SI4134T-BM [SILICON]

RF and Baseband Circuit, CMOS, 5 X 5 MM, QFN-32;
SI4134T-BM
型号: SI4134T-BM
厂家: SILICON    SILICON
描述:

RF and Baseband Circuit, CMOS, 5 X 5 MM, QFN-32

电信 电信集成电路
文件: 总48页 (文件大小:468K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Aero+  
AERO+ TRANSCEIVER  
FOR GSM AND GPRS WIRELESS COMMUNICATIONS  
Features  
Pin Assignments  
„
Low-IF receiver:  
„
Quad-band support:  
(Top View)  
Si4200-BM  
z Dual or triple-band LNA  
z Image-reject down-converter  
Universal baseband interface:  
z GSM 850 Class 4, small MS  
z E-GSM 900 Class 4, small MS  
z DCS 1800 Class 1  
(Si4200DB-BM see page 39)  
„
z PCS 1900 Class 1  
z Digital IF to baseband converter  
z Channel filter and gain control  
z Analog or digital I/Q interface  
Offset-PLL transmitter:  
z Integrated TX VCO and loop filter  
Dual RF synthesizer:  
32 31 30 29 28 27 26 25  
„
„
„
GPRS Class 12 compliant  
ION  
IOP  
1
2
3
4
5
6
7
8
24 RFOD  
CMOS process technology  
23 VDD  
CKN  
22 RFIGN  
21 RFIGP  
20 RFIDN  
19 RFIDP  
18 RFIPN  
17 RFIPP  
„
„
Low profile packages:  
z Si4200: 5 x 5 mm MLP32  
z Si4201: 4 x 4 mm MLP20  
z Si4134T: 5 x 5 mm MLP32  
3-wire serial interface  
CKP  
GND  
PAD  
TXIP  
TXIN  
TXQP  
TXQN  
z Integrated RF and IF VCOs, loop  
filters, varactors, and resonators  
„
„
9
10 11 12 13 14 15 16  
„
Integrated reference oscillator:  
z 13 or 26 MHz operation  
2.7 V to 3.0 V operation  
Applications  
Si4201-BM  
„
„
Multi-band GSM/GPRS digital cellular handsets  
Multi-band GPRS data modems and terminals  
20 19 18 17 16  
GND  
1
15 SDO  
Description  
RXQP  
RXQN  
RXIP  
2
3
4
5
14 PDN  
13 XEN  
12 ION  
11 IOP  
GND  
PAD  
The Aero™+ transceiver is a complete RF front end for multi-band GSM  
and GPRS wireless communications. No external IF SAW filter or VCO  
modules are required as all functions are completely implemented on-  
chip, resulting in a dramatic reduction of board area and component  
count. The Aero+ transceiver includes a digitally-controlled crystal  
oscillator (DCXO) that completely integrates the reference oscillator and  
varactor.  
RXIN  
6
7
8
9
10  
Si4134T-BM  
Functional Block Diagram  
32 31 30 29 28 27 26 25  
IFLB  
1
2
3
4
5
6
7
8
24 GND  
23 NC  
Si4200  
ADC  
Si4201  
DAC  
GSM  
DCS  
PCS  
LNA  
LNA  
LNA  
IFLA  
PDN  
PGA  
PGA  
PGA  
PGA  
I
22 GND  
21 RFLC  
20 RFLD  
19 GND  
18 SDO  
17 SDI  
XDRVEN  
XDRV  
GND  
GND  
PAD  
ADC  
DAC  
Q
XOUT  
100 kHz  
0 / 90  
VDD  
φ
DET  
GSM  
GND  
PA  
PA  
I
9
10 11 12 13 14 15 16  
DCS  
PCS  
Q
Si4134T  
DCXO  
Ordering Information:  
See page 42.  
RF  
PLL  
IF  
PLL  
AFC  
Patents pending  
Rev. 1.2 8/03  
Copyright © 2003 by Silicon Laboratories  
Aero+  
Aero+  
2
Rev. 1.2  
Aero+  
TABLE OF CONTENTS  
Section  
Page  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Typical Triple-Band Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Receive Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Transmit Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
VCO Inductor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
DCXO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
XDRV Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
XOUT Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Pin Descriptions: Si4200-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Pin Descriptions: Si4200DB-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Pin Descriptions: Si4201-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Pin Descriptions: Si4134T-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Package Outline: Si4200-BM and Si4200DB-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Package Outline: Si4201-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Package Outline: Si4134T-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Rev. 1.2  
3
Aero+  
Electrical Specifications  
Table 1. Recommended Operating Conditions1,2  
Parameter  
Symbol  
TA  
Test Condition  
Min  
–20  
2.7  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
Supply Voltage  
Supply Voltages Difference  
Notes:  
VDD  
2.85  
3.0  
0.3  
V
–0.3  
V
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at 2.85 V and an operating temperature of 25 °C unless otherwise stated. Parameters are tested in  
production unless otherwise stated.  
2. Supply voltage difference specification applies to power supply pins per IC.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
VDD  
Value  
–0.5 to 3.3  
±10  
Unit  
V
DC Supply Voltage  
3
Input Current  
IIN  
mA  
V
3
Input Voltage  
VIN  
–0.3 to (V + 0.3)  
DD  
Operating Temperature  
Storage Temperature  
TOP  
–40 to 95  
–55 to 150  
10  
°C  
TSTG  
°C  
4
RF Input Level  
dBm  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. The Si4200 and Si4134T devices are high-performance RF integrated circuits with an ESD rating of < 2 kV.  
Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For signals SCLK, SDI, SEN, PDN, XIN, XEN, XTALEN, and XDRVEN.  
4. At SAW filter output for all bands.  
4
Rev. 1.2  
Aero+  
Table 3. DC Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
IRX0  
Test Condition  
Receive mode  
Transmit mode  
PDN = 0  
Min  
Typ  
55  
60  
1
Max  
Unit  
mA  
mA  
µA  
Si4200 Supply Current  
80  
80  
50  
12  
50  
ITX0  
IPDN0  
IRX1  
1
Si4201 Supply Current  
Receive mode  
9
mA  
µA  
IPDN1  
PDN = 0, XEN = 0,  
XBUF = 0, XPD1 = 1  
1
IXOUT1  
IRX3  
PDN = 0, XEN = 1  
Receive mode  
1
18  
24  
1
2
mA  
mA  
mA  
µA  
2
Si4134T Supply Current  
22  
30  
50  
3.5  
ITX3  
Transmit mode  
IPDN3  
PDN = 0, XTALEN = 0  
IXTAL13 PDN = 0,XTALEN = 1,  
= 13 MHz  
2.5  
mA  
f
REF  
IXTAL26 PDN = 0,XTALEN = 1,  
= 26 MHz  
3.0  
4.0  
mA  
f
REF  
Total Chipset Supply Current  
IRX  
ITX  
VIH  
VIL  
IIH  
Receive mode  
Transmit mode  
83  
85  
mA  
mA  
V
3
High Level Input Voltage  
0.7 VDD  
3
Low Level Input Voltage  
0.3 VDD  
10  
V
3
High Level Input Current  
VIH = VDD = 3.0 V  
VIL = 0 V,  
–10  
–10  
µA  
µA  
3
Low Level Input Current  
IIL  
10  
V
DD = 3.0 V  
4
High Level Output Voltage  
VOH  
VOL  
VOH  
VOL  
IOH = –500 µA  
IOL = 500 µA  
IOH = –10 mA  
IOL = 10 mA  
VDD–0.4  
0.4  
V
V
V
V
4
Low Level Output Voltage  
5
High Level Output Voltage  
VDD–0.4  
5
Low Level Output Voltage  
0.4  
Notes:  
1. Measured with load on XOUT pin of 10 pF and fREF = 13 MHz. Limits with XEN = 1 guaranteed by characterization.  
2. RF1 VCO is used for receive mode, RF2 and IF VCOs are used for transmit mode. Center frequencies for each VCO  
are as follows: RF1 = 1.9 GHz, RF2 = 1.35 GHz, IF = 825 MHz, fREF = 13 MHz.  
3. For pins SCLK, SDI, SEN, XEN, PDN, XDRVEN, and XTALEN.  
4. For pins SDO and XOUT.  
5. For pins DIAG1 and DIAG2.  
Rev. 1.2  
5
Aero+  
Table 4. AC Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
tCLK  
tR  
Test Condition  
Figure 1, Figure 3  
Figure 1, Figure 3  
Figure 1, Figure 3  
Figure 1, Figure 3  
Figure 1, Figure 3  
Figure 2  
Min  
35  
Typ  
Max  
50  
50  
10  
10  
27  
5
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
pF  
SCLK Cycle Time  
SCLK Rise Time  
SCLK Fall Time  
tF  
SCLK High Time  
tHI  
10  
10  
SCLK Low Time  
tLO  
PDN Rise Time  
tPR  
PDN Fall Time  
tPF  
Figure 2  
SDI Setup Time to SCLK↑  
SDI Hold Time from SCLK↑  
SENto SCLKDelay Time  
SCLKto SENDelay Time  
SENto SCLKDelay Time  
SEN Pulse Width  
tSU  
Figure 3  
15  
10  
10  
12  
12  
10  
tHOLD  
tEN1  
tEN2  
tEN3  
tW  
Figure 3  
Figure 3  
Figure 3, Figure 4  
Figure 3, Figure 4  
Figure 3, Figure 4  
Figure 4  
SCLKto SDO Time  
tCA  
1
Digital Input Pin Capacitance  
2
Allowable Board Capacitance  
1
Notes:  
1. For pins SCLK, SDI, SEN, XEN, PDN, XDRVEN, and XTALEN.  
2. For pins CKN, CKP, ION, and IOP.  
tR  
tF  
80%  
SCLK  
50%  
20%  
tHI  
tLO  
tCLK  
Figure 1. SCLK Timing Diagram  
tPR  
tPF  
80%  
20%  
PDN  
Figure 2. PDN Timing Diagram  
6
Rev. 1.2  
 
 
Aero+  
80%  
50%  
20%  
D17  
D16  
A0  
SDI  
SCLK  
SEN  
tSU  
tHOLD  
80%  
50%  
20%  
tR  
tLO  
tHI  
tF  
tEN2  
tEN3  
tEN1  
tCLK  
80%  
50%  
20%  
tW  
Figure 3. Serial Interface Write Timing Diagram  
80%  
50%  
20%  
A0  
SDI  
SDO  
80%  
50%  
20%  
OD17  
OD16  
OD0  
tCA  
80%  
50%  
20%  
SCLK  
SEN  
tEN2  
tEN3  
80%  
50%  
20%  
tW  
Figure 4. Serial Interface Read Timing Diagram  
Rev. 1.2  
7
 
 
Aero+  
Table 5. Receiver Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM input  
Min  
869  
925  
1805  
1930  
Typ  
Max  
894  
960  
1880  
1990  
3.3  
3.4  
3.9  
4.3  
4.0  
4.1  
4.8  
5.5  
4.1  
4.2  
5.2  
5.8  
Unit  
MHz  
MHz  
MHz  
MHz  
dB  
1
GSM Input Frequency  
F
IN  
1
DCS or PCS Input Frequency  
2,3  
Noise Figure at 25 °C  
NF  
NF  
NF  
2.6  
2.7  
3.2  
3.6  
3.3  
3.4  
4.1  
4.8  
3.4  
3.5  
4.5  
5.1  
–21  
–25  
–16  
–15  
40  
25  
75  
85  
dB  
dB  
dB  
2,3  
Noise Figure at 75 °C  
dB  
dB  
dB  
dB  
2,3  
Noise Figure at 85 °C  
dB  
dB  
dB  
dB  
2,3,4  
3 MHz Input Desensitization  
DES  
–25  
–28  
–20  
–19  
29  
dBm  
dBm  
dBm  
dBm  
dBm  
3
DCS/PCS inputs  
GSM input  
2,3,4  
20 MHz Input Desensitization  
DES  
20  
DCS/PCS inputs  
|f – f | 6 MHz,  
2
Input IP2  
IP2  
IP3  
IR  
1,2  
0
|f – f | = 100 kHz  
2
1
2
Input IP3  
|f – f | 800 kHz,  
–18  
–12  
dBm  
2
1
f = 2f – f  
0
1
2
2,4  
Image Rejection  
GSM Input  
28  
28  
35  
40  
dB  
dB  
DCS/PCS Inputs  
GSM Input  
2,5  
1 dB Input Compression  
CP  
–28  
–27  
–23  
–23  
4.5  
11.5  
100  
96  
–23  
–22  
–18  
–18  
8.5  
15.5  
104  
102  
17  
dBm  
dBm  
dBm  
dBm  
dB  
MAX  
DCS/PCS inputs  
GSM Input  
2,6  
1 dB Input Compression  
CP  
MIN  
DCS/PCS inputs  
GSM input  
2,6,7  
Minimum Voltage Gain  
G
12.5  
19.5  
108  
106  
MIN  
DCS/PCS inputs  
GSM input  
dB  
2,7  
Maximum Voltage Gain  
G
dB  
MAX  
DCS/PCS inputs  
GSM input  
dB  
3,8  
LNA Voltage Gain  
G
dB  
LNA  
DCS/PCS inputs  
15  
dB  
8
Rev. 1.2  
Aero+  
Table 5. Receiver Characteristics (Continued)  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
GSM input  
Min  
13  
4
Typ  
17  
8
Max  
Unit  
dB  
dB  
dB  
dB  
dB  
dB  
LNA Gain Control Range  
G  
21  
12  
19  
4.8  
LNA  
DCS/PCS inputs  
Analog PGA Control Range  
Analog PGA Step Size  
G  
13  
3.2  
16  
4.0  
63  
1
APGA  
Digital PGA Control Range  
Digital PGA Step Size  
G  
DPGA  
9
Maximum Differential Output Voltage  
DACFS[1:0] = 00  
DACFS[1:0] = 01  
DACFS[1:0] = 10  
DACCM[1:0] = 00  
DACCM[1:0] = 01  
DACCM[1:0] = 10  
0.8  
1.6  
2.8  
0.8  
1.05  
1.15  
1.0  
2.0  
3.5  
1.0  
1.25  
1.35  
1.2  
2.4  
4.2  
1.2  
1.45  
1.55  
50  
1
V
PPD  
PPD  
V
V
PPD  
9
Output Common Mode Voltage  
V
V
V
9,10  
Differential Output Offset Voltage  
mV  
%
9,10  
Baseband Gain Error  
9,10  
Baseband Phase Error  
1
deg  
kΩ  
pF  
µs  
9
Output Load Resistance  
R
Single-ended  
Single-ended  
CSEL = 0  
10  
L
9
Output Load Capacitance  
C
10  
22  
16  
1.5  
1
L
11  
Group Delay  
CSEL = 1  
µs  
11  
Differential Group Delay  
CSEL = 0  
µs  
CSEL = 1  
µs  
3,12  
Powerup Settling Time  
From powerdown  
200  
220  
µs  
Notes:  
1. GSM input pins RFIGP and RFIGN. DCS input pins RFIDP and RFIDN. PCS input pins RFIPP and RFIPN. On the Si4200DB, the PCS  
input should be used for either PCS 1900 or DCS 1800 bands.  
2. Measurement is performed with a 2:1 balun (50 input, 200 balanced output) and includes matching network and PCB losses.  
Measured at max gain (AGAIN[2:0] =100b, LNAG[1:0] = 01b, LNAC[1:0] = 01b) unless otherwise noted. Noise figure measurements  
are referred to 290 °K. Insertion loss of the balun is removed.  
3. Specifications guaranteed by characterization.  
4. Input signal at balun is –102 dBm. SNR at baseband output is 9 dB.  
5. AGAIN[2:0]=000b, LNAG[1:0] = 01b, LNAC[1:0] = 01b.  
6. AGAIN[2:0]=000b, LNAG[1:0] = 00b, LNAC[1:0] = 00b.  
7. Voltage gain is defined as the differential rms voltage at the RXIP/RXIN pins or RXQP/RXQN pins divided by the rms voltage at the  
balun input with DACFS[1:0] = 01 and CSEL = 1. Gain is 1.5 dB higher with CSEL = 0. Minimum and maximum values do not include  
the variation in the Si4201 DAC full scale voltage (also see Maximum Differential Output Voltage specification).  
8. Voltage gain is defined as the differential rms voltage at the LNA output divided by the rms voltage at the balun output.  
9. Output pins RXIP, RXIN, RXQP, RXQN.  
10. The baseband signal path is entirely digital. Gain, phase, and offset errors at the baseband outputs are because of the Si4201 D/A  
converters. Offsets can be measured and calibrated out. See ZERODEL[2:0] in the register description.  
11. Group delay is measured from antenna input to baseband outputs. Differential group delay is measured in-band.  
12. Includes settling time of the Si4134T frequency synthesizer with 13 MHz DCXO output settled. Settling to 5 degrees phase error  
measured at RXIP, RXIN, RXQP, and RXQN pins.  
Rev. 1.2  
9
Aero+  
Receive Path Magnitude Response (CSEL = 0)  
0
−20  
−40  
−60  
−80  
−100  
−120  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (KHz)  
Figure 5. Receive Path Magnitude Response (CSEL = 0)  
Receive Path Passband Magnitude Response (CSEL = 0)  
2
0
−2  
−4  
−6  
−8  
−10  
−12  
−14  
−16  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Figure 6. Receive Path Passband Magnitude Response (CSEL = 0)  
Receive Path Passband Group Delay (CSEL = 0)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Figure 7. Receive Path Passband Group Delay (CSEL = 0)  
10  
Rev. 1.2  
Aero+  
Receive Path Magnitude Response (CSEL = 1)  
0
−20  
−40  
−60  
−80  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (KHz)  
Figure 8. Receive Path Magnitude Response (CSEL = 1)  
Receive Path Passband Magnitude Response (CSEL = 1)  
2
0
−2  
−4  
−6  
−8  
−10  
−12  
−14  
−16  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Figure 9. Receive Path Passband Magnitude Response (CSEL = 1)  
Receive Path Passband Group Delay (CSEL = 1)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Figure 10. Receive Path Passband Group Delay (CSEL = 1)  
Rev. 1.2  
11  
Aero+  
Table 6. Transmitter Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
Min  
824  
880  
1710  
1850  
0.88  
1.1  
26  
Typ  
Max  
849  
915  
1785  
1910  
2.2  
1.4  
35  
Unit  
MHz  
MHz  
MHz  
MHz  
1
RFOG Output Frequency  
2
RFOD Output Frequency  
3,4  
I/Q Differential Input Swing  
V
PPD  
3
I/Q Input Common-Mode  
V
3,4  
I/Q Differential Input Resistance  
BBG[1:0] = 11b  
BBG[1:0] = 00b  
BBG[1:0] = 01b  
Powered down  
30  
kΩ  
kΩ  
22  
25  
29  
17  
20  
23  
kΩ  
Hi-Z  
kΩ  
3,5  
I/Q Input Capacitance  
5
pF  
3
I/Q Input Bias Current  
13  
16  
19  
µA  
Sideband Suppression  
Carrier Suppression  
IM3 Suppression  
67.7 kHz sinusoid  
67.7 kHz sinusoid  
67.7 kHz sinusoid  
–46  
–48  
–57  
1.9  
5
–34  
–33  
–50  
3.0  
10  
dBc  
dBc  
dBc  
5
o
Phase Error  
rms  
o
PEAK  
1,2  
TXVCO Pushing  
Open loop  
100  
200  
kHz/V  
1,2  
TXVCO Pulling  
VSWR 2:1, all phases  
open loop  
kHz  
PP  
1,6  
RFOG Output Modulation Spectrum  
400 kHz offset  
1.8 MHz offset  
400 kHz offset  
1.8 MHz offset  
10 MHz offset  
20 MHz offset  
20 MHz offset  
7
–65  
–70  
–65  
–70  
–160  
–166  
–163  
9
–63  
–68  
–63  
–65  
–155  
–164  
–157  
11  
dBc  
dBc  
dBc  
2,6  
RFOD Output Modulation Spectrum  
dBc  
1,5,7  
RFOG Output Phase Noise  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBm  
2,5,7  
RFOD Output Phase Noise  
1
RFOG Output Power Level  
Z = 50 Ω  
L
2
RFOD Output Power Level  
Z = 50 Ω  
6
8
10  
dBm  
L
12  
Rev. 1.2  
 
Aero+  
Table 6. Transmitter Characteristics (Continued)  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
2nd harmonic  
Min  
Typ  
Max  
Unit  
dBc  
dBc  
µs  
1,2  
RF Output Harmonic Suppression  
–20  
–10  
150  
3rd harmonic  
5,8  
Powerup Settling Time  
From powerdown  
Notes:  
1. Measured at RFOG pin.  
2. Measured at RFOD pin.  
3. Input pins TXIP, TXIN, TXQP, and TXQN.  
4. Differential Input Swing is programmable with the BBG[1:0] bits in Register 04h. Program these bits to the closest  
appropriate value. The I/Q Input Resistance scales inversely with the BBG[1:0] setting.  
5. Specifications are guaranteed by characterization.  
6. Measured with pseudo-random pattern. Carrier power and noise power < 1.8 MHz measured with 30 kHz RBW. Noise  
power 1.8 MHz measured with 100 kHz RBW.  
7. Measured with all 1s pattern.  
8. Including settling time of the Si4134T frequency synthesizer with 13 MHz DCXO output settled. Settling time measured  
at the RFOD and RFOG pins to 0.1 ppm frequency error.  
Rev. 1.2  
13  
Aero+  
Table 7. Frequency Synthesizer Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
f
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900  
1737.8  
1849.8  
1804.9  
1929.9  
1272  
1279  
1327  
1423  
1787.8  
1919.8  
1879.9  
1989.9  
1297  
1314  
1402  
1483  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
RF1 VCO Frequency  
RF1  
1
f
RF2 VCO Frequency  
RF2  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
1
f
896  
798  
IF VCO Frequency  
IF  
E-GSM 900 band  
880–895 MHz  
900–915 MHz  
E-GSM 900 band  
895–900 MHz  
790  
MHz  
DCS 1800 band  
PCS 1900 band  
766  
854  
200  
MHz  
MHz  
kHz  
f
GSM input,  
RFUP = 0  
RF1 PLL Phase Detector Update  
Frequency  
φ
DCS/PCS inputs,  
RFUP = 1  
100  
200  
kHz  
kHz  
f
IF and RF2 PLL Phase Detector  
Update Frequency  
φ
2,3  
4.8  
6.5  
pF  
pF  
RF2 VCO Nominal Capacitance  
C
L
NOM  
PKG  
2,3  
IF VCO Nominal Capacitance  
2,3  
2.0  
nH  
RF2 VCO Package Inductance  
2,3  
1.6  
nH  
IF VCO Package Inductance  
3
Open Loop  
500  
400  
300  
400  
100  
100  
–144  
–126  
–128  
kHz/V  
kHz/V  
kHz/V  
RF1 VCO Pushing  
3
RF2 VCO Pushing  
3
IF VCO Pushing  
3
VSWR = 2:1,  
all phases, open loop  
kHz  
RF1 VCO Pulling  
PP  
3
kHz  
RF2 VCO Pulling  
PP  
3
kHz  
IF VCO Pulling  
PP  
3
3 MHz offset  
400 kHz offset  
400 kHz offset  
–138  
–121  
–123  
dBc/Hz  
dBc/Hz  
dBc/Hz  
RF1 PLL Phase Noise  
3
RF2 PLL Phase Noise  
3
IF PLL Phase Noise  
14  
Rev. 1.2  
 
Aero+  
Table 7. Frequency Synthesizer Characteristics (Continued)  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
3 MHz offset  
Min  
Typ  
–95  
–80  
–80  
Max  
Unit  
dBc  
dBc  
dBc  
3
3
–83  
–75  
–70  
RF1 PLL Spurious  
RF2 PLL Spurious  
400 kHz offset  
400 kHz offset  
3
IF PLL Spurious  
Notes:  
1. For the GSM input, the RF1 VCO is divided by two on the Si4200. During transmit, the IF VCO is divided by two on the  
Si4200. These tuning ranges are guaranteed provided the VCOs on the Si4134T are properly centered during the PC  
board design phase. See “AN49: Aero Transceiver PCB Layout Guidelines” for more information.  
2. See "VCO Inductor Design" on page 22.  
3. Specifications are guaranteed by characterization.  
Table 8. Reference Oscillator (DCXO) Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
2
Unit  
pF  
XDRV Board Capacitance  
XTAL1 Trace Capacitance  
XTAL2 Trace Capacitance  
C
XDRV  
XTAL1  
XTAL2  
1
1
C
C
0.90  
0.63  
13  
pF  
pF  
Crystal Oscillation Frequency  
f
XSEL = 0, DIV2 = 0  
XSEL = 1, DIV2 = 1  
MHz  
MHz  
pF  
REF  
26  
Crystal Load Capacitance  
8
C
L
2
Crystal Sensitivity  
22.5  
10  
10  
ppm/pF  
ppm  
S
Initial Crystal Frequency Offset  
f  
–10  
–10  
T = 25 °C  
OFF  
TOL  
A
3
Crystal Frequency Tolerance  
f  
ppm  
4
CDAC Range  
f  
20  
0
1.0  
1.5  
2.5  
60  
ppm  
ppm  
V
CDAC  
4,5  
CDAC Step Size  
CVAR Input Voltage  
V
XAFC  
4
CVAR Range  
f  
V
= 0 to 2.5 V  
CTL  
20  
30  
1.0  
ppm  
ms  
CVAR  
DCXO  
Powerup Settling Time  
t
V
= 1.25 V  
CTL  
Notes:  
1. See “AN49: Aero Transceiver PCB Layout Guidelines” for suggested layout.  
2. Allowable manufacturing tolerance of ±10% from typical value.  
3. Crystal accuracy over temperature range.  
4. Specifications guaranteed when using a crystal that conforms to fREF = 13 MHz, CL = 8 pF, S = 22.5 ppm/pF,  
fOFF = ±10 ppm, and fTOL = ±10 ppm.  
5. Average step size over CDAC codes 0 to 63.  
Rev. 1.2  
15  
 
Aero+  
Typical Triple-Band Application Schematic  
PDN  
SEN  
SCLK  
SDI  
EGSM TX Output  
DCS/PCS TX Output  
SDO  
VDD  
C10  
VDD  
C14  
VDD  
C13  
Z1  
C1  
EGSM RX Input  
DCS RX Input  
PCS RX Input  
OUT-  
In  
Gnd  
In  
L1  
L2  
L3  
1
2
3
4
5
15  
14  
13  
12  
11  
GND  
SDO  
PDN  
XOE  
ION  
RXQP  
RXQN  
RXIP  
RXQP  
RXQN  
RXIP  
RXIN  
U2  
SI4201  
OUT+  
VDD  
1
2
3
4
5
6
7
8
24  
ION  
RFOD  
C2  
C3  
23  
22  
21  
20  
19  
18  
17  
RXIN  
IOP  
IOP  
VDD  
RFIGN  
RFIGP  
RFIDN  
RFIDP  
RFIPN  
RFIPP  
CKN  
CKP  
TXIP  
TXIN  
TXQP  
TXQN  
U1  
SI4200  
Z2  
OUT-  
OUT+  
Gnd  
In  
VDD  
C4  
C5  
C9  
Z3  
OUT-  
TXIP  
VDD  
TXIN  
TXQP  
TXQN  
OUT+  
Gnd  
C6  
VDD  
C12  
VDD  
C7  
L4  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
IFLB  
GND  
NC  
L5  
PCB Trace  
IFLA  
PDN  
GND  
RFLC  
RFLD  
GND  
SDO  
SDI  
XDRVEN  
XDRV  
GND  
U3  
SI4134T  
VDD  
VDD  
GND  
C11  
X1  
13/26MHz  
XTAL_EN  
XAFC  
Notes:  
1. Connect GND pad on bottom of U1–U3 to GND.  
2. All VDD pins may be fed from a single supply or regulator.  
3. For dual-band designs, the DCS LNA input pins (U1 pins 19–20) should be grounded. For a complete pinout, see "Pin  
Descriptions: Si4200DB-BM" on page 39.  
4. See “AN49: Aero Transceiver PCB Layout Guidelines” for details on the following:  
z LNA matching network (C1–C6, L1–L3). Values should be custom tuned for a specific PCB layout and SAW filter to  
optimize performance.  
z Differential traces between the SAW filters (Z1–Z3) and transceiver (U1) pins 17–22.  
z Detailed SAW filter (Z1–Z3) requirements.  
z L4 and PCB inductor trace L5 for frequency synthesizer (U3) pins 1–2 and 20–21.  
z CKP/CKN and IOP/ION differential traces between transceiver (U1) pins 1–4 and baseband interface (U2) pins 9–12.  
z X1 connection to U3 pins 11–12.  
5. XEN, XDRVEN, and XTALEN are recommended to be tied together and controlled simultaneously.  
16  
Rev. 1.2  
 
Aero+  
Bill of Materials  
Component(s)  
Value/Description  
Supplier(s)  
C1–C2  
1.2 pF, ±0.1 pF, C0G  
(GSM 850 and E-GSM 900)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
C3–C4  
C5–C6  
1.0 pF, ±0.1 pF, C0G  
(DCS 1800)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
1.0 pF, ±0.1 pF, C0G  
(PCS 1900)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
C7  
C9–C10, C13–C14  
C11–C12  
100pF, ±5%, C0G  
22 nF, ±20%, Z5U  
10 pF, ±20%, C0G  
24 nH, ±5%  
Venkel C0402C0G500 series  
L1  
Murata LQW18AN series (0603 size)  
Murata LQW15A series (0402 size)  
L2  
L3  
7.5 nH, ±0.5 nH  
6.8 nH, ±0.2 nH  
Murata LQW18AN series (0603 size)  
Murata LQW15A series (0402 size)  
Murata LQW18AN series (0603 size)  
Murata LQW15A series (0402 size)  
L4  
L5  
3.9 nH, ±5%  
Inductor for RF2 VCO  
100 , ±5%  
Multi-layer (0402 or 0603 size)  
PCB Trace  
R1  
U1  
U2  
U3  
GSM Transceiver  
Silicon Laboratories Si4200-BM  
Silicon Laboratories Si4201-BM  
Silicon Laboratories Si4134T-BM  
Universal Baseband Interface  
RF Synthesizer  
X1  
13 or 26 MHz Crystal, C = 8.0 pF  
KDS BR13000AA0E  
L
KSS CX96FFFBQAJ13  
Z1  
GSM 850 RX SAW Filter  
(150 or 200 balanced output)  
EPCOS B39881-B7719-C610 (6-pin, 2.0x2.5 mm)  
EPCOS B39881-B9001-C710 (5-pin, 1.4x2.0 mm)  
Murata SAFSD881MFL0T00R00 (6-pin, 2.0x2.5 mm)  
Murata SAFEK881MFL0T00R00 (6-pin, 1.6x2.0 mm)  
E-GSM 900 RX SAW Filter  
(150 or 200 balanced output)  
EPCOS B39941-B7721-C910 (6-pin, 2.0x2.5 mm)  
EPCOS B39941-B7820-C710 (5-pin, 1.4x2.0 mm)  
Murata SAFSD942MFM0T00R00 (6-pin, 2.0x2.5 mm)  
Murata SAFEK942MFM0T00R00 (6-pin, 1.6x2.0 mm)  
Z2  
Z3  
DCS 1800 RX SAW Filter  
(150 or 200 balanced output)  
EPCOS B39182-B7749-C910 (6-pin, 2.0x2.5 mm)  
EPCOS B39182-B7821-C710 (5-pin, 1.4x2.0 mm)  
Murata SAFSD1G84FA0T00R00 (6-pin, 2.0x2.5 mm)  
Murata SAFEK1G84FA0T00R00 (6-pin, 1.6x2.0 mm)  
PCS 1900 RX SAW Filter  
(150 or 200 balanced output)  
EPCOS B39202-B7741-C910 (6-pin, 2.0x2.5 mm)  
EPCOS B39202-B7825-C710 (5-pin, 1.4x2.0 mm)  
Murata SAFSD1G96FB0T00R00 (6-pin, 2.0x2.5 mm)  
Murata SAFEK1G96FA0T00R00 (6-pin, 1.6x2.0 mm)  
Rev. 1.2  
17  
 
Aero+  
Functional Description  
Si4200  
Si4201  
GSM  
LNA  
PGA  
PGA  
ADC  
PGA  
PGA  
DAC  
I
DCS  
PCS  
LNA  
LNA  
ADC  
DAC  
Q
XOUT  
100 kHz  
0 / 90  
φ
DET  
GSM  
PA  
PA  
I
DCS  
PCS  
Q
Si4134T  
RF  
PLL  
IF  
PLL  
DCXO  
AFC  
Figure 11. Aero+ Transceiver Block Diagram  
The Aero+ transceiver is the industry’s most integrated reduced complexity. The universal baseband interface  
RF front end for multi-band GSM/GPRS digital cellular is compatible with any supplier’s baseband subsystem.  
handsets and wireless data modems. The chipset  
The transmit section is a complete up-conversion path  
consists of the Si4200 GSM transceiver, Si4201  
from the baseband subsystem to the power amplifier,  
universal baseband interface, and Si4134T dual RF  
and uses an offset phase-locked loop (PLL) with a fully  
synthesizer with an integrated digitally-controlled crystal  
integrated transmit VCO. The frequency synthesizer  
oscillator (DCXO). The highly integrated solution  
uses Silicon Laboratories’ proven technology that  
eliminates the IF SAW filter, external low noise  
includes integrated RF and IF VCOs, varactors, and  
amplifiers (LNAs) for three bands, transmit and RF  
loop filters.  
voltage-controlled oscillator (VCO) modules, and more  
The unique integer-N PLL architecture used in the  
than 60 other discrete components found in  
Si4134T produces a transient response superior in  
conventional designs.  
speed to fractional-N architectures without suffering the  
The high level of integration combined with micro  
high phase noise or spurious modulation effects often  
leadframe package (MLP) technology and fine line  
associated with those designs. This fast transient  
CMOS process technology results in a solution with  
response makes the Aero+ chipset well suited to GPRS  
50% less area and 80% fewer components than  
multi-slot applications where channel switching and  
competing solutions. A triple-band GSM transceiver  
settling times are critical.  
using the Aero+ chipset can be implemented with 19  
While conventional solutions use BiCMOS or other  
bipolar process technologies, the Aero+ chipset is the  
industry’s first cellular transceiver to be implemented in  
a 100% CMOS process. This brings the cost savings  
and extensive manufacturing capacity of CMOS to the  
GSM market.  
2
components in less than 2 cm of board area. This level  
of integration is an enabling force in lowering the cost,  
simplifying the design and manufacturing, and shrinking  
the form factor in next-generation GSM/GPRS voice  
and data terminals.  
The receive section uses a digital low-IF architecture  
that avoids the difficulties associated with direct  
conversion while delivering lower solution cost and  
18  
Rev. 1.2  
Aero+  
Receive Section  
Si4200  
Si4201  
LNA  
LNA  
LNA  
GSM  
DCS  
PCS  
PGA  
ADC  
PGA  
DAC  
I
PGA  
ADC  
PGA  
DAC  
Q
DGAIN[5:0]  
DACCM[1:0]  
DACFS[1:0]  
AGAIN[2:0]  
CSEL  
RXBAND[1:0]  
LNAC[1:0]  
LNAG[1:0]  
100 kHz  
0 / 90  
ZERODEL[2:0]  
Si4134T  
NRF1[15:0]  
RF  
PLL  
RFUP  
Figure 12. Receiver Block Diagram  
The Aero+ transceiver uses  
a
low-IF receiver GSM 900 modes. The mixer output is amplified with an  
architecture that allows for the on-chip integration of the analog programmable gain amplifier (PGA), which is  
channel selection filters, eliminating the external RF controlled with the AGAIN[2:0] bits in register 05h. The  
image reject filters and the IF SAW filter required in quadrature IF signal is digitized with high resolution A/D  
conventional superheterodyne architectures. Compared converters (ADCs).  
to  
a
direct-conversion architecture, the low-IF  
The Si4201 downconverts the ADC output to baseband  
with a digital 100 kHz quadrature LO signal. Digital  
decimation and IIR filters perform channel selection to  
remove blocking and reference interference signals.  
The response of the IIR filter is programmable to a high  
selectivity setting (CSEL = 0) or a low selectivity setting  
(CSEL = 1). The low selectivity filter has a flatter group  
architecture has a much greater degree of immunity to  
dc offsets that can arise from RF local oscillator (RFLO)  
self-mixing, 2nd-order distortion of blockers, and device  
1/f noise. This relaxes the common-mode balance  
requirements on the input SAW filters and simplifies PC  
board design and manufacturing.  
The Si4200 integrates three differential-input LNAs. The delay response that may be desirable where the final  
GSM input supports the GSM 850 (869–894 MHz) or E- channelization filter is in the baseband chip. After  
GSM 900 (925–960 MHz) bands. The DCS input channel selection, the digital output is scaled with a  
supports the DCS 1800 (1805–1880 MHz) band. The digital PGA, which is controlled with the DGAIN[5:0] bits  
PCS input supports the PCS 1900 (1930–1990 MHz) in register 05h.  
band. For quad-band designs, SAW filters for the  
The LNAG[1:0], LNAC[1:0], AGAIN[2:0] and DGAIN[5:0]  
GSM 850 and E-GSM 900 bands should be connected  
bits must be set to provide a constant amplitude signal  
to a balanced combiner which drives the GSM input for  
to the baseband receive inputs. See “AN51: Aero  
both bands. For dual-band designs using the  
Transceiver AGC Strategy” for more details.  
Si4200DB-BM, the PCS input should be used for either  
DACs drive a differential analog signal onto the RXIP,  
DCS 1800 or PCS 1900 bands.  
RXIN, RXQP, and RXQN pins to interface to standard  
The LNA inputs are matched to the 200 balanced-  
output SAW filters through external LC matching  
networks. See “AN49: Aero Transceiver PCB Layout  
Guidelines” for details. The LNA gain is controlled with  
the LNAG[1:0] and LNAC[1:0] bits in register 05h.  
analog-input baseband ICs. No special processing is  
required in the baseband for offset compensation or  
extended dynamic range. The receive and transmit  
baseband I/Q pins can be multiplexed together into a 4-  
wire interface. The common mode level at the receive I  
A quadrature image-reject mixer downconverts the RF and Q outputs is programmable with the DACCM[1:0]  
signal to a 100 kHz intermediate frequency (IF) with the bits, and the full scale level is programmable with the  
RFLO from the Si4134T frequency synthesizer. The DACFS[1:0] bits in register 12h.  
RFLO frequency is between 1737.8 and 1989.9 MHz,  
and is divided by two in the Si4200 for GSM 850 and E-  
Rev. 1.2  
19  
Aero+  
Transmit Section  
Si4134T  
IF  
RF  
PLL  
NRF2[15:0]  
PDRB  
NIF [15:0]  
PDIB  
PLL  
Si4200  
BBG[1:0]  
SWAP  
REG  
GSM  
PA  
FIF[3:0]  
÷2  
REG  
I
φ
DET  
PA  
÷1, 2  
DCS/PCS  
Q
TXBAND[1:0]  
Figure 13. Transmitter Block Diagram  
The transmit (TX) section consists of an I/Q baseband RFLO, high-side injection is used for the GSM 850 and  
upconverter, an offset phase-locked loop (OPLL), and E-GSM 900 bands, and low-side injection is used for  
two output buffers that can drive external power the DCS 1800 and PCS 1900 bands. The I and Q  
amplifiers (PA): one for the GSM 850 (824 to 849 MHz) signals are automatically swapped within the Si4200  
and E-GSM 900 (880 to 915 MHz) bands and one for when switching bands. Additionally, the SWAP bit in  
the DCS 1800 (1710 to 1785 MHz) and PCS 1900 register 03h can be used to manually exchange the I  
(1850 to 1910 MHz) bands. The OPLL requires no and Q signals.  
external filtering to attenuate transmitter noise or  
Low-pass filters before the OPLL phase detector reduce  
spurious signals in the receive band, saving both cost  
the harmonic content of the quadrature modulator and  
and power. Additionally, the output of the transmit VCO  
feedback mixer outputs. The cutoff frequency of the  
(TXVCO) is a constant-envelope signal that reduces the  
filters is programmable with the FIF[3:0] bits in  
problem of spectral spreading caused by non-linearity in  
register 04h and should be set to the recommended  
settings detailed in the register description.  
the PA.  
A quadrature mixer upconverts the differential in-phase  
(TXIP, TXIN) and quadrature (TXQP, TXQN) signals  
with the IFLO to generate a SSB IF signal that is filtered  
and used as the reference input to the OPLL. The  
Si4134T generates the IFLO frequency between 766  
and 896 MHz. The IFLO is divided by two to generate  
the quadrature LO signals for the quadrature modulator,  
resulting in an IF between 383 and 448 MHz. For the E-  
GSM 900 band, two different IFLO frequencies are  
required for spur management. Therefore, the IF PLL  
must be programmed per channel in the E-GSM 900  
band. The IFLO frequencies are defined in Table 6 on  
page 12.  
The OPLL consists of a feedback mixer, a phase  
detector, a loop filter, and a fully integrated TXVCO. The  
TXVCO is centered between the DCS 1800 and  
PCS 1900 bands, and its output is divided by two for the  
GSM 850 and E-GSM 900 bands. The Si4134T  
generates the RFLO frequency between 1272 and  
1483 MHz. To allow a single VCO to be used for the  
20  
Rev. 1.2  
Aero+  
Frequency Synthesizer  
RFLC  
RFLD  
Si4134T  
XAFC  
XTALEN  
÷65,  
RF1  
÷1,2  
RFLOP  
RFLON  
φ
DET  
÷130  
DCXO  
XTAL1  
XTAL2  
RF2  
DIV2  
RFUP  
NRF1[15:0]  
Self  
Tune  
N
RF2[15:0]  
CDAC[5:0]  
RF PLL  
IF PLL  
÷N  
XDRV  
XDRVEN  
÷N  
Power  
Control  
PDIB  
PDN  
PDRB  
Self  
NIF [15:0]  
Tune  
SDI  
SCLK  
SEN  
Serial  
I/O  
SDOSEL[3:0]  
IFLOP  
IFLON  
φ
DET  
SDO  
IFLA  
IFLB  
Figure 14. Si4134T Frequency Synthesizer Block Diagram  
The Si4134T dual frequency synthesizer is a monolithic should be set appropriately. The RF PLL phase detector  
CMOS integrated circuit that performs IF and RF update rate (f ) can be programmed with the RFUP bit  
φ
synthesis. An integrated digitally-controlled crystal in Register 31h to either f = 100 kHz or f = 200 kHz.  
φ
φ
oscillator (DCXO) is provided to generate the reference Receive mode should use f = 100 kHz in DCS 1800  
φ
clock. The DCXO allows the use of a standard crystal and PCS 1900 bands, and f = 200 kHz in the GSM 850  
φ
resonator, avoiding the need for a crystal oscillator and E-GSM 900 bands. For transmit modes, the RF2  
module.  
and IF PLL phase detector update rates should always  
be configured for f = 200 kHz.  
φ
Two complete PLLs are integrated including VCOs,  
varactors, resonators, loop filters, reference and VCO  
dividers, and phase detectors. Differential outputs for  
the IF and RF PLLs are provided for direct connection to  
the Si4200 transceiver IC. The RF PLL uses two  
multiplexed VCOs. The RF1 VCO is used for receive  
mode, and the RF2 VCO is used for transmit mode. The  
IF PLL is used only during transmit mode and uses a  
single VCO.  
The IF and RF output frequencies are set by  
programming the N-Divider registers, N  
, N  
, and  
RF1  
RF2  
N . Programming the N-Divider register for either RF1  
IF  
or RF2 automatically selects the proper VCO. The  
output frequency of each PLL is as follows:  
fOUT = N × fφ  
A programmable divider in the input stage allows either  
a 13 or 26 MHz reference frequency depending on the  
choice of crystal. When configured for 26 MHz  
operation using a TCXO, the DIV2 bit in Register 31h  
Rev. 1.2  
21  
Aero+  
VCO Inductor Design  
Si4134T  
LPKG/2  
LEXT  
CVAR  
CTUNE  
CFIX  
AMP  
LPKG/2  
Self  
Tune  
PLL  
IC PACKAGE BOARD  
Figure 15. VCO Block Diagram  
Table 9. VCO fCEN Values (MHz)  
Determining L  
EXT  
The center frequencies for the RF2, and IF VCOs in the  
Si4134T are set using an external inductance (L ). It  
is very important that L  
EXT  
RF1* RF2 IF  
be properly designed to  
EXT  
Supported Bands  
VCO VCO VCO  
1862 1341 782  
1897 1381 810  
ensure maximum manufacturing margin for the desired  
VCO frequency tuning ranges. Because the total tank  
inductance is in the low nH range, the inductance of the  
European Dual-Band (900/1800)  
Triple-Band (900/1800/1900)  
package (L  
) must be considered in determining the  
PKG  
correct external inductance.  
Quad-Band (850/900/1800/1900) 1864 1378 831  
or North American Dual Band  
(850/1900)  
Figure 15 shows the detailed configuration of the  
integrated VCOs. The total inductance (L  
VCO is the sum of the external inductance (L  
) of each  
TOT  
) and  
EXT  
*Note: LEXT is set internally.  
the package inductance (L  
). The total capacitance  
PKG  
(C  
) of each VCO is the sum of the self tuning  
TOT  
capacitance (C  
), the PLL varactor capacitance  
TUNE  
Table 10. VCO LEXT Values (nH)  
(C  
), and the fixed capacitance (C ). The nominal  
VAR  
FIX  
capacitance (C  
) of each VCO is calculated with  
NOM  
RF2  
IF  
C
and C  
at their center values. C  
and L  
TUNE  
VAR  
NOM PKG  
Supported Bands  
VCO VCO  
0.91 4.77  
0.75 4.34  
0.76 4.04  
values are defined in Table 7 on page 14.  
The center frequency is calculated as follows:  
European Dual-Band (900/1800)  
Triple-Band (900/1800/1900)  
1
------------------------------------------------------------------  
=
fCEN  
2π CNOM(LPKG + LEXT  
)
Quad-Band (850/900/1800/1900) or  
North American Dual Band (850/1900)  
The value for the external inductor is determined by the  
following:  
For example, the RF2 VCO for a triple-band design  
requires f = 1381 MHz. Table 7 on page 14 shows  
1
-------------------------------------------  
LEXT  
=
LPKG  
CEN  
(2πfCEN)2CNOM  
C
= 4.8 pF and L  
= 2.02 nH for the RF2 VCO.  
NOM  
PKG  
The previous equation shows L  
connected between the RFLC and RFLD pins.  
= 0.75 nH should be  
EXT  
where f  
= desired center frequency of VCO.  
= nominal capacitance from Table 7.  
= package inductance from Table 7.  
= external inductance required.  
CEN  
C
NOM  
PKG  
EXT  
See “AN49: Aero Transceiver PCB Layout Guidelines”  
for details on how to implement and verify the proper  
L
L
value of L  
.
EXT  
22  
Rev. 1.2  
 
Aero+  
The CDAC[5:0] register (register 28) may be  
programmed during powerup or after an initial  
calibration. Periodic adjustments to compensate for  
aging may also be performed over time to ensure  
accuracy.  
DCXO Overview  
The Si4134T integrates the DCXO circuitry required to  
generate a precise system reference clock using only  
an external crystal resonator. (See Figure 16.) An  
internal digitally programmable capacitor array (CDAC)  
provides a coarse method of adjusting the reference  
frequency in discrete steps. An integrated analog  
varactor (CVAR) allows for a fine and continuous  
adjustment of the reference frequency by an external  
control voltage (XAFC). This control voltage is supplied  
The baseband determines the appropriate frequency  
adjustment based on the receipt of the FCCH burst. The  
baseband then adjusts the XAFC voltage using the  
baseband AFC DAC (12 or 13-bit), which controls the  
varactor on the Si4134T.  
by the AFC DAC on the baseband IC. The complete The baseband AFC DAC can adjust CVAR to correct for  
DCXO solution effectively replaces the TCVCXO frequency variations caused by temperature drift. The  
module typically required to provide a 13 or 26 MHz step size per bit depends on the resolution of the AFC  
reference clock for the system. The Si4134T generates DAC and its output voltage range.  
a single-ended 13 or 26 MHz output (XDRV) to drive the  
DCXO Crystal Selection  
Si4201, and the Si4201 then buffers a 13 or 26 MHz  
The tuning range specifications listed in Table 8 on  
reference clock (XOUT) to be sent to other system  
page 15 for CDAC and CVAR assume that Aero+ is  
components such as the baseband. The complete  
used with a crystal that conforms to the crystal  
circuit is shown in the "Typical Triple-Band Application  
parameters listed in the same table. Other crystals may  
Schematic" on page 16.  
be used with Aero+ for cost and/or performance  
reasons. For example, using a higher sensitivity crystal  
DCXO Tuning  
The DCXO uses the CDAC and the CVAR to correct for extends the CVAR and the CDAC frequency  
both static and dynamic frequency errors, respectively. compensation range. However, care must be taken  
To compensate for crystal systematic offset error, the when using a more sensitive crystal because other  
CDAC ensures a minimum of ±10 ppm frequency system parameters are affected. Contact Silicon  
adjustment capability. The CDAC is programmed using Laboratories' applications support for assistance in  
register 28h.  
specifying other crystals.  
Si4201  
Si4134T  
To  
XOUT  
XIN  
XDRV  
PLLs  
XTAL2  
CVAR  
AMP  
Y1  
XTAL1  
XAFC  
CDAC[5:0]  
AFC  
DAC  
Figure 16. DCXO System Signal Routing Diagram  
Rev. 1.2  
23  
 
Aero+  
Serial Interface  
XDRV Buffer  
A three-wire serial interface is provided to allow an To supply a frequency adjusted reference clock to the  
external system controller to write the control registers Si4201, the XDRVEN pin on the Si4134T must be high.  
for dividers, receive path gain, powerdown settings, and When held low, the Si4134T is fully operational, but no  
other controls. The serial control word is 24 bits in reference signal (either 13 or 26 MHz) is sourced from  
length, comprised of an 18-bit data field and a 6-bit the XDRV pin.  
address field as shown in Figure 17. A single logical  
register space is shared among the three chips, which is  
DCXO and must be enabled (XTALEN = 1) before the  
summarized in Table 11 on page 25.  
XDRV signal can be sourced.  
The XTALEN signal controls the powerup state of the  
Last bit  
clocked in  
XOUT Buffer  
The Si4201 contains a reference clock buffer to drive  
D
D
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
5
A
4
A
3
A
2
A
1
A
0
the baseband input. The clock signal from the Si4134T  
is capacitively coupled to the XIN pin on the Si4201. To  
achieve complete powerdown during sleep, the XEN pin  
must be set low, the XBUF bit in Register 12 must be  
set to 0, and the XPD1 bit in Register 11 must be set to  
1. During normal operation, these bits should set to their  
default values.  
17 16 15 14 13 12 11 10  
Data Field  
Address Field  
Figure 17. Serial Interface Format  
The serial interface pins are intended to be connected in  
parallel to both the Si4201 and the Si4134T. Serial  
control is relayed from the Si4201 to the Si4200 over  
the signal interface (IOP/ION and CKP/CKN pins). All  
registers must be written when the PDN pin is asserted  
(low), except for Register 22h. All serial interface pins  
should be held at a constant level during receive and  
transmit bursts to minimize spurious emissions. This  
includes stopping the SCLK clock. A timing diagram for  
the serial interface is shown in Figure 3 on page 7.  
The XOUT buffer is a CMOS driver stage with  
approximately 250 of series resistance. This buffer is  
enabled when the XEN hardware control (pin 13 on the  
Si4201) is set high, independent of the PDN control pin.  
When the serial interface is enabled (i.e., when SEN is  
low), data and address bits on the SDI pin are clocked  
into an internal shift register on the rising edge of SCLK.  
Data in the shift register is then transferred on the rising  
edge of SEN into the internal data register addressed in  
the address field. The internal shift register ignores any  
leading bits before the 24 required bits. The serial  
interface is disabled when SEN is high.  
Optionally, registers can be read as illustrated in  
Figure 4 on page 7. The serial output data appears on  
the SDO pin after writing the revision register with the  
address to be read. SDO is enabled when PDN = 0 on  
the Si4201 and when PDN = 1 on the Si4134T, allowing  
the SDO pin to be shared. Writing to any of the registers  
causes the function of SDO to revert to its previously  
programmed function.  
24  
Rev. 1.2  
 
Aero+  
Control Registers  
Table 11. Register Summary  
Bit  
Reg Name  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Si4200  
Revision/Read  
00h  
0
0
0
0
0
0
0
0
0
0
REV0[7:0]  
01h  
02h  
03h  
04h  
05h  
Reset  
Mode  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
SWAP  
0
AUTO  
MODE[1:0]  
Config  
DIAG[1:0]  
TXBAND[1:0] RXBAND[1:0]  
FIF[3:0]  
0
0
1
0
0
0
Transmit  
Receive  
0
0
0
BBG[1:0]  
DGAIN[5:0]  
0
AGAIN[2:0]  
LNAC[1:0]  
REV1[7:0]  
LNAG[1:0]  
Si4201  
Revision/Read  
10h  
0
0
0
0
0
0
0
0
0
11h  
12h  
19h  
20h  
21h  
22h  
23h  
24h  
28h  
30h  
Config  
0
0
0
0
0
0
0
0
0
0
0
0
DPDS[2:0]  
XPD1  
1
XBUF‘  
0
XSEL  
0
ZDBS  
0
1
0
0
1
0
0
0
0
CSEL  
DAC Config  
Reserved  
0
0
0
0
0
0
1
0
0
0
ZERODEL[2:0]  
0
DACCM[1:0]  
DACFS[1:0]  
0
0
0
0
RX Master #1 RXBAND[1:0]  
NRF1[15:0]  
AGAIN[2:0]  
RX Master #2  
RX Master #3  
0
0
DPDS[2:0]  
0
LNAC[1:0]  
LNAG[1:0]  
0
0
DGAIN[5:0]  
DGAIN[5:0]  
0
0
0
0
0
0
0
0
0
TX Master #1 TXBAND[1:0]  
N
RF2[15:0]  
TX Master #2  
CDAC  
FIF[3:0]  
NIF[13:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CDAC[5:0]  
Si4134T  
Revision/Read  
REV3[7:0]  
RFUP DIV2  
31h  
32h  
Config  
0
0
0
0
0
0
0
0
0
0
0
0
SDOSEL[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Powerdown  
0
0
0
0
0
0
0
PDIB PDRB  
33h RF1 N Divider  
34h RF2 N Divider  
N
N
RF1[15:0]  
RF2[15:0]  
35h  
IF N Divider  
NIF[15:0]  
Notes:  
1. Any register not listed here is reserved and should not be written. Writing to reserved registers may result in  
unpredictable behavior.  
2. Master registers 20h to 24h simplify programming the Aero+ transceiver to support initiation of receive (RX) and transmit  
(TX) operations with only two register writes.  
3. See “AN50: Aero Transceiver Programming Guide” for detailed instructions on register programming.  
Rev. 1.2  
25  
 
Aero+  
Register 00h. Revision/Read (Si4200)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
REV0[7:0]  
Name  
Bit  
Name  
Function  
17:8  
7:0  
Reserved  
REV0[7:0]  
Read as zero.  
Si4200 Revision (read only).  
00h = Si4200 revision A  
01h = Si4200 revision B  
02h = Si4200 revision C  
03h = Si4200 revision D  
14h = Si4200DB revision E (dual-band)  
05h = Si4200 revision F (triple-band)  
Note: Registers on the Si4200 can be read by writing this register with the address of the register to be read.  
Register 01h. Reset (Si4200/Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Name  
Bit  
Name  
Function  
17:1  
0
Reserved  
RESET  
Program to zero.  
Chip Reset.  
0 = Normal operation (default).  
1 = Reset all registers to default values.  
Note: See “Control Registers” on page 25 for more details. This register must be  
written to 0 twice after a reset operation. This bit does not reset Si4134T  
registers 30h to 35h.  
26  
Rev. 1.2  
Aero+  
Register 02h. Mode Control (Si4200/Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AUTO  
MODE[1:0]  
Name  
Bit  
Name  
Function  
17:3  
2
Reserved  
AUTO  
Program to zero.  
Automatic Mode Select.  
0 = Manual. Mode is controlled by MODE[1:0] bits (default).  
1 = Automatic. Last register write to N implies RX mode; Last register  
RF1  
write to N  
implies TX mode. MODE[1:0] bits are ignored.  
RF2  
1:0  
MODE[1:0]  
Transmit/Receive/Calibration Mode Select.  
00 = Receive mode (default).  
01 = Transmit mode.  
10 = Calibration mode.  
11 = Reserved.  
Note: These bits are valid only when AUTO = 0.  
Note: Calibration must be performed each time the power supply is applied. To initiate the calibration mode, set  
MODE[1:0] = 10, and pulse the PDN pin high for at least 150 µs.  
Rev. 1.2  
27  
Aero+  
Register 03h. Configuration (Si4200)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DIAG[1:0]  
SWAP  
0
0
0
TXBAND[1:0]  
RXBAND[1:0]  
0
0
1
0
Name  
Bit  
Name  
Function  
17:14  
13:12  
Reserved  
DIAG[1:0]  
Program to zero.  
DIAG1/DIAG2 Output Select.  
DIAG1  
LOW  
LOW  
HIGH  
HIGH  
DIAG2  
LOW (default)  
HIGH  
LOW  
HIGH  
00 =  
01 =  
10 =  
11 =  
Note: These pins can be used to control antenna switch functions. These bits  
must be programmed with the PDN pin is zero. The DIAG1/DIAG2 pins  
are be held at the desired value regardless of the state of the PDN pin.  
11  
SWAP  
Transmit I/Q Swap.  
0 = Normal (default).  
1 = Swap I and Q for TXIP, TXIN, TXQP, and TXQN pins.  
10:8  
7:6  
Reserved  
Program to zero.  
TXBAND[1:0]  
Transmit Band Select.  
00 = GSM 850 or E-GSM 900 (default).  
01 = DCS 1800.  
10 = PCS 1900.  
11 = Reserved.  
5:4  
RXBAND[1:0]  
Receive Band Select.  
00 = GSM input. (default),  
01 = DCS input.  
10 = PCS input.  
11 = Reserved.  
3:2  
1
Reserved  
Reserved  
Reserved  
Program to zero.  
Program to one.  
Program to zero.  
0
28  
Rev. 1.2  
Aero+  
Register 04h. Transmit Control (Si4200)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
1
BBG[1:0]  
FIF[3:0]  
0
0
0
0
Name  
Bit  
Name  
Function  
17:11  
10  
Reserved  
Reserved  
BBG[1:0]  
Program to zero.  
Program to one.  
9:8  
TX Baseband Input Full Scale Differential Input Voltage.  
00 = 1.7 V  
01 = 1.3 V  
(default).  
.
PPD  
PPD  
10 = Reserved.  
11 = 2.0 V  
.
PPD  
Note: Refer to Table 6 for minimum and maximum values. Set this register to the  
nearest value.  
7:4  
3:0  
FIF[3:0]  
TX IF Filter Cutoff Frequency.  
0110 = Use for DCS 1800 band.  
0111 = Use for GSM 850, E-GSM 900 and PCS 1900 bands.  
Note: Use the recommended setting for each band. Other settings reserved.  
Reserved  
Program to zero.  
Rev. 1.2  
29  
Aero+  
Register 05h. Receive Gain (Si4200/Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DGAIN[5:0]  
0
AGAIN[2:0]  
LNAC[1:0]  
LNAG[1:0]  
Name  
Bit  
Name  
Function  
17:14  
13:8  
Reserved  
Program to zero.  
DGAIN[5:0]  
Digital PGA Gain Control.  
00h = 0 dB (default).  
01h = 1 dB.  
...  
3Fh = 63 dB.  
Note: See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
7
Reserved  
Program to zero.  
6:4  
AGAIN[2:0]  
Analog PGA Gain Control.  
000 = 0 dB (default).  
001 = 4 dB.  
010 = 8 dB.  
011 = 12 dB.  
100 = 16 dB.  
101 = Reserved.  
110 = Reserved.  
111 = Reserved.  
Note: See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
3:2  
1:0  
LNAC[1:0]  
LNAG[1:0]  
LNA Bias Current Control.  
00 = Minimum current (default).  
01 = Maximum current.  
10 = Reserved.  
11 = Reserved.  
Note: Program these bits to the same value as same as LNAG[1:0]  
LNA Gain Control.  
00 = Minimum gain (default).  
01 = Maximum gain.  
10 = Reserved.  
11 = Reserved.  
Notes:  
1. Program these bits to the same value as same as LNAC[1:0]  
2. See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
30  
Rev. 1.2  
Aero+  
Register 10h. Revision/Read (Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
REV1[7:0]  
Name  
Bit  
Name  
Function  
17:8  
7:0  
Reserved  
REV1[7:0]  
Read as zero.  
Si4201 Revision (read only).  
00h = Rev A.  
01h = Rev B.  
02h = Rev C (latest version).  
Note: Registers on the Si4201 can be read by writing this register with the address of the register to be read.  
Register 11h. Configuration (Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DPDS[2:0]  
XPD1  
1
XSEL  
0
1
0
1
0
0
0
CSEL  
Name  
Bit  
Name  
Function  
17:14  
13:11  
Reserved  
Program to zero.  
Data Path Delayed Start.  
111= Use for GSM 850 and GSM 900 bands.  
011= Use for DCS 1800 and PCS 1900 bands (default).  
DPDS[2:0]  
Note: Use the recommended setting for each band. Other settings reserved.  
10  
XPD1  
Reference Buffer Powerdown.  
0 = Reference buffer automatically enabled (default).  
1 = Reference buffer disabled.  
Note: This bit should be set to 0 during normal operation. To achieve lowest  
Si4201 powerdown current (IPDN1), this bit should be set to 1. The XBUF  
bit in Register 12h must also be set appropriately  
9
8
Reserved  
XSEL  
Program to one.  
Reference Frequency Select.  
0 = No divider. XIN = 13 MHz (default).  
1 = Divide XIN by 2. XIN = 26 MHz.  
Note: The internal clock should always be 13 MHz.  
7
6
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CSEL  
Program to zero.  
Program to one.  
Program to zero.  
Program to one.  
Program to zero.  
5
4
3:1  
0
Digital IIR Coefficient Select.  
0 = High selectivity filter (default).  
1 = Low selectivity filter.  
Rev. 1.2  
31  
Aero+  
Register 12h. DAC Configuration (Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
1
XBUF  
0
ZDBS  
ZERODEL[2:0]  
DACCM[1:0]  
DACFS[1:0]  
Name  
Bit  
Name  
Function  
17:11  
10  
Reserved  
Reserved  
XBUF  
Program to zero.  
Program to one.  
9
Reference Buffer Power Control.  
0 = Reference buffer disabled.  
1 = Reference buffer automatically enabled (default).  
Note: This bit should be set to 1 during normal operation. To achieve the lowest  
Si4201 power down current (IPDN1), this bit should be set to 0. The XPD1  
bit in Register 12h must also be set appropriately.  
8
7
Reserved  
ZDBS  
Program to zero.  
ZERODEL Band Select.  
0 = Use ZERODEL[2:0] settings corresponding to DCS/PCS column  
(default).  
1 = Use RXBAND[1:0] to determine ZERODEL[2:0] delay setting (GSM  
or DCS/PCS).  
6:4  
ZERODEL[2:0]  
RX Output Zero Delay.  
Code  
000:  
001:  
010:  
011:  
100:  
101:  
110:  
111:  
GSM  
90 µs  
DCS/PCS  
130 µs  
150 µs  
170 µs  
180 µs  
190 µs  
200 µs  
220 µs  
(Default)  
110 µs  
130 µs  
140 µs  
150 µs  
160 µs  
180 µs  
Reserved  
Note: DAC input is forced to zero after PDN is deasserted. This feature can be  
used for baseband ADC offset calibration. Offsets induced on channels  
due to 13 MHz harmonics are not included in the calibrated value.  
3:2  
1:0  
DACCM[1:0]  
DACFS[1:0]  
RX Output Common Mode Voltage.  
00 = 1.0 V.  
01 = 1.25 V (default).  
10 = 1.35 V.  
11 = Reserved.  
RX Output Differential Full Scale Voltage.  
00 = 1.0 V  
01 = 2.0 V  
10 = 3.5 V  
.
PPD  
PPD  
PPD  
(default).  
.
11 = Reserved.  
32  
Rev. 1.2  
Aero+  
Register 19h. Reserved (Si4201)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Name  
Bit  
17:0  
Name  
Function  
Reserved  
Program to zero.  
Register 20h. RX Master #1  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
RXBAND[1:0]  
NRF1[15:0]  
Name  
Notes:  
1. See registers 03h and 33h for bit definitions.  
2. When this register is written, the PDIB bit automatically sets to 0, the PDRB bit is set to 1, and the RFUP bit is set as a  
function of RXBAND[1:0].  
Register 21h. RX Master #2  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
DPDS[2:0]  
LNAC[1:0]  
LNAG[1:0]  
AGAIN[2:0]  
0
DGAIN[5:0]  
Name  
Note: See registers 05h and 11h for bit definitions.  
Register 22h. RX Master #3  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
DGAIN[5:0]  
Name  
Notes:  
1. See register 05h for bit definitions.  
2. The DGAIN[5:0] in Register 22h can be changed without powering down.  
Register 23h. TX Master #1  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
TXBAND[1:0]  
NRF2[15:0]  
Name  
Notes:  
1. See registers 03h and 34h for bit definitions.  
2. When this register is written, the PDIB bit automatically sets to 1, and the PDRB bit is set to 1.  
Rev. 1.2  
33  
Aero+  
Register 24h. TX Master #2  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
FIF[3:0]  
NIF[13:0]  
Name  
Note: See registers 04h and 35h for bit definitions.  
Register 28h. CDAC (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
Name  
CDAC[5:0]  
Bit  
Name  
Function  
17:6  
5:0  
Reserved  
Read as zero.  
CDAC[5:0]  
DCXO Coarse Frequency DAC Adjustment.  
64 steps. See Table 8 on page 15 for step size. An increase in CDAC  
results in a lower oscillating frequency. Likewise, a decrease in CDAC  
results in a higher oscillating frequency.  
000000 = Highest frequency  
...  
111111 = Lowest frequency  
Register 30h. Revision/Read (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
REV3[7:0]  
Name  
Bit  
Name  
Function  
17:8  
7:0  
Reserved  
REV3[7:0]  
Read as zero.  
Si4134T Revision (read only).  
C0h = Rev A (latest version).  
Note: Registers on the Si4134T can be read by writing this register with the address of the register to be read.  
34  
Rev. 1.2  
Aero+  
Register 31h. Main Configuration (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SDOSEL[3:0]  
0
0
0
0
0
0
RFUP DIV2  
0
0
0
Name  
Bit  
Name  
Function  
17:15  
Reserved  
Program to zero.  
SDO Output Control Register.  
The mux_output table is as follows:  
14:11  
SDOSEL[3:0]  
0000 Connected to the Output Shift Register (default).  
0001 Force the Output to Low.  
0010 Reference Clock.  
0011 Lock Detect (LDETB) Signal from Phase Detectors.  
1111 High Impedance.  
Notes:  
1. SDO is high-impedance when PDN = 0.  
2. SDO is Serial Data Output when in register read mode.  
10:5  
4
Reserved  
RFUP  
Program to zero.  
RF PLL Update Rate (RF1 VCO only).  
0 = 200 kHz update rate (Receive GSM modes).  
1 = 100 kHz update rate (Receive DCS and PCS modes).  
Note: This bit is set to 1 when Register 20h D[17:16] = 01b or 10b (DCS 1800 or  
PCS 1900 receive modes) and is set to 0 when D[17:16] = 00b or 11b  
(GSM 850 or GSM 900 modes).  
3
DIV2  
Input Clock Frequency.  
0 = No divider. XIN = 13 MHz.  
1 = Divide XIN by 2. XIN = 26 MHz.  
2:0  
Reserved  
Program to zero.  
Rev. 1.2  
35  
Aero+  
Register 32h. Powerdown (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDIB PDRB  
Name  
Bit  
17:2  
1
Name  
Reserved  
PDIB  
Function  
Program to zero.  
Powerdown IF PLL.  
0 = IF synthesizer powered down.  
1 = IF synthesizer powered up when the PDN pin is high.  
Notes:  
1. The IF PLL is only used in transmit mode. Powerdown for receive mode.  
2. This bit is set to 0 when register 20h is written (receive mode).  
3. This bit is set to 1 when register 23h is written (transmit mode).  
0
PDRB  
Powerdown RF PLL.  
0 = RF synthesizer powered down.  
1 = RF synthesizer powered up when the PDN pin is high.  
Notes:  
1. This bit is set to 1 when register 20h is written (receive mode).  
2. This bit is set to 1 when register 23h is written (transmit mode).  
Register 33h. RF1 N Divider (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N
[15:0]  
RF1  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N
[15:0]  
N Divider for RF PLL (RF1 VCO).  
RF1  
Used for Receive mode.  
Register 34h. RF2 N Divider (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N
[15:0]  
RF2  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N
[15:0]  
N Divider for RF PLL (RF2 VCO).  
RF2  
Used for Transmit mode.  
36  
Rev. 1.2  
Aero+  
Register 35h. IF N Divider (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N [15:0]  
IF  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N [15:0]  
N Divider for IF Synthesizer.  
Used for transmit mode.  
IF  
Rev. 1.2  
37  
Aero+  
Pin Descriptions: Si4200-BM  
32 31 30 29 28 27 26 25  
ION  
IOP  
1
2
3
4
5
6
7
8
24 RFOD  
23 VDD  
CKN  
CKP  
22 RFIGN  
21 RFIGP  
20 RFIDN  
19 RFIDP  
18 RFIPN  
17 RFIPP  
GND  
PAD  
TXIP  
TXIN  
TXQP  
TXQN  
9
10 11 12 13 14 15 16  
Top View  
Pin Number(s) Name  
Description  
1, 2  
3, 4  
5, 6  
7, 8  
9, 10  
ION, IOP  
Data output to Si4201 (differential).  
Clock input from Si4201 (differential).  
Transmit I input (differential).  
CKN, CKP  
TXIP, TXIN  
TXQP, TXQN  
IFLOP, IFLON  
GND  
Transmit Q input (differential).  
IFLO Input from Si4133T (differential).  
Ground. Connect to ground plane on PCB.  
11, 27, 30,  
GND pad  
12, 13  
RFLOP, RFLON RFLO Input from Si4133T (differential).  
14, 23, 26, 32  
15, 16  
V
Supply voltage.  
DD  
DIAG2, DIAG1  
RFIPP, RFIPN  
RFIDP, RFIDN  
RFIGP, RFIGN  
RFOD  
Diagnostic output.  
Can be used as digital outputs to control antenna switch functions.  
17, 18  
19, 20  
21, 22  
24  
PCS LNA input (differential).  
Use for PCS 1900 band.  
DCS LNA input (differential).  
Use for DCS 1800 band.  
GSM LNA input (differential).  
Used for GSM 850 or E-GSM 900 bands.  
DCS and PCS transmit output to power amplifier.  
Used for DCS 1800 and PCS 1900 bands.  
25  
RFOG  
GSM transmit output to power amplifier.  
Used for GSM 850 and E-GSM 900 bands.  
28, 29  
31  
NC  
These pins should be left disconnected.  
Powerdown input (active low).  
PDN  
38  
Rev. 1.2  
Aero+  
Pin Descriptions: Si4200DB-BM  
32 31 30 29 28 27 26 25  
ION  
IOP  
1
2
3
4
5
6
7
8
24 RFOD  
23 VDD  
CKN  
CKP  
22 RFIGN  
21 RFIGP  
20 RFIDN  
19 RFIDP  
18 RFIPN  
17 RFIPP  
GND  
PAD  
TXIP  
TXIN  
TXQP  
TXQN  
9
10 11 12 13 14 15 16  
Top View  
Pin Number(s) Name  
Description  
1, 2  
ION, IOP  
Data output to Si4201 (differential).  
Clock input from Si4201 (differential).  
Transmit I input (differential).  
3, 4  
CKN, CKP  
5, 6  
TXIP, TXIN  
7, 8  
TXQP, TXQN  
IFLOP, IFLON  
Transmit Q input (differential).  
9, 10  
IFLO Input from Si4134T (differential).  
12, 13  
14, 23, 26, 32  
15, 16  
RFLOP, RFLON RFLO Input from Si4134T (differential).  
V
Supply voltage.  
DD  
DIAG2, DIAG1  
RFIPP, RFIPN  
RFIGP, RFIGN  
RFOD  
Diagnostic output.  
Can be used as digital outputs to control antenna switch functions.  
17, 18  
21, 22  
24  
PCS LNA input (differential).  
Use for DCS 1800 or PCS 1900 bands.  
GSM LNA input (differential).  
Used for GSM 850 or E-GSM 900 bands.  
DCS and PCS transmit output to power amplifier.  
Used for DCS 1800 and PCS 1900 bands.  
25  
RFOG  
GSM transmit output to power amplifier.  
Used for GSM 850 and E-GSM 900 bands.  
28, 29  
31  
NC  
These pins should be left disconnected.  
Powerdown input (active low).  
PDN  
11, 19, 20, 27, 30, GND  
GND pad  
Ground. Connect to ground plane on PCB.  
Rev. 1.2  
39  
Aero+  
Pin Descriptions: Si4201-BM  
20 19 18 17 16  
GND  
1
2
3
4
5
15 SDO  
14 PDN  
13 XEN  
12 ION  
11 IOP  
RXQP  
RXQN  
RXIP  
GND  
PAD  
RXIN  
6
7
8
9
10  
Top View  
Pin Number(s) Name  
Description  
2, 3  
4, 5  
6, 20  
7
RXQP, RXQN  
RXIP, RXIN  
Receive Q output (differential).  
Receive I output (differential).  
Supply voltage.  
V
DD  
XIN  
Reference frequency input from crystal oscillator.  
Clock output to Si4200 (differential).  
Data input from Si4200 (differential).  
XOUT pin enable  
9, 10  
11, 12  
13  
CKP, CKN  
IOP, ION  
XEN  
14  
PDN  
Powerdown input (active low).  
Serial data output.  
15  
SDO  
16  
SEN  
Serial enable input (active low).  
Serial clock input.  
17  
SCLK  
SDI  
18  
Serial data input.  
19  
XOUT  
GND  
Clock output to baseband.  
Ground. Connect to ground plane on PCB.  
1, 8,  
GND pad  
40  
Rev. 1.2  
Aero+  
Pin Descriptions: Si4134T-BM  
32 31 30 29 28 27 26 25  
IFLB  
IFLA  
1
2
3
4
5
6
7
8
24 GND  
23 NC  
PDN  
22 GND  
21 RFLC  
20 RFLD  
19 GND  
18 SDO  
17 SDI  
XDRVEN  
XDRV  
GND  
GND  
PAD  
VDD  
GND  
9
10 11 12 13 14 15 16  
Top View  
Pin Number(s) Name  
Description  
1, 2  
IFLB, IFLA  
Tuning inductor connection for IF VCO.  
Power down input (active low).  
XDRV enable.  
3
PDN  
4
XDRVEN  
XDRV  
5
Reference clock output to Si4201.  
Supply voltage.  
7, 28, 31  
9, 10, 23  
11  
V
DD  
NC  
No connect.  
XTAL1  
XTAL2  
XTALEN  
XAFC  
SEN  
Crystal input.  
12  
Crystal output.  
13  
Crystal enable.  
14  
Baseband AFC signal input.  
Serial enable input (active low).  
Serial clock input.  
15  
16  
SCLK  
SDI  
17  
Serial data input.  
18  
SDO  
Serial data output.  
20, 21  
26, 27  
29, 30  
RFLC, RFLD  
Tuning inductor connection for RF2 VCO.  
RFLON, RFLOP RF PLL output to Si4200 (differential).  
IFLON, IFLOP  
IF PLL output to Si4200 (differential).  
6, 8, 19, 22, 24, GND  
25, 32, GND pad  
Ground. Connect to ground plane on PCB.  
Rev. 1.2  
41  
Aero+  
Ordering Guide  
Part Number Description  
Package Type  
MLP*  
Operating  
Temperature  
Si4200-BM  
Si4200-GM  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
Tri-Band Transceiver  
GSM 850 or E-GSM 900, DCS 1800, PCS 1900  
MLP lead-free*  
MLP*  
Tri-Band Transceiver  
GSM 850 or E-GSM 900, DCS 1800, PCS 1900  
Si4200DB-BM  
Si4200DB-GM  
Dual-Band Aero Transceiver  
GSM 850/PCS 1900 or E-GSM 900/DCS 1800  
MLP lead-free*  
Dual-Band Aero Transceiver  
GSM 850/PCS 1900 or E-GSM 900/DCS 1800  
Si4201-BM  
Si4201-GM  
Si4134T-BM  
Si4134T-GM  
MLP*  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
–20 to 85 °C  
Universal Baseband Interface  
Universal Baseband Interface  
Dual RF Synthesizer with DCXO  
Dual RF Synthesizer with DCXO  
MLP lead-free*  
MLP*  
MLP lead-free*  
*Note: Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
42  
Rev. 1.2  
 
Aero+  
Package Outline: Si4200-BM and Si4200DB-BM  
Figure 18 illustrates the package details for the Si4200-BM and Si4200DB-BM. Table 12 lists the values for the  
dimensions shown in the illustration.  
D
A
A1  
A3  
D1  
D2  
A2  
L
b
PIN1 ID  
0.50 DIA.  
PIN1 ID  
0.20 R.  
32  
32  
1
2
3
1
2
3
b
E1  
E
E2  
θ
e
e
Top View  
Side View  
Bottom View  
Figure 18. 32-Pin Micro Leadframe Package (MLP)  
Table 12. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
Nom  
Max  
Min  
Nom  
4.75 BSC  
3.30  
Max  
A
A1  
0.85  
0.90  
D1, E1  
3.15  
3.45  
0.00  
0.01  
0.65  
0.05  
0.70  
D2, E2  
A2  
e
θ
L
0.50 BSC  
A3  
0.20 REF.  
0.23  
12°  
b
0.18  
0.30  
0.30  
0.40  
0.50  
D, E  
Notes:  
5.00 BSC  
1. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
2. Package warpage MAX 0.05 mm.  
3. “b” applies to plated terminal and is measured between 0.20 and 0.25 mm from terminal TIP.  
4. The package weight is approximately 68 mg.  
5. The mold compound for this package has a flammability rating of UL94-V0 with an oxygen index of 28  
minimum/54 typical.  
6. The recommended reflow profile for this package is defined by the JEDEC-020B Small Body specification.  
Rev. 1.2  
43  
 
 
 
Aero+  
Package Outline: Si4201-BM  
Figure 19 illustrates the package details for the Si4201-BM. Table 13 lists the values for the dimensions shown in  
the illustration.  
A
D
D1  
A1  
D2  
A2  
L
b
PIN1 ID  
0.50 DIA.  
A3  
b
20  
20  
1
2
3
1
2
3
E1  
E
E2  
θ
e
e
Top View  
Side View  
Bottom View  
Figure 19. 20-Pin Micro Leadframe Package (MLP)  
Table 13. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
Nom  
Max  
Min  
Nom  
Max  
A
A1  
0.85  
0.90  
D1, E1  
3.75 BSC  
0.00  
0.01  
0.65  
0.05  
0.70  
D2, E2  
1.95  
2.10  
0.50 BSC  
2.25  
A2  
e
θ
L
A3  
0.20 REF.  
0.23  
12°  
0.50  
0.60  
0.75  
b
0.18  
0.30  
D, E  
Notes:  
4.00 BSC  
1. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
2. Package warpage MAX 0.05 mm.  
3. “b” applies to plated terminal and is measured between 0.20 and 0.25 mm from terminal TIP.  
4. The package weight is approximately 42 mg.  
5. The mold compound for this package has a flammability rating of UL94-V0 with an oxygen index of 28  
minimum/54 typical.  
6. The recommended reflow profile for this package is defined by the JEDEC-020B Small Body specification.  
44  
Rev. 1.2  
 
 
 
Aero+  
Package Outline: Si4134T-BM  
Figure 18 illustrates the package details for the Si4134T-BM. Table 12 lists the values for the dimensions shown in  
the illustration.  
D
A
A1  
A3  
D1  
D2  
A2  
L
b
PIN1 ID  
0.50 DIA.  
PIN1 ID  
0.20 R.  
32  
32  
1
2
3
1
2
3
b
E1  
E
E2  
θ
e
e
Top View  
Side View  
Bottom View  
Figure 20. 32-Pin Micro Leadframe Package (MLP)  
Table 14. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
Nom  
Max  
Min  
Nom  
4.75 BSC  
3.10  
Max  
A
A1  
0.85  
0.90  
D1, E1  
2.95  
3.25  
0.00  
0.01  
0.65  
0.05  
0.70  
D2, E2  
A2  
e
θ
L
0.50 BSC  
A3  
0.20 REF.  
0.23  
12°  
b
0.18  
0.30  
0.30  
0.40  
0.50  
D, E  
Notes:  
5.00 BSC  
1. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
2. Package warpage MAX 0.05 mm.  
3. “b” applies to plated terminal and is measured between 0.20 and 0.25 mm from terminal TIP.  
4. The package weight is approximately 66 mg.  
5. The mold compound for this package has a flammability rating of UL94-V0 with an oxygen index of 28  
minimum/54 typical.  
6. The recommended reflow profile for this package is defined by the JEDEC-020B Small Body specification.  
Rev. 1.2  
45  
 
Aero+  
Document Change List  
Revision 1.0 to Revision 1.1  
„
This document corresponds to the following:  
z Si4200DB revision E (dual band LNA) or Si4200  
revision F (triple band LNA)  
z Si4201 revision C  
z Si4134T revision A  
„
„
„
"Bill of Materials" on page 17  
z Updated L1–-L3 with 0402 sizes.  
"Ordering Guide" on page 42 updated to include  
lead-free ordering option.  
"Package Outline: Si4200-BM and Si4200DB-BM"  
on page 43 (documentation change only, no change  
to part)  
z Updated D2,E2 dimensions.  
z Updated device weight.  
z Added notes 5 and 6.  
„
„
"Package Outline: Si4201-BM" on page 44  
(documentation change only, no change to part)  
z Updated L dimension.  
z Updated device weight.  
z Added notes 5 and 6.  
"Package Outline: Si4134T-BM" on page 45  
(documentation change only, no change to part)  
z Updated L dimension.  
z Updated device weight.  
z Added notes 5 and 6.  
Revision 1.1 to Revision 1.2  
„
This document corresponds to the following:  
z Si4200DB revision E (dual band LNA) or Si4200  
revision F (triple band LNA)  
z Si4201 revision C  
z Si4134T revision A  
„
"Package Outline: Si4134T-BM" on page 45  
(documentation change only, no change to part)  
z Updated L dimension  
46  
Rev. 1.2  
Aero+  
Notes:  
Rev. 1.2  
47  
Aero+  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, Texas 78735  
Tel:1+ (512) 416-8500  
Fax:1+ (512) 416-9669  
Toll Free:1+ (877) 444-3032  
Email: Aeroinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no war-  
ranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applica-  
tions intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and Aero are trademarks of Silicon Laboratories Inc.  
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holder  
48  
Rev. 1.2  

相关型号:

SI4134T-BMR

RF and Baseband Circuit, CMOS, 5 X 5 MM, QFN-32
SILICON

SI4134T-GM

RF and Baseband Circuit, CMOS, 5 X 5 MM, LEAD FREE, QFN-32
SILICON

SI4134T-GMR

RF and Baseband Circuit, CMOS, 5 X 5 MM, LEAD FREE, QFN-32
SILICON

SI4136

ISM RF SYNTHESIZER WITH INTEGRATED VCOS
SILICON

SI4136-BT

ISM RF SYNTHESIZER WITH INTEGRATED VCOS
SILICON

SI4136-F-BM

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4136-F-BMR

RF and Baseband Circuit, QFN-28
SILICON

SI4136-F-BT

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4136-F-BTR

RF and Baseband Circuit, PDSO24, TSSOP-24
SILICON

SI4136-F-GM

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4136-F-GMR

RF and Baseband Circuit, ROHS COMPLIANT, QFN-28
SILICON

SI4136-F-GT

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON