SI4030 [SILICON]

Remote control;
SI4030
型号: SI4030
厂家: SILICON    SILICON
描述:

Remote control

文件: 总58页 (文件大小:1351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4030/31/32-B1  
Si4030/31/32 ISM TRANSMITTER  
Features  
Frequency range  
Ultra low power shutdown mode  
Wake-up timer  
Integrated 32 kHz RC or 32 kHz  
XTAL  
Integrated voltage regulators  
Configurable packet handler  
TX 64 byte FIFO  
240–930 MHz (Si4031/32)  
900–960 MHz (Si4030)  
Output Power Range  
+1 to +20 dBm (Si4032)  
–8 to +13 dBm (Si4030/31)  
Low Power Consumption  
Si4032  
Low battery detector  
Temperature sensor and 8-bit ADC  
–40 to +85 °C temperature range  
Integrated voltage regulators  
Frequency hopping capability  
On-chip crystal tuning  
20-Pin QFN package  
85 mA @ +20 dBm  
Si4030/31  
Ordering Information:  
30 mA @ +13 dBm  
See page 53.  
Data Rate = 0.123 to 256 kbps  
FSK, GFSK, and OOK modulation  
Power Supply = 1.8 to 3.6 V  
Pin Assignments  
Si4030/31/32  
Low BOM  
Power-on-reset (POR)  
Applications  
20 19 18 17  
VDD_RF  
TX  
1
16  
Remote control  
Home security & alarm  
Telemetry  
Personal data logging  
Toy control  
Wireless PC peripherals  
Remote meter reading  
Remote keyless entry  
Home automation  
Industrial control  
Sensor networks  
Health monitors  
2
15 SCLK  
14 SDI  
13 SDO  
12 VDD_DIG  
11 NC  
NC  
3
4
5
GND  
PAD  
NC  
NC  
6
7
8
9
10  
Description  
Silicon Laboratories’ Si4030/31/32 devices are highly integrated, single-chip  
wireless ISM transmitters. The high-performance EZRadioPRO® family includes a  
complete line of transmitters, receivers, and transceivers allowing the RF system  
designer to choose the optimal wireless part for their application.  
Patents pending  
The Si4030/31/32 offers advanced radio features including continuous frequency  
coverage from 240–960 MHz with adjustable power output levels of –8 to  
+13 dBm on the Si4030/31 and +1 to +20 dBm on the Si4032. Power adjustments  
are made in 3 dB steps. The Si4030/31/32’s high level of integration offers  
reduced BOM cost while simplifying the overall system design. The Si4032’s  
Industry leading +20 dBm output power ensures extended range and improved  
link performance.  
Additional system features such as an automatic wake-up timer, low battery  
detector, 64 byte TX FIFO, and automatic packet handling reduce overall current  
consumption and allow the use of lower-cost system MCUs. An integrated  
temperature sensor, general purpose ADC, power-on-reset (POR), and GPIOs  
further reduce overall system cost and size.  
The direct digital transmit modulation and automatic PA power ramping ensure  
precise transmit modulation and reduced spectral spreading ensuring compliance  
with global regulations including FCC, ETSI, and ARIB regulations.  
An easy-to-use calculator is provided to quickly configure the radio settings,  
simplifying customer's system design and reducing time to market.  
Rev 1.1 1/10  
Copyright © 2010 by Silicon Laboratories  
Si4030/31/32  
Si4030/31/32-B1  
Functional Block Diagram  
2
Preliminary Rev. 0.1  
Si4030/31/32-B1  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.1. Definition of Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.1. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Controller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Serial Peripheral Interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Operating Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.3. Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.4. System Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.5. Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4. Modulation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.1. Modulation Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.2. Modulation Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5. Internal Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.1. Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.2. Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.3. Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5.4. Regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
6. Data Handling and Packet Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.1. TX FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.2. Packet Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6.3. Packet Handler TX Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6.4. Data Whitening, Manchester Encoding, and CRC . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6.5. Synchronization Word Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6.6. TX Retransmission and Auto TX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
7. Auxiliary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7.1. Smart Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7.2. Microcontroller Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
7.3. General Purpose ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
7.4. Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
7.5. Low Battery Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
7.6. Wake-Up Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
7.7. GPIO Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
8. Reference Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
9. Application Notes and Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
10. Customer Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
11. Register Table and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
12. Pin Descriptions: Si4030/31/32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
13. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Preliminary Rev. 0.1  
3
Si4030/31/32-B1  
14. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
14.1. Si4030/31/32 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
14.2. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
15. Package Outline: Si4030/31/32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
16. PCB Land Pattern: Si4030/31/32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
4
Preliminary Rev. 0.1  
Si4030/31/32-B1  
LIST OF FIGURES  
Figure 1. SPI Timing..................................................................................................................15  
Figure 2. SPI Timing—READ Mode..........................................................................................16  
Figure 3. SPI Timing—Burst Write Mode ..................................................................................16  
Figure 4. SPI Timing—Burst Read Mode..................................................................................16  
Figure 5. State Machine Diagram..............................................................................................17  
Figure 6. TX Timing...................................................................................................................21  
Figure 7. Frequency Deviation ..................................................................................................25  
Figure 8. FSK vs. GFSK Spectrums..........................................................................................27  
Figure 9. Microcontroller Connections.......................................................................................30  
Figure 10. PLL Synthesizer Block Diagram...............................................................................31  
Figure 11. FIFO Threshold........................................................................................................34  
Figure 12. Packet Structure.......................................................................................................35  
Figure 13. Multiple Packets in TX Packet Handler....................................................................36  
Figure 14. Operation of Data Whitening, Manchester Encoding, and CRC ..............................37  
Figure 15. Manchester Coding Example...................................................................................37  
Figure 16. POR Glitch Parameters............................................................................................39  
Figure 17. General Purpose ADC Architecture .........................................................................41  
Figure 18. Temperature Ranges using ADC8...........................................................................43  
Figure 19. WUT Interrupt and WUT Operation..........................................................................46  
Figure 20. Si4031 Reference Design Schematic ......................................................................48  
Figure 21. 20-Pin Quad Flat No-Lead (QFN) ............................................................................54  
Figure 22. PCB Land Pattern ....................................................................................................55  
Preliminary Rev. 0.1  
5
Si4030/31/32-B1  
LIST OF TABLES  
1
Table 1. DC Characteristics ......................................................................................................7  
1
Table 2. Synthesizer AC Electrical Characteristics ...................................................................8  
1
Table 3. Transmitter AC Electrical Characteristics ...................................................................9  
1
Table 4. Auxiliary Block Specifications ...................................................................................10  
Table 5. Digital IO Specifications (SDO, SDI, SCLK, nSEL, and nIRQ) ...................................11  
Table 6. GPIO Specifications (GPIO_0, GPIO_1, and GPIO_2) ..............................................11  
Table 7. Absolute Maximum Ratings ........................................................................................12  
Table 8. Operating Modes ........................................................................................................14  
Table 9. Serial Interface Timing Parameters ............................................................................15  
Table 10. Operating Modes Response Time ............................................................................17  
Table 11. Frequency Band Selection .......................................................................................23  
Table 12. Packet Handler Registers .........................................................................................36  
Table 13. POR Parameters ......................................................................................................39  
Table 14. Temperature Sensor Range .....................................................................................42  
Table 15. Register Descriptions ...............................................................................................50  
Table 16. Package Dimensions ................................................................................................54  
Table 17. PCB Land Pattern Dimensions .................................................................................56  
Preliminary Rev. 0.1  
6
Si4030/31/32-B1  
1. Electrical Specifications  
Table 1. DC Characteristics1  
Parameter  
Symbol  
Conditions  
Min Typ Max Units  
Supply Voltage Range  
Power Saving Modes  
VDD  
1.8  
3.0  
15  
3.6  
50  
V
IShutdown  
RC Oscillator, Main Digital Regulator,  
and Low Power Digital Regulator OFF2  
nA  
IStandby Low Power Digital Regulator ON (Register values retained)  
and Main Digital Regulator, and RC Oscillator OFF  
450  
1
800  
nA  
µA  
µA  
µA  
µA  
ISleep  
ISensor-LBD  
ISensor-TS  
IReady  
RC Oscillator and Low Power Digital Regulator ON  
(Register values retained) and Main Digital Regulator OFF  
Main Digital Regulator and Low Battery Detector ON,  
Crystal Oscillator and all other blocks OFF2  
1
Main Digital Regulator and Temperature Sensor ON,  
Crystal Oscillator and all other blocks OFF2  
1
Crystal Oscillator and Main Digital Regulator ON,  
all other blocks OFF. Crystal Oscillator buffer disabled  
800  
TUNE Mode Current  
ITune  
Synthesizer and regulators enabled  
8.5  
85  
mA  
mA  
TX Mode Current  
—Si4032  
ITX_+20  
txpow[2:0] = 111 (+20 dBm)  
Using Silicon Labs’ Reference Design. TX current  
consumption is dependent on match and board layout.  
TX Mode Current  
—Si4030/31  
ITX_+13  
txpow[2:0] = 111 (+13 dBm)  
Using Silicon Labs’ Reference Design. TX current  
consumption is dependent on match and board layout.  
30  
18  
mA  
mA  
ITX_+1  
txpow[2:0] = 011 (+1 dBm)  
Using Silicon Labs’ Reference Design. TX current  
consumption is dependent on match and board layout.  
Notes:  
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in the "Production Test Conditions" section on page 13.  
2. Guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions" section on  
page 13.  
Preliminary Rev. 0.1  
7
Si4030/31/32-B1  
Table 2. Synthesizer AC Electrical Characteristics1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Units  
Synthesizer Frequency  
Range—Si4031/32  
F
240  
930  
MHz  
SYN  
Synthesizer Frequency  
Range—Si4030  
F
900  
960  
MHz  
SYN  
Synthesizer Frequency  
Resolution  
F
Low Band, 240–480 MHz  
High Band, 480–960 MHz  
156.25  
312.5  
Hz  
Hz  
V
RES-LB  
RES-HB  
REF_LV  
2
F
Reference Frequency  
f
When using external reference signal  
driving XOUT pin, instead of using  
0.7  
1.6  
2
Input Level  
crystal. Measured peak-to-peak (V  
)
PP  
2
Synthesizer Settling Time  
t
Measured from exiting Ready mode with  
XOSC running to any frequency.  
Including VCO calibration.  
200  
2
4
µs  
LOCK  
2
Residual FM  
F  
Integrated over 250 kHz bandwidth  
kHz  
RMS  
RMS  
(500 Hz lower bound of integration)  
2
Phase Noise  
L(f )  
F = 10 kHz  
F = 100 kHz  
F = 1 MHz  
F = 10 MHz  
–80  
–90  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
M
–115  
–130  
Notes:  
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in the "Production Test Conditions" section on page 13.  
2. Guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions" section on  
page 13.  
8
Preliminary Rev. 0.1  
Si4030/31/32-B1  
Table 3. Transmitter AC Electrical Characteristics1  
Parameter  
TX Frequency  
Symbol  
Conditions  
Min  
Typ  
Max Units  
F
240  
930  
MHz  
TX  
Range—Si4031/32  
TX Frequency  
F
900  
960  
MHz  
TX  
Range—Si4030  
2
FSK Data Rate  
DR  
0.123  
0.123  
±0.625  
±0.625  
256  
40  
kbps  
kbps  
kHz  
kHz  
kHz  
FSK  
2
OOK Data Rate  
DR  
OOK  
Modulation Deviation  
f1  
f2  
f  
860–960 MHz  
240–860 MHz  
±320  
±160  
Modulation Deviation  
0.625  
RES  
2
Resolution  
Output Power  
P
P
+1  
–8  
+20  
+13  
dBm  
dBm  
TX  
TX  
3
Range —Si4032  
Output Power  
3
Range—Si4030/31  
2
TX RF Output Steps  
P  
P  
controlled by txpow[2:0]  
3
2
dB  
dB  
RF_OUT  
2
TX RF Output Level  
–40 to +85 C  
RF_TEMP  
Variation vs. Temperature  
TX RF Output Level  
Variation vs. Frequency  
P  
Measured across any one  
frequency band  
1
dB  
RF_FREQ  
2
Transmit Modulation  
B*T  
Gaussian Filtering Bandwith Time  
Product  
0.5  
2
Filtering  
2
Spurious Emissions  
P
P
P
= 13 dBm,  
OUT  
–54  
dBm  
OB-TX1  
Frequencies <1 GHz  
1–12.75 GHz, excluding harmonics  
–54  
–42  
–42  
dBm  
dBm  
dBm  
OB-TX2  
2
Harmonics  
P
P
Using reference design TX matching  
network and filter with max output  
power. Harmonics reduce linearly with  
output power.  
2HARM  
3HARM  
Notes:  
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in the "Production Test Conditions" section on page 13.  
2. Guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions" section on  
page 13.  
3. Output power is dependent on matching components and board layout.  
Preliminary Rev. 0.1  
9
Si4030/31/32-B1  
Table 4. Auxiliary Block Specifications1  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Temperature Sensor  
Accuracy  
TS  
After calibrated via sensor offset  
register tvoffs[7:0]  
0.5  
°C  
A
2
Temperature Sensor  
Sensitivity  
TS  
5
50  
250  
mV/°C  
mV  
S
2
Low Battery Detector  
LBD  
RES  
2
Resolution  
Low Battery Detector  
LBD  
µs  
CT  
2
Conversion Time  
Microcontroller Clock  
Output Frequency  
F
Configurable to 30 MHz,  
15 MHz, 10 MHz, 4 MHz,  
3 MHz, 2 MHz, 1 MHz, or  
32.768 kHz  
32.768K  
30M  
Hz  
MC  
General Purpose ADC Res- ADC  
olution  
8
4
bit  
mV/bit  
µs  
ENB  
RES  
2
General Purpose ADC Bit  
Resolution  
ADC  
2
Temp Sensor & General  
Purpose ADC Conversion  
Time  
ADC  
305  
CT  
2
30 MHz XTAL Start-Up time  
t
Using XTAL and board layout in  
reference design. Start-up time  
will vary with XTAL type and  
board layout.  
600  
97  
µs  
fF  
30M  
30 MHz XTAL Cap  
30M  
RES  
2
Resolution  
2
32 kHz XTAL Start-Up Time  
t
6
sec  
32k  
32 kHz XTAL Accuracy  
32K  
Using 20 ppm 32 kHz Crystal  
100  
ppm  
RES  
2
using 32 kHz XTAL  
32 kHz Accuracy using  
Internal RC Oscillator  
32KRC  
2500  
ppm  
RES  
2
POR Reset Time  
t
16  
ms  
µs  
POR  
2
Software Reset Time  
t
100  
soft  
Notes:  
1. All specification guaranteed by production test unless otherwise noted. Production test conditions and max limits are  
listed in the "Production Test Conditions" section on page 13.  
2. Guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions" section on  
page 13.  
10  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
Table 5. Digital IO Specifications (SDO, SDI, SCLK, nSEL, and nIRQ)  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max Units  
Rise Time  
Fall Time  
T
T
0.1 x V to 0.9 x V , C = 5 pF  
8
8
ns  
ns  
pF  
V
RISE  
FALL  
DD  
DD  
L
0.9 x V to 0.1 x V  
C = 5 pF  
DD  
DD,  
L
Input Capacitance  
C
V
1
IN  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Input Current  
V
V
– 0.6  
0.6  
100  
IH  
DD  
V
V
IL  
IN  
I
0<V < V  
–100  
– 0.6  
DD  
nA  
V
IN  
DD  
Logic High Level Output  
Voltage  
V
I
<1 mA source, V =1.8 V  
OH DD  
OH  
Logic Low Level Output Voltage  
V
I
<1 mA sink, V =1.8 V  
0.6  
V
OL  
OL  
DD  
Note: All specifications guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions"  
section on page 13.  
Table 6. GPIO Specifications (GPIO_0, GPIO_1, and GPIO_2)  
Parameter  
Symbol  
Conditions  
0.1 x V to 0.9 x V ,  
DD  
Min  
Typ  
Max  
Units  
Rise Time  
Fall Time  
T
8
ns  
RISE  
DD  
C = 10 pF, DRV<1:0>=HH  
L
T
0.9 x V to 0.1 x V  
8
1
ns  
FALL  
DD  
DD,  
C = 10 pF, DRV<1:0>=HH  
L
Input Capacitance  
C
V
pF  
V
IN  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Input Current  
V
– 0.6  
DD  
IH  
V
–100  
5
0.6  
100  
25  
V
IL  
I
0<V < V  
DD  
nA  
µA  
mA  
mA  
mA  
mA  
V
IN  
IN  
Input Current If Pullup is Activated  
Maximum Output Current  
I
V =0 V  
INP  
IL  
I
DRV<1:0>=LL  
DRV<1:0>=LH  
DRV<1:0>=HL  
DRV<1:0>=HH  
0.1  
0.9  
1.5  
1.8  
0.5  
2.3  
3.1  
3.6  
0.8  
3.5  
4.8  
5.4  
OmaxLL  
OmaxLH  
OmaxHL  
OmaxHH  
I
I
I
Logic High Level Output Voltage  
Logic Low Level Output Voltage  
V
I
< I  
source,  
V
– 0.6  
DD  
OH  
OH Omax  
V
=1.8 V  
DD  
V
I
< I sink,  
0.6  
V
OL  
OL Omax  
V
=1.8 V  
DD  
Note: All specifications guaranteed by qualification. Qualification test conditions are listed in the "Production Test Conditions"  
section on page 13.  
Preliminary Rev. 0.1  
11  
Si4030/31/32-B1  
Table 7. Absolute Maximum Ratings  
Parameter  
Value  
Unit  
V
V
to GND  
–0.3, +3.6  
–0.3, +8.0  
–0.3, +6.5  
DD  
Instantaneous V  
to GND on TX Output Pin  
V
RF-peak  
Sustained V  
to GND on TX Output Pin  
V
RF-peak  
Voltage on Digital Control Inputs  
Voltage on Analog Inputs  
–0.3, V + 0.3  
V
DD  
–0.3, V + 0.3  
V
DD  
Operating Ambient Temperature Range T  
–40 to +85  
30  
C  
C/W  
C  
C  
A
Thermal Impedance   
JA  
Junction Temperature T  
+125  
J
Storage Temperature Range T  
–55 to +125  
STG  
Note: Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device at or beyond these ratings in the operational sections of  
the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Power Amplifier may be damaged if switched on without proper load or termination connected. TX  
matching network design will influence TX VRF-peak on TX output pin. Caution: ESD sensitive device.  
12  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
1.1. Definition of Test Conditions  
Production Test Conditions:  
T = +25 °C  
A
V  
= +3.3 VDC  
DD  
TX output power measured at 915 MHz  
External reference signal (XOUT) = 1.0 V at 30 MHz, centered around 0.8 VDC  
PP  
Production test schematic (unless noted otherwise)  
All RF output levels referred to the pins of the Si4030/31/32 (not the RF module)  
Qualification Test Conditions:  
T = –40 to +85 °C  
A
V  
= +1.8 to +3.6 VDC  
DD  
Using 4032, 4031, or 4030 reference design or production test schematic  
All RF output levels referred to the pins of the Si4030/31/32 (not the RF module)  
Preliminary Rev. 0.1  
13  
Si4030/31/32-B1  
2. Functional Description  
The Si4030/31/32 are ISM wireless transmitters with continuous frequency tuning over their specified bands which  
encompasses 240–960 MHz. The wide operating voltage range of 1.8–3.6 V and low current consumption makes  
the Si4030/31/32 an ideal solution for battery powered applications.  
The RF carrier is generated by an integrated VCO and  Fractional-N PLL synthesizer. The synthesizer is  
designed to support configurable data rates, output frequency, frequency deviation, and Gaussian filtering at any  
frequency between 240–960 MHz. The transmit FSK data is modulated directly into the  data stream and can be  
shaped by a Gaussian low-pass filter to reduce unwanted spectral content.  
The Si4032’s PA output power can be configured between +1 and +20 dBm in 3 dB steps, while the Si4030/31's  
PA output power can be configured between –8 and +13 dBm in 3 dB steps. The PA is single-ended to allow for  
easy antenna matching and low BOM cost. The PA incorporates automatic ramp-up and ramp-down control to  
reduce unwanted spectral spreading. The +20 dBm power amplifier of the Si4032 can also be used to compensate  
for the reduced performance of a lower cost, lower performance antenna or antenna with size constraints due to a  
small form-factor. Competing solutions require large and expensive external PAs to achieve comparable  
performance.  
The Si4030/31/32 is designed to work with a microcontroller, crystal, and a few external components to create a  
very low cost system. Voltage regulators are integrated on-chip which allows for a wide operating supply voltage  
range from +1.8 to +3.6 V. A standard 4-pin SPI bus is used to communicate with an external microcontroller.  
Three configurable general purpose I/Os are available. A complete list of the available GPIO functions is available  
in “AN466: Si4030/31/32 Register Descriptions.”  
2.1. Operating Modes  
The Si4030/31/32 provides several operating modes which can be used to optimize the power consumption for a  
given application.  
Table 8 summarizes the operating modes of the Si4030/31/32. In general, any given operating mode may be  
classified as an active mode or a power saving mode. The table indicates which block(s) are enabled (active) in  
each corresponding mode. With the exception of the SHUTDOWN mode, all can be dynamically selected by  
sending the appropriate commands over the SPI. An “X” in any cell means that, in the given mode of operation,  
that block can be independently programmed to be either ON or OFF, without noticeably impacting the current  
consumption. The SPI circuit block includes the SPI interface hardware and the device register space. The 32 kHz  
OSC block includes the 32.768 kHz RC oscillator or 32.768 kHz crystal oscillator and wake-up timer. AUX  
(Auxiliary Blocks) includes the temperature sensor, general purpose ADC, and low-battery detector.  
Table 8. Operating Modes  
Mode Name  
Circuit Blocks  
Digital LDO  
SPI  
32 kHz OSC AUX  
30 MHz  
XTAL  
PLL  
PA  
I
VDD  
SHUTDOWN  
OFF  
(Register contents  
lost)  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
15 nA  
STANDBY  
SLEEP  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
ON  
X
OFF  
X
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
OFF 450 nA  
(Register contents  
retained)  
OFF  
OFF  
1 µA  
1 µA  
SENSOR  
READY  
ON  
X
X
OFF 800 µA  
OFF 8.5 mA  
TUNING  
TRANSMIT  
X
X
ON  
X
X
ON  
ON  
ON  
30 mA*  
*Note: Using Si4030/31 at +13 dBm using recommended reference design.  
14  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
3. Controller Interface  
3.1. Serial Peripheral Interface (SPI)  
The Si4030/31/32 communicates with the host MCU over a standard 3-wire SPI interface: SCLK, SDI, and nSEL.  
The host MCU can read data from the device on the SDO output pin. A SPI transaction is a 16-bit sequence which  
consists of a Read-Write (R/W) select bit, followed by a 7-bit address field (ADDR), and an 8-bit data field (DATA)  
as demonstrated in Figure 1. The 7-bit address field is used to select one of the 128, 8-bit control registers. The  
R/W select bit determines whether the SPI transaction is a read or write transaction. If R/W = 1 it signifies a WRITE  
transaction, while R/W = 0 signifies a READ transaction. The contents (ADDR or DATA) are latched into the  
Si4030/31/32 every eight clock cycles. The timing parameters for the SPI interface are shown in Table 9. The  
SCLK rate is flexible with a maximum rate of 10 MHz.  
Data  
Address  
MSB  
LSB  
RW A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 xx xx RW A7  
SDI  
SCLK  
nSEL  
Figure 1. SPI Timing  
Table 9. Serial Interface Timing Parameters  
Symbol  
Parameter  
Min (nsec)  
Diagram  
t
Clock high time  
Clock low time  
40  
40  
20  
20  
20  
20  
50  
20  
50  
80  
CH  
t
CL  
DS  
DH  
DD  
SCLK  
t
Data setup time  
tSS  
tCL tCH  
tDS tDH tDD  
tSH tDE  
t
t
Data hold time  
SDI  
Output data delay time  
Output enable time  
Output disable time  
Select setup time  
Select hold time  
SDO  
t
t
EN  
DE  
tEN  
tSW  
nSEL  
t
SS  
SH  
t
t
Select high period  
SW  
To read back data from the Si4030/31/32, the R/W bit must be set to 0 followed by the 7-bit address of the register  
from which to read. The 8 bit DATA field following the 7-bit ADDR field is ignored n the SDI pin when R/W = 0. The  
next eight negative edge transitions of the SCLK signal will clock out the contents of the selected register. The data  
read from the selected register will be available on the SDO output pin. The READ function is shown in Figure 2.  
After the READ function is completed the SDO pin will remain at either a logic 1 or logic 0 state depending on the  
last data bit clocked out (D0). When nSEL goes high the SDO output pin will be pulled high by internal pullup.  
Preliminary Rev. 0.1  
15  
Si4030/31/32-B1  
First Bit  
Last Bit  
RW  
=0  
D7 D6 D5 D4 D3 D2 D1 D0  
=X =X =X =X =X =X =X =X  
SDI  
A6 A5 A4 A3 A2 A1 A0  
SCLK  
First Bit  
Last Bit  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0  
nSEL  
Figure 2. SPI Timing—READ Mode  
The SPI interface contains a burst read/write mode which allows for reading/writing sequential registers without  
having to re-send the SPI address. When the nSEL bit is held low while continuing to send SCLK pulses, the SPI  
interface will automatically increment the ADDR and read from/write to the next address. An example burst write  
transaction is illustrated in Figure 3 and a burst read in Figure 4. As long as nSEL is held low, input data will be  
latched into the Si4030/31/32 every eight SCLK cycles.  
First Bit  
Last Bit  
RW  
=1  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
=X =X =X =X =X =X =X =X =X =X =X =X =X =X =X =X  
SDI  
A6 A5 A4 A3 A2 A1 A0  
SCLK  
nSEL  
Figure 3. SPI Timing—Burst Write Mode  
First Bit  
Last Bit  
RW  
=0  
D7 D6 D5 D4 D3 D2 D1 D0  
=X =X =X =X =X =X =X =X  
SDI  
A6 A5 A4 A3 A2 A1 A0  
SCLK  
First Bit  
SDO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
nSEL  
Figure 4. SPI Timing—Burst Read Mode  
16  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
3.2. Operating Mode Control  
There are three primary states in the Si4030/31/32 radio state machine: SHUTDOWN, IDLE, and TX (see  
Figure 5). The SHUTDOWN state completely shuts down the radio to minimize current consumption. There are five  
different configurations/options for the IDLE state which can be selected to optimize the chip to the applications  
needs. "Register 07h. Operating Mode and Function Control 1" controls which operating mode/state is selected  
with the exception of SHUTDOWN which is controlled by SDN pin 20. The TX state may be reached automatically  
from any of the IDLE states by setting the txon bit in "Register 07h. Operating Mode and Function Control 1."  
Table 10 shows each of the operating modes with the time required to reach TX mode as well as the current  
consumption of each mode.  
The Si4030/31/32 includes a low-power digital regulated supply (LPLDO) which is internally connected in parallel  
to the output of the main digital regulator (and is available externally at the VR_DIG pin). This common digital  
supply voltage is connected to all digital circuit blocks including the SPI and register space. The LPLDO has  
extremely low quiescent current consumption but limited current supply capability; it is used only in the IDLE-  
STANDBY and IDLE-SLEEP modes. The main digital regulator is automatically enabled in all other modes.  
SHUTDOWN  
IDLE*  
TX  
*Five Different Options for IDLE  
Figure 5. State Machine Diagram  
Table 10. Operating Modes Response Time  
State/Mode  
Shut Down State  
Idle States:  
Response Time to TX  
Current in State/Mode [µA]  
16.8 ms  
15 nA  
Standby Mode  
800 µs  
800 µs  
800 µs  
200 µs  
200 µs  
450 nA  
1 µA  
1 µA  
800 µA  
8.5 mA  
Sleep Mode  
Sensor Mode  
Ready Mode  
Tune Mode  
TX State  
NA  
Si4032:  
85 mA @ +20 dBm,  
Si4030/31:  
30 mA @ +13 dBm  
Preliminary Rev. 0.1  
17  
Si4030/31/32-B1  
3.2.1. SHUTDOWN State  
The SHUTDOWN state is the lowest current consumption state of the device with nominally less than 15 nA of  
current consumption. The SHUTDOWN state may be entered by driving the SDN pin (Pin 20) high. The SDN pin  
should be held low in all states except the SHUTDOWN state. In the SHUTDOWN state, the contents of the  
registers are lost and there is no SPI access.  
When the chip is connected to the power supply, a POR will be initiated after the falling edge of SDN.  
3.2.2. IDLE State  
There are five different modes in the IDLE state which may be selected by "Register 07h. Operating Mode and  
Function Control 1". All modes have a tradeoff between current consumption and response time to TX mode. This  
tradeoff is shown in Table 10. After the POR event, SWRESET, or exiting from the SHUTDOWN state the chip will  
default to the IDLE-READY mode. After a POR event the interrupt registers must be read to properly enter the  
SLEEP, SENSOR, or STANDBY mode and to control the 32 kHz clock correctly.  
3.2.2.1. STANDBY Mode  
STANDBY mode has the lowest current consumption of the five IDLE states with only the LPLDO enabled to  
maintain the register values. In this mode the registers can be accessed in both read and write mode. The  
STANDBY mode can be entered by writing 0h to "Register 07h. Operating Mode and Function Control 1". If an  
interrupt has occurred (i.e., the nIRQ pin = 0) the interrupt registers must be read to achieve the minimum current  
consumption. Additionally, the ADC should not be selected as an input to the GPIO in this mode as it will cause  
excess current consumption.  
3.2.2.2. SLEEP Mode  
In SLEEP mode the LPLDO is enabled along with the Wake-Up-Timer, which can be used to accurately wake-up  
the radio at specified intervals. See "7.6. Wake-Up Timer" on page 45 for more information on the Wake-Up-Timer.  
SLEEP mode is entered by setting enwt = 1 (40h) in "Register 07h. Operating Mode and Function Control 1". If an  
interrupt has occurred (i.e., the nIRQ pin = 0) the interrupt registers must be read to achieve the minimum current  
consumption. Also, the ADC should not be selected as an input to the GPIO in this mode as it will cause excess  
current consumption.  
3.2.2.3. SENSOR Mode  
In SENSOR Mode either the Low Battery Detector, Temperature Sensor, or both may be enabled in addition to the  
LPLDO and Wake-Up-Timer. The Low Battery Detector can be enabled by setting enlbd = 1 in "Register 07h.  
Operating Mode and Function Control 1". See "7.4. Temperature Sensor" on page 42 and "7.5. Low Battery  
Detector" on page 44 for more information on these features. If an interrupt has occurred (i.e., the nIRQ pin = 0) the  
interrupt registers must be read to achieve the minimum current consumption.  
3.2.2.4. READY Mode  
READY Mode is designed to give a fast transition time to TX mode with reasonable current consumption. In this  
mode the Crystal oscillator remains enabled reducing the time required to switch to TX mode by eliminating the  
crystal start-up time. READY mode is entered by setting xton = 1 in "Register 07h. Operating Mode and Function  
Control 1". To achieve the lowest current consumption state the crystal oscillator buffer should be disabled in  
“Register 62h. Crystal Oscillator Control and Test.”  
3.2.2.5. TUNE Mode  
In TUNE Mode the PLL remains enabled in addition to the other blocks enabled in the IDLE modes. This will give  
the fastest response to TX mode as the PLL will remain locked but it results in the highest current consumption.  
This mode of operation is designed for frequency hopping spread spectrum systems (FHSS). TUNE mode is  
entered by setting pllon = 1 in "Register 07h. Operating Mode and Function Control 1". It is not necessary to set  
xton to 1 for this mode, the internal state machine automatically enables the crystal oscillator.  
18  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
3.2.3. TX State  
The TX state may be entered from any of the IDLE modes when the txon bit is set to 1 in "Register 07h. Operating  
Mode and Function Control 1". A built-in sequencer takes care of all the actions required to transition between  
states from enabling the crystal oscillator to ramping up the PA. The following sequence of events will occur  
automatically when going from STANDBY mode to TX mode by setting the txon bit.  
1. Enable the main digital LDO and the Analog LDOs.  
2. Start up crystal oscillator and wait until ready (controlled by an internal timer).  
3. Enable PLL.  
4. Calibrate VCO (this action is skipped when the vcocal bit is “0”, default value is “1”).  
5. Wait until PLL settles to required transmit frequency (controlled by timer).  
6. Activate power amplifier and wait until power ramping is completed (controlled by an internal timer).  
7. Transmit packet.  
Steps in this sequence may be eliminated depending on which IDLE mode the chip is configured to prior to setting  
the txon bit. By default, the VCO and PLL are calibrated every time the PLL is enabled.  
3.2.4. Device Status  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 POR Def.  
Add R/W Function/Description  
02 Device Status  
R
ffovfl ffunfl Reserved Reserved freqerr  
cps[1] cps[0]  
The operational status of the chip can be read from "Register 02h. Device Status".  
Preliminary Rev. 0.1  
19  
Si4030/31/32-B1  
3.3. Interrupts  
The Si4030/31/32 is capable of generating an interrupt signal when certain events occur. The chip notifies the  
microcontroller that an interrupt event has occurred by setting the nIRQ output pin LOW = 0. This interrupt signal  
will be generated when any one (or more) of the interrupt events (corresponding to the Interrupt Status bits) shown  
below occur. The nIRQ pin will remain low until the microcontroller reads the Interrupt Status Register(s) (Registers  
03h–04h) containing the active Interrupt Status bit. The nIRQ output signal will then be reset until the next change  
in status is detected. The interrupts must be enabled by the corresponding enable bit in the Interrupt Enable  
Registers (Registers 05h–06h). All enabled interrupt bits will be cleared when the microcontroller reads the  
interrupt status register. If the interrupt is not enabled when the event occurs it will not trigger the nIRQ pin, but the  
status may still be read at anytime in the Interrupt Status registers.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Descript  
ion  
03  
04  
R
R
Interrupt Status 1  
ifferr  
itxffafull  
itxffaem Reserved iext ipksent Reserved Reserved  
ilbd ichiprdy ipor  
enfferr entxffafull entxffaem Reserved enext enpksent Reserved Reserved  
Interrupt Status 2 Reserved Reserved Reserved Reserved iwut  
05 R/W Interrupt Enable 1  
00h  
01h  
06 R/W Interrupt Enable 2 Reserved Reserved Reserved Reserved enwut enlbd enchiprdy enpor  
See “AN466: Si4030/31/32 Register Descriptions” for a complete list of interrupts.  
20  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
3.4. System Timing  
The system timing for TX mode is shown in Figure 6. The figures demonstrate transitioning from STANDBY mode  
to TX mode through the built-in sequencer of required steps. The user only needs to program the desired mode,  
and the internal sequencer will properly transition the part from its current mode.  
The VCO will automatically calibrate at every frequency change or power up. The PLL T0 time is to allow for bias  
settling of the VCO. The PLL TS time is for the settling time of the PLL, which has a default setting of 100 µs. The  
total time for PLL T0, PLL CAL, and PLL TS under all conditions is 200 µs. Under certain applications, the PLL T0  
time and the PLL CAL may be skipped for faster turn-around time. Contact applications support if faster turnaround  
time is desired.  
XTAL Settling  
TX Packet  
Time  
600us  
Figure 6. TX Timing  
Preliminary Rev. 0.1  
21  
Si4030/31/32-B1  
3.5. Frequency Control  
For calculating the necessary frequency register settings it is recommended that customers use Silicon Labs’  
Wireless Design Suite (WDS) or the EZRadioPRO Register Calculator worksheet (in Microsoft Excel) available on  
the product website. These methods offer a simple method to quickly determine the correct settings based on the  
application requirements. The following information can be used to calculated these values manually.  
3.5.1. Frequency Programming  
In order to transmit an RF signal, the desired channel frequency, f  
, must be programmed into the  
carrier  
Si4030/31/32. Note that this frequency is the center frequency of the desired channel. The carrier frequency is  
rd  
generated by a Fractional-N Synthesizer, using 10 MHz both as the reference frequency and the clock of the (3  
order) ∆Σ modulator. This modulator uses modulo 64000 accumulators. This design was made to obtain the  
desired frequency resolution of the synthesizer. The overall division ratio of the feedback loop consist of an integer  
part (N) and a fractional part (F).In a generic sense, the output frequency of the synthesizer is as follows:  
fOUT 10MHz(N F)  
The fractional part (F) is determined by three different values, Carrier Frequency (fc[15:0]), Frequency Offset  
(fo[8:0]), and Frequency Deviation (fd[7:0]). Due to the fine resolution and high loop bandwidth of the synthesizer,  
FSK modulation is applied inside the loop and is done by varying F according to the incoming data; this is  
discussed further in "3.5.4. Frequency Deviation" on page 24. Also, a fixed offset can be added to fine-tune the  
carrier frequency and counteract crystal tolerance errors. For simplicity assume that only the fc[15:0] register will  
determine the fractional component. The equation for selection of the carrier frequency is shown below:  
fcarrier 10MHz(hbsel 1)(N F)  
fc[15:0]  
fTX 10MHz*(hbsel 1)*( fb[4:0]24   
)
64000  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 POR Def.  
Add R/W Function/Description  
73 R/W  
Frequency Offset 1  
fo[7]  
fo[6]  
fo[5]  
fo[4]  
fo[3]  
fo[2]  
fo[1] fo[0]  
fo[9] fo[8]  
fb[1] fb[0]  
fc[9] fc[8]  
00h  
00h  
35h  
BBh  
74 R/W  
Frequency Offset 2  
75 R/W Frequency Band Select  
sbsel  
fc[14]  
hbsel  
fc[13]  
fb[4]  
fb[3]  
fb[2]  
76 R/W  
77 R/W  
Nominal Carrier  
Frequency 1  
fc[15]  
fc[7]  
fc[12]  
fc[11]  
fc[10]  
fc[2]  
Nominal Carrier  
Frequency 0  
fc[6]  
fc[5]  
fc[4]  
fc[3]  
fc[1] fc[0]  
80h  
The integer part (N) is determined by fb[4:0]. Additionally, the output frequency can be halved by connecting a ÷2  
divider to the output. This divider is not inside the loop and is controlled by the hbsel bit in "Register 75h.  
Frequency Band Select". This effectively partitions the entire 240–960 MHz frequency range into two separate  
bands: High Band (HB) for hbsel = 1, and Low Band (LB) for hbsel = 0. The valid range of fb[4:0] is from 0 to 23. If  
a higher value is written into the register, it will default to a value of 23. The integer part has a fixed offset of 24  
added to it as shown in the formula above. Table 11 demonstrates the selection of fb[4:0] for the corresponding  
frequency band.  
After selection of the fb (N) the fractional component may be solved with the following equation:  
fTX  
fc[15:0]   
fb[4:0]24 *64000  
10MHz*(hbsel 1)  
fb and fc are the actual numbers stored in the corresponding registers.  
22  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
Table 11. Frequency Band Selection  
fb[4:0] Value  
N
Frequency Band  
hbsel=0  
hbsel=1  
0
1
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
240–249.9 MHz  
250–259.9 MHz  
260–269.9 MHz  
270–279.9 MHz  
280–289.9 MHz  
290–299.9 MHz  
300–309.9 MHz  
310–319.9 MHz  
320–329.9 MHz  
330–339.9 MHz  
340–349.9 MHz  
350–359.9 MHz  
360–369.9 MHz  
370–379.9 MHz  
380–389.9 MHz  
390–399.9 MHz  
400–409.9 MHz  
410–419.9 MHz  
420–429.9 MHz  
430–439.9 MHz  
440–449.9 MHz  
450–459.9 MHz  
460–469.9 MHz  
470–479.9 MHz  
480–499.9 MHz  
500–519.9 MHz  
520–539.9 MHz  
540–559.9 MHz  
560–579.9 MHz  
580–599.9 MHz  
600–619.9 MHz  
620–639.9 MHz  
640–659.9 MHz  
660–679.9 MHz  
680–699.9 MHz  
700–719.9 MHz  
720–739.9 MHz  
740–759.9 MHz  
760–779.9 MHz  
780–799.9 MHz  
800–819.9 MHz  
820–839.9 MHz  
840–859.9 MHz  
860–879.9 MHz  
880–899.9 MHz  
900–919.9 MHz  
920–939.9 MHz  
940–960 MHz  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Preliminary Rev. 0.1  
23  
Si4030/31/32-B1  
3.5.2. Easy Frequency Programming for FHSS  
While Registers 73h–77h may be used to program the carrier frequency of the Si4030/31/32, it is often easier to  
think in terms of “channels” or “channel numbers” rather than an absolute frequency value in Hz. Also, there may  
be some timing-critical applications (such as for Frequency Hopping Systems) in which it is desirable to change  
frequency by programming a single register. Once the channel step size is set, the frequency may be changed by  
a single register corresponding to the channel number. A nominal frequency is first set using Registers 73h–77h,  
as described above. Registers 79h and 7Ah are then used to set a channel step size and channel number, relative  
to the nominal setting. The Frequency Hopping Step Size (fhs[7:0]) is set in increments of 10 kHz with a maximum  
channel step size of 2.56 MHz. The Frequency Hopping Channel Select Register then selects channels based on  
multiples of the step size.  
Fcarrier Fnom fhs[7 :0]( fhch[7 :0]10kHz)  
For example, if the nominal frequency is set to 900 MHz using Registers 73h–77h, the channel step size is set to  
1 MHz using "Register 7Ah. Frequency Hopping Step Size," and "Register 79h. Frequency Hopping Channel  
Select" is set to 5d, the resulting carrier frequency would be 905 MHz. Once the nominal frequency and channel  
step size are programmed in the registers, it is only necessary to program the fhch[7:0] register in order to change  
the frequency.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W  
Function/Description  
79 R/W Frequency Hopping Channel fhch[7] fhch[6] fhch[5] fhch[4] fhch[3] fhch[2] fhch[1] fhch[0]  
Select  
00h  
7A R/W  
Frequency Hopping Step  
Size  
fhs[7]  
fhs[6]  
fhs[5]  
fhs[4]  
fhs[3]  
fhs[2]  
fhs[1]  
fhs[0]  
00h  
3.5.3. Automatic State Transition for Frequency Change  
If registers 79h or 7Ah are changed in TX mode, the state machine will automatically transition the chip back to  
TUNE and change the frequency. This feature is useful to reduce the number of SPI commands required in a  
Frequency Hopping System. This in turn reduces microcontroller activity, reducing current consumption. The  
exception to this is during TX FIFO mode. If a frequency change is initiated during a TX packet, then the part will  
complete the current TX packet and will only change the frequency for subsequent packets.  
3.5.4. Frequency Deviation  
The peak frequency deviation is configurable from ±0.625 to ±320 kHz. The Frequency Deviation (f) is controlled  
by the Frequency Deviation Register (fd), address 71 and 72h, and is independent of the carrier frequency setting.  
When enabled, regardless of the setting of the hbsel bit (high band or low band), the resolution of the frequency  
deviation will remain in increments of 625 Hz. When using frequency modulation the carrier frequency will deviate  
from the nominal center channel carrier frequency by ±f:  
f fd[8:0]625Hz  
f  
fd[8 : 0]   
f = peak deviation  
625Hz  
24  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
f
fcarrier  
Time  
Figure 7. Frequency Deviation  
The previous equation should be used to calculate the desired frequency deviation. If desired, frequency  
modulation may also be disabled in order to obtain an unmodulated carrier signal at the channel center frequency;  
see "4.1. Modulation Type" on page 27 for further details.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
71 R/W Modulation Mode Control 2 trclk[1] trclk[0] dtmod[1] dtmod[0] eninv fd[8] modtyp[1] modtyp[0]  
72 R/W Frequency Deviation fd[7] fd[6] fd[5] fd[4] fd[3] fd[2] fd[1] fd[0]  
00h  
20h  
Preliminary Rev. 0.1  
25  
Si4030/31/32-B1  
3.5.5. Frequency Offset Adjustment  
A frequency offset can be adjusted manually by fo[9:0] in registers 73h and 74h. The frequency offset adjustment is  
implemented by shifting the Synthesizer Local Oscillator frequency. This register is a signed register so in order to  
get a negative offset it is necessary to take the twos complement of the positive offset number. The offset can be  
calculated by the following:  
DesiredOffset 156.25Hz(hbsel 1)fo[9:0]  
DesiredOffset  
fo[9:0]   
156.25Hz(hbsel 1)  
The adjustment range in high band is ±160 kHz and in low band it is ±80 kHz. For example to compute an offset of  
+50 kHz in high band mode fo[9:0] should be set to 0A0h. For an offset of –50 kHz in high band mode the fo[9:0]  
register should be set to 360h.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR  
Def.  
Add R/W Function/Descript  
ion  
73 R/W  
74 R/W  
Frequency Offset  
Frequency Offset  
fo[7]  
fo[6]  
fo[5]  
fo[4]  
fo[3]  
fo[2]  
fo[1] fo[0]  
fo[9] fo[8]  
00h  
00h  
3.5.6. TX Data Rate Generator  
The data rate is configurable between 0.123–256 kbps. For data rates below 30 kbps the ”txdtrtscale” bit in register  
70h should be set to 1. When higher data rates are used this bit should be set to 0.  
The TX date rate is determined by the following formula in kbps:  
txdr15:0  1 MHz  
---------------------------------------------------  
DR_TX (kbps) =  
216 + 5 txdtrtscale  
DR_TX(kbps) 216 + 5 txdtrtscale  
----------------------------------------------------------------------------------------  
txdr[15:0] =  
1 MHz  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
6E R/W  
6F R/W  
TX Data Rate 1  
TX Data Rate 0  
txdr[15] txdr[14] txdr[13] txdr[12] txdr[11] txdr[10] txdr[9] txdr[8]  
0Ah  
AAh  
txdr[7]  
txdr[6] txdr[5] txdr[4]  
txdr[3]  
txdr[2] txdr[1] txdr[0]  
26  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
4. Modulation Options  
4.1. Modulation Type  
The Si4030/31/32 supports three different modulation options: Gaussian Frequency Shift Keying (GFSK),  
Frequency Shift Keying (FSK), and On-Off Keying (OOK). GFSK is the recommended modulation type as it  
provides the best performance and cleanest modulation spectrum. Figure 8 demonstrates the difference between  
FSK and GFSK for a Data Rate of 64 kbps. The time domain plots demonstrate the effects of the Gaussian filtering.  
The frequency domain plots demonstrate the spectral benefit of GFSK over FSK. The type of modulation is  
selected with the modtyp[1:0] bits in "Register 71h. Modulation Mode Control 2." Note that it is also possible to  
obtain an unmodulated carrier signal by setting modtyp[1:0] = 00.  
modtyp[1:0]  
Modulation Source  
00  
01  
10  
11  
Unmodulated Carrier  
OOK  
FSK  
GFSK (enable TX Data CLK when direct mode is used)  
TX Modulation Time Domain Waveforms -- FSK vs. GFSK  
1.5  
TX Modulation Spectrum -- FSK vs GFSK (Continuous PRBS)  
-20  
1.0  
0.5  
-40  
-60  
-80  
0.0  
-0.5  
-1.0  
-100  
-20  
-1.5  
1.0  
-40  
-60  
0.5  
0.0  
-80  
-0.5  
-1.0  
-100  
-250 -200 -150 -100  
-50  
0
50  
100  
150  
200  
250  
0
50  
100 150 200 250 300 350 400 450 500  
time, usec  
freq, KHz  
DataRate  
64000.0  
TxDev  
BT_Filter  
0.5  
ModIndex  
1.0  
32000.0  
Figure 8. FSK vs. GFSK Spectrums  
Preliminary Rev. 0.1  
27  
Si4030/31/32-B1  
4.2. Modulation Data Source  
The Si4030/31/32 may be configured to obtain its modulation data from one of three different sources: FIFO mode,  
Direct Mode, and from a PN9 mode. In Direct Mode, the TX modulation data may be obtained from several  
different input pins. These options are set through the dtmod[1:0] field in "Register 71h. Modulation Mode Control  
2."  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
71 R/W  
Modulation Mode  
Control 2  
trclk[1] trclk[0] dtmod[1] dtmod[0] eninv fd[8] modtyp[1] modtyp[0]  
00h  
dtmod[1:0]  
Data Source  
00  
01  
10  
11  
Direct Mode using TX Data via GPIO pin (GPIO configuration required)  
Direct Mode using TX Data via SDI pin (only when nSEL is high)  
FIFO Mode  
PN9 (internally generated)  
4.2.1. FIFO Mode  
In FIFO mode, the transmit data is stored in integrated FIFO register memory. The FIFOs are accessed via  
"Register 7Fh. FIFO Access," and are most efficiently accessed with burst read/write operation as discussed in  
"3.1. Serial Peripheral Interface (SPI)" on page 15.  
In TX mode, the data bytes stored in FIFO memory are "packaged" together with other fields and bytes of  
information to construct the final transmit packet structure. These other potential fields include the Preamble, Sync  
word, Header, CRC checksum, etc. The configuration of the packet structure in TX mode is determined by the  
Automatic Packet Handler (if enabled), in conjunction with a variety of Packet Handler Registers (see Table 12 on  
page 36). If the Automatic Packet Handler is disabled, the entire desired packet structure should be loaded into  
FIFO memory; no other fields (such as Preamble or Sync word are automatically added to the bytes stored in FIFO  
memory). For further information on the configuration of the FIFOs for a specific application or packet size, see "6.  
Data Handling and Packet Handler" on page 34.  
When in FIFO mode, the chip will automatically exit the TX State when either the ipksent or ipkvalid interrupt  
occurs. The chip will return to the IDLE mode state programmed in "Register 07h. Operating Mode and Function  
Control 1". For example, the chip may be placed into TX mode by setting the txon bit, but with the pllon bit  
additionally set. The chip will transmit all of the contents of the FIFO and the ipksent interrupt will occur. When this  
interrupt event occurs, the chip will clear the txon bit and return to TUNE mode, as indicated by the set state of the  
pllon bit. If no other bits are additionally set in register 07h (besides txon initially), then the chip will return to the  
STANDBY state.  
28  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
4.2.2. Direct Mode  
For legacy systems that perform packet handling within an MCU or other baseband chip, it may not be desirable to  
use the FIFO. For this scenario, a Direct Mode is provided which bypasses the FIFOs entirely.  
In TX direct mode, the TX modulation data is applied to an input pin of the chip and processed in "real time" (i.e.,  
not stored in a register for transmission at a later time). A variety of pins may be configured for use as the TX Data  
input function.  
Furthermore, an additional pin may be required for a TX Clock output function if GFSK modulation is desired (only  
the TX Data input pin is required for FSK). Two options for the source of the TX Data are available in the dtmod[1:0]  
field, and various configurations for the source of the TX Data Clock may be selected through the trclk[1:0] field.  
trclk[1:0]  
TX Data Clock Configuration  
00  
01  
10  
11  
No TX Clock (only for FSK)  
TX Data Clock is available via GPIO (GPIO needs programming accordingly as well)  
TX Data Clock is available via SDO pin (only when nSEL is high)  
TX Data Clock is available via the nIRQ pin  
The eninv bit in SPI Register 71h will invert the TX Data; this is most likely useful for diagnostic and testing  
purposes.  
4.2.2.1. Direct Synchronous Mode  
In TX direct mode, the chip may be configured for synchronous or asynchronous modes of modulation. In direct  
synchronous mode, the RFIC is configured to provide a TX Clock signal as an output to the external device that is  
providing the TX Data stream. This TX Clock signal is a square wave with a frequency equal to the programmed  
data rate. The external modulation source (e.g., MCU) must accept this TX Clock signal as an input and respond  
by providing one bit of TX Data back to the RFIC, synchronous with one edge of the TX Clock signal. In this  
fashion, the rate of the TX Data input stream from the external source is controlled by the programmed data rate of  
the RFIC; no TX Data bits are made available at the input of the RFIC until requested by another cycle of the TX  
Clock signal. The TX Data bits supplied by the external source are transmitted directly in real-time (i.e., not stored  
internally for later transmission).  
All modulation types (FSK/GFSK/OOK) are valid in TX direct synchronous mode. As will be discussed in the next  
section, there are limits on modulation types in TX direct asynchronous mode.  
4.2.2.2. Direct Asynchronous Mode  
In TX direct asynchronous mode, the RFIC no longer controls the data rate of the TX Data input stream. Instead,  
the data rate is controlled only by the external TX Data source; the RFIC simply accepts the data applied to its TX  
Data input pin, at whatever rate it is supplied. This means that there is no longer a need for a TX Clock output  
signal from the RFIC, as there is no synchronous "handshaking" between the RFIC and the external data source.  
The TX Data bits supplied by the external source are transmitted directly in real-time (i.e., not stored internally for  
later transmission).  
It is not necessary to program the data rate parameter when operating in TX direct asynchronous mode. The chip  
still internally samples the incoming TX Data stream to determine when edge transitions occur; however, rather  
than sampling the data at a pre-programmed data rate, the chip now internally samples the incoming TX Data  
stream at its maximum possible oversampling rate. This allows the chip to accurately determine the timing of the bit  
edge transitions without prior knowledge of the data rate. (Of course, it is still necessary to program the desired  
peak frequency deviation.)  
Only FSK and OOK modulation types are valid in TX Direct Asynchronous Mode; GFSK modulation is not available  
in asynchronous mode. This is because the RFIC does not have knowledge of the supplied data rate, and thus  
cannot determine the appropriate Gaussian lowpass filter function to apply to the incoming data.  
One advantage of this mode that it saves a microcontroller pin because no TX Clock output function is required.  
The primary disadvantage of this mode is the increase in occupied spectral bandwidth with FSK (as compared to  
GFSK).  
Preliminary Rev. 0.1  
29  
Si4030/31/32-B1  
4.2.2.3. Direct Mode using SPI or nIRQ Pins  
In certain applications it may be desirable to minimize the connections to the microcontroller or to preserve the  
GPIOs for other uses. For these cases it is possible to use the SPI pins and nIRQ as the modulation clock and  
data. The SDO pin can be configured to be the data clock by programming trclk = 10. If the nSEL pin is LOW then  
the function of the pin will be SPI data output. If the pin is high and trclk[1:0] is 10 then during TX mode the data  
clock will be available on the SDO pin. If trclk[1:0] is set to 11 and no interrupts are enabled in registers 05 or 06h,  
then the nIRQ pin can also be used as the TX data clock.  
The SDI pin can be configured to be the data source in TX mode if dtmod[1:0] = 01. In a similar fashion, if nSEL is  
LOW the pin will function as SPI data-in. If nSEL is HIGH then in TX mode it will be the data to be modulated and  
transmitted. Figure 9 demonstrates using SDI and SDO as the TX data and clock:  
TX on  
command  
TXoff  
command  
TX on  
command  
TX off  
command  
TX mode  
TX mode  
nSEL  
SPI input  
don’t care  
don’t care  
SPI input  
MOD input  
SPI input  
don’t care  
don’t care  
SPI input  
MOD output  
SPI input  
SDI  
Data CLK  
Output  
Data CLK  
Output  
SPI output  
SPI output  
SPI output  
SPI output  
SPI output  
SDO  
Figure 9. Microcontroller Connections  
If the SDO pin is not used for data clock then it may be programmed to be the interrupt function (nIRQ) by  
programming Reg 0Eh bit 3.  
4.2.3. PN9 Mode  
In this mode the TX Data is generated internally using a pseudorandom (PN9 sequence) bit generator. The primary  
purpose of this mode is for use as a test mode to observe the modulated spectrum without having to provide data.  
30  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
5. Internal Functional Blocks  
This section provides an overview some of the key blocks of the internal radio architecture.  
5.1. Synthesizer  
An integrated Sigma Delta (Σ∆) Fractional-N PLL synthesizer capable of operating from 240–960 MHz is provided  
on-chip. The Si4031/32 and Si4030 cover different frequencies. This section discusses the frequency range  
covered by all EZRadioPRO devices. Using a Σ∆ synthesizer has many advantages; it provides flexibility in  
choosing data rate, deviation, channel frequency, and channel spacing. The transmit modulation is applied directly  
to the loop in the digital domain through the fractional divider which results in very precise accuracy and control  
over the transmit deviation.  
Depending on the part, the PLL and -modulator scheme is designed to support any desired frequency and  
channel spacing in the range from 240–960 MHz with a frequency resolution of 156.25 Hz (Low band) or 312.5 Hz  
(High band). The transmit data rate can be programmed between 0.123–256 kbps, and the frequency deviation  
can be programmed between ±1–320 kHz. These parameters may be adjusted via registers as shown in "3.5.  
Frequency Control" on page 22.  
Selectable  
Divider  
Fref = 10 M  
TX  
PFD  
CP  
LPF  
VCO  
N
TX  
Modulation  
Delta-  
Sigma  
Figure 10. PLL Synthesizer Block Diagram  
The reference frequency to the PLL is 10 MHz. The PLL utilizes a differential L-C VCO, with integrated on-chip  
inductors. The output of the VCO is followed by a configurable divider which will divide down the signal to the  
desired output frequency band. The modulus of this divider stage is controlled dynamically by the output from the  
-modulator. The tuning resolution is sufficient to tune to the commanded frequency with a maximum accuracy of  
312.5 Hz anywhere in the range between 240–960 MHz.  
5.1.1. VCO  
The output of the VCO is automatically divided down to the correct output frequency depending on the hbsel and  
fb[4:0] fields in "Register 75h. Frequency Band Select." The VCO integrates the resonator inductor, tuning varactor,  
so no external VCO components are required.  
The VCO uses a capacitance bank to cover the wide frequency range specified. The capacitance bank will  
automatically be calibrated every time the synthesizer is enabled. In certain fast hopping applications this might not  
be desirable so the VCO calibration may be skipped by setting the appropriate register.  
5.2. Power Amplifier  
The Si4032 contains an internal integrated power amplifier (PA) capable of transmitting at output levels between –1  
and +20 dBm. The Si4030/31 contains a PA which is capable of transmitting output levels between –8 to +13 dBm.  
The PA design is single-ended and is implemented as a two stage class CE amplifier with a high efficiency when  
transmitting at maximum power. The PA efficiency can only be optimized at one power level. Changing the output  
power by adjusting txpow[2:0] will scale both the output power and current but the efficiency will not be constant.  
The PA output is ramped up and down to prevent unwanted spectral splatter.  
Preliminary Rev. 0.1  
31  
Si4030/31/32-B1  
5.2.1. Output Power Selection  
With the Si4032, the output power is configurable in 3 dB steps with the txpow[2:0] field in "Register 6Dh. TX  
Power." Extra output power can allow the use of a cheaper, smaller antenna reducing the overall BOM cost. The  
higher power setting of the chip achieves maximum possible range, but of course comes at the cost of higher TX  
current consumption. However, depending on the duty cycle of the system, the effect on battery life may be  
insignificant. Contact Silicon Labs Support for help in evaluating this tradeoff.  
The +13 dBm output power of the Si4030/31 is targeted at systems that require lower output power. The PA still  
offers high efficiency and a range of output power from –8 to +13 dBm.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
6D R/W TX Power  
txpow[2]  
txpow[1] txpow[0]  
07h  
txpow[2:0]  
000  
Si4032 Output Power  
+1 dBm  
001  
+2 dBm  
010  
+5 dBm  
011  
+8 dBm  
100  
+11 dBm  
101  
+14 dBm  
110  
+17 dBm  
111  
+20 dBm  
txpow[2:0]  
000  
Si4030/31 Output Power  
–8 dBm  
001  
–5 dBm  
010  
–2 dBm  
011  
+1 dBm  
100  
+4 dBm  
101  
+7 dBm  
110  
+10 dBm  
111  
+13 dBm  
32  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
5.3. Crystal Oscillator  
The Si4030/31/32 includes an integrated 30 MHz crystal oscillator with a fast start-up time of less than 600 µs  
when a suitable parallel resonant crystal is used. The design is differential with the required crystal load  
capacitance integrated on-chip to minimize the number of external components. By default, all that is required off-  
chip is the 30 MHz crystal.  
The crystal load capacitance can be digitally programmed to accommodate crystals with various load capacitance  
requirements and to adjust the frequency of the crystal oscillator. The tuning of the crystal load capacitance is  
programmed through the xlc[6:0] field of "Register 09h. 30 MHz Crystal Oscillator Load Capacitance." The total  
internal capacitance is 12.5 pF and is adjustable in approximately 127 steps (97fF/step). The xtalshift bit is a  
coarse shift in frequency but is not binary with xlc[6:0].  
The crystal frequency adjustment can be used to compensate for crystal production tolerances. Utilizing the on-  
chip temperature sensor and suitable control software, the temperature dependency of the crystal can be  
canceled.  
The typical value of the total on-chip capacitance Cint can be calculated as follows:  
Cint = 1.8 pF + 0.085 pF x xlc[6:0] + 3.7 pF x xtalshift  
Note that the coarse shift bit xtalshift is not binary with xlc[6:0]. The total load capacitance Cload seen by the crystal  
can be calculated by adding the sum of all external parasitic PCB capacitances Cext to Cint. If the maximum value  
of Cint (16.3 pF) is not sufficient, an external capacitor can be added for exact tuning. Additional information on  
calculating Cext and crystal selection guidelines is provided in “AN417: Si4x3x Family Crystal Oscillator.”.  
The crystal oscillator frequency is divided down internally and may be output to the microcontroller through one of  
the GPIO pins for use as the System Clock. In this fashion, only one crystal oscillator is required for the entire  
system and the BOM cost is reduced. The available clock frequencies and GPIO configuration are discussed  
further in "7.2. Microcontroller Clock" on page 40.  
The Si4030/31/32 may also be driven with an external 30 MHz clock signal through the XOUT pin. When driving  
with an external reference or using a TCXO, the XTAL load capacitance register should be set to 0.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
09 R/W Crystal Oscillator Load  
Capacitance  
xtalshift  
xlc[6]  
xlc[5]  
xlc[4]  
xlc[3]  
xlc[2]  
xlc[1]  
xlc[0]  
40h  
5.4. Regulators  
There are a total of four regulators integrated onto the Si4030/31/32. With the exception of the digital regulator, all  
regulators are designed to operate with only internal decoupling. The digital regulator requires an external 1 µF  
decoupling capacitor. All regulators are designed to operate with an input supply voltage from +1.8 to +3.6 V. The  
output stage of the of PA is not connected internally to a regulator and is connected directly to the battery voltage.  
A supply voltage should only be connected to the VDD pins. No voltage should be forced on the digital regulator  
output.  
Preliminary Rev. 0.1  
33  
Si4030/31/32-B1  
6. Data Handling and Packet Handler  
The internal modem is designed to operate with a packet including a 10101... preamble structure. To configure the  
modem to operate with packet formats without a preamble or other legacy packet structures contact customer  
support.  
6.1. TX FIFO  
A 64 byte FIFO is integrated into the chip for TX, as shown in Figure 11. "Register 7Fh. FIFO Access" is used to  
access the FIFO. A burst write, as described in "3.1. Serial Peripheral Interface (SPI)" on page 15, to address 7Fh  
will write data to the TX FIFO.  
TX FIFO  
TX FIFO Almost Full  
Threshold  
TX FIFO Almost Empty  
Threshold  
Figure 11. FIFO Threshold  
The TX FIFO has two programmable thresholds. An interrupt event occurs when the data in the TX FIFO reaches  
these thresholds. The first threshold is the FIFO almost full threshold, txafthr[5:0]. The value in this register  
corresponds to the desired threshold value in number of bytes. When the data being filled into the TX FIFO crosses  
this threshold limit, an interrupt to the microcontroller is generated so the chip can enter TX mode to transmit the  
contents of the TX FIFO. The second threshold for TX is the FIFO almost empty Threshold, txaethr[5:0]. When the  
data being shifted out of the TX FIFO drops below the almost empty threshold an interrupt will be generated. The  
microcontroller will need to switch out of TX mode or fill more data into the TX FIFO. The transceiver can be  
configured so that when the TX FIFO is empty it will automatically exit the TX state and return to one of the low  
power states. When TX is initiated, it will transmit the number of bytes programmed into the packet length field  
(Reg 3Eh). When the packet ends, the chip will return to the state specified in register 07h. For example, if 08h is  
written to address 07h then the chip will return to the STANDBY state. If 09h is written then the chip will return to  
the READY state.  
34  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/D  
escription  
08 R/W Operating & Reserved Reserved Reserved Reserved autotx Reserved Reserved ffclrtx  
00h  
Function  
Control 2  
7C R/W  
7D R/W  
TX FIFO  
Control 1  
Reserved Reserved txafthr[5] txafthr[4] txafthr[3] txafthr[2] txafthr[1] txafthr[0]  
Reserved Reserved txaethr[5] txaethr[4] txaethr[3] txaethr[2] txaethr[1] txaethr[0]  
37h  
04h  
TX FIFO  
Control 2  
The TX FIFO may be cleared or reset with the ffclrtx bit in “Register 08h. Operating Mode and Function Control 2.”  
All interrupts may be enabled by setting the Interrupt Enabled bits in "Register 05h. Interrupt Enable 1" and  
“Register 06h. Interrupt Enable 2,” on page 59. If the interrupts are not enabled the function will not generate an  
interrupt on the nIRQ pin but the bits will still be read correctly in the Interrupt Status registers.  
6.2. Packet Configuration  
When using the FIFO, automatic packet handling may be enabled for the TX mode. "Register 30h. Data Access  
Control" through “Register 3Eh. Packet Length,” on page 79 control the configuration for Packet Handling. The  
usual fields for network communication (such as preamble, synchronization word, headers, packet length, and  
CRC) can be configured to be automatically added to the data payload. The fields needed for packet generation  
normally change infrequently and can therefore be stored in registers. Automatically adding these fields to the data  
payload greatly reduces the amount of communication between the microcontroller and the Si4030/31/32 and  
reduces the required computational power of the microcontroller.  
The general packet structure is shown in Figure 12. The length of each field is shown below the field. The preamble  
pattern is always a series of alternating ones and zeroes, starting with a zero. All the fields have programmable  
lengths to accommodate different applications. The most common CRC polynominals are available for selection.  
Data  
CRC  
Preamble  
1-512 Bytes  
1-4 Bytes  
0 or 2  
Bytes  
Figure 12. Packet Structure  
An overview of the packet handler configuration registers is shown in Table 12.  
6.3. Packet Handler TX Mode  
If the TX packet length is set the packet handler will send the number of bytes in the packet length field before  
returning to IDLE mode and asserting the packet sent interrupt. To resume sending data from the FIFO the  
microcontroller needs to command the chip to re-enter TX mode. Figure 14 provides an example transaction where  
the packet length is set to three bytes.  
Preliminary Rev. 0.1  
35  
Si4030/31/32-B1  
Data 1  
Data 2  
Data 3  
Data 4  
Data 5  
Data 6  
Data 7  
Data 8  
Data 9  
This will be sent in the first transmission  
}
}
}
This will be sent in the second transmission  
This will be sent in the third transmission  
Figure 13. Multiple Packets in TX Packet Handler  
Table 12. Packet Handler Registers  
Add R/W Function/Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
30  
31  
32  
33  
34  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
R/W  
R
Data Access Control  
EzMAC status  
Reserved  
0
lsbfrst  
crcdonly  
skip2ph  
enpactx  
encrc  
crc[1]  
pktx  
crc[0]  
8Dh  
Reserved  
Reserved Reserved Reserved Reserved  
Reserved  
pksent  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Header Control 2  
Preamble Length  
Sync Word 3  
skipsyn  
hdlen[2]  
hdlen[1]  
hdlen[0]  
fixpklen  
synclen[1] synclen[0] prealen[8]  
22h  
08h  
2Dh  
D4h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
prealen[7] prealen[6] prealen[5] prealen[4] prealen[3] prealen[2] prealen[1] prealen[0]  
sync[31]  
sync[23]  
sync[15]  
sync[7]  
sync[30]  
sync[22]  
sync[14]  
sync[6]  
sync[29]  
sync[21]  
sync[13]  
sync[5]  
sync[28]  
sync[20]  
sync[12]  
sync[4]  
sync[27]  
sync[19]  
sync[11]  
sync[3]  
txhd[27]  
txhd[19]  
txhd[11]  
txhd[3]  
sync[26]  
sync[18]  
sync[10]  
sync[2]  
sync[25]  
sync[17]  
sync[9]  
sync[1]  
txhd[25]  
txhd[17]  
txhd[9]  
sync[24]  
sync[16]  
sync[8]  
sync[0]  
txhd[24]  
txhd[16]  
txhd[8]  
Sync Word 2  
Sync Word 1  
Sync Word 0  
Transmit Header 3  
Transmit Header 2  
Transmit Header 1  
Transmit Header 0  
Transmit Packet Length  
txhd[31]  
txhd[23]  
txhd[15]  
txhd[7]  
txhd[30]  
txhd[22]  
txhd[14]  
txhd[6]  
txhd[29]  
txhd[21]  
txhd[13]  
txhd[5]  
txhd[28]  
txhd[20]  
txhd[12]  
txhd[4]  
txhd[26]  
txhd[18]  
txhd[10]  
txhd[2]  
txhd[1]  
txhd[0]  
pklen[7]  
pklen[6]  
pklen[5]  
pklen[4]  
pklen[3]  
pklen[2]  
pklen[1]  
pklen[0]  
36  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
6.4. Data Whitening, Manchester Encoding, and CRC  
Data whitening can be used to avoid extended sequences of 0s or 1s in the transmitted data stream to achieve a  
more uniform spectrum. When enabled, the payload data bits are XORed with a pseudorandom sequence output  
from the built-in PN9 generator. The generator is initialized at the beginning of the payload. The receiver recovers  
the original data by repeating this operation. Manchester encoding can be used to ensure a dc-free transmission  
and good synchronization properties. When Manchester encoding is used, the effective datarate is unchanged but  
the actual datarate (preamble length, etc.) is doubled due to the nature of the encoding. The effective datarate  
when using Manchester encoding is limited to 128 kbps. The implementation of Manchester encoding is shown in  
Figure 15. Data whitening and Manchester encoding can be selected with "Register 70h. Modulation Mode Control  
1". The CRC is configured via "Register 30h. Data Access Control". Figure 14 demonstrates the portions of the  
packet which have Manchester encoding, data whitening, and CRC applied. CRC can be applied to only the data  
portion of the packet or to the data, packet length and header fields. Figure 15 provides an example of how the  
Manchester encoding is done and also the use of the Manchester invert (enmaniv) function.  
Manchester  
Whitening  
CRC  
CRC  
(Over data only)  
Header/  
Address  
PK  
Length  
Preamble  
Sync  
CRC  
Data  
Figure 14. Operation of Data Whitening, Manchester Encoding, and CRC  
Data before Manchester  
1
1
1
1
1
1
1
1
0
0
0
1
0
Preamble = 0xFF  
First 4bits of the synch. word = 0x2  
Data after Machester ( manppol = 1, enmaninv = 0)  
Data after Machester ( manppol = 1, enmaninv = 1)  
Data before Manchester  
0
0
0
0
0
0
0
0
0
0
0
1
0
Preamble = 0x00  
First 4bits of the synch. word = 0x2  
Data after Machester ( manppol = 0, enmaninv = 0)  
Data after Machester ( manppol = 0, enmaninv = 1)  
Figure 15. Manchester Coding Example  
6.5. Synchronization Word Configuration  
The synchronization word length can be configured in Reg 33h, synclen[1:0]. The expected or transmitted sync  
word can be configured from 1 to 4 bytes as defined below:  
synclen[1:0] = 00—Transmitted Synchronization Word (sync word) 3.  
synclen[1:0] = 01—Transmitted Synchronization Word 3 first, followed by sync word 2.  
synclen[1:0] = 10—Transmitted Synchronization Word 3 first, followed by sync word 2, followed by sync word 1.  
synclen[1:0] = 1—Transmitted Synchronization Word 3 first, followed by sync word 2, followed by sync word 1,  
followed by sync word 0.  
The sync is transmitted in the following sequence: sync 3sync 2sync 1sync 0. The sync word values can be  
programmed in Registers 36h–39h.  
Preliminary Rev. 0.1  
37  
Si4030/31/32-B1  
6.6. TX Retransmission and Auto TX  
The Si4030/31/32 is capable of automatically retransmitting the last packet loaded in the TX FIFO. Automatic  
retransmission is set by entering the TX state with the txon bit without reloading the TX FIFO. This feature is useful  
for beacon transmission or when retransmission is required due to the absence of a valid acknowledgement. Only  
packets that fit completely in the TX FIFO can be automatically retransmitted.  
An automatic transmission function is available, allowing the radio to automatically start or stop a transmission  
depending on the amount of data in the TX FIFO.  
When autotx is set in “Register 08. Operating & Function Control 2," the transceiver will automatically enter the TX  
state when the TX FIFO almost full threshold is exceeded. Packets will be transmitted according to the configured  
packet length. To stop transmitting, clear the packet sent or TX FIFO almost empty interrupts must be cleared by  
reading register.  
38  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
7. Auxiliary Functions  
7.1. Smart Reset  
The Si4030/31/32 contains an enhanced integrated SMART RESET or POR circuit. The POR circuit contains both  
a classic level threshold reset as well as a slope detector POR. This reset circuit was designed to produce a  
reliable reset signal under any circumstances. Reset will be initiated if any of the following conditions occur:  
Initial power on, VDD starts from gnd: reset is active till V reaches V (see table);  
DD  
RR  
When V decreases below V for any reason: reset is active till V reaches V ;  
RR  
DD  
LD  
DD  
A software reset via “Register 08h. Operating Mode and Function Control 2,” on page 61: reset is active for time  
T
SWRST  
V  
glitch when the supply voltage exceeds the following time functioned limit:  
DD  
VDD nom.  
VDD(t)  
reset limit:  
0.4V+t*0.2V/ms  
actual VDD(t)  
showing glitch  
0.4V  
Reset  
TP  
t
t=0,  
VDD starts to rise  
reset:  
Vglitch>=0.4+t*0.2V/ms  
Figure 16. POR Glitch Parameters  
Table 13. POR Parameters  
Parameter  
Symbol  
VRR  
Comment  
Min  
0.85  
0.03  
0.7  
50  
Typ  
1.3  
Max  
1.75  
300  
1.3  
470  
Unit  
V
Release Reset Voltage  
Power-On VDD Slope  
Low VDD Limit  
SVDD  
VLD  
tested VDD slope region  
VLD<VRR is guaranteed  
V/ms  
V
1
Software Reset Pulse  
Threshold Voltage  
TSWRST  
VTSD  
k
µs  
0.4  
0.2  
15  
V
Reference Slope  
V/ms  
ms  
VDD Glitch Reset Pulse  
TP  
Also occurs after SDN, and  
initial power on  
5
40  
The reset will initialize all registers to their default values. The reset signal is also available for output and use by  
the microcontroller by using the default setting for GPIO_0. The inverted reset signal is available by default on  
GPIO_1.  
Preliminary Rev. 0.1  
39  
Si4030/31/32-B1  
7.2. Microcontroller Clock  
The 30 MHz crystal oscillator frequency is divided down internally and may be output to the microcontroller through  
GPIO2. This feature is useful to lower BOM cost by using only one crystal in the system. The system clock  
frequency is selectable from one of 8 options, as shown below. Except for the 32.768 kHz option, all other  
frequencies are derived by dividing the crystal oscillator frequency. The 32.768 kHz clock signal is derived from an  
internal RC oscillator or an external 32 kHz crystal. The default setting for GPIO2 is to output the microcontroller  
clock signal with a frequency of 1 MHz.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W  
Function/Description  
0A R/W  
Microcontroller Output Clock  
clkt[1] clkt[0] enlfc mclk[2] mclk[1] mclk[0]  
0Bh  
mclk[2:0]  
000  
Clock Frequency  
30 MHz  
001  
15 MHz  
010  
10 MHz  
011  
4 MHz  
100  
3 MHz  
101  
2 MHz  
110  
1 MHz  
111  
32.768 kHz  
If the microcontroller clock option is being used there may be the need of a system clock for the microcontroller  
while the Si4030/31/32 is in SLEEP mode. Since the crystal oscillator is disabled in SLEEP mode in order to save  
current, the low-power 32.768 kHz clock can be automatically switched to become the microcontroller clock. This  
feature is called enable low frequency clock and is enabled by the enlfc bit in “Register 0Ah. Microcontroller Output  
Clock." When enlfc = 1 and the chip is in SLEEP mode then the 32.768 kHz clock will be provided to the  
microcontroller as the system clock, regardless of the setting of mclk[2:0]. For example, if mclk[2:0] = 000, 30 MHz  
will be provided through the GPIO output pin to the microcontroller as the system clock in all IDLE or TX states.  
When the chip enters SLEEP mode, the system clock will automatically switch to 32.768 kHz from the RC oscillator  
or 32.768 XTAL.  
Another available feature for the microcontroller clock is the clock tail, clkt[1:0] in “Register 0Ah. Microcontroller  
Output Clock." If the low frequency clock feature is not enabled (enlfc = 0), then the system clock to the  
microcontroller is disabled in SLEEP mode. However, it may be useful to provide a few extra cycles for the  
microcontroller to complete its operation prior to the shutdown of the system clock signal. Setting the clkt[1:0] field  
will provide additional cycles of the system clock before it shuts off.  
clkt[1:0]  
Clock Tail  
0 cycles  
00  
01  
10  
11  
128 cycles  
256 cycles  
512 cycles  
If an interrupt is triggered, the microcontroller clock will remain enabled regardless of the selected mode. As soon  
as the interrupt is read the state machine will then move to the selected mode. The minimum current consumption  
will not be achieved until the interrupt is read. For instance, if the chip is commanded to SLEEP mode but an  
interrupt has occurred the 30 MHz XTAL will not be disabled until the interrupt has been cleared.  
40  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
7.3. General Purpose ADC  
An 8-bit SAR ADC is integrated for general purpose use, as well as for digitizing the on-chip temperature sensor  
reading. Registers 0Fh "ADC Configuration", 10h "Sensor Offset" and 4Fh "Amplifier Offset" can be used to  
configure the ADC operation. Details of these registers are on pages 67 and 68, respectively.  
Every time an ADC conversion is desired, bit 7 "adcstart/adcbusy" in “Register 1Fh. Clock Recovery Gearshift  
Override” must be set to 1. This is a self clearing bit that will be reset to 0 at the end of the conversion cycle of the  
ADC. The conversion time for the ADC is 350 µs. After this time or when the "adcstart/adcbusy" bit is cleared, then  
the ADC value may be read out of “Register 11h. ADC Value."  
The architecture of the ADC is shown in Figure 17. The signal and reference inputs of the ADC are selected by  
adcsel[2:0] and adcref[1:0] in register 0Fh “ADC Configuration”, respectively. The default setting is to read out the  
temperature sensor using the bandgap voltage (VBG) as reference. With the VBG reference the input range of the  
ADC is from 0-1.02 V with an LSB resolution of 4 mV (1.02/255). Changing the ADC reference will change the LSB  
resolution accordingly.  
A differential multiplexer and amplifier are provided for interfacing external bridge sensors. The gain of the amplifier  
is selectable by adcgain[1:0] in Register 0Fh. The majority of sensor bridges have supply voltage (VDD) dependent  
gain and offset. The reference voltage of the ADC can be changed to either V /2 or V /3. A programmable V  
DD  
DD  
DD  
dependent offset voltage can be added using soffs[3:0] in register 10h.  
See “AN448: General Purpose ADC Configuration” for more details on the usage of the general purpose ADC.  
Diff. MUX  
Diff. Amp.  
Input MUX  
aoffs [4:0]  
soffs [3:0]  
adcsel [2:0]  
adcgain [1:0]  
GPIO0  
GPIO1  
GPIO2  
8-bit ADC  
Temperature Sensor  
Vin  
adc [7:0]  
adcsel [2:0]  
Vref  
0 -1020mV / 0-255  
Ref MUX  
VDD / 3  
DD / 2  
V
VBG (1.2V)  
adcref [1:0]  
Figure 17. General Purpose ADC Architecture  
Add R/W  
Function/Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
0F  
10  
11  
R/W  
R/W  
R
ADC Configuration  
adcstart/adcbusy adcsel[2] adcsel[1] adcsel[0] adcref[1]  
soffs[3]  
adcref[0] adcgain[1] adcgain[0]  
00h  
Sensor Offset  
ADC Value  
soffs[2]  
adc[2]  
soffs[1]  
adc[1]  
soffs[0]  
adc[0]  
00h  
adc[7]  
adc[6]  
adc[5]  
adc[4]  
adc[3]  
Preliminary Rev. 0.1  
41  
Si4030/31/32-B1  
7.4. Temperature Sensor  
An integrated on-chip analog temperature sensor is available. The temperature sensor will be automatically  
enabled when the temperature sensor is selected as the input of the ADC or when the analog temp voltage is  
selected on the analog test bus. The temperature sensor value may be digitized using the general-purpose ADC  
and read out over the SPI through "Register 10h. ADC Sensor Amplifier Offset." The range of the temperature  
sensor is configurable. Table 14 lists the settings for the different temperature ranges and performance.  
To use the Temp Sensor:  
1. Set the input for ADC to the temperature sensor, "Register 0Fh. ADC Configuration"—adcsel[2:0] = 000  
2. Set the reference for ADC, "Register 0Fh. ADC Configuration"—adcref[1:0] = 00  
3. Set the temperature range for ADC, "Register 12h. Temperature Sensor Calibration"—tsrange[1:0]  
4. Set entsoffs = 1, "Register 12h. Temperature Sensor Calibration"  
5. Trigger ADC reading, "Register 0Fh. ADC Configuration"—adcstart = 1  
6. Read temperature value—Read contents of "Register 11h. ADC Value"  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W Function/Description  
tsrange[1]  
tsrange[0] entsoffs entstrim  
tstrim[3]  
tstrim[2] vbgtrim[1] vbgtrim[0]  
12 R/W  
Temperature  
20h  
Sensor Control  
tvoffs[7]  
tvoffs[6]  
tvoffs[5] tvoffs[4]  
tvoffs[3]  
tvoffs[2]  
tvoffs[1]  
tvoffs[0]  
13 R/W Temperature Value Offset  
00h  
Table 14. Temperature Sensor Range  
entoff  
tsrange[1]  
tsrange[0]  
Temp. range Unit  
Slope  
ADC8 LSB  
0.5 °C  
1 °C  
1
1
0
0
1
1
1
0
1
0
1
0
–64 … 64  
–64 … 192  
0 … 128  
°C  
°C  
°C  
°F  
°K  
8 mV/°C  
4 mV/°C  
8 mV/°C  
4 mV/°F  
3 mV/°K  
1
0.5 °C  
1 °F  
1
–40 … 216  
0 … 341  
0*  
1.333 °K  
*Note: Absolute temperature mode, no temperature shift. This mode is only for test purposes. POR value of  
EN_TOFF is 1.  
The slope of the temperature sensor is very linear and monotonic. For absolute accuracy better than 10 °C  
calibration is necessary. The temperature sensor may be calibrated by setting entsoffs = 1 in “Register 12h.  
Temperature Sensor Control” and setting the offset with the tvoffs[7:0] bits in “Register 13h. Temperature Value  
Offset.” This method adds a positive offset digitally to the ADC value that is read in “Register 11h. ADC Value.” The  
other method of calibration is to use the tstrim which compensates the analog circuit. This is done by setting  
entstrim = 1 and using the tstrim[2:0] bits to offset the temperature in “Register 12h. Temperature Sensor Control.”  
With this method of calibration, a negative offset may be achieved. With both methods of calibration better than  
±3 °C absolute accuracy may be achieved.  
The different ranges for the temperature sensor and ADC8 are demonstrated in Figure 18. The value of the ADC8  
may be translated to a temperature reading by ADC8Value x ADC8 LSB + Lowest Temperature in Temp Range.  
For instance for a tsrange = 00, Temp = ADC8Value x 0.5 – 64.  
42  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
Temperature Measurement with ADC8  
300  
250  
200  
150  
100  
Sensor Range 0  
Sensor Range 1  
Sensor Range 2  
Sensor Range 3  
50  
0
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature [Celsius]  
Figure 18. Temperature Ranges using ADC8  
Preliminary Rev. 0.1  
43  
Si4030/31/32-B1  
7.5. Low Battery Detector  
A low battery detector (LBD) with digital read-out is integrated into the chip. A digital threshold may be programmed  
into the lbdt[4:0] field in "Register 1Ah. Low Battery Detector Threshold." When the digitized battery voltage  
reaches this threshold an interrupt will be generated on the nIRQ pin to the microcontroller. The microcontroller can  
confirm source of the interrupt by reading "Register 03h. Interrupt/Status 1" and “Register 04h. Interrupt/Status 2,”  
on page 56.  
If the LBD is enabled while the chip is in SLEEP mode, it will automatically enable the RC oscillator which will  
periodically turn on the LBD circuit to measure the battery voltage. The battery voltage may also be read out  
through "Register 1Bh. Battery Voltage Level" at any time when the LBD is enabled. The low battery detect function  
is enabled by setting enlbd=1 in "Register 07h. Operating Mode and Function Control 1".  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
14h  
Ad R/W  
Function/Description  
1A R/W Low Battery Detector Threshold  
lbdt[4] lbdt[3] lbdt[2] lbdt[1] lbdt[0]  
vbat[4] vbat[3] vbat[2] vbat[1] vbat[0]  
1B  
R
Battery Voltage Level  
0
0
0
The LBD output is digitized by a 5-bit ADC. When the LBD function is enabled, enlbd = 1 in "Register 07h.  
Operating Mode and Function Control 1", the battery voltage may be read at anytime by reading "Register 1Bh.  
Battery Voltage Level." A battery voltage threshold may be programmed in “Register 1Ah. Low Battery Detector  
Threshold." When the battery voltage level drops below the battery voltage threshold an interrupt will be generated  
on the nIRQ pin to the microcontroller if the LBD interrupt is enabled in “Register 06h. Interrupt Enable 2,” on page  
59. The microcontroller will then need to verify the interrupt by reading the interrupt status register, addresses 03  
and 04h. The LSB step size for the LBD ADC is 50 mV, with the ADC range demonstrated in the table below. If the  
LBD is enabled the LBD and ADC will automatically be enabled every 1 s for approximately 250 µs to measure the  
voltage which minimizes the current consumption in Sensor mode. Before an interrupt is activated four consecutive  
readings are required.  
BatteryVoltage 1.7 50mV ADCValue  
ADC Value  
VDD Voltage [V]  
< 1.7  
0
1
1.7–1.75  
1.75–1.8  
2
29  
30  
31  
3.1–3.15  
3.15–3.2  
> 3.2  
44  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
7.6. Wake-Up Timer  
The chip contains an integrated wake-up timer which can be used to periodically wake the chip from SLEEP mode.  
The wake-up timer runs from the internal 32.768 kHz RC Oscillator. The wake-up timer can be configured to run  
when in SLEEP mode. If enwt = 1 in "Register 07h. Operating Mode and Function Control 1" when entering SLEEP  
mode, the wake-up timer will count for a time specified defined in Registers 14–16h, "Wake Up Timer Period." At  
the expiration of this period an interrupt will be generated on the nIRQ pin if this interrupt is enabled. The  
microcontroller will then need to verify the interrupt by reading the Registers 03h–04h, "Interrupt Status 1 & 2". The  
wake-up timer value may be read at any time by the wtv[15:0] read only registers 13h–14h.  
The formula for calculating the Wake-Up Period is the following:  
4 M 2R  
32.768  
WUT   
ms  
WUT Register  
wtr[3:0]  
Description  
R Value in Formula  
D Value in Formula  
M Value in Formula  
wtd[1:0]  
wtm[15:0]  
Use of the D variable in the formula is only necessary if finer resolution is required than can be achieved by using  
the R value.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
00h  
Add R/W Function/Description  
14 R/W Wake-Up Timer Period 1  
wtr[3]  
wtr[2]  
wtr[1]  
wtr[0] wtd[1] wtd[0]  
15 R/W Wake-Up Timer Period 2 wtm[15] wtm[14] wtm[13] wtm[12] wtm[11] wtm[10] wtm[9] wtm[8]  
16 R/W Wake-Up Timer Period 3 wtm[7] wtm[6] wtm[5] wtm[4] wtm[3] wtm[2] wtm[1] wtm[0]  
00h  
00h  
17  
18  
R
R
Wake-Up Timer Value 1 wtv[15] wtv[14] wtv[13] wtv[12] wtv[11] wtv[10] wtv[9] wtv[8]  
Wake-Up Timer Value 2 wtv[7] wtv[6] wtv[5] wtv[4] wtv[3] wtv[2] wtv[1] wtv[0]  
There are two different methods for utilizing the wake-up timer (WUT) depending on if the WUT interrupt is enabled  
in “Register 06h. Interrupt Enable 2,” on page 59. If the WUT interrupt is enabled then nIRQ pin will go low when  
the timer expires. The chip will also change state so that the 30 MHz XTAL is enabled so that the microcontroller  
clock output is available for the microcontroller to use to process the interrupt. The other method of use is to not  
enable the WUT interrupt and use the WUT GPIO setting. In this mode of operation the chip will not change state  
until commanded by the microcontroller. The different modes of operating the WUT and the current consumption  
impacts are demonstrated in Figure 19.  
A 32 kHz XTAL may also be used for better timing accuracy. By setting the x32 ksel bit in “Register 07h. Operating  
& Function Control 1," GPIO0 is automatically reconfigured so that an external 32 kHz XTAL may be connected to  
this pin. In this mode, the GPIO0 is extremely sensitive to parasitic capacitance, so only the XTAL should be  
connected to this pin with the XTAL physically located as close to the pin as possible. Once the x32 ksel bit is set,  
all internal functions such as WUT, microcontroller clock, and LDC mode will use the 32 kHz XTAL and not the  
32 kHz RC oscillator.  
Preliminary Rev. 0.1  
45  
Si4030/31/32-B1  
Interrupt Enable enwut =1( Reg 06h)  
WUT Period  
GPIOX =00001  
nIRQ  
SPI Interrupt  
Read  
Chip State  
Sleep  
Ready  
Sleep  
Ready  
1.5 mA  
Sleep  
1 uA  
Ready  
1.5 mA  
Sleep  
1.5 mA  
Current  
Consumption  
1 uA  
1 uA  
Interrupt Enable enwut =0( Reg 06h)  
WUT Period  
GPIOX =00001  
nIRQ  
SPI Interrupt  
Read  
Chip State  
Sleep  
Current  
Consumption  
1 uA  
Figure 19. WUT Interrupt and WUT Operation  
46  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
7.7. GPIO Configuration  
Three general purpose IOs (GPIOs) are available. Numerous functions such as specific interrupts, TRSW control,  
Microcontroller Output, etc. can be routed to the GPIO pins as shown in the tables below. When in Shutdown mode  
all the GPIO pads are pulled low.  
Note: The ADC should not be selected as an input to the GPIO in Standby or Sleep Modes and will cause excess current con-  
sumption.  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
POR Def.  
Add R/W  
Function/  
Description  
0B R/W  
0C R/W  
0D R/W  
0E R/W  
GPIO0  
Configuration  
gpio0drv[1] gpio0drv[0] pup0  
gpio1drv[1] gpio1drv[0] pup1  
gpio2drv[1] gpio2drv[0] pup2  
gpio0[4] gpio0[3] gpio0[2] gpio0[1] gpio0[0]  
gpio1[4] gpio1[3] gpio1[2] gpio1[1] gpio1[0]  
gpio2[4] gpio2[3] gpio2[2] gpio2[1] gpio2[0]  
00h  
00h  
00h  
00h  
GPIO1  
Configuration  
GPIO2  
Configuration  
I/O Port  
extitst[2] extitst[1] extitst[0]  
itsdo  
dio2  
dio1  
dio0  
Configuration  
The GPIO settings for GPIO1 and GPIO2 are the same as for GPIO0 with the exception of the 00000 default  
setting. The default settings for each GPIO are listed below:  
GPIO  
GPIO0  
GPIO1  
GPIO2  
00000—Default Setting  
POR  
POR Inverted  
Microcontroller Clock  
For a complete list of the available GPIO's see “AN466: Si4430/31/32 Register Descriptions.”  
The GPIO drive strength may be adjusted with the gpioXdrv[1:0] bits. Setting a higher value will increase the drive  
strength and current capability of the GPIO by changing the driver size. Special care should be taken in setting the  
drive strength and loading on GPIO2 when the microcontroller clock is used. Excess loading or inadequate drive  
may contribute to increased spurious emissions.  
Preliminary Rev. 0.1  
47  
Si4030/31/32-B1  
8. Reference Design  
Reference designs are available at www.silabs.com for many common applications which include recommended  
schematics, BOM, and layout. TX matching component values for the different frequency bands can be found in  
the application notes “AN435: Si4032/4432 PA Matching” and “AN436: Si4030/4031/4430/4431 PA Matching.”  
 ?  
 ?  
!  =   
 "   
 8  
 A  
 B  
   
   
   
:
=     
 <    > ?  
B
A
8
 4    
   =  
 " =  
 <    > ?  
 <    > ?  
 = &  
48  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
9. Application Notes and Reference Designs  
A comprehensive set of application notes and reference designs are available to assist with the development of a  
radio system. A partial list of applications notes is given below.  
For the complete list of application notes, latest reference designs and demos visit the Silicon Labs website.  
AN361: Wireless MBUS Implementation using EZRadioPRO Devices  
AN379: Antenna Diversity with EZRadioPRO  
AN414: EZRadioPRO Layout Design Guide  
AN415: EZRadioPRO Programming Guide  
AN417: Si4x3x Family Crystal Oscillators  
AN419: ARIB STD-T67 Narrow-Band 426/429 MHz Measured on the Si4431-A0  
AN427: EZRadioPRO Si433x and Si443x RX LNA Matching  
AN429: Using the DC-DC Converter on the F9xx Series MCU for Single Battery Operation with the  
EZRadioPRO RF Devices  
AN432: RX BER Measurement on EZRadioPRO with a Looped PN Sequence  
AN435: Si4032/4432 PA Matching  
AN436: Si4030/4031/4430/4431 PA Matching  
AN437: 915 MHz Measurement Results and FCC Compliance  
AN439: EZRadioPRO Quick Start Guide  
AN440: Si4430/31/32 Detailed Register Descriptions  
AN445: Si4431 RF Performance and ETSI Compliance Test Results  
AN448: General Purpose ADC Configuration  
AN453: Using the EZRadioPRO Calculator and Advanced RX BW Calculations and Settings  
AN459: 950 MHz Measurement Results and ARIB Compliance  
AN460: 470 MHz Measurement Results for China  
AN461:+24 dBm External PA Application Note and Reference Design  
AN462: Extended battery life using the EZRadioPRO and a DC-DC Buck Converter  
AN463: Support for Non-Standard Packet Structures and RAW Mode  
AN466: Si4030/31/32 Register Descriptions  
AN467: Si4330 Register Descriptions  
10. Customer Support  
Technical support for the complete family of Silicon Labs wireless products is available by accessing the wireless  
section of the Silicon Labs' website at www.silabs.com\wireless. For answers to common questions please visit the  
wireless knowledge base at www.silabs.com/support/knowledgebase.  
Preliminary Rev. 0.1  
49  
Si4030/31/32-B1  
11. Register Table and Descriptions  
Table 15. Register Descriptions  
Add R/W  
Function/Desc  
Data  
D4  
vc[4]  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
x32ksel  
POR  
Default  
D7  
0
ffovfl  
D6  
0
ffunfl  
itxffafull  
Reserved  
entxffafull  
Reserved  
enlbd  
D5  
0
D3  
vc[3]  
reserved  
iext  
D2  
vc[2]  
reserved  
ipksent  
ilbd  
enpksent  
enlbd  
Reserved  
enldm  
xlc[2]  
D1  
vc[1]  
cps[1]  
Reserved  
ichiprdy  
Reserved  
enchiprdy  
pllon  
D0  
vc[0]  
cps[0]  
Reserved  
ipor  
Reserved  
enpor  
xton  
01  
02  
03  
04  
05  
06  
07  
08  
09  
R
R
R
R
R/W  
R/W  
Device Version  
Device Status  
Interrupt Status 1  
Interrupt Status 2  
Interrupt Enable 1  
Interrupt Enable 2  
06h  
ifferr  
itxffaem  
Reserved  
entxffaem  
Reserved  
enwt  
Reserved  
enfferr  
Reserved  
swres  
Reserved  
xtalshft  
iwut  
enext  
enwut  
txon  
autotx  
xlc[3]  
00h  
03h  
01h  
00h  
7Fh  
R/W Operating & Function Control 1  
R/W Operating & Function Control 2  
R/W  
Reserved  
xlc[6]  
Reserved  
xlc[5]  
Reserved  
xlc[4]  
Reserved  
xlc[1]  
ffclrtx  
xlc[0]  
Crystal Oscillator Load  
Capacitance  
0A  
0B  
0C  
0D  
0E  
0F  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Microcontroller Output Clock  
GPIO0 Configuration  
GPIO1 Configuration  
GPIO2 Configuration  
I/O Port Configuration  
ADC Configuration  
Reserved  
gpio0drv[1]  
gpio1drv[1]  
gpio2drv[1]  
Reserved  
Reserved  
gpio0drv[0]  
gpio1drv[0]  
gpio2drv[0]  
extitst[2]  
clkt[1]  
pup0  
pup1  
pup2  
extitst[1]  
adcsel[1]  
clkt[0]  
gpio0[4]  
gpio1[4]  
gpio2[4]  
extitst[0]  
adcsel[0]  
enlfc  
gpio0[3]  
gpio1[3]  
gpio2[3]  
itsdo  
mclk[2]  
gpio0[2]  
gpio1[2]  
gpio2[2]  
dio2  
mclk[1]  
gpio0[1]  
gpio1[1]  
gpio2[1]  
dio1  
mclk[0]  
gpio0[0]  
gpio1[0]  
gpio2[0]  
dio0  
06h  
00h  
00h  
00h  
00h  
00h  
adcstart/adc-  
adcsel[2]  
adcref[1]  
adcref[0]  
adcgain[1]  
adcgain[0]  
done  
10  
11  
R/W  
R
ADC Sensor Amplifier Offset  
ADC Value  
Reserved  
adc[7]  
Reserved  
adc[6]  
Reserved  
adc[5]  
Reserved  
adc[4]  
adcoffs[3]  
adc[3]  
adcoffs[2]  
adc[2]  
adcoffs[1]  
adc[1]  
adcoffs[0]  
adc[0]  
00h  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C-2F  
30  
31  
32  
33  
34  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
4F  
60  
62  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
79  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Temperature Sensor Control  
Temperature Value Offset  
Wake-Up Timer Period 1  
Wake-Up Timer Period 2  
Wake-Up Timer Period 3  
Wake-Up Timer Value 1  
Wake-Up Timer Value 2  
tsrange[1]  
tvoffs[7]  
Reserved  
wtm[15]  
wtm[7]  
tsrange[0]  
tvoffs[6]  
Reserved  
wtm[14]  
wtm[6]  
entsoffs  
tvoffs[5]  
Reserved  
wtm[13]  
wtm[5]  
wtv[13]  
wtv[5]  
Reserved  
Reserved  
0
Reserved  
crcdonly  
Reserved  
entstrim  
tvoffs[4]  
wtr[4]  
wtm[12]  
wtm[4]  
wtv[12]  
wtv[4]  
tstrim[3]  
tvoffs[3]  
wtr[3]  
wtm[11]  
wtm[3]  
wtv[11]  
wtv[3]  
tstrim[2]  
tvoffs[2]  
wtr[2]  
wtm[10]  
wtm[2]  
wtv[10]  
wtv[2]  
tstrim[1]  
tvoffs[1]  
wtr[1]  
wtm[9]  
wtm[1]  
wtv[9]  
tstrim[0]  
tvoffs[0]  
wtr[0]  
wtm[8]  
wtm[0]  
wtv[8]  
20h  
00h  
03h  
00h  
01h  
wtv[15]  
wtv[7]  
wtv[14]  
wtv[6]  
R
wtv[1]  
wtv[0]  
R/W Low Battery Detector Threshold  
R
Reserved  
0
Reserved  
0
lbdt[4]  
vbat[4]  
lbdt[3]  
vbat[3]  
lbdt[2]  
vbat[2]  
lbdt[1]  
vbat[1]  
lbdt[0]  
vbat[0]  
14h  
Battery Voltage Level  
R/W  
R
Data Access Control  
EzMAC status  
Reserved  
0
lsbfrst  
Reserved  
Reserved  
Reserved  
enpactx  
Reserved  
encrc  
Reserved  
crc[1]  
pktx  
crc[0]  
pksent  
8Dh  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Header Control 2  
Preamble Length  
Sync Word 3  
Sync Word 2  
Sync Word 1  
Reserved  
prealen[7]  
sync[31]  
sync[23]  
sync[15]  
sync[7]  
txhd[31]  
txhd[23]  
txhd[15]  
txhd[7]  
hdlen[2]  
prealen[6]  
sync[30]  
sync[22]  
sync[14]  
sync[6]  
txhd[30]  
txhd[22]  
txhd[14]  
txhd[6]  
hdlen[1]  
prealen[5]  
sync[29]  
sync[21]  
sync[13]  
sync[5]  
txhd[29]  
txhd[21]  
txhd[13]  
txhd[5]  
hdlen[0]  
prealen[4]  
sync[28]  
sync[20]  
sync[12]  
sync[4]  
txhd[28]  
txhd[20]  
txhd[12]  
txhd[4]  
fixpklen  
prealen[3]  
sync[27]  
sync[19]  
sync[11]  
sync[3]  
txhd[27]  
txhd[19]  
txhd[11]  
txhd[3]  
synclen[1]  
prealen[2]  
sync[26]  
sync[18]  
sync[10]  
sync[2]  
txhd[26]  
txhd[18]  
txhd[10]  
txhd[2]  
synclen[0]  
prealen[1]  
sync[25]  
sync[17]  
sync[9]  
prealen[8]  
prealen[0]  
sync[24]  
sync[16]  
sync[8]  
22h  
08h  
2Dh  
D4h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
10h  
Sync Word 0  
sync[1]  
sync[0]  
Transmit Header 3  
Transmit Header 2  
Transmit Header 1  
Transmit Header 0  
Transmit Packet Length  
ADC8 Control  
txhd[25]  
txhd[17]  
txhd[9]  
txhd[1]  
pklen[1]  
adc8[1]  
txhd[24]  
txhd[16]  
txhd[8]  
txhd[0]  
pklen[0]  
adc8[0]  
pklen[7]  
Reserved  
pklen[6]  
Reserved  
pklen[5]  
adc8[5]  
Reserved  
pwst[0]  
pklen[4]  
adc8[4]  
pklen[3]  
adc8[3]  
pklen[2]  
adc8[2]  
R/W Crystal Oscillator/Control Test  
pwst[2]  
papeakval  
txdr[15]  
txdr[7]  
Reserved  
trclk[1]  
fd[7]  
pwst[1]  
papeaken  
txdr[14]  
txdr[6]  
Reserved  
trclk[0]  
fd[6]  
fo[6]  
Reserved  
sbsel  
clkhyst  
enbias2x  
Ina_sw  
txdr[11]  
txdr[3]  
manppol  
eninv  
fd[3]  
fo[3]  
Reserved  
fb[3]  
fc[11]  
enamp2x  
txpow[2]  
txdr[10]  
txdr[2]  
enmaninv  
fd[8]  
fd[2]  
fo[2]  
Reserved  
fb[2]  
fc[10]  
bufovr  
txpow[1]  
txdr[9]  
txdr[1]  
enmanch  
modtyp[1]  
fd[1]  
fo[1]  
fo[9]  
fb[1]  
fc[9]  
enbuf  
txpow[0]  
txdr[8]  
txdr[0]  
enwhite  
modtyp[0]  
fd[0]  
fo[0]  
fo[8]  
fb[0]  
fc[8]  
24h  
18h  
0Ah  
3Dh  
0Ch  
00h  
20h  
00h  
00h  
75h  
BBh  
80h  
00h  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TX Power  
TX Data Rate 1  
TX Data Rate 0  
papeaklvl[1] papeaklvl[0]  
txdr[13]  
txdr[5]  
txdtrtscale  
dtmod[1]  
fd[5]  
fo[5]  
Reserved  
hbsel  
txdr[12]  
txdr[4]  
enphpwdn  
dtmod[0]  
fd[4]  
fo[4]  
Reserved  
fb[4]  
Modulation Mode Control 1  
Modulation Mode Control 2  
Frequency Deviation  
Frequency Offset 1  
fo[7]  
Frequency Offset 2  
Reserved  
Reserved  
fc[15]  
fc[7]  
fhch[7]  
Frequency Band Select  
Nominal Carrier Frequency 1  
Nominal Carrier Frequency 0  
Frequency Hopping Channel  
Select  
fc[14]  
fc[6]  
fhch[6]  
fc[13]  
fc[5]  
fhch[5]  
fc[12]  
fc[4]  
fhch[4]  
fc[3]  
fhch[3]  
fc[2]  
fhch[2]  
fc[1]  
fhch[1]  
fc[0]  
fhch[0]  
7A  
7C  
7D  
7E  
7F  
R/W Frequency Hopping Step Size  
fhs[7]  
Reserved  
Reserved  
fhs[6]  
Reserved  
Reserved  
fhs[5]  
txafthr[5]  
txaethr[5]  
Reserved  
fifod[5]  
fhs[4]  
txafthr[4]  
txaethr[4]  
fhs[3]  
txafthr[3]  
txaethr[3]  
fhs[2]  
txafthr[2]  
txaethr[2]  
fhs[1]  
txafthr[1]  
txaethr[1]  
fhs[0]  
txafthr[0]  
txaethr[0]  
00h  
37h  
04h  
R/W  
R/W  
TX FIFO Control 1  
TX FIFO Control 2  
R/W  
FIFO Access  
fifod[7]  
fifod[6]  
fifod[4]  
fifod[3]  
fifod[2]  
fifod[1]  
fifod[0]  
Note: Detailed register descriptions are available in “AN466: Si4030/31/32 Register Descriptions.”  
50  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
12. Pin Descriptions: Si4030/31/32  
20 19 18 17  
VDD_RF  
TX  
1
16  
2
15 SCLK  
14 SDI  
13 SDO  
12 VDD_DIG  
11 NC  
NC  
3
4
5
GND  
PAD  
NC  
NC  
6
7
8
9
10  
Pin  
Pin Name  
I/O  
Description  
1
VDD_RF  
VDD +1.8 to +3.6 V supply voltage input to all analog +1.7 V regulators. The recommended VDD supply voltage  
is +3.3 V.  
2
TX  
O
Transmit output pin. The PA output is an open-drain connection so the L-C match must supply VDD  
(+3.3 VDC nominal) to this pin.  
3–6  
NC  
No Connect.  
7
8
9
GPIO_0  
GPIO_1  
GPIO_2  
I/O  
I/O  
I/O  
General Purpose Digital I/O that may be configured through the registers to perform various functions  
including: Microcontroller Clock Output, FIFO status, POR, Wake-Up timer, Low Battery Detect, TRSW,  
AntDiversity control, etc. See the SPI GPIO Configuration Registers, Address 0Bh, 0Ch, and 0Dh for  
more information.  
10  
11  
VR_DIG  
NC  
O
Regulated Output Voltage of the Digital 1.7 V Regulator. A 1 µF decoupling capacitor is required.  
Internally this pin is tied to the paddle of the package. This pin should be left unconnected or connected to  
GND only.  
12  
VDD_DIG  
VDD +1.8 to +3.6 V supply voltage input to the Digital +1.7 V Regulator. The recommended VDD supply voltage  
is +3.3 V.  
13  
14  
SDO  
SDI  
O
I
0–VDD V digital output that provides a serial readback function of the internal control registers.  
Serial Data input. 0–VDD V digital input. This pin provides the serial data stream for the 4-line serial data  
bus.  
15  
16  
17  
SCLK  
nSEL  
nIRQ  
I
I
Serial Clock input. 0–VDD V digital input. This pin provides the serial data clock function for the 4-line  
serial data bus. Data is clocked into the Si4030/31/32 on positive edge transitions.  
Serial Interface Select input. 0– VDD V digital input. This pin provides the Select/Enable function for the 4-  
line serial data bus. The signal is also used to signify burst read/write mode.  
O
General Microcontroller Interrupt Status output. When the Si4030/31/32 exhibits anyone of the Interrupt  
Events the nIRQ pin will be set low=0. Please see the Control Logic registers section for more information  
on the Interrupt Events. The Microcontroller can then determine the state of the interrupt by reading a cor-  
responding SPI Interrupt Status Registers, Address 03h and 04h. No external resistor pull-up is required,  
but it may be desirable if multiple interrupt lines are connected.  
18  
XOUT  
O
Crystal Oscillator Output. Connect to an external 30 MHz crystal or to an external source. If using an  
external source with no crystal then dc coupling with a nominal 0.8 VDC level is recommended with a min-  
imum amplitude of 700 mVpp.  
19  
20  
XIN  
SDN  
I
I
Crystal Oscillator Input. Connect to an external 30 MHz crystal or leave floating when driving with an  
external source on XOUT.  
Shutdown input pin. 0–VDD V digital input. SDN should be = 0 in all modes except Shutdown mode. When  
SDN =1 the chip will be completely shutdown and the contents of the registers will be lost.  
PKG  
PADDLE_GND  
GND The exposed metal paddle on the bottom of the Si4030/31/32 supplies the RF and circuit ground(s) for the  
entire chip. It is very important that a good solder connection is made between this exposed metal paddle  
and the ground plane of the PCB underlying the Si4030/31/32.  
Preliminary Rev. 0.1  
51  
Si4030/31/32-B1  
13. Ordering Information  
Part  
Number*  
Description  
Package  
Type  
Operating  
Temperature  
Si4030-B1-FM ISM EZRadioPRO Transmitter  
Si4031-B1-FM ISM EZRadioPRO Transmitter  
Si4032-B1-FM ISM EZRadioPRO Transmitter  
QFN-20  
Pb-free  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
QFN-20  
Pb-free  
QFN-20  
Pb-free  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option; 2500 quantity per reel.  
52  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
14. Package Markings (Top Marks)  
14.1. Si4030/31/32 Top Mark  
14.2. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
X = Part Number  
0 = Si4030  
1 = Si4031  
2 = Si4032  
Line 2 Marking:  
Line 3 Marking:  
R = Die Revision  
B = Revision B1  
TTTTT = Internal Code  
Internal tracking code.  
YY= Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and workweek of the mold date.  
Preliminary Rev. 0.1  
53  
Si4030/31/32-B1  
15. Package Outline: Si4030/31/32  
Figure 21 illustrates the package details for the Si4030/31/32. Table 16 lists the values for the dimensions shown in  
the illustration.  
Figure 21. 20-Pin Quad Flat No-Lead (QFN)  
Table 16. Package Dimensions  
Symbol  
Millimeters  
Nom  
0.85  
Min  
0.80  
0.00  
0.18  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
D2  
e
E
E2  
L
aaa  
bbb  
ccc  
ddd  
eee  
4.00 BSC  
2.60  
0.50 BSC  
4.00 BSC  
2.60  
2.55  
2.65  
2.50  
0.30  
2.70  
0.50  
0.10  
0.10  
0.08  
0.10  
0.10  
0.40  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220,  
Variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
54  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
16. PCB Land Pattern: Si4030/31/32  
Figure 22 illustrates the PCB land pattern details for the Si4030/31/32. Table 17 lists the values for the dimensions  
shown in the illustration.  
Figure 22. PCB Land Pattern  
Preliminary Rev. 0.1  
55  
Si4030/31/32-B1  
Table 17. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min  
3.90  
3.90  
Max  
4.00  
4.00  
C1  
C2  
E
0.50 REF  
X1  
X2  
Y1  
Y2  
0.20  
2.65  
0.65  
2.65  
0.30  
2.75  
0.75  
2.75  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This land pattern design is based on IPC-7351 guidelines.  
Note: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance  
between the solder mask and the metal pad is to be 60 µm minimum, all  
the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal  
walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the  
perimeter pads.  
4. A 2x2 array of 1.10 x 1.10 mm openings on 1.30 mm pitch should be  
used for the center ground pad.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for small body components.  
56  
Preliminary Rev. 0.1  
Si4030/31/32-B1  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Corrected typo under Features/Low Power Consumption on page 1.  
Preliminary Rev. 0.1  
57  
Simplicity Studio  
One-click access to MCU tools,  
documentation, software, source  
code libraries & more. Available  
for Windows, Mac and Linux!  
www.silabs.com/simplicity  
MCU Portfolio  
www.silabs.com/mcu  
SW/HW  
www.silabs.com/simplicity  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI4030-B1-FMR

Transmitter IC, RF, MO-220VGGD-8 ,QFN-20
SILICON

Si4031

Remote control
SILICON

SI4031-A0-FMR

Telecom IC, CMOS, PQCC20
SILICON

SI4031-B1-FM

Transmitter IC, RF, MO-220VGGD-8 ,QFN-20
SILICON

SI4031-B1-FMR

Transmitter IC, RF, MO-220VGGD-8 ,QFN-20
SILICON

Si4032-B1

Remote control
SILICON

SI4048DY

N-Channel 30 V (D-S) MOSFET
VISHAY

SI4048DY-T1-GE3

N-Channel 30 V (D-S) MOSFET
VISHAY

SI4056DY

N-Channel 100 V (D-S) MOSFET
VISHAY

SI4060-B0B-FM

WIRELESS PRODUCT SELECTOR GUIDE
ETC

Si4060-C

Highly configurable packet handler
SILICON

SI4063

Highly configurable packet handler
SILICON