SI4012-C1001ATR [SILICON]

Telecom Circuit, 1-Func, CMOS, PDSO10, MSOP-10;
SI4012-C1001ATR
型号: SI4012-C1001ATR
厂家: SILICON    SILICON
描述:

Telecom Circuit, 1-Func, CMOS, PDSO10, MSOP-10

电信 光电二极管 电信集成电路
文件: 总50页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4012  
Si4012 CRYSTAL-LESS FSK/OOK RF TRANSMITTER  
Features  
Frequency range  
27–960 MHz  
Output power range  
–13 to +10 dBm  
Low Power Consumption  
OOK  
Programmable ramp rate  
Crystal-less operation  
±150 ppm: 0 to 70° C  
±250 ppm: –40 to 85° C  
Optional crystal input for  
applications requiring tighter  
tolerances  
14.2 mA @ +10 dBm  
Ultra low standby current <10 nA  
Integrated voltage regulator  
255 byte FIFO  
Low battery detector  
SMBus Interface  
–40 to +85 °C temperature range  
10-Pin MSOP Package,  
RoHs compliant  
FSK  
19.8 mA @ +10 dBm  
Ordering Information:  
Data rate:  
Up to 100 kbaud FSK  
Up to 50 kbaud OOK  
FSK and OOK modulation  
Power supply = 1.8 to 3.6 V  
Automatic antenna tuning  
See page 43.  
Pin Assignments  
Si4012  
Low BOM  
Applications  
XTAL  
GND  
TXM  
TXP  
1
2
3
4
5
10 SDA  
9
8
7
6
SCL  
SDN  
nIRQ  
LED  
Wireless MBus T1-mode  
Remote control  
Home security & alarm  
Personal data logging  
Toy control  
Remote meter reading  
Remote keyless entry  
Home automation  
Industrial control  
Sensor networks  
Health monitors  
Si4012  
VDD  
Wireless PC peripherals  
Description  
Patents pending  
Silicon Laboratories’ Si4012 is a fully-integrated crystalless CMOS high-data-rate  
RF transmitter designed for the sub-GHz ISM band. This chip is optimized for  
battery powered applications requiring low standby currents and high output  
transmit power.  
The device offers advanced radio features including continuous frequency  
coverage from 27–960 MHz, adjustable output power of up to +10 dBm, and data  
rates up to 100 kbaud in FSK mode. The Si4012’s high level of integration offers  
reduced BOM cost while simplifying overall system design.  
Functional Block Diagram  
Si4012  
Digital Logic  
Antenna Tune  
RF Analog Core  
OOK  
SMBus  
Interface  
Host  
MCU  
TXP  
TXM  
Auto  
Tune  
Divider  
LPOSC  
PA  
FSK  
Modulator  
LCOSC  
TX  
255 Byte  
Data FIFO  
LDO  
POR  
BANDGAP  
VDD  
GND  
VA  
VD  
Digital  
Controller  
LED  
XTAL  
Register  
Bank  
XTAL  
OSC  
Battery  
Monitor  
Rev 1.1 3/13  
Copyright © 2013 by Silicon Laboratories  
Si4012  
Si4012  
2
Rev 1.1  
Si4012  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.1. Definition of Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4. Host MCU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.1. SMBus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.2. SMBus Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.3. Host Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4.4. Operating Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
5. Command Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.1. Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5.2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.3. Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
9. Land Pattern: 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
10. Top Marking: 10-Pin MSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Rev 1.1  
3
Si4012  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
1.8  
3.6  
V
DD  
Supply Voltage Slew Rate  
mV/  
us  
2
Initial Battery Insertion  
Digital Input Signals  
20  
650  
Input Voltage  
V
+
DD  
–0.3  
V
0.3  
Notes:  
1. All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in "1.1. Definition of Test Conditions" on page 7.  
2. Recommend bypass capacitor = 1 µF; slew rate measured 1 V < VDD ,< 1.7 V.  
Table 2. DC Characteristics*  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Units  
Power Saving Modes  
I
Lowest current mode  
10  
nA  
µA  
Shutdown  
Register values retained,  
lowest current consumption idle mode  
I
600  
Idle  
TX Mode Current @ 10 dBm  
I
OOK, Manchester encoded  
FSK  
14.2  
19.8  
mA  
mA  
TX_OOK  
I
TX_FSK  
*Note: All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in "1.1. Definition of Test Conditions" on page 7.  
4
Rev 1.1  
Si4012  
Table 3. Si4012 RF Transmitter Characteristics1  
(TA = 25 °C, VDD = 3.3 V, RL = 550 , unless otherwise noted)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
2
Frequency Range (F  
)
27  
960  
MHz  
RF  
3
Frequency Noise (rms)  
Allen deviation, measured across  
1 ms interval  
0.3  
ppm  
Phase Noise @ 915 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
–70  
–100  
–105  
5
dBc/Hz  
dBc/Hz  
dBc/Hz  
ms  
Frequency Tuning Time  
Carrier Frequency Accuracy  
0 °C T 70 °C  
–150  
–250  
+150  
+250  
ppm  
A
–40 °C T 85 °C  
ppm  
A
Frequency Error Contribution  
with External Crystal  
Transmit Power  
–10  
+10  
ppm  
4
Maximum programmed Tx power,  
with optimum differential load, V  
> 2.2 V  
10  
dBm  
DD  
Minimum programmed TX power,  
with optimum differential load,  
–13  
dBm  
dB  
V
> 2.2 V  
DD  
Power variation vs temp and supply,  
with optimum differential load,  
–1.0  
–2.5  
0.5  
0.5  
V
> 2.2 V  
DD  
Power variation vs temp and supply,  
with optimum differential load,  
dB  
V
> 1.8 V  
DD  
Transmit power step size  
from –13 to 6.5 dBm  
0.25  
dB  
us  
PA Edge Ramp Rate  
Programmable Range  
Data Rate  
OOK mode  
0.34  
10.7  
OOK  
0.1  
0.1  
50  
100  
kbaud  
kbaud  
ppm  
FSK  
FSK Deviation  
Max frequency deviation  
Deviation resolution  
Deviation accuracy  
275  
2
ppm  
±(4 ppm + 2% pk-pk target FSK  
deviation in ppm)  
ppm  
OOK Modulation Depth  
60  
dB  
pF  
Antenna Tuning Capacitive  
Range (Differential)  
315 MHz  
2.4  
12.5  
Notes:  
1. All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in "1.1. Definition of Test Conditions" on page 7.  
2. The frequency range is continuous over the specified range.  
3. The frequency step size is limited by the frequency noise.  
4. Optimum differential load is equal to 4 V/(11.5 mA/2 x 4/PI) = 550 Therefore the antenna load resistance in parallel  
with the Si4012 differential output resistance should equal 600   
Rev 1.1  
5
Si4012  
Table 4. Low Battery Detector Characteristics*  
(TA = 25° C, VDD = 3.3 V, RL = 550 , unless otherwise noted)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Battery Voltage Measurement Accuracy  
2
%
*Note: All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in "1.1. Definition of Test Conditions" on page 7.  
Table 5. Optional Crystal Oscillator Characteristics*  
(TA = 25° C, VDD = 3.3 V, RL = 600 , unless otherwise noted)  
Parameter  
Test Condition  
Min  
10  
Typ  
3
Max  
13  
Unit  
Crystal Frequency Range  
Input Capacitance (GPIO0)  
MHz  
GPIO0 configured as a crystal oscillator;  
XO_LOWCAP=1  
pF  
pF  
GPIO0 configured as a crystal oscillator;  
XO_LOWCAP=0  
5.5  
120  
80  
Crystal ESR  
GPIO0 configured as a crystal oscillator;  
XO_LOWCAP=1  
GPIO0 configured as a crystal oscillator;  
XO_LOWCAP=0  
Start-Up Time  
Crystal oscillator only,  
60 mH motional arm inductance  
9
50  
ms  
*Note: All specifications guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in "1.1. Definition of Test Conditions" on page 7.  
Table 6. Thermal Conditions  
Parameter  
Ambient Temperature  
Junction Temperature  
Storage Temperature  
Symbol  
Value  
Unit  
C  
T
–40 to 85  
–40 to 90  
–55 to 125  
A
T
C  
OP  
T
C  
STG  
Table 7. Absolute Maximum Ratings1,2  
Parameter  
Supply Voltage  
Symbol  
Value  
Unit  
V
I
–0.5 to 3.9  
10  
V
mA  
V
DD  
3
Input Current  
Input Voltage  
Notes:  
IN  
4
V
–0.3 to (V + 0.3)  
DD  
IN  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended  
operating conditions for extended periods may affect device reliability.  
2. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. All input pins besides VDD  
.
4. For GPIO pins configured as inputs.  
6
Rev 1.1  
Si4012  
1.1. Definition of Test Conditions  
Production Test Conditions:  
T = +25 °C.  
A
V  
= +3.3 VDC.  
DD  
TX output power measured at 100 MHz.  
All RF output levels referred to the pins of the Si4012 (not the RF module).  
Qualification Test Conditions:  
T = –40 to +85 °C.  
A
V  
= +1.8 to +3.6 VDC.  
DD  
All RF output levels referred to the pins of the Si4012 (not the RF module).  
Rev 1.1  
7
Si4012  
2. Typical Application Schematic  
See Note 1  
Optional  
CR2032  
Coin Cell  
1.8 to 3.6 V  
D1  
10  
X1  
See Note 2  
C3  
1
2
R2  
XTAL  
GND  
TXM  
TXP  
SDA  
SCL  
SDN  
nIRQ  
LED  
R1  
9
Host MCU  
3
4
5
8
7
6
C2  
Si4012  
VDD  
C1  
1 µF  
Loop Antenna  
Notes:  
1. The Si4012 has internal 50 kpull-up resistors. Additional optional external pull-up resistors may be added should the  
board design required it.  
2. See note about how to choose the value of C3 in "5.2.10. PROPERTY: XO_CONFIG" on page 39.  
8
Rev 1.1  
Si4012  
3. Functional Description  
Si4012  
Digital Logic  
RF Analog Core  
Antenna Tune  
OOK  
SMBus  
Interface  
Host  
MCU  
TXP  
TXM  
Auto  
Tune  
Divider  
PA  
FSK  
Modulator  
LCOSC  
TX  
255 Byte  
Data FIFO  
LDO  
POR  
BANDGAP  
VDD  
GND  
VA  
VD  
LPOSC  
Digital  
Controller  
LED  
XTAL  
Register  
Bank  
Battery  
Monitor  
XTAL  
OSC  
Figure 1. Si4012 Functional Block Diagram  
The Si4012 is a fully-integrated, crystal-less, sub-GHz CMOS RF transmitter offering industry-leading RF  
performance, high integration, flexibility, low BOM, small board area, and ease of design.  
The device is designed to operate with any host MCU via a serial interface while optimized for battery-powered  
applications. The Si4012 operates from voltages ranging from 1.8 to 3.6 V and offers an ultra-low standby current  
consumption of less than 10 nA.  
The embedded power amplifier can be programmed to supply from –13 dBm up to +10 dBm, while the patented  
automatic antenna tuning circuit ensures that the resonant frequency and impedance matching between the PA  
output and the connected antenna are configured for optimum transmit efficiency and low harmonic content.  
Users may configure the device for either FSK or OOK modulation with supported symbol rates of up to 100 kbps.  
To ensure the lowest system cost, the Si4012 can be used without an external crystal or frequency reference by  
leveraging Silicon Labs' patented and proven crystal-less oscillator technology. This technology offers better than  
±150 ppm carrier frequency stability over the temperature range of 0 to +70 °C and ±250 ppm carrier frequency  
stability over the industrial temperature range of –40 to + 85 °C. No production alignments are necessary since all  
RF functions are integrated into the device.  
Rev 1.1  
9
Si4012  
4. Host MCU Interface  
4.1. SMBus Interface  
The SMBus interface is implemented as a bidirectional 2-wire interface (SCL, SDA) with the host configured as  
master and the Si4012 configured as slave. Both standard (100 kbps) and fast (400 kbps) modes are supported  
with 7-bit addressing. The default device address is 1110000x, where x is the R/W bit.  
4.1.1. Design Recommendation  
In designs with multiple SMBus devices, it is recommended to use separate SMBus buses where possible since all  
attached SMBus devices will wake on bus traffic to confirm address. This process can lead to better battery life  
compared to systems with single-bus designs.  
4.2. SMBus Flow Control  
The SCL and SDA pins are configured as open drain requiring external pull-up resistors. Flow control is  
implemented using the open drain configuration as shown below.  
Figure 2. WRITE Operation from Master to Slave  
The data (SDA) pin never changes when SCL = 1 during bit data transfers. If it changes, it indicates a START or  
STOP condition generated by the master/host. After the START condition, a 7-bit address is sent to the  
Si4012/slave by the host/master, followed by a single bit determining what is going to drive SDA (i.e., a write or  
read operation). For a WRITE operation, the master drives the following SDA bits, and the slave sends ACK/NAK  
bits. For a READ operation, the slave drives the data bits, and the master responds with ACK/NACK.  
Figure 2 shows a write operation from MASTER to SLAVE. Shortly after the R/W bit is received, the SLAVE device  
holds the SCL line low (blue line), thus stalling the master. The master will detect when SCL is released by the  
slave and will clock in the ACK/NACK bit from the slave (ACK shown above). By this, the slave (Si4012) can  
service each incoming byte and manage flow control to the host.  
4.3. Host Interrupts  
An nIRQ line from the Si4012 to the host is used to issue interrupts to the host. The host can then read the interrupt  
status and clear interrupts from the Si4012 via the SMBus interface.  
10  
Rev 1.1  
Si4012  
4.4. Operating Mode Control  
NOTE1, 2  
TUNE with XO  
5
TX_START  
NOTE1  
Yes  
Yes  
CHANGE_STATE /  
Tx_START  
No  
SHUTDOWN  
SDN=1?  
1
STANDBY  
TX  
6
XO in CHIP_CONFIG?  
2
SMBus or  
SDN  
(NOTE 4)  
No  
CHANGE_STATE  
NOTE1, 3  
TX_START  
TUNE without  
SENSOR  
3
XO  
4
NOTE1  
NOTE1  
Figure 3. State Machine Diagram  
Transition Notes  
1. Transition to any state (including SHUTDOWN) using the CHANGE_STATE command. Alternatively, transition to  
SHUTDOWN using the SDN pin.  
2. If a CHANGE_STATE command to the XO TUNE state is issued (even if already in the XO TUNE state), then an XO  
TUNE operation is carried out immediately. This enables close control of timing (fastest execution) for a subsequent  
TX_START command. In the TUNE state, a tune operation is carried out in the interval specified in TUNE_INTERVAL.  
3. Transition to end state specified in the TX_START command or TX_STOP command.  
4. If coming out of the SHUTDOWN via SMBus, an SMBus “wake-up” byte is required. This byte is discarded, and normal  
SMBus communication can proceed after the power on reset (ipor) is asserted to the host.  
State Descriptions  
The Si4012 has six power modes, which are summarized below. Further details on the IC configuration in these  
modes can be found in "5.1.5. COMMAND: CHANGE_STATE" on page 22.  
SHUTDOWN—Lowest current consumption; the majority of hardware blocks are powered down.  
STANDBY—Low power state with fast SMBus response.  
SENSOR—Same as STANDBY, but the battery is measured periodically.  
TUNE—Periodic tuning state. A tune is performed on any CHANGE_STATE to TUNE command and then  
periodically based on the interval defined in TUNE_INTERVAL. This provides faster transition to TX. If XO is  
enabled, XO will be used during tune operation.  
TX—Transmission state.  
Rev 1.1  
11  
Si4012  
Table 8. Power Modes  
Circuit Blocks  
Response Time  
to TX  
Response  
Time to TX  
I
Mode  
VDD  
Digital  
LDO  
SYS  
CLK  
(with XO Early  
Enable)  
SMBUS  
LBD LC XTAL DIV PA  
(without XO)  
Shut-  
down  
OFF  
OFF  
OFF OFF OFF OFF OFF OFF 10 nA  
22.2 ms  
22.2 ms  
3
3
4
Standby  
Sensor  
ON  
ON  
SLOW OFF OFF OFF OFF OFF 600 µA  
FAST ON OFF OFF OFF OFF 610 µA  
6.6 ms  
6.6 ms  
6.6 ms  
4
6.6 ms  
Tune  
without  
XO  
1
1
1
2
ON  
ON  
ON  
FAST OFF ON OFF ON ON  
Note  
Note  
370 µs  
Tune  
with XO  
1
1
1
2
FAST OFF ON  
ON ON ON  
370 µs  
Notes:  
1. The LC, DIV, and PA are turned on as needed during the Tune operation.  
2. See the tune section from Tune Start to PA Tune in the charts below for current consumption in Tune with XO and Tune  
without XO.  
3. The current consumption at Standby and Sensor does not include the power consumed by the internal XO circuitry. XO  
should be turned off with SET_PROPERTY/CHIP_CONFIG to save power if external XO is not used or if tuning is not  
happening soon when external XO is present.  
4. The response time assumes external XO stays enabled prior to TX.  
12  
Rev 1.1  
Si4012  
Figure 4. Current Consumption with XO  
Figure 5. Current Consumption with XO (Upscaled between 30 and 80 ms)  
Rev 1.1  
13  
Si4012  
Figure 6. Current Consumption without XO  
Figure 7. Current Consumption without XO (Upscaled between 30 and 80 ms)  
14  
Rev 1.1  
Si4012  
5. Command Structure  
The Si4012 has been designed to complete commands in the shortest time possible and to support both polled or  
event driven (interrupt based) modes. For longer operations, commands are implemented as launch commands.  
When the result of the launched command is completed, status is returned to the host via host polling or as an  
interrupt (if enabled). The status is obtained over the SMBus.  
For example, when a TX_START command is launched, the Si4012 will parse the command, check it for errors,  
and return the status to the host immediately; it will also start the TX process. The host can then either poll for an  
error or “packet sent” or receive an interrupt on nIRQ.  
All host commands consist of a 1-byte opcode followed by 0 or more arguments. All responses from the Si4012  
consist of a 1-byte top level status followed by 0 or more data values.  
Command Structure:  
Bit  
7
6
5
4
3
2
1
0
CMD  
ARG1  
ARG2  
ARGn  
Response Structure:  
Bit  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
DATA2  
CTS  
Err[6:0]  
DATAn  
A CTS (Clear to Send) indicates that the Si4012 has received the command and that the host can send another  
command. The CTS does not necessarily mean the command has been processed. The host should poll interrupt  
status or use interrupts (nIRQ) to get execution status for deferred operations.  
Err[6:0] indicates an error has occurred if it is non-zero. See the “error codes” section for a full list of available error  
codes.  
Rev 1.1  
15  
Si4012  
GET_INT_STATUS Command  
CMD A P S SLA R A STATUS  
S
SLA  
W A  
A
DATA1 N P  
TX_STOP Command  
S
SLA  
W A  
CMD  
A
ARG1  
A
ARG2  
A P S  
SLA  
R A STATUS N P  
S = Start  
SLA = Slave Address (7 bits)  
CMD = Command opcode (8bit)  
ARG = Command Argument (8bit)  
DATA = Data Value (8bit)  
Underlined items are sent from the Si4012 (slave)  
W = Write (1bit)  
R = Read (1bit)  
A = Acknowledge  
N = Not-Acknowledge  
P = Stop  
STATUS = Top Level Status (8bit)  
Figure 8. SMBus Sequence Example  
Figure 8 above demonstrates two examples using the SMBus command sequence.  
16  
Rev 1.1  
Si4012  
5.1. Commands  
Table 9 lists the commands available via the SMBus and described in the following sections.  
Table 9. Commands Available via SMBus  
Section  
Command  
Description  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
5.1.9  
5.1.10  
5.1.11  
5.1.12  
5.1.13  
Get_Rev  
Set_Property  
Get_Property  
LED_CTRL  
Change_State  
Get_State  
Device revision information  
Sets device properties  
Gets device properties  
LED Control  
Configures device mode  
Get device mode  
TX_Start  
Start data transmission  
Enable interrupts  
Set_Int  
Get_Int_Status  
Init_FIFO  
Read & clear interrupts  
Clears Tx FIFO  
Set_FIFO  
Stores data in FIFO for Tx  
Stops transmission  
Gets battery status  
TX_Stop  
Get_Bat_Status  
Rev 1.1  
17  
Si4012  
5.1.1. COMMAND: GET_REV  
Purpose:  
ARG:  
Return product and revision information for the device.  
None  
DATA:  
Product ID, Revision ID.  
Command:  
GET_REV  
Command  
7
6
5
4
3
2
1
0
CMD  
0x10  
Response:  
GET_REV  
Reply  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
DATA10  
CTS  
Err  
ProdId[31:24]  
ProdId[23:16]  
ProdId[15:8]  
ProdId[7:0]  
RevisionID_RMIDU[47:40]  
RevisionID_RMIDU[39:32]  
RevisionID_RMIDL[31:24]  
RevisionID_RVID[23:16]  
RevisionID_FWIDU[15:8]  
RevisionID_FWIDL[7:0]  
18  
Rev 1.1  
Si4012  
5.1.2. COMMAND: SET_PROPERTY  
Purpose:  
Set a property common to one or more commands. These are similar to parameters for a  
command but are not expected to change frequently and may be controlled by the higher  
software layers. Setting properties may not cause the device to take immediate action,  
however the property will take effect once a command which uses it is issued. See the  
“Properties” section of this document for details on properties.  
PROP_ID[7:0]— Selects the property to set.  
ARG:  
DATA[n:0]—Value of the property. The length varies depending on the PROP_ID, up to 6-byte  
in big Endian can be specified.  
DATA:  
None  
Command:  
SET_PROPERTY  
7
6
5
4
3
2
1
0
Command  
CMD  
ARG1  
ARG2  
ARG3  
ARG4  
ARG5  
ARG6  
ARG7  
0x11  
PROP_ID[7:0]  
PROP_DATA1, MSB of Property 's value  
PROP_DATA 2  
PROP_DATA 3  
PROP_DATA 4  
PROP_DATA5  
PROP_DATA6  
Response:  
SET_PROPERTY  
Reply  
7
6
5
4
3
2
1
0
STATUS  
CTS  
Err  
Rev 1.1  
19  
Si4012  
5.1.3. COMMAND: GET_PROPERTY  
Purpose:  
Return the value of a specified property. See "5.2. Properties" on page 32 for details on  
properties.  
ARG:  
PROP_ID[7:0]—Selects the property to retrieve.  
DATA:  
DATA[n:0] —Value of the specified property, the length varies depending on the PROP_ID, up  
to 6 bytes  
Command:  
GET_PROPERTY  
7
6
5
4
3
2
1
0
Command  
CMD  
0x12  
PROP_ID[7:0]  
ARG1  
Response:  
GET_PROPERTY  
Reply  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
CTS  
Err  
PROP_DATA1, MSB of Property's value  
PROP_DATA 2  
PROP_DATA 3  
PROP_DATA 4  
PROP_DATA5  
PROP_DATA6  
20  
Rev 1.1  
Si4012  
5.1.4. COMMAND: LED_CTRL  
Purpose:Turn on/off LED if LED driver is enabled.  
ARG:  
LedOn—If LED driver is enabled, turn LED on if set, otherwise, turn LED off. If LED driver is  
not enabled, LedOn is ignored if set.  
DATA:  
None  
Command:  
LED_CTRL  
7
6
5
4
3
2
1
0
LedOn  
0
Command  
CMD  
0x13  
ARG1  
Response:  
LED_CTRL  
Reply  
7
6
5
4
3
2
1
STATUS  
CTS  
Err  
Notes: If LEDOn is set, the Si4012 checks the LedIntensity setting set by the host in SET_PROPERTY/LED_INTENSITY. If the  
LedIntensity is 0, LED driver will be disabled. Err is set to 0x0A to report this condition.  
Rev 1.1  
21  
Si4012  
5.1.5. COMMAND: CHANGE_STATE  
Purpose:  
Change state to IDLE or SHUTDOWN. The device will change to the specified state at the  
earliest time possible. If changing into IDLE state, ARG2 specifies the idle mode.  
Table 10.  
Circuit Blocks  
Response Time  
Response  
Time to TX  
to TX  
I
Mode  
VDD  
Digital  
LDO  
SYS  
CLK  
(with XO Early  
Enable)  
SMBUS  
LBD LC XTAL DIV PA  
(without XO)  
Shut-  
down  
OFF  
OFF  
OFF OFF OFF OFF OFF OFF 15 nA  
22.2 ms  
22.2 ms  
3
3
4
Standby  
Sensor  
ON  
ON  
SLOW OFF OFF OFF OFF OFF 600 µA  
FAST ON OFF OFF OFF OFF 610 µA  
6.6 ms  
6.6 ms  
6.6 ms  
4
6.6 ms  
Tune  
without  
XO  
1
1
1
2
ON  
ON  
ON  
FAST OFF ON OFF ON ON  
Note  
Note  
370 µs  
Tune  
with XO  
1
1
1
2
FAST OFF ON  
ON ON ON  
370 µs  
Notes:  
1. The LC, DIV and PA are turned on as needed during the Tune operation.  
2. See the tune section from Tune Start to PA Tune in the charts below for current consumption in Tune with XO and Tune  
without XO.  
3. The current consumption at Standby and Sensor does not include the power consumed by the internal XO circuitry. XO  
should be turned off with SET_PROPERTY/CHIP_CONFIG to save power if external XO is not used or if tuning is not  
happening soon when external XO is present.  
4. The response time assumes external XO stays enabled prior to TX.  
ARG:  
State[1:0]—state to transition to.  
00 IDLE  
– Go to idle mode state using the idle mode specified.  
– Go to shutdown state.  
01 SHUTDOWN  
10–11  
– Reserved.  
IdleMode[2:0]—IDLE mode if changing to idle state.  
000 Standby – Low Power State  
001 Sensor  
010 Tune  
011–111  
– Enable Low Battery Detector  
– Periodic tuning  
– Reserved  
DATA:  
None  
22  
Rev 1.1  
Si4012  
Command:  
CHANGE_STATE  
7
6
5
4
3
2
1
0
Command  
CMD  
ARG1  
ARG2  
0x60  
State[1:0]  
IdleMode[2:0]  
Response:: None if changing to SHUTDOWN, otherwise  
CHANGE_STATE  
Reply  
7
6
5
4
3
2
1
0
STATUS  
CTS  
Err  
Notes:  
1. Changing state among different idle modes is allowed.  
2. State can also be changed via TX_START/TX_STOP.  
3. An alternative way to transition to SHUTDOWN is by setting SDN pin to high.  
4. SMBus activity or setting SDN pin to low will take the device out of shut down state.  
Rev 1.1  
23  
Si4012  
5.1.6. COMMAND: GET_STATE  
Purpose:  
ARG:  
Get chip state and status.  
None  
DATA:  
State[1:0]—current state  
00 Idle  
01 Reserved  
10 TX  
AutoTX—current AutoTX setting  
IdleMode[2:0]. If State is Idle  
000 Standby  
– Low power state  
001 Sensor  
– Enable Low Battery Detector  
– Periodic tuning  
010 Tune  
DTMod[1:0] if State is TX  
00  
01  
10  
11  
– FIFO Mode  
– CW Mode  
– PN9-0 Mode  
– PN9-1 Mode  
ActTxPktSize—actual packet sent in the last transmission  
PrevError —error code if error occurred in the previous operation  
Command:  
GET_STATE  
Command  
7
6
5
4
3
2
1
0
CMD  
0x61  
Response:  
GET_STATE  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
CTS  
Err  
AutoTX  
IdleMode[2:0]/DTMod[1:0]  
State[1:0]  
ActTxPktSize[15:8]  
ActTxPktSize[7:0]  
PrevError  
24  
Rev 1.1  
Si4012  
5.1.7. COMMAND: TX_START  
Purpose:  
Start transmission and go to a designated state after the packet is transmitted. This is an  
asynchronous operation. Transmission may not have been started when response is sent  
back the host.  
ARG:  
Packet Size[15:0] to be transmitted  
State to transition to when transmission is completed.  
AutoTX—Enable/Disable FIFO Auto-TX  
1: Auto-Transmit Enabled.  
Transmission will start when the FIFO level reaches the auto transmit threshold  
specified in ffautotxthr in FIFO_THRESHOLD. If ffautotxthr=0, transmission will start  
immediately.  
0:Auto-Transmit Disabled.  
Transmit will start immediately until the data specified in the PacketSize is  
transmitted, or all the data in the FIFO is exhausted, whichever occurs first. If the  
FIFO becomes empty before the specified packet length is transmitted a FIFO  
underflow error will occur.  
State[1:0]—State to transition to when transmission is completed.  
00: IDLE—Go to idle state when the packet transmission completes based on the idle  
mode.  
01: SHUTDOWN—Go to shutdown state when the packet transmission completes.  
10–11: Reserved.  
IdleMode[2:0] if State is Idle; DTmod[1:0] if State is TX.  
Idle Mode  
000 Standby  
001 Sensor  
010 Tune  
– Low power state  
– Enable Low Battery Detector  
– Periodic tuning  
– FIFO Mode  
DTMod[1:0] 00  
01  
10  
11  
– CW Mode  
– PN9-0 Mode  
– PN9-1 Mode  
DATA:  
Current data size in the FIFO when TX_START is received.  
Command:  
TX_START  
7
6
5
4
3
2
1
0
Command  
CMD  
0x62  
ARG1  
ARG2  
ARG3  
ARG4  
ARG5  
PacketSize[15:8]  
PacketSize[7:0]  
AutoTX  
State[1:0]  
IdleMode[2:0]  
DTMod[1:0]  
Rev 1.1  
25  
Si4012  
Response:  
TX_START  
Reply  
STATUS  
DATA1  
7
6
5
4
3
2
1
0
CTS  
Err  
ActualDataSize[7:0]  
Notes:  
Si4012 allows larger packet sizes than the FIFO. It also allows the packet size to be greater than the data  
available in the FIFO.  
If the packet size is less than the data stored in the FIFO, the data specified in packet size will be  
transmitted in one transmission leaving leftover data in the FIFO. The size to be transmitted will be  
specified in the DATA field.  
If the packet size is larger than the data stored in the FIFO size, when TX_START is received, all  
the data in the FIFO will be transmitted. The size of the data currently available in the FIFO will be  
specified in the DATA field. If auto transmit is enabled, the Si4012 will automatically transmit data  
when the TX FIFO level reaches the auto transmit level dictated by ffautotxthr without another  
explicit TX_START until the data specified in PacketSize is all transmitted. An interrupt is triggered  
with pksent set in the interrupt status. AutoTX state will be cleared when packet is successfully  
transmitted or FIFO underflow has happened. If auto transmit is not enabled, the Si4012 will start  
transmitting what’s available in the FIFO until FIFO becomes empty. The host is responsible for  
keeping FIFO from underflow by supplying the balance of the data needed for the packet size.  
If the packet size equals to the data stored in the FIFO size, all the data in the FIFO will be  
transmitted, ActualDataSize will be equal to the packet size.  
The host should poll ipksent using GET_INT_STATUS to check when the packet has been sent, or  
monitor the pksent interrupt.  
26  
Rev 1.1  
Si4012  
5.1.8. COMMAND: SET_INT  
Purpose:  
Enable interrupts.  
ARG:  
enffunder—Enable FIFO Underflow  
entxffafull—Enable TX FIFO Almost Full  
entxffaem—Enable TX FIFO Almost Empty  
enffover—Enable FIFO Overflow  
enpksent—Enable Packet Sent  
enlbd—Enable Low Battery Detect  
None  
DATA:  
Command:  
SET_INT  
7
6
entxffafull  
6
5
4
3
2
1
0
Command  
CMD  
0x63  
ARG1  
enffunder  
entxffaem enffover enpksent enlbd  
entune reserved  
Response:  
SET_INT  
Reply  
7
5
4
3
2
1
0
STATUS  
CTS  
Err  
Rev 1.1  
27  
Si4012  
5.1.9. COMMAND: GET_INT_STATUS  
Purpose:  
Read the interrupt status and clear interrupts.  
ARG:  
None  
DATA:  
iffunder—FIFO Underflow  
itxffafull—TX FIFO Almost Full  
itxffaem—TX FIFO Almost Empty  
iffover—FIFO Overflow  
ipksent—Packet Sent  
ilbd—Low Battery Detect  
itune—tune complete  
ipor—Power On Reset  
Command:  
GET_INT_STATUS  
7
6
5
4
3
2
1
0
Command  
CMD  
0x64  
Response:  
GET_INT_STATUS  
Reply  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
CTS  
iffunder itxffafull  
Err  
itxf-  
faem  
iffover ipksent  
ilbd  
itune  
ipor  
Notes: Calling the GET_INT_STATUS command will clear all interrupts and reset the nIRQ pin. Therefore, the host must note  
any interrupt bits that are set and take the necessary actions to service these interrupts.  
TX FIFO Almost Full and TX FIFO Almost Empty Interrupts  
These interrupts are triggered upon transition at the respective thresholds. Therefore, if an interrupt is generated for  
FIFO Almost Empty and then cleared by a call to GET_INT_STATUS, another interrupt will NOT be generated if the FIFO  
remains below the Almost Empty threshold. The FIFO must go above the threshold and then fall back to the threshold  
before another Almost Empty threshold is generated and sent to the host.  
Low Battery Detect (LBD) Interrupt  
The LBD is cleared when the host calls GET_INT_STATUS. The Si4012 regenerates lbd interrupts periodically when the  
LBD timer expires.  
28  
Rev 1.1  
Si4012  
5.1.10. COMMAND: INIT_FIFO  
Purpose:  
ARG:  
DATA:  
Clear the TX FIFO by clearing the FIFO with 0s and initializing the FIFO head and tail pointer  
None  
None  
Command:  
INIT_FIFO  
7
6
5
4
3
2
1
0
Command  
CMD  
0x65  
Response:  
INIT_FIFO  
Reply  
7
6
5
4
3
2
1
0
STATUS  
CTS  
Err  
5.1.11. COMMAND: SET_FIFO  
Purpose:  
ARG:  
DATA:  
Store data from the command interface into FIFO for transmission.  
Up to 255 bytes  
None  
Command:  
SET_FIFO  
7
6
5
4
3
2
1
0
Command  
CMD  
ARG1  
ARG2  
0x66  
FIFO_DATA1[7:0]  
FIFO_DATA2[7:0]  
ARGn  
FIFO_DATAn[7:0]  
Response:  
SET_FIFO  
Reply  
7
6
5
4
3
2
1
0
STATUS  
CTS  
Err  
If ARG exceeds the FIFO size of 255 bytes, Err is set to 0x08 (Too many arguments).  
The Si4012 raises the ‘FIFO Almost Full’ or ‘FIFO Almost Empty’ interrupt when appropriate. If auto  
transmit is enabled and the FIFO level is above the auto transmit threshold, the Si4012 will start transmit  
automatically.  
Rev 1.1  
29  
Si4012  
5.1.12. COMMAND: TX_STOP  
Purpose:  
Stop transmission and go to designated state (this command can also be used to abort  
existing transmissions)  
ARG:  
State[1:0]—State to transition to when transmission is stopped.  
00 IDLE  
– Go to idle state when the packet transmission is stopped based  
on the idle mode.  
01 SHUTDOWN – Go to shutdown state when the packet transmission is stopped.  
10-11 – Reserved.  
IdleMode[2:0] —IDLE mode if changing to idle state.  
000 Standby – Low power state  
001 Sensor  
010 Tune  
011–111  
– Enable Low Battery Detector  
– Periodic tuning  
– Reserved  
DATA:  
None  
Command:  
TX_STOP  
Command  
7
6
5
4
3
2
1
0
CMD  
ARG1  
ARG2  
0x67  
State[1:0]  
IdleMode[2:0]  
Response: None if changing to SHUTDOWN, otherwise  
TX_STOP  
Reply  
7
6
5
4
3
2
1
0
STATUS  
CTS  
Err  
30  
Rev 1.1  
Si4012  
5.1.13. COMMAND: GET_BAT_STATUS  
Purpose:  
Get the battery status such as current VDD voltage.  
ARG: Load Option—0: Battery voltage is measured immediately without any load.  
>0: battery voltage is measured after major power hungry parts of the device are temporarily  
turned on. These parts are turned off when measurement is done after LoadWaitTime x 17 µs  
of wait time.  
DATA:  
BTV[15:0]—Battery voltage in mV  
Command:  
GET_BAT_STATUS  
7
6
5
4
3
2
1
0
Command  
CMD  
ARG  
0x68  
Load/Wait Time  
Response:  
GET_BAT_STATUS  
Reply  
7
6
5
4
3
2
1
0
STATUS  
DATA1  
DATA2  
CTS  
Err  
BTV[15:8]  
BTV[7:0]  
Notes:  
1. If tuning is in progress when this API is received, Err is set to 0x11 (Device busy).  
2. In sensor mode, Si4012 reads battery voltage periodically with no load based on the interval set in  
SET_PROPERTY/LBD_CONFIG.  
Rev 1.1  
31  
Si4012  
5.2. Properties  
5.2.1. Properties Summary  
Section  
Property  
Property  
Description  
ID  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
0x10  
0x11  
0x20  
0x21  
CHIP_CONFIG  
FSK Dev polarity, LSB first, XO  
LED current drive strength  
LED_INTENSITY  
MODULATION_FSKDEV MOD type and FSK deviation if FSK  
TUNE_INTERVAL  
FIFO_THRESHOLD  
BITRATE_CONFIG  
TX_FREQ  
Tuning interval in seconds  
FIFO almost full, almost empty and auto  
transmit threshold  
5.2.6  
5.2.7  
5.2.8  
0x30  
0x31  
0x40  
Data rate and ramp rate if OOK  
Carrier frequency for transmission if OOK,  
upper frequency for transmission if FSK  
Low battery voltage threshold that triggers  
interrupt, battery voltage sampling interval  
5.2.9  
5.2.10  
5.2.11  
0x41  
0x50  
0x60  
LBD_CONFIG  
XO_CONFIG  
PA_CONFIG  
XO frequency and low capacitance control  
PA maximum current driver, PA level, cap,  
alpha and beta steps  
The format table in this section applies to the ARG field of SET_PROPERTY after PROP_ID and DATA field of  
GET_PROPERTY. I.e., PROP_ID corresponds to ARG1, PROP_DATA1 corresponds to ARG2 or DATA1,  
PROP_DATA2 corresponds to ARG3 or DATA 2, etc.  
Default is the value of a property the Si4012 defaults to if the host does not set the property via SET_PROPERTY.  
Fields correspond to the PROP_DATA.  
32  
Rev 1.1  
Si4012  
5.2.2. PROPERTY: CHIP_CONFIG  
Purpose:  
Property:  
Default:  
Fields:  
Select FSK deviation polarity, LSB first and external crystal.  
0x10  
0x08  
FskDevPola—FSK deviation polarity.  
0: +deviation when modulation data is 1 and –dev for Din = 0  
1: +dev for Din = 0 and –dev for Din = 1  
LsbFirst—When set, LSB is transmitted first. Otherwise, MSB is transmitted first.  
UseXo—Use external crystal if set  
Format:  
CHIP_CONFIG  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x10  
UseXo LsbFirst  
PROP_DATA1  
FskDevPola  
Note: If the crystal is not populated on the board, there will still be a 1.4 mA current draw penalty for the XO circuitry on the  
Si4012. The host should send SET_PROPERTY/CHIP_CONFIG with bit 3 cleared to turn off the XO circuitry.  
Rev 1.1  
33  
Si4012  
5.2.3. PROPERTY: LED_INTENSITY  
Purpose:  
Property:  
Default:  
Fields:  
LED current drive strength  
0x11  
0x00  
LedIntensity [1:0]—LED intensity  
00: LED off  
01: 0.37 mA  
10: 0.60 mA  
11: 0.97 mA.  
Format:  
LED_INTENSITY  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x11  
PROP_DATA1  
LedIntensity[1:0]  
5.2.4. PROPERTY: MODULATION_FSKDEV  
Purpose:  
Property:  
Default:  
Fields:  
Modulation type and FSK deviation.  
0x20  
0x013F  
modutype—Modulation type, default 1.  
0: OOK  
1: FSK  
biFskDev[6:0] –biFSKDev if FSK, default 63.  
Format:  
MODULATION_FSKDEV  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x20  
PROP_DATA1  
PROP_DATA2  
ModuType  
biFskDev[6:0]  
Note: If SET_PROPERTY\DATA_RATE is sent and data rate is set to a value above 500, but modulation is set to OOK, Err will  
be set in the response with ‘Data rate out of range’ error code. The biFSKDev parameter is attained either via the WDS  
Chip Configurator utility or by using the Si4012 calculation spreadsheet.  
34  
Rev 1.1  
Si4012  
5.2.5. PROPERTY: TUNE_INTERVAL  
Purpose:  
Property:  
Default:  
Fields:  
Tune interval used for periodic tuning.  
0x21  
0x000A  
TuningItv[15:0]—tuning interval in seconds  
Format:  
TUNE_INTERVAL Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x21  
PROP_DATA1  
PROP_DATA2  
TuningItv[15:8]  
TuningItv[7:0]  
Note: The tuning interval specifies the frequency in which the device performs periodic tuning in tune state and in CW Mode.  
In CW or PN9 mode, if TuningItv is 0, no tuning will be performed. In FIFO mode, if Si4012 is in tune state but TuningItv  
is set to 0 by the host, tuning will be performed every 10 seconds.  
5.2.6. PROPERTY: FIFO_THRESHOLD  
Purpose:  
Property:  
Fields:  
FIFO threshold settings—FIFO Almost Empty, FIFO Almost Full and auto transmit level.  
0x30  
ffafullthr[7:0]—FIFO Almost Full Threshold in bytes, default 0xF0  
ffaemthr[7:0]—FIFO Almost Empty Threshold in bytes, default 0x10  
ffautotxthr[7:0]—FIFO Threshold controlling when to start auto transmit, default 0x20 bytes.  
Format:  
FIFO_THRESHOLD  
Property  
7
6
5
4
3
2
1
0
PROP_HI  
0x30  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
ffafullthr[7:0]  
ffaemthr[7:0]  
ffautotxthr[7:0]  
Notes:Ffautotxthr applies only when auto transmit is enabled. If ffautotxthr is set to 0, the Si4012 transmits whenever data  
becomes available in the FIFO. This field is ignored when auto transmit is disabled.  
Rev 1.1  
35  
Si4012  
5.2.7. PROPERTY: BITRATE_CONFIG  
Purpose:  
Property:  
Fields:  
Data rate and ramp rate if OOK.  
0x31  
DataRate[9:0]—Data rate in units of 100 bps, ranging from 1 to 1000 for FSK and 1 to 500 for  
OOK. Default 0x60.  
RampRate[3:0]—Ramp rate in µs. 1, 2, 4, or 8 is supported. Default 2.  
Format:  
DATA_RATE  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x31  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
DataRate[9:8]  
DataRate[7:0]  
RampRate[3:0]  
Notes:The data rate won’t take into effect until transmission time.  
If SET_PROPERTY\MODULATION_CONFIG is sent and modulation is set to OOK by the host, but DataRate is set to  
> 500, Err will be set in the response.  
The default modulation type is FSK. If SET_PROPERTY \MODULATION_FSKDEV is not sent, any value above 1000  
will result in Err being set in the response—0x0D (Data Rate out of Range).  
RampRate is ignored if ModuType in MODULATION_FSKDEV is FSK.  
In OOK mode, any value except 1, 2, 4, or 8 will result in Err 0x04—bad parameter in ARG4.  
In FSK mode, the minimum data rate is 200 bps.  
The ramp rate parameter dictates the minimum data rate. The Si4012 will set Err to 0x10 (data rate not supported) if the  
value is smaller than the minimum data rate on the specified Ramp Rate.  
Ramp Rate  
1
2
4
8
Min Data Rate (bps)  
300  
200  
200  
100  
36  
Rev 1.1  
Si4012  
5.2.8. PROPERTY: TX_FREQ  
Purpose:  
Carrier frequency for transmission if OOK, upper frequency if FSK and center frequency in CW  
mode.  
Property:  
Default:  
Fields:  
0x40  
0x19ddc7c8 for 433.965 MHz (433.92 MHz+90 kHz/2)  
TxFreq[31:0]—Ranging from 27 MHz to 960 MHz.  
OOK: Carrier Frequency (Hz)  
FSK: Upper Frequency (Hz)  
CW Mode: Center Frequency (Hz)  
Format:  
TX_FREQ  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x40  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
PROP_DATA4  
TxFreq[31:24]  
TxFreq[23:16]  
TxFreq[15:8]  
TxFreq[7:0]  
Note: Frequency out of range in SET_PROPERTY will result in Err = 0x0E (Frequency out of Range) in the response.  
Rev 1.1  
37  
Si4012  
5.2.9. PROPERTY: LBD_CONFIG  
Purpose:  
Battery voltage threshold used to determine when to raise Low Battery Detector Interrupt,  
battery voltage sampling interval.  
Property:  
Fields:  
0x41  
LbdThr[15:0]—Battery voltage threshold in mV. Default 0x09C4 or 2500 mV.  
SampleInterval[15:0]—Battery voltage sampling interval in seconds.  
0x3C or 60 seconds.  
Default:  
Format:  
LBD_CONFIG Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x41  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
PROP_DATA4  
LbdThr[15:8]  
LbdThr[7:0]  
SampleInterval[15:8]  
SampleInterval[7:0]  
38  
Rev 1.1  
Si4012  
5.2.10. PROPERTY: XO_CONFIG  
Purpose:  
Property:  
Fields:  
Frequency of external crystal and low cap configuration if using external crystal.  
0x50  
XoFreq[31:0]—Crystal frequency, unit in Hz. Default 0x00989680 or 10 MHz.  
XoLowCap —This bit should be set for crystal that require less than 14 pF of Cload  
capacitance. Default 0. See note below.  
Format:  
XO_CONFIG  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x50  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
PROP_DATA4  
PROP_DATA5  
XoFreq[31:24]  
XoFreq[23:16]  
XoFreq[15:8]  
XoFreq[7:0]  
XoLowCap  
Note: For correct operation of the oscillator, the user must do the following:  
Check the crystal data sheet for the “Cload” capacitor value that should be placed across the crystal’s terminals to  
oscillate at the correct frequency  
If Cload > 14 pF, XO_LOWCAP bit of the XO_CONFIG property has to be set to 0. In this case, the input capacitance  
of the XTAL pin of the Si4012 is approximately 5.5 pF, so a (Cload – 5.5)pF capacitor should be placed externally  
across the crystal terminals.  
If Cload < 14 pF XO_LOWCAP bit of the XO_CONFIG property have to be set to 1. In this case, the input  
capacitance of the XTAL pin of the Si4012 is approximately 3 pF, so the external capacitor placed across the crystal  
has to be (Cload – 3)pF.  
Rev 1.1  
39  
Si4012  
5.2.11. PROPERTY: PA_CONFIG  
Purpose:  
Property:  
Fields:  
PA max current driver, PA level, PA cap, alpha steps and beta steps.  
0x60  
PaMaxDrv—Allows for maximum current drive, calculated from Spreadsheet. Default 1.  
PaLevel[6:0]—PA level calculated from Spreadsheet. Default 70.  
PaCap[8:0]—PA cap. Default 128.  
fAlphaSteps[7:0]—PA Alpha steps, default 125  
fBetaSteps[7:0]—PA Beta steps, default 127  
Format:  
PA_CONFIG  
Property  
7
6
5
4
3
2
1
0
PROP_ID  
0x60  
PROP_DATA1  
PROP_DATA2  
PROP_DATA3  
PROP_DATA4  
PROP_DATA5  
PROP_DATA6  
PaMaxDrv  
PaCap[8]  
PaLevel[6:0]  
PaCap[7:0]  
fAlphaSteps[7:0]  
fBetaSteps[7:0]  
Note: fAlphaSteps and fBetaSteps should be calculated by the Si4012 calculator spreadsheet. See AN564 for details. fAlpha-  
Steps specifies the number of steps advancing from the minimum supported value –0.075 with 0.0006 per step. The  
maximum fAlpha is +0.075. fAlpha is computed using the formula below:  
Alpha + 0.075  
------------------------------------------  
=
fALPHASTEPS  
0.0006  
fBetaSteps specifies the number of steps advancing from the minimum supported value –0.254 with 0.002 per  
step. The maximum fBeta is +0.254. fBeta is computed using the formula below:  
Beta + 0.254  
---------------------------------------  
=
fBETASTEPS  
0.002  
40  
Rev 1.1  
Si4012  
5.3. Error Codes  
If the Si4012 detects an error upon receipt of a command, such as a bad parameter, the error is reported in the  
Response.  
If the Si4012 detects an error while executing a command after the response has sent back to the host, the error is  
stored. The host can retrieve an actual error code via the GET_STATE command.  
The table below provides the list of error codes.  
Error Code  
Description  
Bad parameter in CMD  
0x7f  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
Bad parameter in ARG1  
Bad parameter in ARG2  
Bad parameter in ARG3  
Bad parameter in ARG4  
Bad parameter in ARG5  
Bad parameter in ARG6  
Bad parameter in ARG7  
Too many arguments  
Too few arguments  
LED on requested but LED driver is disabled  
State change failed  
LBD is disabled  
Data rate is out of range  
Frequency out of range  
Internal error  
Data rate not supported  
Device busy  
FIFO overflow  
FIFO underflow  
Rev 1.1  
41  
Si4012  
6. Pin Descriptions  
XTAL 1  
GND 2  
TXM 3  
TXP 4  
VDD 5  
10 SDA  
9 SCL  
8 SDN  
7 nIRQ  
6 LED  
Si4012  
Pin Number  
Name  
XTAL  
Description  
1
2
Crystal input  
Ground  
GND  
TXM, TXP  
VDD  
3,4  
5
RF transmitter differential outputs  
Supply input  
9
LED  
LED driver output  
7
nIRQ  
SDN  
Interrupt status output, active low, open collector  
Shutdown input pin, active high  
SMB (SMBus) Clock input/output, open collector  
SMB (SMBus) Data input/output, open collector  
8
9
SCL  
10  
SDA  
42  
Rev 1.1  
Si4012  
7. Ordering Guide  
Part  
Number*  
Description  
Package  
Type  
Operating  
Temperature  
Si4012-C1001GT Crystal-less RF Transmitter  
MSOP-10  
MSOP-10  
–40 to 85 °C  
–40 to 85 °C  
Si4012-C1001AT Crystal-less RF Transmitter (Automotive Grade)  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option.  
Rev 1.1  
43  
Si4012  
8. Package Outline  
Figure 9 illustrates the package details for the Si4012. Table 11 lists the values for the dimensions shown in the  
illustration.  
Figure 9. 10-Pin MSOP Package  
Table 11. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
1.10  
0.15  
0.95  
0.33  
0.23  
e
0.50 BSC  
A1  
0.00  
0.75  
0.17  
0.08  
L
0.40  
0.60  
0.80  
A2  
0.85  
L2  
0.25 BSC  
b
q
0°  
8°  
c
D
aaa  
bbb  
ccc  
ddd  
0.20  
0.25  
0.10  
0.08  
3.00 BSC  
4.90 BSC  
3.00 BSC  
E
E1  
Notes:  
1. All dimensions are shown in millimeters (mm).  
2. Dimensioning and tolerancing per ASME Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MO-187, Variation “BA.”  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
44  
Rev 1.1  
Si4012  
9. Land Pattern: 10-Pin MSOP  
Figure 10 shows the recommended land pattern details for the Si4012 in a 10-Pin MSOP package. Table 12 lists  
the values for the dimensions shown in the illustration.  
Figure 10. 10-Pin MSOP Land Pattern  
Rev 1.1  
45  
Si4012  
Table 12. 10-Pin MSOP Land Pattern Dimensions  
Dimension  
MIN  
MAX  
C1  
E
4.40 REF  
0.50 BSC  
G1  
X1  
Y1  
Z1  
3.00  
0.30  
1.40 REF  
5.80  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ASME Y14.5M-1994.  
3. This Land Pattern Design is based on the IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC).  
Least Material Condition (LMC) is calculated based on a Fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum,  
all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with  
trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-  
020 specification for Small Body Components.  
46  
Rev 1.1  
Si4012  
10. Top Marking: 10-Pin MSOP  
Figure 11. 10-Pin MSOP Top Marking  
Table 13. Top Marking Explanation  
Base Part Number  
12 = Si4012  
Ordering Options  
(See "7. Ordering Guide" on  
page 43).  
C1 = Revision  
Line 1 Marking:  
TTTT = Manufacturing Code  
Manufacturing code from assembly house.  
Line 2 Marking:  
Line 3 Marking:  
Y = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
Rev 1.1  
47  
Si4012  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Added API.  
Updated "1. Electrical Specifications" on page 4.  
Revision 1.0 to Revision 1.1  
Added automotive grade version to ordering guide.  
48  
Rev 1.1  
Si4012  
NOTES:  
Rev 1.1  
49  
Si4012  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
50  
Rev 1.1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY