SI4136-F-GMR [SILICON]

RF and Baseband Circuit, ROHS COMPLIANT, QFN-28;
SI4136-F-GMR
型号: SI4136-F-GMR
厂家: SILICON    SILICON
描述:

RF and Baseband Circuit, ROHS COMPLIANT, QFN-28

ISM频段 无线 通信
文件: 总34页 (文件大小:304K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4136/Si4126  
ISM RF SYNTHESIZER WITH INTEGRATED VCOS  
FOR WIRELESS COMMUNICATIONS  
Features  
Dual-band RF synthesizers  
RF1: 2300 MHz to 2500 MHz  
RF2: 2025 MHz to 2300 MHz  
IF synthesizer  
Minimal external components  
required  
Low phase noise  
5 µA standby current  
25.7 mA typical supply current  
2.7 V to 3.6 V operation  
Packages: 24-pin TSSOP,  
28-lead QFN  
62.5 MHz to 1000 MHz  
Ordering Information:  
Integrated VCOs, loop filters,  
See page 29.  
varactors, and resonators  
Lead-free/RoHS-compliant options  
available  
Pin Assignments  
Applications  
Si4136-BT/GT  
ISM and MMDS band  
communications  
Wireless LAN and WAN  
Dual-band communications  
SEN  
SCLK  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VDDI  
IFOUT  
GND  
SDATA  
GND  
GND  
NC  
2
3
Description  
4
IFLB  
The Si4136 is a monolithic integrated circuit that performs both IF and RF  
synthesis for wireless communications applications. The Si4136 includes  
three VCOs, loop filters, reference and VCO dividers, and phase detectors.  
Divider and powerdown settings are programmable through a three-wire  
serial interface.  
5
IFLA  
GND  
NC  
6
GND  
7
VDDD  
GND  
GND  
GND  
GND  
RFOUT  
VDDR  
8
9
Functional Block Diagram  
XIN  
10  
11  
12  
PWDN  
AUXOUT  
Reference  
÷1/÷2  
XIN  
RRF1  
RRF2  
RIF  
Phase  
Detect  
Amplifier  
RF1  
Power  
Down  
PWDN  
Si4136-BM/GM  
RFOUT  
NRF1  
NRF2  
NIF  
2  
Control  
SDATA  
SCLK  
Phase  
Detect  
Serial  
Interface  
RF2  
28 27 26 25 24 23  
22  
22-bit  
Data  
SEN  
GND  
GND  
NC  
1
2
3
4
5
6
7
21 GND  
20 IFLB  
19 IFLA  
18 GND  
17 VDDD  
16 GND  
15 XIN  
2  
Register  
Phase  
Detect  
Test  
Mux  
AUXOUT  
IFDIV  
IFOUT  
GND  
GND  
NC  
IF  
IFLA  
IFLB  
GND  
GND  
8
9
10 11 12 13 14  
Patents pending  
Rev. 1.41 1/10  
Copyright © 2010 by Silicon Laboratories  
Si4136/Si4126  
Si4136/Si4126  
2
Rev. 1.41  
Si4136/Si4126  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.1. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.2. Setting the IF VCO Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.3. Self-Tuning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.4. Output Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.5. PLL Loop Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.6. RF and IF Outputs (RFOUT and IFOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.7. Reference Frequency Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.8. Powerdown Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.9. Auxiliary Output (AUXOUT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4. Pin Descriptions: Si4136-BT/GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5. Pin Descriptions: Si4136-BM/GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
7. Si4136 Derivative Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
8. Package Outline: Si4136-BT/GT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
9. Package Outline: Si4136-BM/GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Rev. 1.41  
3
Si4136/Si4126  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Temperature  
Symbol  
Test Condition  
Min  
–40  
2.7  
Typ  
25  
Max  
85  
Unit  
°C  
V
T
A
Supply Voltage  
VDD  
3.0  
3.6  
0.3  
Supply Voltages Difference  
V
(V  
– V  
– V  
),  
DDD  
–0.3  
V
DDR  
(V  
)
DDD  
DDI  
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25°C unless otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
Value  
–0.5 to 4.0  
±10  
Unit  
V
DC Supply Voltage  
V
DD  
3
IIN  
VIN  
mA  
V
Input Current  
3
–0.3 to V +0.3  
Input Voltage  
DD  
o
Storage Temperature Range  
TSTG  
–55 to 150  
C
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. This device is a high performance RF integrated circuit with an ESD rating of < 2 kV. Handling and assembly of  
this device should only be done at ESD-protected workstations.  
3. For signals SCLK, SDATA, SEN, PWDN, and XIN.  
4
Rev. 1.41  
Si4136/Si4126  
Table 3. DC Characteristics  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
25.7  
15.7  
15  
Max  
31  
Unit  
mA  
mA  
mA  
mA  
µA  
V
1
Total Supply Current  
RF1 and IF operating  
1
RF1 Mode Supply Current  
19  
1
RF2 Mode Supply Current  
18  
1
IF Mode Supply Current  
10  
12  
Standby Current  
PWDN = 0  
1
2
High Level Input Voltage  
VIH  
VIL  
IIH  
0.7 VDD  
2
Low Level Input Voltage  
0.3 VDD  
10  
V
2
High Level Input Current  
V
IH = 3.6 V,  
–10  
µA  
V
DD = 3.6 V  
2
Low Level Input Current  
IIL  
V
IL = 0 V,  
–10  
10  
µA  
V
DD= 3.6 V  
3
High Level Output Voltage  
VOH  
VOL  
IOH = –500 µA  
IOH = 500 µA  
VDD–0.4  
V
V
3
Low Level Output Voltage  
0.4  
Notes:  
1. RF1 = 2.4 GHz, RF2 = 2.1 GHz, IFOUT = 800 MHz, LPWR = 0.  
2. For signals SCLK, SDATA, SEN, and PWDN.  
3. For signal AUXOUT.  
Rev. 1.41  
5
Si4136/Si4126  
Table 4. Serial Interface Timing  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
1
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
SCLK Cycle Time  
SCLK Rise Time  
SCLK Fall Time  
SCLK High Time  
SCLK Low Time  
tclk  
tr  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 1  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
Figure 2  
40  
10  
10  
5
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
th  
tl  
2
SDATA Setup Time to SCLK  
tsu  
thold  
ten1  
ten2  
ten3  
tw  
2
SDATA Hold Time from SCLK  
0
2
SENto SCLKDelay Time  
10  
12  
12  
10  
2
SCLKto SENDelay Time  
2
SENto SCLKDelay Time  
SEN Pulse Width  
Notes:  
1. All timing is referenced to the 50% level of the waveform, unless otherwise noted.  
2. Timing is not referenced to 50% level of the waveform. See Figure 2.  
tr  
tf  
80%  
50%  
20%  
SCLK  
th  
tl  
tclk  
Figure 1. SCLK Timing Diagram  
6
Rev. 1.41  
Si4136/Si4126  
A
A
Figure 2. Serial Interface Timing Diagram  
First bit  
Last bit  
clocked in  
clocked in  
D D D D D D D D D D D D D D D D D D A A A A  
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 3 2 1 0  
data  
field  
address  
field  
Figure 3. Serial Word Format  
Rev. 1.41  
7
Si4136/Si4126  
Table 5. RF and IF Synthesizer Characteristics  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
Parameter1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
XIN Input Frequency  
fREF  
fREF  
XINDIV2 = 0  
XINDIV2 = 1  
2
25  
50  
MHz  
MHz  
XIN Input Frequency  
25  
0.5  
Reference Amplifier Sensitivity  
VREF  
V
V
PP  
DD  
+0.3 V  
Phase Detector Update Frequency  
f
f = f  
/R for  
0.010  
1.0  
MHz  
 REF  
XINDIV2 = 0  
f = f /2R for  
 REF  
XINDIV2 = 1  
2
RF1 VCO Tuning Range  
2300  
2025  
526  
62.5  
–5  
2500  
2300  
952  
1000  
5
MHz  
MHz  
2
RF2 VCO Tuning Range  
IF VCO Center Frequency Range  
f
MHz  
CEN  
IFOUT Tuning Range from f  
with IFDIV  
Note: L ±10%  
Open loop  
MHz  
CEN  
IFOUT VCO Tuning Range from f  
RF1 VCO Pushing  
RF2 VCO Pushing  
IF VCO Pushing  
%
CEN  
0.75  
0.65  
0.10  
0.250  
0.100  
0.025  
–130  
1.2  
MHz/V  
MHz/V  
MHz/V  
MHz p-p  
MHz p-p  
MHz p-p  
dBc/Hz  
RF1 VCO Pulling  
VSWR = 2:1, all  
phases, open loop  
RF2 VCO Pulling  
IF VCO Pulling  
RF1 Phase Noise  
1 MHz offset  
RF1 Integrated Phase Error  
100 Hz to 100 kHz  
degrees  
rms  
RF2 Phase Noise  
1 MHz offset  
–131  
1.0  
dBc/Hz  
RF2 Integrated Phase Error  
100 Hz to 100 kHz  
degrees  
rms  
IF Phase Noise at 800 MHz  
IF Integrated Phase Error  
100 kHz offset  
–104  
0.4  
dBc/Hz  
100 Hz to 100 kHz  
degrees  
rms  
Notes:  
1. f(RF) = 1 MHz, f(IF) = 1 MHz, RF1 = 2.4 GHz, RF2 = 2.1 GHz, IFOUT = 800 MHz, LPWR = 0, for all parameters  
unless otherwise noted.  
2. RF VCO tuning range limits are fixed by inductance of internally bonded wires.  
3. From powerup request (PWDNor SENduring a write of 1 to bits PDIB and PDRB in Register 2) to RF and IF  
synthesizers ready (settled to within 0.1 ppm frequency error).  
4. From powerdown request (PWDN, or SENduring a write of 0 to bits PDIB and PDRB in Register 2) to supply current  
equal to IPWDN  
.
8
Rev. 1.41  
Si4136/Si4126  
Table 5. RF and IF Synthesizer Characteristics (Continued)  
(VDD = 2.7 to 3.6 V, TA = –40 to 85 °C)  
Parameter1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RF1 Harmonic Suppression  
RF2 Harmonic Suppression  
IF Harmonic Suppression  
RFOUT Power Level  
RFOUT Power Level  
IFOUT Power Level  
Second Harmonic  
–7  
–7  
–7  
–28  
–23  
–26  
–3.5  
–3.5  
–4  
–20  
–20  
–20  
–0.5  
–0.5  
0
dBc  
dBc  
dBc  
dBm  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
s  
Z = 50RF1 active  
L
Z = 50RF2 active  
L
Z = 50   
L
RF1 Output Reference Spurs  
Offset = 1 MHz  
Offset = 2 MHz  
Offset = 3 MHz  
Offset = 1 MHz  
Offset = 2 MHz  
Offset = 3 MHz  
Figures 4, 5  
–63  
–68  
–70  
–63  
–68  
–70  
80  
RF2 Output Reference Spurs  
3
3
Powerup Request to Synthesizer Ready  
Time  
tpup  
tpup  
tpdn  
100  
f > 500 kHz  
  
Powerup Request to Synthesizer Ready  
Time  
Figures 4, 5  
40/f  
50/f  
f 500 kHz  
  
4
Powerdown Request to Synthesizer Off  
Time  
Figures 4, 5  
100  
ns  
Notes:  
1. f(RF) = 1 MHz, f(IF) = 1 MHz, RF1 = 2.4 GHz, RF2 = 2.1 GHz, IFOUT = 800 MHz, LPWR = 0, for all parameters  
unless otherwise noted.  
2. RF VCO tuning range limits are fixed by inductance of internally bonded wires.  
3. From powerup request (PWDNor SENduring a write of 1 to bits PDIB and PDRB in Register 2) to RF and IF  
synthesizers ready (settled to within 0.1 ppm frequency error).  
4. From powerdown request (PWDN, or SENduring a write of 0 to bits PDIB and PDRB in Register 2) to supply current  
equal to IPWDN  
.
Rev. 1.41  
9
Si4136/Si4126  
RF synthesizers settled to within  
0.1 ppm frequency error.  
RF synthesizers settled to within  
0.1 ppm frequency error.  
tpup  
tpdn  
IT  
tpup  
tpdn  
IPWDN  
IT  
IPWDN  
SEN  
PWDN  
PDIB = 1  
PDRB = 1  
PDIB = 0  
PDRB = 0  
SDATA  
Figure 5. Hardware Power Management  
Timing Diagram  
Figure 4. Software Power Management  
Timing Diagram  
10  
Rev. 1.41  
Si4136/Si4126  
Figure 6. Typical Transient Response RF1 at 2.4 GHz  
with 1 MHz Phase Detector Update Frequency  
Rev. 1.41  
11  
Si4136/Si4126  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Offset Frequency (Hz)  
Typical RF1 Phase Noise at 2.4 GHz  
Figure 7. Typical RF1 Phase Noise at 2.4 GHz  
with 1 MHz Phase Detector Update Frequency  
Figure 8. Typical RF1 Spurious Response at 2.4 GHz  
with 1 MHz Phase Detector Update Frequency  
12  
Rev. 1.41  
Si4136/Si4126  
s
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Offset Frequency (Hz)  
Typical RF2 Phase Noise at 2.1 GHz  
Figure 9. Typical RF2 Phase Noise at 2.1 GHz  
with 1 MHz Phase Detector Update Frequency  
Figure 10. Typical RF2 Spurious Response at 2.1 GHz  
with 1 MHz Phase Detector Update Frequency  
Rev. 1.41  
13  
Si4136/Si4126  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
Offset Frequency (Hz)  
Typical IF Phase Noise at 800 MHz  
Figure 11. Typical IF Phase Noise at 800 MHz  
with 1 MHz Phase Detector Update Frequency  
Figure 12. IF Spurious Response at 800 MHz  
with 1 MHz Phase Detector Update Frequency  
14  
Rev. 1.41  
Si4136/Si4126  
VDD  
Si4136  
From  
System  
30   
0.022 F  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
SEN  
VDDI  
SCLK  
SDATA  
GND  
GND  
NC  
Controller  
560 pF  
LMATCH  
3
IFOUT  
GND  
IFOUT  
4
Printed Trace  
Inductor or  
Chip Inductor  
5
IFLB  
6
IFLA  
GND  
NC  
7
GND  
VDD  
0.022 F  
8
VDDD  
GND  
GND  
GND  
GND  
RFOUT  
VDDR  
9
560 pF  
10  
11  
12  
XIN  
External Clock  
PDWNB  
560 pF  
RFOUT  
PWDN  
AUXOUT  
VDD  
0.022 F  
AUXOUT  
*Add 30 series resistor if using IF output divide values 2, 4, or 8 and fCEN < 600 MHz.  
Figure 13. Typical Application Circuit: Si4136-BT/GT  
Rev. 1.41  
15  
Si4136/Si4126  
frequencies greater than 25 MHz, the Si4136 includes a  
programmable divide-by-2 option (XINDIV2 in  
2. Functional Description  
The Si4136 is a monolithic integrated circuit that Register 0, D6) on the XIN input. By enabling this  
performs IF and dual-band RF synthesis for many option, the Si4136 can accept a range of TCXO  
wireless communications applications. This integrated frequencies from 25 MHz to 50 MHz. This feature  
circuit (IC), along with a minimum number of external makes the Si4136 ideal for W-LAN radio designs  
components, is all that is necessary to implement the operating at an XIN of 44 MHz.  
frequency synthesis function in applications like W-LAN  
using the IEEE 802.11 standard.  
The unique PLL architecture used in the Si4136  
produces settling (lock) times that are comparable in  
The Si4136 has three complete phase-locked loops speed to fractional-N architectures without suffering the  
(PLLs), with integrated voltage-controlled oscillators high phase noise or spurious modulation effects often  
(VCOs). The low phase noise of the VCOs makes the associated with those designs.  
Si4136 suitable for use in demanding wireless  
2.1. Serial Interface  
communications applications. Also integrated are phase  
detectors, loop filters, and reference and output A timing diagram for the serial interface is shown in  
frequency dividers. The IC is programmed through a Figure 2 on page 7. Figure 3 on page 7 shows the  
three-wire serial interface.  
format of the serial word.  
Two PLLs are provided for RF synthesis. These RF The Si4136 is programmed serially with 22-bit words  
PLLs are multiplexed so that only one PLL is active at a comprised of 18-bit data fields and 4-bit address fields.  
given time (as determined by the setting of an internal When the serial interface is enabled (i.e., when SEN is  
register). The active PLL is the last one written. The low) data and address bits on the SDATA pin are  
center frequency of the VCO in each PLL is set by the clocked into an internal shift register on the rising edge  
internal bond wire inductance within the package. of SCLK. Data in the shift register is then transferred on  
Inaccuracies in these inductances are compensated for the rising edge of SEN into the internal data register  
by the self-tuning algorithm. The algorithm is run addressed in the address field. The serial interface is  
following power-up or following a change in the disabled when SEN is high.  
programmed output frequency.  
Table 11 on page 21 summarizes the data register  
The RF PLLs contain a divide-by-2 circuit before the N- functions and addresses. It is not necessary (although it  
divider. As a result, the phase detector frequency (f) is is permissible) to clock into the internal shift register any  
equal to half the desired channel spacing. For example, leading bits that are “don’t cares.”  
for a 200 kHz channel spacing, fwould equal 100 kHz.  
2.2. Setting the IF VCO Center Frequencies  
The IF PLL does not contain the divide-by-2 circuit  
before the N-divider. In this case, fis equal to the The IF PLL can adjust its output frequency ±5% from  
desired channel spacing. Each RF VCO is optimized for the center frequency as established by the value of an  
a particular frequency range. The RF1 VCO is external inductance connected to the VCO. The RF1  
optimized to operate from 2.3 GHz to 2.5 GHz, while the and RF2 PLLs have fixed operating ranges due to the  
RF2 VCO is optimized to operate between 2.025 GHz inductance set by the internal bond wires. Each center  
and 2.3 GHz.  
frequency is established by the value of the total  
inductance (internal and/or external) connected to the  
respective VCO. Manufacturing tolerance of ±10% for  
the external inductor is acceptable for the IF VCO. The  
Si4136 will compensate for inaccuracies by executing a  
self-tuning algorithm following PLL power-up or  
One PLL is provided for IF synthesis. The center  
frequency of this circuit’s VCO is set by an external  
inductance. The PLL can adjust the IF output frequency  
by ±5% of the VCO center frequency. Inaccuracies in  
the value of the external inductance are compensated  
for by the Si4136’s proprietary self-tuning algorithm.  
This algorithm is initiated each time the PLL is powered-  
following  
a
change in the programmed output  
frequency.  
up (by either the PWDN pin or by software) and/or each Because the total tank inductance is in the low nH  
time a new output frequency is programmed. The IF range, the inductance of the package needs to be  
VCO can have its center frequency set as low as considered in determining the correct external  
526 MHz and as high as 952 MHz. An IF output divider inductance. The total inductance (L  
) presented to  
TOT  
is provided to divide down the IF output frequencies, if the IF VCO is the sum of the external inductance (L  
)
EXT  
needed. The divider is programmable, capable of and the package inductance (L  
). The IF VCO has a  
PKG  
dividing by 1, 2, 4, or 8.  
nominal capacitance (C  
) in parallel with the total  
NOM  
inductance, and the center frequency is as follows:  
In order to accommodate designs running at XIN  
16  
Rev. 1.41  
Si4136/Si4126  
2.3. Self-Tuning Algorithm  
1
1
fCEN = --------------------------------------------- = ----------------------------------------------------------------------  
2LTOT CNOM 2 LPKG + LEXT  CNOM  
The self-tuning algorithm is initiated immediately  
following power-up of a PLL or, if the PLL is already  
powered, following a change in its programmed output  
frequency. This algorithm attempts to tune the VCO so  
that its free-running frequency is near the desired output  
frequency. In so doing, the algorithm will compensate  
for manufacturing tolerance errors in the value of the  
external inductance connected to the IF VCO. It will also  
reduce the frequency error for which the PLL must  
correct to get the precise desired output frequency. The  
self-tuning algorithm will leave the VCO oscillating at a  
frequency in error by somewhat less than 1% of the  
desired output frequency.  
Table 6 summarizes the characteristics of the IF VCO.  
Table 6. Si4136-BT/GT VCO Characteristics  
VCO Fcen Range Cnom Lpkg  
Lext Range  
(nH)  
(MHz)  
(pF)  
(nH)  
Min Max  
526 952  
Min  
Max  
IF  
6.5  
2.1  
2.2  
12.0  
After self-tuning, the PLL controls the VCO oscillation  
frequency. The PLL will complete frequency locking,  
eliminating any remaining frequency error. Thereafter, it  
will maintain frequency-lock, compensating for effects  
caused by temperature and supply voltage variations.  
Si4136  
IFLA  
LEXT  
LPKG  
2
The Si4136’s self-tuning algorithm will compensate for  
component value errors at any temperature within the  
specified temperature range. However, the ability of the  
PLL to compensate for drift in component values that  
occur after self-tuning is limited. For external  
inductances with temperature coefficients around ±150  
ppm/°C, the PLL will be able to maintain lock for  
changes in temperature of approximately ±30°C.  
IFLB  
LPKG  
2
Figure 14. Example of IF External Inductor  
design example, suppose synthesizing  
As  
a
Applications where the PLL is regularly powered-down  
or the frequency is periodically reprogrammed minimize  
or eliminate the potential effects of temperature drift  
because the VCO is re-tuned in either case. In  
applications where the ambient temperature can drift  
substantially after self-tuning, it may be necessary to  
monitor the lock-detect bar (LDETB) signal on the  
AUXOUT pin to determine whether a PLL is about to  
run out of locking capability. (See “2.9. Auxiliary Output  
(AUXOUT)” for how to select LDETB.) The LDETB  
signal will be low after self-tuning has completed but will  
rise when either the IF or RF PLL nears the limit of its  
compensation range. (LDETB will also be high when  
either PLL is executing the self-tuning algorithm.) The  
output frequency will still be locked when LDETB goes  
high, but the PLL will eventually lose lock if the  
temperature continues to drift in the same direction.  
Therefore, if LDETB goes high both the IF and RF PLLs  
should promptly be re-tuned by initiating the self-tuning  
algorithm.  
frequencies in a 30 MHz band between 735 MHz and  
765 MHz is desired. The center frequency should be  
defined as midway between the two extremes, or  
750 MHz. The PLL will be able to adjust the VCO output  
frequency ±5% of the center frequency, or ±37.5 MHz of  
750 MHz (i.e., from approximately 713 MHz to  
788 MHz). The IF VCO has a C  
of 6.5 pF, and a  
NOM  
6.9 nH inductance (correct to two digits) in parallel with  
this capacitance will yield the desired center frequency.  
An external inductance of 4.8 nH should be connected  
between IFLA and IFLB, as shown in Figure 14. This, in  
addition to 2.1 nH of package inductance, will present  
the correct total inductance to the VCO. In  
manufacturing, the external inductance can vary ±10%  
of its nominal value and the Si4136 will correct for the  
variation with the self-tuning algorithm.  
For more information on designing the external trace  
inductor, please refer to Application Note 31.  
2.4. Output Frequencies  
The IF and RF output frequencies are set by  
programming the R- and N-Divider registers. Each PLL  
has its own R and N registers so that each can be  
Rev. 1.41  
17  
Si4136/Si4126  
programmed independently. Programming either the R- transient until the point at which stability begins to be  
or N-Divider register for RF1 or RF2 automatically compromised. The optimal gain depends on N. Table 8  
selects the associated output.  
lists recommended settings for different values of N.  
When XINDIV2 = 0, the reference frequency on the XIN  
pin is divided by R and this signal is the input to the  
PLL’s phase detector. The other input to the phase  
detector is the PLL’s VCO output frequency divided by  
2N for the RF PLLs or N for the IF PLL. After an initial  
transient  
Table 8. Optimal KP Settings  
RF1  
<1:0>  
RF2  
K <1:0> K <1:0>  
P2  
IF  
N
K
P1  
PI  
2047  
00  
00  
01  
10  
11  
00  
00  
01  
10  
11  
11  
Equation 1. f  
= (2N/R)   
f
(for the RF PLLs)  
OUT  
OUT  
REF  
2048 to 4095  
4096 to 8191  
8192 to 16383  
16384  
01  
10  
11  
11  
Equation 2. f  
= (N/R)   
f
(for the IF PLL).  
REF  
The integers R are set by programming the RF1 R-  
Divider register (Register 6), the RF2 R-Divider register  
(Register 7) and the IF R-Divider register (Register 8).  
The integers N are set by programming the RF1 N-  
Divider register (register 3), the RF2 N-Divider register  
(Register 4), and the IF N-Divider register (Register 5).  
The VCO gain and loop filter characteristics are not  
programmable.  
If the optional divide-by-2 circuit on the XIN pin is  
enabled (XINDIV2 = 1) then after an initial transient  
The settling time for each PLL is directly proportional to  
its phase detector update period T (T equals 1/f ).  
f
f
= (N/R)   
f
(for the RF PLLs)  
OUT  
OUT  
REF  
= (N/2R)   
During the first 13 update periods the Si4136 executes  
the self-tuning algorithm. Thereafter the PLL controls  
the output frequency. Because of the unique  
architecture of the Si4136 PLLs, the time required to  
settle the output frequency to 0.1 ppm error is only  
about 25 update periods. Thus, the total time after  
power-up or a change in programmed frequency until  
the synthesized frequency is well settled—including  
time for self-tuning—is around 40 update periods.  
f
(for the IF PLL).  
REF  
Each N-Divider is implemented as a conventional high  
speed divider. That is, it consists of a dual-modulus  
prescaler, a swallow counter, and a lower speed  
synchronous counter. However, the control of these  
sub-circuits is handled automatically. Only the  
appropriate N value should be programmed.  
2.5. PLL Loop Dynamics  
Note: This settling time analysis holds for f500 kHz. For  
f500 kHz, the settling time can be a maximum of  
100 s as specified in Table 5.  
The transient response for each PLL is determined by  
its phase detector update rate f (equal to f  
/R) and  
REF  
the phase detector gain programmed for each RF1,  
RF2, or IF synthesizer. (See Register 1.) Four different  
settings for the phase detector gain are available for  
each PLL. The highest gain is programmed by setting  
the two phase detector gain bits to 00, and the lowest by  
setting the bits to 11. The values of the available gains,  
relative to the highest gain, are listed in Table 7.  
2.6. RF and IF Outputs (RFOUT and IFOUT)  
The RFOUT and IFOUT pins are driven by amplifiers  
that buffer the RF VCOs and IF VCO, respectively. The  
RF output amplifier receives its input from either the  
RF1 or RF2 VCO, depending upon which R- or N-  
Divider register was last written. For example,  
programming the N-Divider register for RF1  
automatically selects the RF1 VCO output.  
Table 7. Gain Values (Register 1)  
Relative P.D.  
K Bits  
P
Figure 13 on page 15 shows an application diagram for  
the Si4136. The RF output signal must be AC coupled  
to its load through a capacitor.  
Gain  
00  
01  
10  
11  
1
1/2  
1/4  
1/8  
The IFOUT pin must also be AC coupled to its load  
through a capacitor. The IF output level is dependent  
upon the load. Figure 17 displays the output level  
versus load resistance. For resistive loads greater than  
500 the output level saturates and the bias currents in  
the IF output amplifier are higher than they need to be.  
The LPWR bit in the Main Configuration register  
In general, a higher phase detector gain will decrease  
in-band phase noise and increase the speed of the PLL  
18  
Rev. 1.41  
Si4136/Si4126  
(Register 0) can be set to 1 to reduce the bias currents  
and therefore reduce the power dissipated by the IF  
amplifier. For loads less than 500  LPWR should be  
set to 0 to maximize the output level.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
LPWR=1  
LPWR=0  
For IF frequencies greater than 500 MHz, a matching  
network is required in order to drive a 50 load. See  
Figure 15 below. The value of L  
can be  
MATCH  
determined by Table 9.  
Typical values range between 8 nH and 40 nH.  
>500 pF  
IFOUT  
0
0
200  
400  
600  
800  
1000  
1200  
Load Resistance ()  
LMATCH  
Figure 17. Typical IF Output Voltage vs.  
Load Resistance at 550 MHz  
50  
2.7. Reference Frequency Amplifier  
The Si4136 provides a reference frequency amplifier. If  
the driving signal has CMOS levels, it can be connected  
directly to the XIN pin. Otherwise, the reference  
frequency signal should be AC coupled to the XIN pin  
through a 560 pF capacitor.  
Figure 15. IF Frequencies > 500 MHz  
Table 9. LMATCH Values  
Frequency  
L
MATCH  
2.8. Powerdown Modes  
500–600 MHz  
600–800 MHz  
800–1 GHz  
40 nH  
27 nH  
18 nH  
Table 10 summarizes the powerdown functionality. The  
Si4136 can be powered down by taking the PWDN pin  
low or by setting bits in the Powerdown register  
(Register 2). When the PWDN pin is low, the Si4136 will  
be powered down regardless of the Powerdown register  
settings. When the PWDN pin is high, power  
management is under control of the Powerdown register  
bits.  
For frequencies less than 500 MHz, the IF output buffer  
can directly drive a 200 resistive load or higher. For  
resistive loads greater than 500 (f < 500 MHz) the  
LPWR bit can be set to reduce the power consumed by  
the IF output buffer. See Figure 16 below.  
The IF and RF sections of the Si4136 circuitry can be  
individually powered down by setting the Powerdown  
register bits PDIB and PDRB low. The reference  
frequency amplifier will also be powered up if either the  
PDRB and PDIB bits are high. Also, setting the  
AUTOPDB bit to 1 in the Main Configuration register  
(Register 0) is equivalent to setting both bits in the  
Powerdown register to 1.  
>500 pF  
IFOUT  
>200  
The serial interface remains available and can be  
written in all power-down modes.  
Figure 16. IF Frequencies < 500 MHz  
2.9. Auxiliary Output (AUXOUT)  
The signal appearing on AUXOUT is selected by setting  
the AUXSEL bits in the Main Configuration register  
(Register 0).  
The LDETB signal can be selected by setting the  
AUXSEL bits to 011. This signal can be used to indicate  
that the IF or RF PLL is about to lose lock due to  
excessive ambient temperature drift and should be re-  
tuned.  
Rev. 1.41  
19  
Si4136/Si4126  
Table 10. Powerdown Configuration  
RF  
Circuitry  
PWDN Pin  
AUTOPDB  
PDIB  
PDRB IF Circuitry  
PWDN = 0  
x
0
0
0
0
1
x
0
0
1
1
x
x
0
1
0
1
x
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
ON  
PWDN = 1  
OFF  
ON  
ON  
ON  
ON  
Note: x = don’t care.  
20  
Rev. 1.41  
Si4136/Si4126  
3. Control Registers  
Table 11. Register Summary  
Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit  
Register Name  
Bit  
5
Bit  
4
Bit  
3
Bit Bit  
Bit  
0
17 16 15 14 13 12 11 10  
9
8
7
6
2
1
LPWR  
AUTO  
PDB  
XIN  
DIV2  
Main  
Configuration  
AUXSEL  
0
1
0
0
0
0
0
0
0
0
IFDIV  
0
0
0
0
0
0
0
Phase  
Detector  
Gain  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
K
K
K
P1  
PI  
P2  
PDIB PDRB  
2
3
Powerdown  
0
0
0
0
0
0
0
0
0
0
RF1 N  
Divider  
N
RF1  
4
RF2 N  
Divider  
0
N
RF2  
5
6
IF N Divider  
0
0
0
0
N
IF  
RF1 R  
Divider  
0
0
0
0
0
0
0
0
0
R
RF1  
RF2  
7
RF2 R  
Divider  
0
0
0
0
R
8
9
IF R Divider  
Reserved  
R
IF  
.
.
.
15  
Reserved  
Note: Registers 9–15 are reserved. Writes to these registers may result in unpredictable behavior.  
Rev. 1.41  
21  
Si4136/Si4126  
Register 0. Main Configuration Address Field = A[3:0] = 0000  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6  
D5  
D4 D3 D2 D1 D0  
LPWR  
AUTO  
PDB  
Name  
0
0
0
0
AUXSEL  
IFDIV  
0
0
0
XIN  
DIV2  
0
0
0
0
Bit  
Name  
Function  
17:14  
13:12  
Reserved  
AUXSEL  
Program to zero.  
Auxiliary Output Pin Definition.  
00 = Reserved.  
01 = Force output low.  
11 = Lock Detect (LDETB).  
11:10  
IFDIV  
IF Output Divider  
00 = IFOUT = IFVCO Frequency  
01 = IFOUT= IFVCO Frequency/2  
10 = IFOUT = IFVCO Frequency/4  
11 = IFOUT = IFVCO Frequency/8  
9:7  
6
Reserved  
XINDIV2  
Program to zero.  
XIN Divide-By-2 Mode.  
0 = XIN not divided by 2.  
1 = XIN divided by 2.  
5
LPWR  
Output Power-Level Settings for IF Synthesizer Circuit.  
0 = R  
1 = R  
500 —normal power mode.  
500 —low power mode.  
LOAD  
LOAD  
4
3
Reserved  
Program to zero.  
AUTOPDB  
Auto Powerdown  
0 = Software powerdown is controlled by Register 2.  
1 = Equivalent to setting all bits in Register 2 = 1.  
2:0  
Reserved  
Program to zero.  
22  
Rev. 1.41  
Si4136/Si4126  
Register 1. Phase Detector Gain Address Field (A[3:0]) = 0001  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
0
0
0
0
0
0
0
K
K
K
P1  
PI  
P2  
Bit  
17:6  
5:4  
Name  
Reserved  
Function  
Program to zero.  
K
IF Phase Detector Gain Constant.  
PI  
P2  
P1  
N Value  
<2048  
2048–4095  
4096–8191  
>8191  
K
PI  
= 00  
= 01  
= 10  
= 11  
3:2  
1:0  
K
K
RF2 Phase Detector Gain Constant.  
N Value  
<2048  
2048–4095  
4096–8191  
>8191  
K
P2  
= 00  
= 01  
= 10  
= 11  
RF1 Phase Detector Gain Constant.  
N Value  
K
P1  
<4096  
= 00  
= 01  
= 10  
= 11  
4096–8191  
8192–16383  
>16383  
Rev. 1.41  
23  
Si4136/Si4126  
Register 2. Powerdown Address Field (A[3:0]) = 0010  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3  
D2  
D1  
D0  
PDIB PDRB  
Name  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bit  
17:2  
1
Name  
Function  
Reserved  
PDIB  
Program to zero.  
Powerdown IF Synthesizer.  
0 = IF synthesizer powered down.  
1 = IF synthesizer on.  
0
PDRB  
Powerdown RF Synthesizer.  
0 = RF synthesizer powered down.  
1 = RF synthesizer on.  
Register 3. RF1 N Divider Address Field (A[3:0]) = 0011  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
N
RF1  
Bit  
Name  
Function  
17:0  
N
N Divider for RF1 Synthesizer.  
992.  
RF1  
N
RF1  
Register 4. RF2 N Divider Address Field = A[3:0] = 0100  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
N
RF2  
Bit  
17  
Name  
Function  
Reserved  
Program to zero.  
16:0  
N
N Divider for RF2 Synthesizer.  
RF2  
N
240.  
RF2  
24  
Rev. 1.41  
Si4136/Si4126  
Register 5. IF N Divider Address Field (A[3:0]) = 0101  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
N
IF  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N Divider for IF Synthesizer.  
56.  
N
IF  
N
IF  
Register 6. RF1 R Divider Address Field (A[3:0]) = 0110  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R
RF1  
Name  
Function  
17:13  
12:0  
Reserved  
Program to zero.  
R
R Divider for RF1 Synthesizer.  
RF1  
R
can be any value from 7 to 8189 if K = 00  
P1  
RF1  
8 to 8189 if K = 01  
P1  
10 to 8189 if K = 10  
P1  
14 to 8189 if K = 11  
P1  
Register 7. RF2 R Divider Address Field (A[3:0]) = 0111  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R
RF2  
Bit  
Name  
Function  
17:13  
12:0  
Reserved  
Program to zero.  
R
R Divider for RF2 Synthesizer.  
RF2  
R
can be any value from 7 to 8189 if K = 00  
P2  
RF2  
8 to 8189 if K = 01  
P2  
10 to 8189 if K = 10  
P2  
14 to 8189 if K = 11  
P2  
Rev. 1.41  
25  
Si4136/Si4126  
Register 8. IF R Divider Address Field (A[3:0]) = 1000  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Name  
0
0
0
0
0
R
IF  
Bit  
Name  
Function  
17:13  
12:0  
Reserved  
Program to zero.  
R
R Divider for IF Synthesizer.  
IF  
R can be any value from 7 to 8189 if K = 00  
IF  
P1  
8 to 8189 if K = 01  
P1  
10 to 8189 if K = 10  
P1  
14 to 8189 if K = 11  
P1  
26  
Rev. 1.41  
Si4136/Si4126  
4. Pin Descriptions: Si4136-BT/GT  
SEN  
SCLK  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VDDI  
IFOUT  
GND  
SDATA  
2
GND  
3
GND  
4
IFLB  
NC  
5
IFLA  
GND  
6
GND  
NC  
7
VDDD  
GND  
GND  
8
GND  
9
XIN  
GND  
10  
PWDN  
AUXOUT  
RFOUT  
11  
VDDR  
12  
Pin Number(s) Name  
Description  
1
2
SCLK  
SDATA  
GND  
Serial clock input  
Serial data input  
Common ground  
3, 4, 6, 8–10,  
16, 18, 21  
5, 7  
11  
NC  
No connect  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
12  
13  
14  
Powerdown input pin  
15  
Reference frequency amplifier input  
Supply voltage for digital circuitry  
Pins for inductor connection to IF VCO  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
17  
VDDD  
IFLA, IFLB  
IFOUT  
VDDI  
19, 20  
22  
23  
24  
SEN  
Rev. 1.41  
27  
Si4136/Si4126  
5. Pin Descriptions: Si4136-BM/GM  
28 27 26 25 24 23  
22  
GND  
GND  
NC  
1
2
3
4
5
6
7
21 GND  
20 IFLB  
19 IFLA  
18 GND  
17 VDDD  
16 GND  
15 XIN  
GND  
GND  
NC  
GND  
GND  
8
9
10 11 12 13 14  
Pin Number(s)  
Name  
Description  
1, 2, 4, 6, 7–9, 14, GND  
16, 18, 21, 22, 28  
Common ground  
3, 5  
10  
NC  
No connect  
RFOUT  
VDDR  
AUXOUT  
PWDN  
XIN  
Radio frequency (RF) output of the selected RF VCO  
Supply voltage for the RF analog circuitry  
Auxiliary output  
11  
12  
13  
Powerdown input pin  
15  
Reference frequency amplifier input  
Supply voltage for digital circuitry  
Pins for inductor connection to IF VCO  
Intermediate frequency (IF) output of the IF VCO  
Supply voltage for IF analog circuitry  
Enable serial port input  
17  
VDDD  
IFLA, IFLB  
IFOUT  
VDDI  
19, 20  
23  
24  
25  
SEN  
26  
SCLK  
Serial clock input  
27  
SDATA  
Serial data input  
28  
Rev. 1.41  
Si4136/Si4126  
6. Ordering Guide  
Ordering Part  
Number  
Description  
Lead-Free/  
RoHS Compliant  
Temperature  
o
Si4136-F-BT  
Si4136-F-GT  
Si4136-F-BM  
Si4136-F-GM  
Si4126-F-BM  
Si4126-F-GM  
2.5 GHz/2.3 GHz/IF OUT  
2.5 GHz/2.3 GHz/IF OUT/Lead Free  
2.5 GHz/2.3 GHz/IF OUT  
–40 to 85 C  
o
–40 to 85 C  
o
–40 to 85 C  
o
2.5 GHz/2.3 GHz/IF OUT/Lead Free  
2.3 GHz/IF OUT  
–40 to 85 C  
o
–40 to 85 C  
o
2.3 GHz/IF OUT/Lead Free  
–40 to 85 C  
7. Si4136 Derivative Devices  
The Si4136 performs both IF and dual-band RF frequency synthesis. The Si4126 is a derivative of this device. The  
Si4126 features two synthesizers, RF2 and IF; it does not include RF1. The pinouts for the Si4126 and the Si4136  
are the same. Unused registers related to RF1 should be programmed to zero.  
Rev. 1.41  
29  
Si4136/Si4126  
8. Package Outline: Si4136-BT/GT  
Figure 18 illustrates the package details for the Si4136-BT/GT. Table 12 lists the values for the dimensions shown  
in the illustration.  
E/2  
E1  
E
L
C
2x  
B A  
ddd  
e
ccc  
A
D
C
aaa  
C
A
Seating Plane  
b
A1  
C
24x  
M
bbb  
C B A  
Figure 18. 24-Pin Thin Shrink Small Outline Package (TSSOP)  
Table 12. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Nom  
Max  
1.20  
0.15  
0.30  
0.20  
7.90  
A
A1  
b
0.05  
0.19  
0.09  
7.70  
c
D
7.80  
e
E
0.65 BSC  
6.40 BSC  
4.40  
E1  
L
4.30  
0.45  
0°  
4.50  
0.75  
8°  
0.60  
aaa  
bbb  
ccc  
ddd  
0.10  
0.10  
0.05  
0.20  
30  
Rev. 1.41  
Si4136/Si4126  
9. Package Outline: Si4136-BM/GM  
Figure 19 illustrates the package details for the Si4136-BM/GM. Table 13 lists the values for the dimensions shown  
in the illustration.  
2x  
0.10 C  
A
A
D
D/2  
0.05 C  
A1  
M
C A B  
b
0.10  
A
Pin 1 ID  
0.20 R  
D2  
2x  
N
N
0.10 C  
B
1
2
3
1
2
3
E/2  
E2  
E
L
B
e
Seating  
Plane  
TOP VIEW  
C
BOTTOM VIEW  
SIDE VIEW  
Figure 19. 28-Pin Quad Flat No-Lead (QFN)  
Table 13. Package Dimensions  
Controlling Dimension: mm  
Symbol  
Millimeters  
Nom  
Min  
Max  
0.90  
0.05  
0.30  
A
0.85  
A1  
0.00  
0.18  
0.01  
b
0.23  
D, E  
5.00 BSC  
2.70  
D2, E2  
2.55  
0.50  
2.85  
N
e
L
28  
0.50 BSC  
0.60  
0.75  
12°  
Rev. 1.41  
31  
Si4136/Si4126  
DOCUMENT CHANGE LIST  
Revision 1.3 to Revision 1.4  
Si4136-BT change to Si4136-BT/GT  
Si4136-BM change to Si4136-BM/GM  
Revision 1.4 to Revision 1.41  
Updated contact information.  
32  
Rev. 1.41  
Si4136/Si4126  
NOTES:  
Rev. 1.41  
33  
Si4136/Si4126  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
34  
Rev. 1.41  

相关型号:

SI4136-F-GT

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4136-F-GTR

RF and Baseband Circuit, PDSO24, ROHS COMPLIANT, TSSOP-24
SILICON

SI4136DY

N-Channel 20-V (D-S) MOSFET
VISHAY

SI4136DY-T1-GE3

Small Signal Field-Effect Transistor, 31A I(D), 20V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, SOP-8
VISHAY

SI4136_10

ISM RF SYNTHESIZER WITH INTEGRATED VCOS FOR WIRELESS COMMUNICATIONS
SILICON

SI4154DY

N-Channel 40-V (D-S) MOSFET
VISHAY

SI4154DY-T1-GE3

N-Channel 40-V (D-S) MOSFET
VISHAY

SI4156DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4156DY-T1-GE3

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4160DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4160DY-T1-GE3

Small Signal Field-Effect Transistor, 16.8A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, SOP-8
VISHAY

SI4162DY

N-Channel 30-V (D-S) MOSFET
VISHAY