SI4112-D-GT [SILICON]

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS; 集成VCO用于无线通信的双频段RF合成器
SI4112-D-GT
型号: SI4112-D-GT
厂家: SILICON    SILICON
描述:

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
集成VCO用于无线通信的双频段RF合成器

信号电路 锁相环或频率合成电路 光电二极管 无线 通信
文件: 总36页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4133  
Si4123/22/13/12  
DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS  
FOR WIRELESS COMMUNICATIONS  
FEATURES  
Dual-band RF synthesizers  
RF1: 900 MHz to 1.8 GHz  
RF2: 750 MHz to 1.5 GHz  
IF synthesizer  
Low phase noise  
Programmable powerdown modes  
1 µA standby current  
18 mA typical supply current  
2.7 to 3.6 V operation  
Packages: 24-pin TSSOP,  
28-lead QFN  
IF: 62.5 to 1000 MHz  
Integrated VCOs, loop filters,  
varactors, and resonators  
Minimal (2) number of external  
components required  
Ordering Information:  
Lead-free and RoHS compliant  
See page 31.  
Applications  
Pin Assignments  
Dual-band communications  
Digital cellular telephones GSM 850, E-GSM 900, DCS 1800,  
PCS 1900  
Digital cordless phones  
Analog cordless phones  
Si4133-GT  
SCLK  
SDATA  
GNDR  
RFLD  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SEN  
VDDI  
IFOUT  
GNDI  
3
Wireless local loop  
4
Description  
RFLC  
5
IFLB  
GNDR  
6
IFLA  
The Si4133 is a monolithic integrated circuit that performs both IF and dual-  
band RF synthesis for wireless communications applications. The Si4133  
includes three VCOs, loop filters, reference and VCO dividers, and phase  
detectors. Divider and powerdown settings are programmable with a three-  
wire serial interface.  
7
RFLB  
RFLA  
GNDD  
8
VDDD  
GNDD  
XIN  
9
GNDR  
GNDR  
RFOUT  
VDDR  
10  
11  
12  
PWDN  
AUXOUT  
Functional Block Diagram  
Si4133-GM  
Reference  
Amplifier  
XIN  
RFLA  
RFLB  
R  
R  
R  
Phase  
Detector  
RF1  
RF2  
IF  
Powerdown  
Control  
PWDN  
28 27 26 25 24 23  
22  
RFOUT  
N  
N  
N  
1
2
3
4
5
6
7
21  
20 IFLB  
19  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDI  
SDATA  
SCLK  
RFLC  
RFLD  
Serial  
Interface  
Phase  
Detector  
IFLA  
22-bit  
Data  
Register  
GND  
Pad  
SEN  
18 GNDD  
17 VDDD  
16  
GNDD  
Test  
Mux  
Phase  
Detector  
AUXOUT  
IFDIV  
IFOUT  
15 XIN  
8
9
10 11 12 13 14  
IFLA  
IFLB  
Patents pending  
Rev. 1.61 1/10  
Copyright © 2010 by Silicon Laboratories  
Si4133  
Si4133  
2
Rev. 1.61  
Si4133  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.1. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.2. Setting the VCO Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.3. Extended Frequency Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.4. Self-Tuning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5. Output Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6. PLL Loop Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.7. RF and IF Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.8. Reference Frequency Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.9. Powerdown Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.10. Auxiliary Output (AUXOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5. Pin Descriptions: Si4133-GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Pin Descriptions: Si4133-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8. Si4133 Derivative Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Package Outline: Si4133-GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
10. Package Outline: Si4133-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.61  
3
Si4133  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Temperature  
Symbol  
Test Condition  
Min  
–40  
2.7  
Typ  
25  
Max  
85  
Unit  
°C  
V
T
A
Supply Voltage  
VDD  
3.0  
3.6  
0.3  
Supply Voltages Difference  
V
(V  
– V  
– V  
),  
DDD  
–0.3  
V
DDR  
(V  
)
DDD  
DDI  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
Value  
–0.5 to 4.0  
±10  
Unit  
V
DC Supply Voltage  
V
DD  
3
IIN  
VIN  
mA  
V
Input Current  
3
–0.3 to V +0.3  
Input Voltage  
DD  
o
Storage Temperature Range  
TSTG  
–55 to 150  
C
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. This device is a high performance RF integrated circuit with an ESD rating of < 2 kV. Handling and assembly of  
this device should only be done at ESD-protected workstations.  
3. For signals SCLK, SDATA, SEN, PWDN and XIN.  
4
Rev. 1.61  
Si4133  
Table 3. DC Characteristics  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
18  
10  
9
Max  
27  
Unit  
mA  
mA  
mA  
mA  
µA  
V
1
Total Supply Current  
RF1 and IF operating  
1
RF1 Mode Supply Current  
16  
1
RF2 Mode Supply Current  
16  
1
IF Mode Supply Current  
8
13  
Standby Current  
PWDN = 0  
1
2
High Level Input Voltage  
VIH  
VIL  
IIH  
0.7 VDD  
2
Low Level Input Voltage  
0.3 VDD  
10  
V
2
High Level Input Current  
V
IH = 3.6 V,  
–10  
µA  
V
DD = 3.6 V  
2
Low Level Input Current  
IIL  
V
IL = 0 V,  
–10  
10  
µA  
V
DD= 3.6 V  
3
High Level Output Voltage  
VOH  
VOL  
IOH = –500 µA  
IOH = 500 µA  
VDD–0.4  
V
V
3
Low Level Output Voltage  
0.4  
Notes:  
1. RF1 = 1.6 GHz, RF2 = 1.1 GHz, IFOUT = 550 MHz, LPWR = 0.  
2. For signals SCLK, SDATA, SEN, and PWDN.  
3. For signal AUXOUT.  
Rev. 1.61  
5
Si4133  
Table 4. Serial Interface Timing  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
1
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
SCLK Cycle Time  
SCLK Rise Time  
SCLK Fall Time  
SCLK High Time  
SCLK Low Time  
tclk  
tr  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
40  
10  
10  
5
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
th  
tl  
2
SDATA Setup Time to SCLK  
tsu  
thold  
ten1  
ten2  
ten3  
tw  
2
SDATA Hold Time from SCLK  
0
2
SENto SCLKDelay Time  
10  
12  
12  
10  
2
SCLKto SENDelay Time  
2
SENto SCLKDelay Time  
SEN Pulse Width  
Notes:  
1. All timing is referenced to the 50% level of the waveforms unless otherwise noted.  
2. Timing is not referenced to 50% level of the waveform. See Figure 2.  
tr  
tf  
80%  
50%  
20%  
SCLK  
th  
tl  
tclk  
Figure 1. SCLK Timing Diagram  
6
Rev. 1.61  
Si4133  
tsu  
thold  
SCLK  
SDATA  
SENB  
D17  
D16  
D15  
A1  
A0  
ten3  
ten1  
ten2  
tw  
Figure 2. Serial Interface Timing Diagram  
First bit  
clocked in  
Last bit  
clocked in  
D
D
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
3
A
2
A
1
A
0
17 16 15 14 13 12 11 10  
data  
field  
address  
field  
Figure 3. Serial Word Format  
Rev. 1.61  
7
Si4133  
Table 5. RF and IF Synthesizer Characteristics  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
1
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
XIN Input Frequency  
Reference Amplifier Sensitivity  
fREF  
2
26  
MHz  
VREF  
0.5  
V
V
PP  
DD  
+0.3 V  
Phase Detector Update Frequency  
RF1 VCO Center Frequency Range  
f
f = fREF/R  
0.010  
947  
1.0  
MHz  
MHz  
MHz  
f
1720  
2050  
CEN  
2
RF1 VCO Tuning Range  
Extended frequency  
operation  
1850  
RF2 VCO Center Frequency Range  
f
f
789  
–5  
526  
62.5  
–5  
1429  
5
MHz  
%
CEN  
RF Tuning Range from f  
Note: L  
±10%  
CEN  
EXT  
IF VCO Center Frequency Range  
IFOUT Tuning Range  
952  
1000  
5
MHz  
MHz  
%
CEN  
with IFDIV  
IFOUT Tuning Range from f  
RF1 VCO Pushing  
RF2 VCO Pushing  
IF VCO Pushing  
Note: L  
±10%  
CEN  
EXT  
Open loop  
500  
400  
300  
400  
300  
100  
–132  
0.9  
kHz/V  
kHz/V  
kHz/V  
RF1 VCO Pulling  
VSWR = 2:1, all  
phases, open loop  
kHz  
kHz  
kHz  
PP  
PP  
PP  
RF2 VCO Pulling  
IF VCO Pulling  
RF1 Phase Noise  
1 MHz offset  
dBc/Hz  
RF1 Integrated Phase Error  
10 Hz to 100 kHz  
degrees  
rms  
RF2 Phase Noise  
1 MHz offset  
–134  
0.7  
dBc/Hz  
RF2 Integrated Phase Error  
10 Hz to 100 kHz  
degrees  
rms  
IF Phase Noise  
100 kHz offset  
–117  
0.4  
dBc/Hz  
IF Integrated Phase Error  
100 Hz to 100 kHz  
degrees  
rms  
Notes:  
1. f= 200 kHz, RF1 = 1.6 GHz, RF2 = 1.2 GHz, IFOUT = 550 MHz, LPWR = 0, for all parameters unless otherwise noted.  
2. Extended frequency operation only. VDD 3.0 V, QFN only, VCO Tuning Range fixed by directly shorting the RFLA and  
RFLB pins. See Application Note 41 for more details on the Si4133 extended frequency operation.  
3. From powerup request (PWDNor SENduring a write of 1 to bits PDIB and PDRB in Register 2) to RF and IF  
synthesizers ready (settled to within 0.1 ppm frequency error).  
4. From powerdown request (PWDN, or SENduring a write of 0 to bits PDIB and PDRB in Register 2) to supply current  
equal to IPWDN  
.
8
Rev. 1.61  
Si4133  
Table 5. RF and IF Synthesizer Characteristics (Continued)  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
1
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
RF1 Harmonic Suppression  
RF2 Harmonic Suppression  
IF Harmonic Suppression  
RFOUT Power Level  
Second Harmonic  
–26  
–26  
–26  
–3  
–20  
–20  
–20  
1
dBc  
dBc  
dBc  
dBm  
dBm  
ZL = 50  
–8  
2
RFOUT Power Level  
ZL = 50RF1 active,  
Extended frequency  
operation  
–14  
–7  
1
IFOUT Power Level  
Z = 50   
–8  
–4  
0
dBm  
L
RF1 Output Reference Spurs  
Offset = 200 kHz  
Offset = 400 kHz  
Offset = 600 kHz  
Offset = 200 kHz  
Offset = 400 kHz  
Offset = 600 kHz  
Figures 4, 5  
–65  
–71  
–75  
–65  
–71  
–75  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
RF2 Output Reference Spurs  
3
Powerup Request to Synthesizer Ready  
Time  
tpup  
tpdn  
40/f  
50/f  
4
Powerdown Request to Synthesizer Off  
Time  
Figures 4, 5  
100  
ns  
Notes:  
1. f= 200 kHz, RF1 = 1.6 GHz, RF2 = 1.2 GHz, IFOUT = 550 MHz, LPWR = 0, for all parameters unless otherwise noted.  
2. Extended frequency operation only. VDD 3.0 V, QFN only, VCO Tuning Range fixed by directly shorting the RFLA and  
RFLB pins. See Application Note 41 for more details on the Si4133 extended frequency operation.  
3. From powerup request (PWDNor SENduring a write of 1 to bits PDIB and PDRB in Register 2) to RF and IF  
synthesizers ready (settled to within 0.1 ppm frequency error).  
4. From powerdown request (PWDN, or SENduring a write of 0 to bits PDIB and PDRB in Register 2) to supply current  
equal to IPWDN  
.
Rev. 1.61  
9
Si4133  
RF and IF synthesizers settled to  
within 0.1 ppm frequency error.  
tpup  
tpdn  
IT  
IPWDN  
SEN  
PDIB = 1  
PDRB = 1  
PDIB = 0  
PDRB = 0  
SDATA  
Figure 4. Software Power Management Timing Diagram  
RF and IF synthesizers settled to  
within 0.1 ppm frequency error.  
tpup  
tpdn  
IT  
IPWDN  
PWDN  
Figure 5. Hardware Power Management Timing Diagram  
10  
Rev. 1.61  
Si4133  
TRACE A: Ch1 FM Main Time  
A Marker  
us  
174.04471  
711.00  
Hz  
1.424  
kHz  
Real  
160  
Hz  
/div  
176  
Hz  
Start: 0 s  
Stop: 399.6003996 us  
Figure 6. Typical Transient Response RF1 at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
Rev. 1.61  
11  
Si4133  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 7. Typical RF1 Phase Noise at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
Figure 8. Typical RF1 Spurious Response at 1.6 GHz  
with 200 kHz Phase Detector Update Frequency  
12  
Rev. 1.61  
Si4133  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 9. Typical RF2 Phase Noise at 1.2 GHz  
with 200 kHz Phase Detector Update Frequency  
Figure 10. Typical RF2 Spurious Response at 1.2 GHz  
with 200 kHz Phase Detector Update Frequency  
Rev. 1.61  
13  
Si4133  
−70  
−80  
−90  
−100  
−110  
−120  
−130  
−140  
−150  
102  
103  
104  
105  
106  
Offset Frequency (Hz)  
Figure 11. Typical IF Phase Noise at 550 MHz  
with 200 kHz Phase Detector Update Frequency  
Figure 12. IF Spurious Response at 550 MHz  
with 200 kHz Phase Detector Update Frequency  
14  
Rev. 1.61  
Si4133  
2. Typical Application Circuits  
VDD  
Si4133-GT  
From  
30*  
0.022F  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
System  
SEN  
VDDI  
IFOUT  
GNDI  
IFLB  
SCLK  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
RFOUT  
VDDR  
Controller  
2
3
40 nH 560 pF  
IFOUT  
4
Printed Trace  
Inductor or  
Chip Inductor  
5
6
Printed Trace  
Inductors  
IFLA  
7
GNDD  
VDDD  
GNDD  
XIN  
0.022F  
VDD  
8
9
560 pF  
10  
11  
12  
External Clock  
PWDN  
560 pF 2 nH  
RFOUT  
PWDN  
0.022F  
VDD  
AUXOUT  
AUXOUT  
* Add 30series resistance if using IF output divide values 2, 4, or 8.  
Figure 13. Si4133-GT  
VDD  
30*  
From  
System  
0.022F  
40 nH 560 pF  
Controller  
IFOUT  
28  
27  
26  
25  
24  
23  
22  
Printed Trace  
Inductor or  
Chip Inductor  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
GNDR  
GNDI  
IFLB  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
IFLA  
Printed Trace  
Inductors  
GNDD  
VDDD  
GNDD  
XIN  
VDD  
Si4133-GM  
0.022F  
560 pF  
External Clock  
8
9
10  
11  
12  
13  
14  
VDD  
0.022F  
AUXOUT  
RFOUT  
PWDN  
2 nH  
560 pF  
* Add 30 series resistance if using IF output divide values 2, 4, or 8.  
Figure 14. Si4133-GM  
Rev. 1.61  
15  
Si4133  
The unique PLL architecture used in the Si4133  
produces settling (lock) times that are comparable in  
3. Functional Description  
The Si4133 is a monolithic integrated circuit that speed to fractional-N architectures without the high  
performs IF and dual-band RF synthesis for wireless phase noise or spurious modulation effects often  
communications applications. This integrated circuit associated with those designs.  
(IC), with minimal external components, completes the  
3.1. Serial Interface  
frequency synthesis function necessary for RF  
communications systems.  
A timing diagram for the serial interface is shown in  
Figure 2 on page 7. Figure 3 on page 7 shows the  
format of the serial word.  
The Si4133 has three complete phase-locked loops  
(PLLs) with integrated voltage-controlled oscillators  
(VCOs). The low phase noise of the VCOs makes the The Si4133 is programmed serially with 22-bit words  
Si4133 suitable for demanding wireless comprised of 18-bit data fields and 4-bit address fields.  
communications applications. Phase detectors, loop When the serial interface is enabled (i.e., when SEN is  
filters, and reference and output frequency dividers are low) data and address bits on the SDATA pin are  
integrated. The IC is programmed with a three-wire clocked into an internal shift register on the rising edge  
serial interface.  
of SCLK. Data in the shift register is then transferred on  
the rising edge of SEN into the internal data register  
addressed in the address field. The serial interface is  
disabled when SEN is high.  
Two PLLs are provided for dual-band RF synthesis.  
These RF PLLs are multiplexed so that only one PLL is  
active at a time, as determined by the setting of an  
internal register. The active PLL is the last one to be Table 12 on page 21 summarizes the data register  
written. The center frequency of the VCO in each PLL is functions and addresses. The internal shift register  
set by the value of an external inductance. Inaccuracies ignores leading bits before the 22 required bits.  
in these inductances are compensated for by the self-  
3.2. Setting the VCO Center Frequencies  
tuning algorithm. The algorithm is run after powerup or  
after a change in the programmed output frequency.  
The PLLs can adjust the IF and RF output frequencies  
±5% of the center frequencies of their VCOs. Each  
center frequency is established by the value of an  
external inductance connected to the respective VCO.  
Manufacturing tolerances of ±10% for the external  
inductances are acceptable. The Si4133 compensates  
for inaccuracies in each inductance by executing a self-  
tuning algorithm after PLL powerup or after a change in  
the programmed output frequency.  
Each RF PLL, when active, can adjust the RF output  
frequency by ±5% of its VCO’s center frequency.  
Because the two VCOs can be set to have widely  
separated center frequencies, the RF output can be  
programmed to service two widely separated frequency  
bands by programming the corresponding N-Divider.  
One RF VCO is optimized to have its center frequency  
set between 947 MHz and 1.72 GHz, while the second  
RF VCO is optimized to have its center frequency set Because the total tank inductance is in the low nH  
between 789 MHz and 1.429 GHz.  
range, the inductance of the package must be  
considered when determining the correct external  
One PLL is provided for IF frequency synthesis. The  
center frequency of this circuit’s VCO is set by the  
connection of an external inductance. The PLL can  
adjust the IF output frequency by ±5% of the VCO  
center frequency. Inaccuracies in the value of the  
external inductance are compensated for by the  
Si4133’s proprietary self-tuning algorithm. This  
algorithm is initiated each time the PLL is powered-up  
(by either the PWDN pin or by software) and/or each  
time a new output frequency is programmed.  
inductance. The total inductance (L  
) presented to  
TOT  
each VCO is the sum of the external inductance (L  
)
EXT  
and the package inductance (L  
). Each VCO has a  
PKG  
nominal capacitance (C  
) in parallel with the total  
NOM  
inductance, and the center frequency is as follows:  
1
fCEN = -----------------------------------------------  
2LTOT CNOM  
or  
The IF VCO can have its center frequency set as low as  
526 MHz and as high as 952 MHz. An IF output divider  
divides down the IF output frequencies, if needed. The  
divider is programmable and is capable of dividing by 1,  
2, 4, or 8.  
1
fCEN = ------------------------------------------------------------------------  
2 LPKG + LEXT  CNOM  
Tables 6 and 7 summarize the characteristics of each  
VCO.  
16  
Rev. 1.61  
Si4133  
the correct total inductance to the VCO. In  
manufacturing, the external inductance can vary ±10%  
of its nominal value and the Si4133 corrects for the  
variation with the self-tuning algorithm.  
Table 6. Si4133-GT VCO Characteristics  
VCO f  
Range C  
L
L
Range  
EXT  
CEN  
NOM  
PKG  
(MHz)  
(pF) (nH)  
(nH)  
For more information on designing the external trace  
inductors, refer to Application Note 31: Inductor Design  
for the Si41xx Synthesizer Family.  
Min Max  
Min Max  
RF1 947 1720 4.3  
RF2 789 1429 4.8  
2.0  
2.3  
2.1  
0.0  
0.3  
2.2  
4.6  
6.2  
3.3. Extended Frequency Operation  
The Si4133 may operate at an extended frequency  
range of 1850 MHz to 2050 MHz by connecting the  
RFLA and RFLB pins directly. For information on  
configuring the Si4133 for extended frequency  
operation, refer to Application Note 41: Extended  
Frequency Operation of Silicon Laboratories Frequency  
Synthesizers.  
IF  
526 952  
6.5  
12.0  
Table 7. Si4133-GM VCO Characteristics  
VCO f  
Range C  
L
L
Range  
EXT  
CEN  
NOM  
PKG  
(MHz)  
(pF) (nH)  
(nH)  
3.4. Self-Tuning Algorithm  
The self-tuning algorithm is initiated immediately after  
powerup of a PLL or, if the PLL is already powered, after  
a change in its programmed output frequency. This  
algorithm attempts to tune the VCO so that its free-  
running frequency is near the required output frequency.  
In doing so, the algorithm compensates for  
manufacturing tolerance errors in the value of the  
external inductance connected to the VCO. It also  
reduces the frequency error for which the PLL must  
correct to get the precise required output frequency. The  
self-tuning algorithm leaves the VCO oscillating at a  
frequency in error by somewhat less than 1% of the  
desired output frequency.  
Min Max  
Min Max  
RF1 947 1720 4.3  
RF2 789 1429 4.8  
1.5  
1.5  
1.6  
0.5  
1.1  
2.7  
5.1  
7.0  
IF  
526 952  
6.5  
12.5  
LPKG  
2
After self-tuning, the PLL controls the VCO oscillation  
frequency. The PLL completes frequency locking,  
eliminating any remaining frequency error. From then  
on, it maintains frequency-lock, compensating for  
effects of temperature and supply voltage variations.  
LEXT  
LPKG  
2
The Si4133’s self-tuning algorithm compensates for  
component value errors at any temperature within the  
specified temperature range. However, the ability of the  
PLL to compensate for drift in component values that  
occur after self-tuning is limited. For external  
Figure 15. External Inductance Connection  
As a design example, consider that the goal is to  
synthesize frequencies in a 25 MHz band between  
1120 and 1145 MHz using the Si4133-GT. The center  
frequency should be defined as midway between the  
two extremes, or 1132.5 MHz. The PLL can adjust the  
VCO output frequency ±5% of the center frequency, or  
±56.6 MHz of 1132.5 MHz (i.e., from approximately  
inductances  
with  
temperature  
coefficients  
o
approximately ±150 ppm/ C, the PLL can maintain lock  
for changes in temperature of approximately ±30 C.  
o
Applications where the PLL is regularly powered down  
or the frequency is periodically reprogrammed minimize  
or eliminate the potential effects of temperature drift  
because the VCO is re-tuned in either case. In  
applications where the ambient temperature can drift  
substantially after self-tuning, it might be necessary to  
monitor the lock-detect bar (LDETB) signal on the  
AUXOUT pin to determine whether a PLL is about to  
run out of locking capability. See “3.10. Auxiliary Output  
1076 to 1189 MHz). The RF2 VCO has a C  
of  
NOM  
4.8 pF. A 4.1 nH inductance in parallel with this  
capacitance yields the required center frequency. An  
external inductance of 1.8 nH should be connected  
between RFLC and RFLD as shown in Figure 15. This,  
in addition to 2.3 nH of package inductance, presents  
Rev. 1.61  
17  
Si4133  
(AUXOUT)” for how to select LDETB. The LDETB setting the bits to 11. The values of the available gains,  
signal is low after self-tuning is completed but rises relative to the highest gain, are as follows:  
when the IF or RF PLL nears the limit of its  
Table 8. Gain Values (Register 1)  
compensation range. LDETB is also high when either  
PLL is executing the self-tuning algorithm. The output  
frequency is still locked when LDETB goes high, but the  
PLL eventually loses lock if the temperature continues  
to drift in the same direction. Therefore, if LDETB goes  
high both the IF and RF PLLs should be re-tuned  
promptly by initiating the self-tuning algorithm.  
Relative P.D.  
K Bits  
P
Gain  
00  
01  
10  
11  
1
1/2  
1/4  
1/8  
3.5. Output Frequencies  
The IF and RF output frequencies are set by  
programming the R- and N-Divider registers. Each PLL  
has R and N registers so that each can be programmed  
independently. Programming either the R- or N-Divider  
register for RF1 or RF2 automatically selects the  
associated output.  
The gain value bits is automatically set with the Auto K  
P
bit (bit 2) in the Main Configuration register to 1. In  
setting this bit, the gain values are optimized for a given  
value of N. In general, a higher phase detector gain  
decreases in-band phase noise and increase the speed  
of the PLL transient until the point at which stability  
begins to be compromised. The optimal gain depends  
on N. Table 9 lists recommended settings for different  
The reference frequency on the XIN pin is divided by R  
and this signal is input to the PLL’s phase detector. The  
other input to the phase detector is the PLL’s VCO  
output frequency divided by N. The PLL acts to make  
these frequencies equal.  
values of N. These are the settings when the Auto K bit  
P
is set.  
Table 9. Optimal KP Settings  
That is, after an initial transient:  
RF1  
<1:0>  
RF2  
K <3:2> K <5:4>  
P2  
IF  
fOUT  
fREF  
N
K
----------- = -----------  
P1  
PI  
N
R
2047  
00  
00  
00  
01  
10  
11  
00  
00  
01  
10  
11  
11  
11  
or  
2048 to 4095  
4096 to 8191  
8192 to 16383  
16384 to 32767  
32768  
00  
01  
10  
11  
11  
N
R
---  
fOUT  
=
fREF  
The R values are set by programming the RF1 R-  
Divider register (Register 6), the RF2 R-Divider register  
(Register 7) and the IF R-Divider register (Register 8).  
The N values are set by programming the RF1 N-  
Divider register (Register 3), the RF2 N-Divider register  
(Register 4), and the IF N-Divider register (Register 5).  
The VCO gain and loop filter characteristics are not  
programmable.  
Each N-Divider is implemented as a conventional high  
speed divider. That is, it consists of a dual-modulus  
prescaler, a swallow counter, and a lower speed  
synchronous counter. However, the control of these  
sub-circuits is automatically handled. Only the  
appropriate N value should be programmed.  
The settling time for the PLL is directly proportional to its  
phase detector update period T (T equals 1/f ). A  
typical transient response is shown in Figure 6 on page  
11. During the first 13 update periods the Si4133  
executes the self-tuning algorithm. From then on the  
PLL controls the output frequency. Because of the  
unique architecture of the Si4133 PLLs, the time  
required to settle the output frequency to 0.1 ppm error  
is automatically 25 update periods. The total time after  
powerup or a change in programmed frequency until the  
synthesized frequency is settled—including time for  
self-tuning—is approximately 40 update periods.  
3.6. PLL Loop Dynamics  
The transient response for each PLL is determined by  
its phase detector update rate f (equal to f  
/R) and  
REF  
the phase detector gain programmed for each RF1,  
RF2, or IF synthesizer. See Register 1. Four different  
settings for the phase detector gain are available for  
each PLL. The highest gain is programmed by setting  
the two phase detector gain bits to 00, and the lowest by  
Note: The settling time analysis holds for RF1 f 500 kHz.  
For RF1 f > 500 kHz, the settling time is larger.  
18  
Rev. 1.61  
Si4133  
For frequencies less than 500 MHz, the IF output buffer  
can directly drive a 200 resistive load or higher. For  
resistive loads greater than 500 (f < 500 MHz) the  
LPWR bit can be set to reduce the power consumed by  
the IF output buffer. See Figure 17.  
3.7. RF and IF Outputs  
The RFOUT and IFOUT pins are driven by amplifiers  
that buffer the RF VCOs and IF VCO respectively. The  
RF output amplifier receives its input from the RF1 or  
RF2 VCO, depending on which R- or N-Divider register  
is written last. For example, programming the N-Divider  
register for RF1 automatically selects the RF1 VCO  
output.  
>500 pF  
IFOUT  
Figures 13 and 14 show application diagrams for the  
Si4133. The RF output signal must be ac coupled to its  
load through a capacitor. An external inductance  
between the RFOUT pin and the ac coupling capacitor  
is required as part of an output matching network to  
maximize power delivered to the load. This 2 nH  
inductance can be realized with a PC board trace. The  
network is made to provide an adequate match to an  
external 50 load for both the RF1 and RF2 frequency  
bands. The matching network also filters the output  
signal to reduce harmonic distortion.  
>200  
Figure 17. IF Frequencies < 500 MHz  
3.8. Reference Frequency Amplifier  
The Si4133 provides a reference frequency amplifier. If  
the driving signal has CMOS levels it can be connected  
directly to the XIN pin. Otherwise, the reference  
frequency signal should be ac coupled to the XIN pin  
through a 560 pF capacitor.  
The IFOUT pin must also be ac coupled to its load  
through a capacitor. The IF output level is dependent  
upon the load. Figure 18 on page 20 displays the output  
level versus load resistance for a variety of output  
frequencies. For resistive loads greater than 500 the  
output level saturates and the bias currents in the IF  
output amplifier are higher than required. The LPWR bit  
in the Main Configuration register (Register 0) can be  
set to 1 to reduce the bias currents and therefore reduce  
the power dissipated by the IF amplifier. For loads less  
than 500  LPWR should be set to 0 to maximize the  
output level.  
3.9. Powerdown Modes  
Table 11 summarizes the powerdown functionality. The  
Si4133 can be powered down by taking the PWDN pin low  
or by setting bits in the Powerdown register (Register 2).  
When the PWDN pin is low, the Si4133 is powered down  
regardless of the Powerdown register settings. When the  
PWDN pin is high, power management is in control of the  
Powerdown register bits.  
The IF and RF sections of the Si4133 circuitry can be  
individually powered down by setting the Powerdown  
register bits PDIB and PDRB low, respectively. The  
reference frequency amplifier is also powered up if the  
PDRB and PDIB bits are high. Also, setting the AUTOPDB  
bit to 1 in the Main Configuration register (Register 0) is  
equivalent to setting both bits in the Powerdown register to  
1.  
For IF frequencies greater than 500 MHz, a matching  
network is required to drive a 50 load. See Figure 16.  
The value of L  
can be determined from Table 10.  
MATCH  
Table 10. LMATCH Values  
Frequency  
L
MATCH  
The serial interface remains available and can be written in  
all powerdown modes.  
500–600 MHz  
600–800 MHz  
800 MHz–1 GHz  
40 nH  
27 nH  
18 nH  
560 pF  
IFOUT  
LMATCH  
50   
Figure 16. IF Frequencies > 500 MHz  
Rev. 1.61  
19  
Si4133  
3.10. Auxiliary Output (AUXOUT)  
The signal appearing on AUXOUT is selected by setting the AUXSEL bits in the Main Configuration register  
(Register 0).  
The LDETB signal can be selected by setting the AUXSEL bits to 11. This signal can be used to indicate that the IF  
or RF PLL is going to lose lock because of excessive ambient temperature drift and should be re-tuned. The  
LDETB signal indicates a logical OR result if both IF and RF are simultaneously generating a signal.  
Table 11. Powerdown Configuration  
PWDN Pin  
AUTOPDB  
PDIB  
PDRB IF Circuitry RF Circuitry  
X
0
0
0
0
1
X
0
0
1
1
x
X
0
1
0
1
x
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
PWDN = 0  
OFF  
ON  
PWDN = 1  
ON  
ON  
ON  
450  
400  
350  
300  
250  
200  
150  
100  
50  
LPWR=1  
LPWR=0  
0
0
200  
400  
600  
Load Resistance ()  
800  
1000  
1200  
Figure 18. Typical IF Output Voltage vs. Load Resistance at 550 MHz  
20  
Rev. 1.61  
Si4133  
4. Control Registers  
Table 12. Register Summary  
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit  
Register Name  
Bit  
4
Bit  
3
Bit Bit  
Bit  
0
17 16 15 14 13 12 11 10  
9
8
7
6
5
2
1
LPWR  
AUTO AUTO  
PDB  
RF  
PWR  
AUXSEL  
[1:0]  
0
1
Main  
Configura-  
tion  
0
0
0
0
0
0
0
0
0
0
0
0
IFDIV  
[1:0]  
0
0
0
0
0
0
K
P
Phase  
Detector  
Gain  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
K [1:0]  
K
0
[1:0]  
0
K [1:0]  
P1  
PI  
P2  
PDIB PDRB  
2
3
Powerdown  
0
0
0
0
RF1  
N
[17:0]  
RF1  
N-Divider  
4
RF2  
0
N
[16:0]  
RF2  
N-Divider  
5
6
IF N-Divider  
0
0
0
0
N [15:0]  
IF  
RF1  
R-Divider  
0
0
0
0
0
0
0
0
0
R
[12:0]  
[12:0]  
RF1  
7
RF2  
R-Divider  
0
0
0
0
R
RF2  
8
9
IF R-Divider  
Reserved  
R [12:0]  
IF  
.
.
.
15  
Reserved  
Note: Registers 9–15 are reserved. Writes to these registers might result in unpredictable behavior. Registers not listed here  
are reserved and should not be written.  
Rev. 1.61  
21  
Si4133  
Register 0. Main Configuration Address Field = A[3:0] = 0000  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5  
D4 D3 D2 D1 D0  
LPWR  
AUTO AUTO  
PDB  
RF  
PWR  
Name  
0
0
0
0
AUXSEL  
[1:0]  
IFDIV  
[1:0]  
0
0
0
0
0
0
K
P
Bit  
Name  
Function  
17:14  
13:12  
Reserved  
Program to zero.  
AUXSEL[1:0]  
Auxiliary Output Pin Definition.  
00 = Reserved.  
01 = Force output low.  
10 = Reserved.  
11 = Lock Detect—LDETB.  
11:10  
IFDIV[1:0]  
IF Output Divider.  
00 = IFOUT = IFVCO Frequency  
01 = IFOUT = IFVCO Frequency/2  
10 = IFOUT = IFVCO Frequency/4  
11 = IFOUT = IFVCO Frequency/8  
9:6  
5
Reserved  
LPWR  
Program to zero.  
Output Power-Level Settings for IF Synthesizer Circuit.  
0 = R  
1 = R  
500 —normal power mode.  
500 —low power mode.  
LOAD  
LOAD  
4
3
Reserved  
Program to zero.  
AUTOPDB  
Auto Powerdown.  
0 = Software powerdown is controlled by Register 2.  
1 = Equivalent to setting all bits in Register 2 = 1.  
2
AUTOK  
Auto K Setting.  
P
P
0 = K s are controlled by Register 1.  
P
1 = K s are set according to Table 9 on page 18.  
P
1
0
RFPWR  
Program to zero. (Used for extended frequency operation. See AN41 for  
more information.)  
Reserved  
Program to zero.  
22  
Rev. 1.61  
Si4133  
Register 1. Phase Detector Gain Address Field (A[3:0]) = 0001  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
0
0
0
0
0
0
0
K [1:0]  
K
[1:0]  
K
[1:0]  
P1  
PI  
P2  
Bit  
17:6  
5:4  
Name  
Reserved  
K [1:0]  
Function  
Program to zero.  
IF Phase Detector Gain Constant.*  
PI  
N Value  
K
PI  
<2048  
= 00  
= 01  
= 10  
= 11  
2048–4095  
4096–8191  
>8191  
3:2  
1:0  
K
K
[1:0]  
[1:0]  
RF2 Phase Detector Gain Constant.*  
P2  
N Value  
K
P2  
<4096  
= 00  
= 01  
= 10  
= 11  
4096–8191  
8192–16383  
>16383  
RF1 Phase Detector Gain Constant.*  
P1  
N Value  
K
P1  
<8192  
8192–16383  
= 00  
= 01  
16384–32767 = 10  
>32767 = 11  
*Note: When AUTOKP = 1, these bits do not need to be programmed. When AUTOKP = 0, use these recommended values  
for programming Phase Detector Gain.  
Rev. 1.61  
23  
Si4133  
Register 2. Powerdown Address Field (A[3:0]) = 0010  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3  
D2  
D1  
D0  
PDIB PDRB  
Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
17:2  
1
Name  
Function  
Reserved  
PDIB  
Program to zero.  
Powerdown IF Synthesizer.  
0 = IF synthesizer powered down.  
1 = IF synthesizer on.  
0
PDRB  
Powerdown RF Synthesizer.  
0 = RF synthesizer powered down.  
1 = RF synthesizer on.  
Note: Enabling any PLL with PDIB or PDRB automatically powers on the reference amplifier.  
Register 3. RF1 N-Divider Address Field (A[3:0]) = 0011  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
[17:0]  
Name  
N
RF1  
Bit  
Name  
[17:0]  
Function  
17:0  
N
N-Divider for RF1 Synthesizer.  
RF1  
Register 4. RF2 N-Divider Address Field = A[3:0] = 0100  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
[16:0]  
Name  
0
N
RF2  
Bit  
17  
Name  
Function  
Reserved  
Program to zero.  
N-Divider for RF2 Synthesizer.  
16:0  
N
[16:0]  
RF2  
24  
Rev. 1.61  
Si4133  
Register 5. IF N-Divider Address Field (A[3:0]) = 0101  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
N [15:0]  
Name  
0
0
IF  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N-Divider for IF Synthesizer.  
N [15:0]  
IF  
Register 6. RF1 R-Divider Address Field (A[3:0]) = 0110  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R
[12:0]  
RF1  
Name  
Function  
17:13  
12:0  
Reserved  
[12:0]  
Program to zero.  
R
R-Divider for RF1 Synthesizer.  
RF1  
R
can be any value from 7 to 8189 if K = 00  
P1  
RF1  
8 to 8189 if K = 01  
P1  
10 to 8189 if K = 10  
P1  
14 to 8189 if K = 11  
P1  
Register 7. RF2 R-Divider Address Field (A[3:0]) = 0111  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R
[12:0]  
RF2  
Bit  
Name  
Function  
17:13  
12:0  
Reserved  
[12:0]  
Program to zero.  
R
R-Divider for RF2 Synthesizer.  
RF2  
R
can be any value from 7 to 8189 if K = 00  
P2  
RF2  
8 to 8189 if K = 01  
P2  
10 to 8189 if K = 10  
P2  
14 to 8189 if K = 11  
P2  
Rev. 1.61  
25  
Si4133  
Register 8. IF R-Divider Address Field (A[3:0]) = 1000  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R [12:0]  
IF  
Bit  
Name  
Function  
17:13  
12:0  
Reserved  
R [12:0]  
Program to zero.  
R-Divider for IF Synthesizer.  
IF  
R can be any value from 7 to 8189 if K = 00  
IF  
P1  
8 to 8189 if K = 01  
P1  
10 to 8189 if K = 10  
P1  
14 to 8189 if K = 11  
P1  
26  
Rev. 1.61  
Si4133  
5. Pin Descriptions: Si4133-GT  
SCLK  
SDATA  
GNDR  
RFLD  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SEN  
VDDI  
IFOUT  
GNDI  
3
4
RFLC  
5
IFLB  
GNDR  
6
IFLA  
7
RFLB  
RFLA  
GNDD  
VDDD  
8
GNDR  
GNDR  
RFOUT  
VDDR  
9
GNDD  
XIN  
10  
11  
12  
PWDN  
AUXOUT  
Pin Number  
Name  
Description  
1
SCLK  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Serial clock input  
Serial data input  
2
3
Common ground for RF analog circuitry  
Pins for inductor connection to RF2 VCO  
Pins for inductor connection to RF2 VCO  
Common ground for RF analog circuitry  
Pins for inductor connection to RF1 VCO  
Pins for inductor connection to RF1 VCO  
Common ground for RF analog circuitry  
Common ground for RF analog circuitry  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Powerdown input pin  
Reference frequency amplifier input  
Common ground for digital circuitry  
Supply voltage for digital circuitry  
GNDD  
VDDD  
GNDD  
IFLA  
Common ground for digital circuitry  
Pins for inductor connection to IF VCO  
Pins for inductor connection to IF VCO  
Common ground for IF analog circuitry  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
IFLB  
GNDI  
IFOUT  
VDDI  
SEN  
Rev. 1.61  
27  
Si4133  
Table 13. Pin Descriptions for Si4133 Derivatives—TSSOP  
Pin Number  
Si4133  
SCLK  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Si4123  
SCLK  
SDATA  
GNDR  
GNDR  
GNDR  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Si4122  
SCLK  
SDATA  
GNDR  
RFLD  
RFLC  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Si4113  
SCLK  
Si4112  
SCLK  
SDATA  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
AUXOUT  
PWDN  
XIN  
1
2
SDATA  
GNDR  
RFLD  
3
4
5
RFLC  
6
GNDR  
RFLB  
7
8
RFLA  
9
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
SEN  
GNDD  
VDDD  
GNDD  
IFLA  
IFLB  
IFLB  
IFLB  
IFLB  
GNDI  
GNDI  
GNDI  
GNDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
IFOUT  
VDDI  
SEN  
SEN  
SEN  
SEN  
28  
Rev. 1.61  
Si4133  
6. Pin Descriptions: Si4133-GM  
28 27 26 25 24 23  
22  
1
2
3
4
5
6
7
21  
20 IFLB  
19  
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDI  
IFLA  
GND  
Pad  
18 GNDD  
17 VDDD  
16  
GNDD  
15 XIN  
8
9
10 11 12 13 14  
Pin Number  
Name  
Description  
1
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
RFLA  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
AUXOUT  
PWDN  
GNDD  
XIN  
Common ground for RF analog circuitry  
Pins for inductor connection to RF2 VCO  
Pins for inductor connection to RF2 VCO  
Common ground for RF analog circuitry  
Pins for inductor connection to RF1 VCO  
Pins for inductor connection to RF1 VCO  
Common ground for RF analog circuitry  
Common ground for RF analog circuitry  
Common ground for RF analog circuitry  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Powerdown input pin  
Common ground for digital circuitry  
Reference frequency amplifier input  
Common ground for digital circuitry  
Supply voltage for digital circuitry  
Common ground for digital circuitry  
Pins for inductor connection to IF VCO  
Pins for inductor connection to IF VCO  
Common ground for IF analog circuitry  
Common ground for IF analog circuitry  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
GNDD  
VDDD  
GNDD  
IFLA  
IFLB  
GNDI  
GNDI  
IFOUT  
VDDI  
SEN  
SCLK  
SDATA  
GNDR  
Serial clock input  
Serial data input  
Common ground for RF analog circuitry  
Rev. 1.61  
29  
Si4133  
Table 14. Pin Descriptions for Si4133 Derivatives—QFN  
Pin Number Si4133  
Si4123  
GNDR  
GNDR  
GNDR  
GNDR  
RFLB  
Si4122  
GNDR  
RFLD  
Si4113  
GNDR  
RFLD  
Si4112  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
1
GNDR  
RFLD  
RFLC  
GNDR  
RFLB  
2
3
RFLC  
RFLC  
4
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
GNDR  
RFLB  
5
6
RFLA  
RFLA  
RFLA  
7
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
GNDR  
GNDR  
GNDR  
RFOUT  
VDDR  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
AUXOUT AUXOUT AUXOUT AUXOUT AUXOUT  
PWDN  
GNDD  
XIN  
PWDN  
GNDD  
XIN  
PWDN  
GNDD  
XIN  
PWDN  
GNDD  
XIN  
PWDN  
GNDD  
XIN  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
IFLA  
GNDD  
VDDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
GNDD  
VDDD  
SEN  
GNDD  
VDDD  
GNDD  
IFLA  
IFLB  
IFLB  
IFLB  
IFLB  
GNDI  
GNDI  
IFOUT  
VDDI  
SEN  
GNDI  
GNDI  
IFOUT  
VDDI  
SEN  
GNDI  
GNDI  
IFOUT  
VDDI  
SEN  
GNDI  
GNDI  
IFOUT  
VDDI  
SEN  
SCLK  
SDATA  
GNDR  
SCLK  
SDATA  
GNDR  
SCLK  
SDATA  
GNDR  
SCLK  
SDATA  
GNDR  
SCLK  
SDATA  
GNDD  
30  
Rev. 1.61  
Si4133  
7. Ordering Guide  
Ordering Part  
Number  
Description  
Operating Temperature  
º
Si4133-D-GM  
Si4133-D-GT  
Si4123-D-GM  
Si4123-D-GT  
Si4122-D-GM  
Si4122-D-GT  
Si4113-D-GM  
Si4113-D-GT  
Si4113-D-ZT1  
Si4112-D-GM  
Si4112-D-GT  
RF1/RF2/IF OUT, Lead Free, QFN  
RF1/RF2/IF OUT, Lead Free, TSSOP  
RF1/IF OUT, Lead Free, QFN  
RF1/IF OUT, Lead Free, TSSOP  
RF2/IF OUT, Lead Free, QFN  
RF2/IF OUT, Lead Free, TSSOP  
RF1/RF2 OUT, Lead Free, QFN  
RF1/RF2 OUT, Lead Free, TSSOP  
RF1/RF2 OUT, NiPd, TSSOP  
IF OUT, Lead Free, QFN  
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
–40 to 85 C  
º
IF OUT, Lead Free, TSSOP  
–40 to 85 C  
8. Si4133 Derivative Devices  
The Si4133 performs both IF and dual-band RF frequency synthesis. The Si4112, Si4113, Si4122, and the Si4123  
are derivatives of this device. Table 15 outlines which synthesizers each derivative device features and the pins  
and registers that coincide with each synthesizer.  
Table 15. Si4133 Derivatives  
Name  
Synthesizer  
Pins  
Registers  
Si4112  
IF  
IFLA, IFLB  
N , R , PDIB, IFDIV, LPWR, AUTOPDB = 0,  
IF IF  
PDRB = 0  
Si4113  
RF1, RF2  
RFLA, RFLB, RFLC, RFLD  
N
, N  
, R  
, R  
, PDRB, AUTOPDB = 0,  
RF1  
RF2  
RF1  
RF2  
PDIB = 0  
Si4122  
Si4123  
Si4133  
RF2, IF  
RF1, IF  
RFLC, RFLD, IFLA, IFLB  
RFLA, RFLB, IFLA, IFLB  
N
N
, R  
, R  
, PDRB, N , R , PDIB, IFDIV, LPWR  
RF2  
RF1  
RF2  
IF IF  
, PDRB, N , R , PDIB, IFDIV, LPWR  
RF1  
IF IF  
RF1, RF2, IF  
RFLA, RFLB, RFLC, RFLD,  
IFLA, IFLB  
N
, N  
, R  
, R  
, PDRB, N , R , PDIB,  
RF1  
RF2  
RF1  
RF2 IF IF  
IFDIV, LPWR  
Rev. 1.61  
31  
Si4133  
9. Package Outline: Si4133-GT  
Figure 19 illustrates the package details for the Si4133-GT. Table 16 lists the values for the dimensions shown in  
the illustration.  
24  
B
E1  
E
1  
L
ddd  
C B A  
e
1
2
3
Detail G  
A
D
c
A
b
C
bbb M C B A  
A1  
See Detail G  
Figure 19. 24-Pin Thin Shrink Small Outline Package (TSSOP)  
Table 16. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Nom  
Max  
1.20  
0.15  
0.30  
0.20  
7.90  
A
A1  
b
0.05  
0.19  
0.09  
7.70  
c
D
7.80  
0.65 BSC  
6.40 BSC  
4.40  
0.60  
e
E
E1  
L
4.30  
0.45  
0°  
4.50  
0.75  
8°  
1  
bbb  
ddd  
0.10  
0.20  
32  
Rev. 1.61  
Si4133  
10. Package Outline: Si4133-GM  
Figure 20 illustrates the package details for the Si4133-GM. Table 17 lists the values for the dimensions shown in  
the illustration.  
Figure 20. 28-Pin Quad Flat No-Lead (QFN)  
Table 17. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Min  
0.50  
Nom  
0.60  
Max  
0.70  
0.10  
0.10  
0.05  
0.10  
12  
A
A1  
L
0.01  
aaa  
bbb  
ccc  
ddd  
b
0.23  
D, E  
e
5.00 BSC  
0.50 BSC  
2.70  
D2, E2  
2.55  
2.85  
Notes:  
1. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
2. This package outline conforms to JEDEC MS-220, variant VHHD-1.  
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020B specification for Small Body  
Components.  
Rev. 1.61  
33  
Si4133  
DOCUMENT CHANGE LIST  
Revision 1.4 to Revision 1.5  
"7.Ordering Guide" on page 31 updated.  
Changed MLP to QFN (same package, generic  
name)  
Revision 1.5 to Revision 1.6  
Updated "7.Ordering Guide" on page 31.  
Revision 1.6 to Revision 1.61  
Updated contact information.  
34  
Rev. 1.61  
Si4133  
NOTES:  
Rev. 1.61  
35  
Si4133  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no war-  
ranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applica-  
tions intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
36  
Rev. 1.61  

相关型号:

SI4112-D-GTR

RF and Baseband Circuit, PDSO24, ROHS COMPLIANT, TSSOP-24
SILICON

SI4112G

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
SILICON

SI4112G-BM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
SILICON

SI4112G-BT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
SILICON

SI4112G-BT*

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR GSM AND GPRS WIRELESS COMMUNICATIONS
ETC

SI4113

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4113-BM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
ETC

SI4113-BT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
ETC

SI4113-BTR

Clock Generator, PDSO24
SILICON

SI4113-D-GM

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4113-D-GMR

RF and Baseband Circuit, ROHS COMPLIANT, MS-220VHHD-1, QFN-28
SILICON

SI4113-D-GT

DUAL-BAND RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON