
30  
9.2 nC  
APPLICATIONS  
Notebook Load Switch  
Low Current dc-to-dc  
TSOP-6  
Top View  
D
D
D
S
1
2
3
6
D
(1, 2, 5, 6)  
3 mm  
D
G
5
4
Marking Code  
AM XXX  
Lot Traceability  
G
and Date Code  
(3)  
Part # Code  
2.85 mm  
(4)  
S
Ordering Information: Si3410DV-T1-E3 (Lead (Pb)-free)  
Si3410DV-T1-GE3 (Lead (Pb)-free and Halogen-free)  
N-Channel MOSFET  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Symbol  
VDS  
Limit  
30  
20  
Unit  
Drain-Source Voltage  
Gate-Source Voltage  
V
VGS  
T
C = 25 °C  
C = 70 °C  
8a  
8a  
7.5b,c  
5.9b,c  
30  
T
Continuous Drain Current (TJ = 150 °C)  
ID  
TA = 25 °C  
TA = 70 °C  
A
IDM  
IS  
Pulsed Drain Current  
2.7  
1.7b,c  
T
C = 25 °C  
A = 25 °C  
Continuous Source-Drain Diode Current  
T
TC = 25 °C  
4.1  
T
C = 70 °C  
A = 25 °C  
2.6  
2b,c  
PD  
Maximum Power Dissipation  
W
T
1.25b,c  
TA = 70 °C  
TJ, Tstg  
Operating Junction and Storage Temperature Range  
- 55 to 150  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Maximum Junction-to-Ambientb, d  
Maximum Junction-to-Foot  
Symbol  
RthJA  
RthJF  
Typical  
45  
Maximum  
Unit  
t 5 s  
Steady State  
62.5  
30  
°C/W  
25  
Notes:  
a. Package Limited.  
b. Surface mounted on 1" x 1" FR4 board.  
c. t = 5 s.  
d. Maximum under Steady State conditions is 110 °C/W.  
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
1
Si3410DV  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VDS  
ΔVDS/TJ  
ΔVGS(th)/TJ  
VGS(th)  
VGS = 0 V, ID = 250 µA  
ID = 250 µA  
Drain-Source Breakdown Voltage  
30  
V
V
DS Temperature Coefficient  
33  
mV/°C  
VGS(th) Temperature Coefficient  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
- 6.2  
VDS = VGS, ID = 250 µA  
1
3
V
IGSS  
VDS = 0 V, VGS  
=
20 V  
100  
1
nA  
VDS = 30 V, VGS = 0 V  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
µA  
A
VDS = 30 V, VGS = 0 V, TJ = 55 °C  
10  
VDS 5 V, VGS = 10 V  
VGS = 10 V, ID = 5 A  
20  
0.016  
0.019  
24  
0.0195  
0.023  
Drain-Source On-State Resistancea  
Forward Transconductancea  
Ω
S
V
GS = 4.5 V, ID = 4 A  
VDS = 10 V, ID = 5 A  
Dynamicb  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
1295  
170  
72  
VDS = 15 V, VGS = 0 V, f = 1 MHz  
pF  
V
DS = 15 V, VGS = 10 V, ID = 5 A  
21.8  
9.2  
3.8  
2.5  
2.4  
21  
33  
14  
Qg  
Total Gate Charge  
nC  
Qgs  
Qgd  
Rg  
V
DS = 15 V, VGS = 4.5 V, ID = 5 A  
f = 1 MHz  
Gate-Source Charge  
Gate-Drain Charge  
Gate Resistance  
Turn-On Delay Time  
Rise Time  
Ω
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
40  
25  
40  
18  
20  
16  
35  
16  
V
DD = 15 V, RL = 3 Ω  
14  
ID 5 A, VGEN = 4.5 V, Rg = 1 Ω  
Turn-Off DelayTime  
Fall Time  
20  
9
ns  
Turn-On Delay Time  
Rise Time  
10  
V
DD = 15 V, RL = 3 Ω  
8
ID 5 A, VGEN = 10 V, Rg = 1 Ω  
Turn-Off DelayTime  
Fall Time  
21  
8
Drain-Source Body Diode Characteristics  
Continous Source-Drain Diode Current  
Pulse Diode Forward Current  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
2.7  
30  
A
IS = 1.7 A, VGS = 0 V  
Body Diode Voltage  
0.77  
21  
15  
13  
8
1.2  
40  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
ns  
nC  
Qrr  
ta  
30  
IF = 3 A, dI/dt = 100 A/µs, TJ = 25 °C  
ns  
tb  
Reverse Recovery Rise Time  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
Si3410DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
30  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
V
GS  
= 10 V thru 4 V  
24  
18  
12  
6
T
C
= 25 °C  
T
C
= 125 °C  
V
GS  
= 3 V  
T
C
= - 55 °C  
4
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
0
1
2
3
5
V
DS  
- Drain-to-Source Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.030  
0.026  
0.022  
0.018  
0.014  
0.010  
1600  
1280  
960  
640  
320  
0
C
iss  
V
GS  
= 4.5 V  
V
GS  
= 10 V  
C
oss  
C
rss  
0
6
12  
18  
24  
30  
0
6
12  
18  
24  
30  
I
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
D
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
10  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
I
D
= 5 A  
I
D
= 5 A  
8
6
4
2
0
V
DS  
= 10 V  
V
GS  
= 10 V  
V
= 15 V  
DS  
V
GS  
= 4.5 V  
V
DS  
= 20 V  
0
5
10  
15  
20  
25  
- 50 - 25  
0
25  
50  
75  
100 125 150  
Q
g
- Total Gate Charge (nC)  
T - Junction Temperature (°C)  
J
Gate Charge  
On-Resistance vs. Junction Temperature  
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
3
Si3410DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
100  
0.10  
0.08  
0.06  
0.04  
0.02  
0
10  
T
J
= 150 °C  
1
0.1  
T
J
= 25 °C  
T
= 125 °C  
= 25 °C  
A
0.01  
T
A
0.001  
0
1
2
3
4
5
6
7
8
9
10  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Source-Drain Diode Forward Voltage  
On-Resistance vs. Gate-to-Source Temperature  
0.6  
0.3  
60  
I
= 250 µA  
D
48  
36  
24  
12  
0
I
= 5 mA  
D
0
- 0.3  
- 0.6  
- 0.9  
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.001  
0.01  
0.1  
1
10  
T
J
- Temperature (°C)  
Time (s)  
Threshold Voltage  
Single Pulse Power, Junction-to-Ambient  
100  
Limited by R  
*
DS(on)  
10  
1
1 ms  
10 ms  
100 ms  
0.1  
1 s, 10 s  
DC  
0.01  
T
A
= 25 °C  
Single Pulse  
0.001  
0.1  
1
10  
100  
V
DS  
- Drain-to-Source Voltage (V)  
* V  
GS  
minimum V at which R  
is specified  
DS(on)  
GS  
Safe Operating Area, Junction-to-Ambient  
www.vishay.com  
4
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
Si3410DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
12  
10  
Package Limited  
7
5
2
0
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
Current Derating*  
5
4
3
2
1
0
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
T
A
- Ambient Temperature (°C)  
Power Derating, Junction-to-Foot  
Power Derating, Junction-to-Ambient  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
www.vishay.com  
5
Si3410DV  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
1
Duty Cycle = 0.5  
0.2  
0.1  
Notes:  
0.1  
P
DM  
0.05  
0.01  
t
1
t
2
t
t
0.02  
1
1. Duty Cycle, D =  
2
2. Per Unit Base = R  
= 110 °C/W  
thJA  
(t)  
3. T - T = P  
Z
JM  
A
DM thJA  
Single Pulse  
4. Surface Mounted  
0.001  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
1000  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
1
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?69254.  
www.vishay.com  
6
Document Number: 69254  
S09-2110-Rev. B, 12-Oct-09  
Package Information  
Vishay Siliconix  
TSOP: 5/6−LEAD  
JEDEC Part Number: MO-193C  
e1  
e1  
5
5
4
3
6
1
4
E
1
E
E
1
E
1
2
2
3
-B-  
-B-  
e
e
b
b
M
M
C
0.15  
C
B
A
0.15  
B A  
5-LEAD TSOP  
6-LEAD TSOP  
4x  
1
-A-  
D
0.17 Ref  
c
R
R
A
2
A
L
2
Gauge Plane  
Seating Plane  
Seating Plane  
L
0.08  
C
A
1
-C-  
(L )  
1
4x  
1
MILLIMETERS  
INCHES  
Dim  
A
A1  
A2  
b
c
D
E
E1  
e
Min  
Nom  
-
Max  
Min  
0.036  
0.0004  
0.035  
0.012  
0.004  
0.116  
0.106  
0.061  
Nom  
-
Max  
0.91  
0.01  
0.90  
0.30  
0.10  
2.95  
2.70  
1.55  
1.10  
0.10  
1.00  
0.45  
0.20  
3.10  
2.98  
1.70  
0.043  
0.004  
0.039  
0.018  
0.008  
0.122  
0.117  
0.067  
-
-
-
0.32  
0.15  
3.05  
2.85  
1.65  
0.95 BSC  
1.90  
-
0.038  
0.013  
0.006  
0.120  
0.112  
0.065  
0.0374 BSC  
0.075  
-
1.80  
2.00  
0.50  
0.071  
0.012  
0.079  
0.020  
e1  
L
0.32  
0.60 Ref  
0.25 BSC  
-
0.024 Ref  
0.010 BSC  
-
L1  
L2  
R
0.10  
0
-
0.004  
0
-
4
8
4
8
7
Nom  
7 Nom  
1
ECN: C-06593-Rev. I, 18-Dec-06  
DWG: 5540  
Document Number: 71200  
18-Dec-06  
www.vishay.com  
1
AN823  
Vishay Siliconix  
Mounting LITTLE FOOTR TSOP-6 Power MOSFETs  
Surface mounted power MOSFET packaging has been based on  
integrated circuit and small signal packages. Those packages  
have been modified to provide the improvements in heat transfer  
required by power MOSFETs. Leadframe materials and design,  
molding compounds, and die attach materials have been  
changed. What has remained the same is the footprint of the  
packages.  
Since surface mounted packages are small, and reflow soldering  
is the most common form of soldering for surface mount  
components, “thermal” connections from the planar copper to the  
pads have not been used. Even if additional planar copper area is  
used, there should be no problems in the soldering process. The  
actual solder connections are defined by the solder mask  
openings. By combining the basic footprint with the copper plane  
on the drain pins, the solder mask generation occurs automatically.  
The basis of the pad design for surface mounted power MOSFET  
is the basic footprint for the package. For the TSOP-6 package  
outline drawing see http://www.vishay.com/doc?71200 and see  
http://www.vishay.com/doc?72610 for the minimum pad footprint.  
In converting the footprint to the pad set for a power MOSFET, you  
must remember that not only do you want to make electrical  
connection to the package, but you must made thermal connection  
and provide a means to draw heat from the package, and move it  
away from the package.  
A final item to keep in mind is the width of the power traces. The  
absolute minimum power trace width must be determined by the  
amount of current it has to carry. For thermal reasons, this  
minimum width should be at least 0.020 inches. The use of wide  
traces connected to the drain plane provides a low impedance  
path for heat to move away from the device.  
REFLOW SOLDERING  
In the case of the TSOP-6 package, the electrical connections are  
very simple. Pins 1, 2, 5, and 6 are the drain of the MOSFET and  
are connected together. For a small signal device or integrated  
circuit, typical connections would be made with traces that are  
0.020 inches wide. Since the drain pins serve the additional  
function of providing the thermal connection to the package, this  
level of connection is inadequate. The total cross section of the  
copper may be adequate to carry the current required for the  
application, but it presents a large thermal impedance. Also, heat  
spreads in a circular fashion from the heat source. In this case the  
drain pins are the heat sources when looking at heat spread on the  
PC board.  
Vishay Siliconix surface-mount packages meet solder reflow  
reliability requirements. Devices are subjected to solder reflow as a  
test preconditioning and are then reliability-tested using  
temperature cycle, bias humidity, HAST, or pressure pot. The  
solder reflow temperature profile used, and the temperatures and  
time duration, are shown in Figures 2 and 3.  
Figure 1 shows the copper spreading recommended footprint for  
the TSOP-6 package. This pattern shows the starting point for  
utilizing the board area available for the heat spreading copper. To  
create this pattern, a plane of copper overlays the basic pattern on  
pins 1,2,5, and 6. The copper plane connects the drain pins  
electrically, but more importantly provides planar copper to draw  
heat from the drain leads and start the process of spreading the  
heat so it can be dissipated into the ambient air. Notice that the  
planar copper is shaped like a “T” to move heat away from the  
drain leads in all directions. This pattern uses all the available area  
underneath the body for this purpose.  
0.167  
4.25  
Ramp-Up Rate  
+6_C/Second Maximum  
120 Seconds Maximum  
70 180 Seconds  
240 +5/0_C  
0.074  
1.875  
Temperature @ 155 " 15_C  
Temperature Above 180_C  
Maximum Temperature  
Time at Maximum Temperature  
Ramp-Down Rate  
0.014  
0.35  
0.122  
3.1  
0.026  
0.65  
20 40 Seconds  
+6_C/Second Maximum  
0.049  
1.25  
0.049  
1.25  
0.010  
0.25  
FIGURE 2. Solder Reflow Temperature Profile  
FIGURE 1. Recommended Copper Spreading Footprint  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
1
AN823  
Vishay Siliconix  
10 s (max)  
255 260_C  
1X4_C/s (max)  
3-6_C/s (max)  
217_C  
140 170_C  
60 s (max)  
3_C/s (max)  
60-120 s (min)  
Reflow Zone  
Pre-Heating Zone  
Maximum peak temperature at 240_C is allowed.  
FIGURE 3. Solder Reflow Temperature and Time Durations  
THERMAL PERFORMANCE  
On-Resistance vs. Junction Temperature  
A basic measure of a device’s thermal performance is the  
junction-to-case thermal resistance, Rqjc, or the  
junction-to-foot thermal resistance, Rqjf. This parameter is  
measured for the device mounted to an infinite heat sink and  
is therefore a characterization of the device only, in other  
words, independent of the properties of the object to which the  
device is mounted. Table 1 shows the thermal performance  
of the TSOP-6.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
= 4.5 V  
GS  
I
D
= 6.1 A  
TABLE 1.  
Equivalent Steady State Performance—TSOP-6  
Thermal Resistance Rq  
30_C/W  
jf  
50 25  
0
25  
50  
75  
100 125 150  
SYSTEM AND ELECTRICAL IMPACT OF  
TSOP-6  
T
Junction Temperature (_C)  
J
FIGURE 4. Si3434DV  
In any design, one must take into account the change in  
MOSFET rDS(on) with temperature (Figure 4).  
Document Number: 71743  
27-Feb-04  
www.vishay.com  
2
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR TSOP-6  
0.099  
(2.510)  
0.039  
0.020  
0.019  
(1.001)  
(0.508)  
(0.493)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
26  
Document Number: 72610  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
www.vishay.com  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of  
typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding  
statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a  
particular product with the properties described in the product specification is suitable for use in a particular application.  
Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over  
time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk.  
Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for  
such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document  
or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
© 2017 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED  
Revision: 08-Feb-17  
Document Number: 91000  
1

相关型号:

SI3410DV_09

N-Channel 30-V (D-S) MOSFET
VISHAY

SI3415-TP

Small Signal Bipolar Transistor,
MCC

SI3415-TP-HF

Small Signal Bipolar Transistor,
MCC

SI3415B-TP

Power Field-Effect Transistor,
MCC

SI3415B-TP-HF

Power Field-Effect Transistor,
MCC

SI3417DV-T1-GE3

Small Signal Field-Effect Transistor, 8A I(D), 30V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-193AA, HALOGEN FREE AND ROHS COMPLIANT, MO-193C, TSOP-6
VISHAY

SI3420-TP

Small Signal Field-Effect Transistor,
MCC

SI3420-TP-HF

Small Signal Field-Effect Transistor,
MCC

SI3420A-TP

Power Field-Effect Transistor,
MCC

SI3420DV

N-Channel 200-V (D-S) MOSFET
VISHAY

SI3420DV-T1

N-Channel 200-V (D-S) MOSFET
VISHAY

SI3420DV-T1-E3

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
VISHAY