SI4704 [SILICON]

Worldwide FM band support (64-108 MHz) integrated antenna support EN55020 compliant; 在全球FM频段支持( 64-108 MHz)的集成天线的支持EN55020标准
SI4704
型号: SI4704
厂家: SILICON    SILICON
描述:

Worldwide FM band support (64-108 MHz) integrated antenna support EN55020 compliant
在全球FM频段支持( 64-108 MHz)的集成天线的支持EN55020标准

文件: 总36页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4704/05-C40  
BROADCAST FM RADIO RECEIVER FOR CONSUMER  
ELECTRONICS  
Features  
Worldwide FM band support  
(64–108 MHz)  
Programmable reference clock  
Volume control  
Integrated antenna support  
EN55020 compliant  
Adjustable soft mute control  
RDS/RBDS processor (Si4705)  
Optional digital audio out (Si4705)  
2-wire and 3-wire control interface  
Integrated LDO regulator  
Signal quality measurements  
2.7 to 5.5 V supply voltage  
3x3 mm 20-pin QFN package  
RoHS compliant  
Excellent real-world performance  
Freq synthesizer with integrated VCO  
Advanced FM seek tuning  
Automatic frequency control (AFC)  
Automatic gain control (AGC)  
Digital FM stereo decoder  
Minimal BOM  
Ordering Information:  
See page 28.  
Programmable de-emphasis  
Pin Assignments  
Applications  
Si4704/05-GM (Top View)  
Table and portable radios  
Stereos  
Mini/micro systems  
CD/DVD players  
Boom boxes  
Modules  
Clock radios  
Mini HiFi  
Entertainment systems  
20 19 18 17  
NC  
FMI  
1
16  
2
15 DOUT  
14 LOUT  
13 ROUT  
12 GND  
11 VDD  
Description  
RFGND  
LPI  
3
4
5
GND  
PAD  
The Si4704/05 integrates all functions required for an advanced broadcast FM  
radio receiver, from antenna input to stereo audio output.  
RST  
6
7
8
9
10  
Functional Block Diagram  
FM Antenna  
Si4704/05  
This product, its features, and/or its  
architecture is covered by one or more of  
the following patents, as well as other  
patents, pending and issued, both  
foreign and domestic: 7,127,217;  
ADC  
ADC  
DAC  
FMI  
LOUT  
ROUT  
LNA  
AGC  
PGA  
DSP  
RFGND  
DAC  
7,272,373;  
7,355,476;  
7,272,375;  
7,426,376;  
7,321,324;  
7,471,940;  
GPO  
LPI  
0/90  
7,339,503; 7,339,504.  
DCLK  
DOUT  
DFS  
32.768 kHz  
2.7–5.5 V  
RDS  
(Si4705)  
RSSI  
RCLK  
VDD  
AFC  
REG  
CONTROL  
INTERFACE  
XTAL  
OSC  
Rev. 1.0 12/09  
Copyright © 2009 by Silicon Laboratories  
Si4704/05-C40  
Si4704/05-C40  
2
Rev. 1.0  
Si4704/05-C40  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.2. Application Schematics and Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.4. Digital Audio Interface (Si4705 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.5. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.6. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.7. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.8. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9. RDS/RBDS Processor (Si4705 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.10. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.11. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.12. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.13. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.14. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.15. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.16. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5. Commands and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Pin Descriptions: Si4704/05-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.1. Si4704 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.2. Si4705 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.3. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
9. Package Outline: Si4704/05-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
10. PCB Land Pattern: Si4704/05-C40-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
11. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.0  
3
Si4704/05-C40  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
Min  
2.7  
Typ  
Max  
5.5  
3.6  
Unit  
V
V
DD  
Interface Supply Voltage  
V
1.85  
10  
V
IO  
Digital Power Supply Powerup  
Rise Time  
V
µs  
DRISE  
Interface Power Supply Powerup  
Rise Time  
V
10  
µs  
IORISE  
Ambient Temperature  
T
–20  
25  
85  
C  
A
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD= 3.3 V and 25 C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
VDD  
Interface Supply Voltage  
V
V
IO  
3
Input Current  
I
mA  
V
IN  
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Storage Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
T
STG  
4
RF Input Level  
V
PK  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended  
operating conditions for extended periods may affect device reliability.  
2. The Si4704/05 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV  
HBM. Handling and assembly of these devices should be done only at ESD-protected workstations.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
4. At RF input pin, FMI.  
4
Rev. 1.0  
Si4704/05-C40  
Table 3. DC Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.85 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Receiver to Line Output  
1
Supply Current  
I
I
I
19.2  
19.9  
19.2  
22  
23  
23  
mA  
mA  
mA  
FM  
FM  
FM  
2
Supply Current  
Low SNR level  
1
RDS Supply Current  
Supplies and Interface  
Interface Supply Current  
I
320  
10  
1
600  
20  
µA  
µA  
µA  
V
IO  
V
V
Powerdown Current  
Powerdown Current  
I
DDPD  
DD  
IO  
I
SCLK, RCLK inactive  
10  
IOPD  
3
High Level Input Voltage  
V
0.7 x V  
–0.3  
–10  
V
+ 0.3  
IO  
IH  
IO  
3
Low Level Input Voltage  
V
0.3 x V  
10  
V
IL  
IO  
3
High Level Input Current  
I
V
= V = 3.6 V  
µA  
µA  
IH  
IN  
IO  
3
Low Level Input Current  
I
V
= 0 V,  
IN  
–10  
10  
IL  
V
= 3.6 V  
IO  
4
High Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
OUT  
IO  
4
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
OL  
IO  
Notes:  
1. Guaranteed by characterization.  
2. LNA is automatically switched to higher current mode for optimum sensitivity in weak signal conditions.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
4. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.  
Rev. 1.0  
5
Si4704/05-C40  
Table 4. Reset Timing Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.85 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
Important Notes:  
t
SRST  
t
ns  
HRST  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the first start condition.  
3. When selecting 3-wire or SPI modes, the user must ensure that a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is high  
impedance, then minimum tSRST is 100 µs to provide time for on-chip 1 Mdevices (active while RST is low) to pull  
GPO1 high and GPO2 low.  
tHRST  
tSRST  
70%  
30%  
RST  
70%  
30%  
GPO1  
70%  
30%  
GPO2/  
INT  
Figure 1. Reset Timing Parameters for Busmode Select  
6
Rev. 1.0  
Si4704/05-C40  
Table 5. 2-Wire Control Interface Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.85 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIO Setup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIO Hold  
0.6  
µs  
HD:STA  
(START)  
SDIO Input to SCLK Setup  
t
t
100  
0
900  
ns  
ns  
µs  
SU:DAT  
4, 5  
SDIO Input to SCLK Hold  
HD:DAT  
SU:STO  
SCLK Input to SDIO Setup  
t
0.6  
(STOP)  
STOP to START Time  
SDIO Output Fall Time  
t
1.3  
µs  
ns  
BUF  
t
250  
f:OUT  
Cb  
----------  
1pF  
20 + 0.1  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
----------  
1pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VIO = 0 V, SCLK and SDIO are low impedance.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si4704/05 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum  
tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
Rev. 1.0  
7
Si4704/05-C40  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
SCLK  
30%  
70%  
SDIO  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
SDIO  
A6-A0,  
R/W  
D7-D0  
D7-D0  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
8
Rev. 1.0  
Si4704/05-C40  
Table 6. 3-Wire Control Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
SCLK High Time  
SCLK Low Time  
f
CLK  
t
25  
25  
20  
10  
10  
2
HIGH  
t
ns  
LOW  
SDIO Input, SEN to SCLK Setup  
SDIO Input to SCLK Hold  
t
ns  
S
t
ns  
HSDIO  
SEN Input to SCLK Hold  
t
ns  
HSEN  
SCLK to SDIO Output Valid  
SCLK to SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall Time  
t
Read  
Read  
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t , t  
ns  
R
F
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
tS  
SEN  
30%  
A6-A5,  
R/W,  
A4-A1  
70%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
30%  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
Rev. 1.0  
9
Si4704/05-C40  
Table 7. SPI Control Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
SCLK High Time  
SCLK Low Time  
f
CLK  
t
25  
25  
15  
10  
5
HIGH  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
2
25  
25  
ns  
CDV  
t
2
ns  
CDZ  
t
t
R
10  
ns  
SCLK, SEN, SDIO, Rise/Fall time  
F
Note: When selecting SPI mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHIGH  
tLOW  
tHSDIO  
tHSEN  
70%  
30%  
tS  
SEN  
tS  
70%  
30%  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
SDIO  
Control Byte In  
8 Data Bytes In  
Figure 6. SPI Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
tCDV  
tS  
tHSEN  
tHSDIO  
70%  
30%  
tS  
SEN  
tCDZ  
70%  
30%  
SDIO  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
16 Data Bytes Out  
(SDIO or GPO1)  
Bus  
Turnaround  
Control Byte In  
Figure 7. SPI Control Interface Read Timing Parameters  
10  
Rev. 1.0  
Si4704/05-C40  
Table 8. Digital Audio Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol Test Condition  
Min  
26  
10  
10  
5
Typ  
Max  
1000  
Unit  
ns  
DCLK Cycle Time  
t
DCT  
DCH  
DCLK Pulse Width High  
t
ns  
DCLK Pulse Width Low  
t
ns  
DCL  
DFS Set-up Time to DCLK Rising Edge  
DFS Hold Time from DCLK Rising Edge  
t
ns  
SU:DFS  
HD:DFS  
t
5
ns  
DOUT Propagation Delay from DCLK Falling  
Edge  
t
0
12  
ns  
PD:DOUT  
tDCH  
tDCL  
DCLK  
tDCT  
DFS  
tHD:DFS  
tSU:DFS  
DOUT  
tPD:OUT  
Figure 8. Digital Audio Interface Timing Parameters, I2S Mode  
Rev. 1.0  
11  
Si4704/05-C40  
Table 9. FM Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
Sensitivity with Headphone  
(S+N)/N = 26 dB  
(S+N)/N = 26 dB  
2.2  
µV EMF  
3,4,5  
Network  
3,4,5,6  
Sensitivity with 50 Network  
1.1  
15  
µV EMF  
µV EMF  
6
RDS Sensitivity  
f = 2 kHz,  
RDS BLER < 5%  
6
LPI Sensitivity  
3
3.5  
4
5
µV EMF  
6,7  
LNA Input Resistance  
k  
6,7  
LNA Input Capacitance  
4
5
6
pF  
6,8  
Input IP3  
100  
40  
35  
60  
35  
72  
15  
32  
55  
105  
50  
50  
70  
80  
42  
63  
58  
32  
38  
90  
1
dBµV EMF  
3,4,6,7  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
dB  
dB  
dB  
dB  
AM Suppression  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
6
Spurious Response Rejection  
3,4,7  
mV  
Audio Output Voltage  
RMS  
3,7,9  
dB  
Hz  
Audio Output L/R Imbalance  
6
–3 dB  
–3 dB  
30  
Audio Frequency Response Low  
6
kHz  
dB  
Audio Frequency Response High  
7,9  
Audio Stereo Separation  
3,4,5,7,10  
dB  
Audio Mono S/N  
4,5,6,7,10,11  
dB  
Audio Stereo S/N  
3,6,12,13  
Blocking Sensitivity  
f = ±400 kHz  
f = ±4 MHz  
dBµV  
dBµV  
Notes:  
1. Additional testing information is available in application note, “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test  
Procedure.” Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. Analog audio output mode.  
12. Blocker Amplitude = 100 dBµV  
13. Sensitivity measured at (S+N)/N = 26 dB.  
14. At temperature 25°C.  
12  
Rev. 1.0  
Si4704/05-C40  
Table 9. FM Receiver Characteristics1,2 (Continued)  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
f = ±400 kHz, ±800 kHz  
f = ±4 MHz, ±8 MHz  
Min  
Typ  
40  
35  
0.1  
75  
50  
Max  
Unit  
dBµV  
dBµV  
%
3,6,12,13  
Intermod Sensitivity  
3,7,9  
0.5  
80  
54  
Audio THD  
6
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
70  
45  
10  
µs  
µs  
6,10  
R
k  
Audio Output Load Resistance  
L
6,10  
C
Single-ended  
50  
60  
pF  
Audio Output Load Capacitance  
L
6
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
6
Powerup Time  
From powerdown  
110  
3
ms  
dB  
14  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF Input  
–3  
Notes:  
1. Additional testing information is available in application note, “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test  
Procedure.” Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. Analog audio output mode.  
12. Blocker Amplitude = 100 dBµV  
13. Sensitivity measured at (S+N)/N = 26 dB.  
14. At temperature 25°C.  
Rev. 1.0  
13  
Si4704/05-C40  
Table 10. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,6  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
Min  
64  
Typ  
Max  
75.9  
Unit  
MHz  
Input Frequency  
f
RF  
Sensitivity with Headphone  
(S+N)/N = 26 dB  
4.0  
µV EMF  
3,4,5  
Network  
7
LNA Input Resistance  
3
4
4
5
5
6
k  
7
LNA Input Capacitance  
pF  
dBµV EMF  
dB  
8
Input IP3  
100  
40  
72  
15  
55  
70  
45  
10  
105  
50  
50  
70  
80  
63  
0.1  
75  
50  
90  
1
3,4,7  
m = 0.3  
±200 kHz  
±400 kHz  
AM Suppression  
dB  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
dB  
3,4,7  
mV  
Audio Output Voltage  
RMS  
3,7,9  
dB  
Audio Output L/R Imbalance  
–3 dB  
–3 dB  
30  
0.5  
80  
54  
50  
60  
Hz  
Audio Frequency Response Low  
Audio Frequency Response High  
kHz  
3,4,5,7,10  
dB  
Audio Mono S/N  
3,7,9  
%
Audio THD  
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
µs  
µs  
k  
10  
R
Audio Output Load Resistance  
L
L
10  
C
Single-ended  
pF  
Audio Output Load Capacitance  
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
Powerup Time  
From powerdown  
110  
3
ms  
dB  
11  
RSSI Offset  
Input levels of 8 and  
60 dBµV EMF  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. At temperature (25 °C).  
14  
Rev. 1.0  
Si4704/05-C40  
Table 11. Reference Clock and Crystal Characteristics  
(V = 2.7 to 5.5 V, V = 1.85 to 3.6 V, TA = –20 to 85 °C)  
DD  
IO  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock  
1
RCLK Supported Frequencies  
31.130  
–100  
1
32.768  
40,000  
100  
kHz  
2
RCLK Frequency Tolerance  
ppm  
REFCLK_PRESCALE  
REFCLK  
4095  
31.130  
32.768  
34.406  
kHz  
Crystal Oscillator  
Crystal Oscillator Frequency  
–100  
32.768  
kHz  
ppm  
pF  
2
Crystal Frequency Tolerance  
100  
3.5  
Board Capacitance  
Notes:  
1. The Si4704/05 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK  
frequencies between 31.130 kHz and 40 MHz that are not supported. See “AN332: Si47xx Programming Guide,” Table  
6 for more details.  
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing.  
Rev. 1.0  
15  
Si4704/05-C40  
2. Typical Application Schematic  
GPO1  
GPO2/INT  
R1  
R2  
GPO3/DCLK  
DFS  
R3  
15  
DOUT  
DOUT  
Optional: Digital Audio Output  
1
NC  
2
FMI  
FMI  
LPI  
14  
13  
12  
11  
LOUT  
ROUT  
LOUT  
ROUT  
GND  
3
RFGND  
U1  
Si4704/05  
4
5
LPI  
VDD  
RST  
VBATTERY  
2.7 to 5.5 V  
C1  
RST  
SEN  
X1  
GPO3  
RCLK  
C3  
SCLK  
SDIO  
RCLK  
C2  
Optional: for crystal oscillator option  
VIO  
1.85 to 3.6 V  
Notes:  
1. Place C1 close to V pin.  
DD  
2. All grounds connect directly to GND plane on PCB.  
3. Pins 1 and 20 are no connects, leave floating.  
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
5. Pin 2 or Pin 4 connects to the FM antenna interface. Pin 2 is for a headphone antenna. Pin 4 is for an integrated  
antenna.  
6. Place Si4704/05 as close as possible to antenna and keep the FMI and LPI traces as short as possible.  
16  
Rev. 1.0  
Si4704/05-C40  
3. Bill of Materials  
Component(s)  
Value/Description  
Supplier  
Murata  
C1  
U1  
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R  
Si4704/05 FM Radio Receiver  
Silicon Laboratories  
Optional Components  
C2, C3  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional: for crystal oscillator option)  
Venkel  
X1  
R1  
R2  
R3  
32.768 kHz crystal (Optional: for crystal oscillator option)  
Resistor, 2 k(Optional: for digital audio)  
Epson  
Venkel  
Venkel  
Venkel  
Resistor, 2 k(Optional: for digital audio)  
Resistor, 600 (Optional: for digital audio)  
Rev. 1.0  
17  
Si4704/05-C40  
4. Functional Description  
4.1. Overview  
FM Antenna  
Si4704/05  
ADC  
ADC  
DAC  
FMI  
LOUT  
ROUT  
LNA  
AGC  
PGA  
DSP  
RFGND  
DAC  
GPO  
LPI  
0/90  
DCLK  
DOUT  
DFS  
RDS  
(Si4705)  
32.768 kHz  
RCLK  
RSSI  
AFC  
REG  
CONTROL  
INTERFACE  
2.7–5.5 V  
VDD  
XTAL  
OSC  
Figure 9. Functional Block Diagram  
The Si4704/05 device leverages Silicon Laboratories’ The Si4704/05 performs much of the FM demodulation  
highly successful and proven Si4700/01/02/03 FM digitally to achieve high fidelity, optimal performance  
receiver, and offers unmatched integration and versus power consumption, and flexibility of design. The  
performance. The Si4704/05 offers additional features, on-board DSP provides unmatched pilot rejection,  
such as EN55020 compliance, embedded antenna selectivity, and optimum sound quality. The Si4704/05  
support, and a digital audio interface. The Si4704/05 is offers both the manufacturer and the end-user  
layout compatible with Silicon Laboratories’ Si4710/11 unmatched programmability and flexibility in the  
FM Transmitter, Si4720/21 FM Transceiver, and listening experience.  
Si4730/31 AM/FM Receiver. The Si4704/05 is the first  
FM radio receiver integrated circuit to support a short  
for the European Radio Data System (RDS) and the US  
PCB trace or wire antenna, which can be integrated into  
The Si4705 incorporates on-board processing capability  
Radio Broadcast Data System (RBDS) including all the  
symbol encoding/decoding, block synchronization, error  
the enclosure or PCB.  
The Si4704/05’s digital integration reduces the required detection, and error correction functions. RDS allows  
external components of traditional offerings, resulting in digital information sent from the broadcaster to be  
a solution requiring only an external inductor and displayed, such as station ID, song name, and music  
bypass capacitor, and occupying board space of category. In Europe, alternate frequency (AF)  
2
approximately 15 mm . Other advantages of the information is also provided to automatically change  
Si4704/05 include highly reliable device manufacturing, stations in areas where broadcasters use multiple  
excellent quality, and ease of use to design-in and frequencies.  
program.  
The Si4704/05 has two separate RF inputs. FMI is the  
The Si4704/05 includes line outputs from the on-chip input for use with a traditional FM antenna. The LPI  
digital-to-analog converters (DAC), digital audio mixers, input is for use with a short PCB trace or wire antenna  
a
programmable reference clock input, and  
a
that may be integrated into the system enclosure. There  
configurable digital audio interface with the Si4705. The is a clocking mode to choose to clock the Si4704/05  
2
chip supports an I C-compliant 2-wire interface, an from a reference clock or crystal. On the Si4705, there  
Si4700/01/02/03 backwards compatible 3-wire control is an audio output mode to choose between an analog  
interface, and an SPI control interface.  
and/or digital audio output.  
18  
Rev. 1.0  
Si4704/05-C40  
In the analog audio output mode, pin 13 is ROUT, pin 14 The quadrature mixer output is amplified, filtered, and  
is LOUT, and pin 17 is GPO3. In the digital audio mode, digitized with high resolution analog-to-digital  
pin 15 is DOUT, pin 16 is DFS, and pin 17 is DCLK. converters (ADCs). This advanced architecture allows  
Concurrent analog/digital audio output mode requires the Si4704/05 to perform channel selection, FM  
pins 13, 14, 15, 16, and 17.  
demodulation, and stereo audio processing to achieve  
superior performance compared to traditional analog  
architectures.  
The digital audio interface operates in slave mode and  
supports a variety of MSB-first audio data formats  
2
including I S and left-justified modes. The interface has  
4.4. Digital Audio Interface (Si4705 Only)  
three pins: digital data input (DIN), digital frame  
synchronization input (DFS), and  
The digital audio interface operates in slave mode and  
supports three different audio data formats:  
a
digital bit  
synchronization input clock (DCLK). The Si4704/05  
supports a number of industry-standard sampling rates  
including 32, 40, 44.1, and 48 kHz. The digital audio  
interface enables low-power operation by eliminating  
the need for redundant DACs and ADCs on the audio  
baseband processor.  
2
I S  
Left-Justified  
DSP Mode  
4.4.1. Audio Data Formats  
2
In I S mode, by default the MSB is captured on the  
The Si4704/05 is reset by applying a logic low on RST  
signal. This causes all register values to be reset to their  
default values. The digital output interface supply (V )  
provides voltage to the RST, SEN, SDIO, RCLK, DOUT,  
DFS, and DCLK pins and can be connected to the audio  
baseband processor's supply voltage to save power and  
remove the need for voltage level translators. RCLK is  
not required for register operation.  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
IO  
In Left-Justified mode, by default the MSB is captured  
on the first rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is high, and the right channel is  
transferred when the DFS is low.  
The Si4704/05 reference clock is programmable,  
supporting many RCLK inputs as shown in Table 11.  
4.2. Application Schematics and Operating  
Modes  
In DSP mode, the DFS becomes a pulse with a width of  
1DCLK period. The left channel is transferred first,  
followed right away by the right channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
The application schematic for the Si4704/05 is shown in  
Section "2. Typical Application Schematic" on page 16.  
The Si4704/05 supports selectable analog, digital, or  
concurrent analog and digital audio output modes. In  
the analog output mode, pin 13 is ROUT, pin 14 is  
LOUT, and pin 17 is GPO3. In the digital output mode,  
pin 15 is DOUT, pin 16 is DFS, and pin 17 is DCLK.  
Concurrent analog and digital audio output mode  
requires pins 13, 14, 15, 16, and 17. In addition to  
output mode, there is a clocking mode to clock the  
Si4704/05 from a reference clock or crystal oscillator.  
The user sets the operating modes with commands as  
described in Section "5. Commands and Properties" on  
page 25.  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. In addition, if  
preferred, the user can configure the MSB to be  
captured on the falling edge of DCLK via properties.  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
4.3. FM Receiver  
4.4.2. Audio Sample Rates  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs on the audio  
baseband processor.  
The Si4704/05 FM receiver is based on the proven  
Si4700/01 FM tuner. The receiver uses a digital low-IF  
architecture allowing the elimination of external  
components and factory adjustments. The Si4704/05  
integrates a low noise amplifier (LNA) supporting the  
worldwide FM broadcast band (64 to 108 MHz). An  
AGC circuit controls the gain of the LNA to optimize  
sensitivity and rejection of strong interferers. An image-  
reject mixer downconverts the RF signal to low-IF.  
Rev. 1.0  
19  
Si4704/05-C40  
INVERTED  
(OFALL = 1)  
DCLK  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
I2S  
RIGHT CHANNEL  
(OMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 10. I2S Digital Audio Format  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(OMODE = 0110)  
DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 11. Left-Justified Digital Audio Format  
(OFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DOUT  
1
2
3
2
n-1  
n
(OMODE = 1100)  
(OMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 12. DSP Digital Audio Format  
20  
Rev. 1.0  
Si4704/05-C40  
4.5. Stereo Audio Processing  
4.6. De-emphasis  
The output of the FM demodulator is a stereo Pre-emphasis and de-emphasis is a technique used by  
multiplexed (MPX) signal. The MPX standard was FM broadcasters to improve the signal-to-noise ratio of  
developed in 1961, and is used worldwide. Today's FM receivers by reducing the effects of high-frequency  
MPX signal format consists of left + right (L+R) audio, interference and noise. When the FM signal is  
left – right (L–R) audio, a 19 kHz pilot tone, and transmitted,  
a
pre-emphasis filter is applied to  
RDS/RBDS data as shown in Figure 13 below.  
accentuate the high audio frequencies. The Si4704/05  
incorporates a de-emphasis filter which attenuates high  
frequencies to restore a flat frequency response. Two  
time constants are used in various regions. The de-  
emphasis time constant is programmable to 50 or 75 µs  
and is set by the FM_DEEMPHASIS property.  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
4.7. Stereo DAC  
High-fidelity stereo digital-to-analog converters (DACs)  
drive analog audio signals onto the LOUT and ROUT  
pins. The audio output may be muted. Volume is  
adjusted digitally with the RX_VOLUME property.  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
4.8. Soft Mute  
Figure 13. MPX Signal Spectrum  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in very weak signal  
conditions. The softmute attenuation level is adjustable  
using the FM_SOFT_MUTE_MAX_ATTENUATION  
property.  
4.5.1. Stereo Decoder  
The Si4704/05's  
integrated  
stereo  
decoder  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
The Si4705 uses frequency information from the 19 kHz  
stereo pilot to recover the 57 kHz RDS/RBDS signal.  
4.9. RDS/RBDS Processor (Si4705 Only)  
The Si4705 implements an RDS/RBDS* processor for  
symbol decoding, block synchronization, error  
detection, and error correction.  
The Si4705 device is user configurable and provides an  
optional interrupt when RDS is synchronized, loses  
synchronization, and/or the user configurable RDS  
FIFO threshold has been met.  
4.5.2. Stereo-Mono Blending  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Stereo/mono status can be  
monitored with the FM_RSQ_STATUS command. Mono  
The Si4705 reports RDS decoder synchronization  
status and detailed bit errors in the information word for  
each RDS block with the FM_RDS_STATUS command.  
The range of reportable block errors is 0, 1–2, 3–5, or  
6+. More than six errors indicates that the  
corresponding block information word contains six or  
more non-correctable errors or that the block checkword  
contains errors.  
operation  
can  
be  
forced  
with  
the  
FM_BLEND_MONO_THRESHOLD property.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
Rev. 1.0  
21  
Si4704/05-C40  
4.10. Tuning  
4.13. Control Interface  
The tuning frequency can be directly programmed using A serial port slave interface is provided, which allows an  
the FM_TUNE_FREQ command. The Si4704/05 external controller to send commands to the Si4704/05  
supports channel spacing steps of 10 kHz in FM mode. and receive responses from the device. The serial port  
can operate in three bus modes: 2-wire mode, 3-wire  
mode, or SPI mode. The Si4704/05 selects the bus  
4.11. Seek  
Seek tuning will search up or down for a valid channel.  
Valid channels are found when the receive signal  
strength indicator (RSSI) and the signal-to-noise ratio  
(SNR) values exceed the set threshold. Using the SNR  
qualifier rather than solely relying on the more  
traditional RSSI qualifier can reduce false stops and  
increase the number of valid stations detected. Seek is  
initiated using the FM_SEEK_START command. The  
RSSI and SNR threshold settings are adjustable using  
properties (see Table 14).  
mode by sampling the state of the GPO1 and GPO2  
pins on the rising edge of RST. The GPO1 pin includes  
an internal pull-up resistor, which is connected while  
RST is low, and the GPO2 pin includes an internal pull-  
down resistor, which is connected while RST is low.  
Therefore, it is only necessary for the user to actively  
drive pins which differ from these states. See Table 12.  
Table 12. Bus Mode Select on Rising Edge of  
RST  
4.12. Reference Clock  
Bus Mode  
2-Wire  
SPI  
GPO1  
GPO2  
The Si4704/05 reference clock is programmable,  
supporting RCLK frequencies in Table 11. Refer to  
Table 3, “DC Characteristics,” on page 5 for switching  
1
0
1
1 (must drive)  
0
3-Wire  
0 (must drive)  
voltage  
levels  
and  
Table 9,  
“FM  
Receiver  
Characteristics,” on page 12 for frequency tolerance  
information.  
After the rising edge of RST, the pins GPO1 and GPO2  
are used as general purpose output (O) pins as  
described in Section “4.14. GPO Outputs”. In any bus  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to "2. Typical Application  
Schematic" on page 16. This mode is enabled using the  
POWER_UP command. Refer to Table 13, “Selected  
Si4704/05 Commands,” on page 25.  
mode, commands may only be sent after V and V  
IO  
DD  
supplies are applied.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high).  
The Si4704/05 performance may be affected by data  
activity on the SDIO bus when using the integrated  
internal oscillator. SDIO activity results from polling the  
tuner for status or communicating with other devices  
that share the SDIO bus. If there is SDIO bus activity  
while the Si4704/05 is performing the seek/tune  
function, the crystal oscillator may experience jitter,  
which may result in mistunes, false stops, and/or lower  
SNR.  
4.13.1. 2-Wire Control Interface Mode  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
The 2-wire bus mode uses only the SCLK and SDIO  
pins for signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a 7-bit  
device address, followed by a read/write bit (read = 1,  
write = 0). The Si4704/05 acknowledges the control  
word by driving SDIO low on the next falling edge of  
SCLK.  
For best seek/tune results, Silicon Laboratories  
recommends that all SDIO data traffic be suspended  
during Si4704/05 seek and tune operations. This is  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The seek/tune complete  
(STC) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
22  
Rev. 1.0  
Si4704/05-C40  
Although the Si4704/05 will respond to only a single A transaction ends when the user sets SEN high, then  
device address, this address can be changed with the pulses SCLK high and low one final time. SCLK may  
SEN pin (note that the SEN pin is not used for signaling either stop or continue to toggle while SEN is high.  
in 2-wire mode). When SEN = 0, the 7-bit device  
address is 0010001b. When SEN = 1, the address is  
argument to register(s) 0xA1–0xA3, then writing the  
1100011b.  
In 3-wire mode, commands are sent by first writing each  
command word to register 0xA0. A response is  
For write operations, the user then sends an 8-bit data retrieved by reading registers 0xA8–0xAF.  
byte on SDIO, which is captured by the device on rising  
For details on timing specifications and diagrams, refer  
edges of SCLK. The Si4704/05 acknowledges each  
to Table 6, “3-Wire Control Interface Characteristics,” on  
data byte by driving SDIO low for one cycle, on the next  
page 9; Figure 4, “3-Wire Control Interface Write Timing  
falling edge of SCLK. The user may write up to 8 data  
Parameters,” on page 9, and Figure 5, “3-Wire Control  
bytes in a single 2-wire transaction. The first byte is a  
Interface Read Timing Parameters,” on page 9.  
command, and the next seven bytes are arguments.  
4.13.3. SPI Control Interface Mode  
For read operations, after the Si4704/05 has  
When selecting SPI mode, the user must ensure that a  
acknowledged the control byte, it will drive an 8-bit data  
rising edge of SCLK does not occur within 300 ns  
byte on SDIO, changing the state of SDIO on the falling  
before the rising edge of RST.  
edge of SCLK. The user acknowledges each data byte  
by driving SDIO low for one cycle, on the next falling SPI bus mode uses the SCLK, SDIO, and SEN pins for  
edge of SCLK. If a data byte is not acknowledged, the read/write operations. The system controller can  
transaction will end. The user may read up to 16 data choose to receive read data from the device on either  
bytes in a single 2-wire transaction. These bytes contain SDIO or GPO1. A transaction begins when the system  
the response data from the Si4704/05.  
controller drives SEN = 0. The system controller then  
pulses SCLK eight times, while driving an 8-bit control  
byte serially on SDIO. The device captures the data on  
rising edges of SCLK. The control byte must have one  
of five values:  
A 2-wire transaction ends with the STOP condition,  
which occurs when SDIO rises while SCLK is high. For  
details on timing specifications and diagrams, refer to  
Table 5, “2-Wire Control Interface Characteristics” on  
page 7; Figure 2, “2-Wire Control Interface Read and  
Write Timing Parameters,” on page 8, and Figure 3, “2-  
Wire Control Interface Read and Write Timing Diagram,”  
on page 8.  
0x48 = write a command (controller drives 8  
additional bytes on SDIO).  
0x80 = read a response (device drives one  
additional byte on SDIO).  
4.13.2. 3-Wire Control Interface Mode  
0xC0 = read a response (device drives 16 additional  
bytes on SDIO).  
When selecting 3-wire mode, the user must ensure that  
a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
0xA0 = read a response (device drives one  
additional byte on GPO1).  
The 3-wire bus mode uses the SCLK, SDIO, and SEN_  
pins. A transaction begins when the user drives SEN  
low. Next, the user drives a 9-bit control word on SDIO,  
which is captured by the device on rising edges of  
SCLK. The control word consists of a 3-bit device  
address (A7:A5 = 101b), a read/write bit (read = 1, write  
= 0), and a 5-bit register address (A4:A0).  
0xE0 = read a response (device drives 16 additional  
bytes on GPO1).  
For write operations, the system controller must drive  
exactly eight data bytes (a command and seven  
arguments) on SDIO after the control byte. The data is  
captured by the device on the rising edge of SCLK.  
For read operations, the controller must read exactly 1  
byte (STATUS) after the control byte or exactly 16 data  
bytes (STATUS and RESP1–RESP15) after the control  
byte. The device changes the state of SDIO (or GPO1, if  
specified) on the falling edge of SCLK. Data must be  
captured by the system controller on the rising edge of  
SCLK.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turn-around. Next,  
the Si4704/05 will drive the 16-bit read data word  
serially on SDIO, changing the state of SDIO on each  
rising edge of SCLK.  
Rev. 1.0  
23  
Si4704/05-C40  
Keep SEN low until all bytes have transferred. A  
transaction may be aborted at any time by setting SEN  
high and toggling SCLK high and then low. Commands  
will be ignored by the device if the transaction is  
aborted.  
4.16. Programming with Commands  
To ease development time and offer maximum  
customization, the Si4704/05 provides a simple yet  
powerful software interface to program the receiver. The  
device is programmed using commands, arguments,  
For details on timing specifications and diagrams, refer properties, and responses.  
to Figure 6 and Figure 7 on page 10.  
To perform an action, the user writes a command byte  
and associated arguments, causing the chip to execute  
the given command. Commands control an action such  
as powerup the device, shut down the device, or tune to  
a station. Arguments are specific to a given command  
and are used to modify the command. A partial list of  
commands is available in Table 13, “Selected Si4704/05  
Commands,” on page 25.  
4.14. GPO Outputs  
The Si4704/05 provides three general-purpose output  
pins. The GPO pins can be configured to output a  
constant low, constant high, or high-impedance. The  
GPO pins can be reconfigured as specialized functions.  
GPO2/INT can be configured to provide interrupts and  
GPO3 can be configured to provide external crystal  
support or as DCLK in digital audio output mode.  
Properties are a special command argument used to  
modify the default chip operation and are generally  
configured immediately after powerup. Examples of  
properties are de-emphasis level, RSSI seek threshold,  
and soft mute attenuation threshold. A partial list of  
properties is available in Table 14, “Selected Si4704/05  
Properties,” on page 26.  
4.15. Reset, Powerup, and Powerdown  
Setting the RST pin low will disable analog and digital  
circuitry, reset the registers to their default settings, and  
disable the bus. Setting the RST pin high will bring the  
device out of reset.  
Responses provide the user information and are  
echoed after a command and associated arguments are  
issued. All commands provide a one-byte status update  
indicating interrupt and clear-to-send status information.  
For a detailed description of the commands and  
properties for the Si4704/05, see “AN332: Universal  
Programming Guide.”  
A powerdown mode is available to reduce power  
consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry  
while keeping the bus active.  
24  
Rev. 1.0  
Si4704/05-C40  
5. Commands and Properties  
Table 13. Selected Si4704/05 Commands  
Cmd  
Name  
Description  
Powerup device and mode selection. Modes include analog or digital output  
and reference clock or crystal support.  
0x01  
POWER_UP  
0x10  
0x11  
0x12  
0x13  
0x20  
0x21  
GET_REV  
Returns revision information on the device.  
Powerdown device.  
POWER_DOWN  
SET_PROPERTY  
GET_PROPERTY  
FM_TUNE_FREQ  
FM_SEEK_START  
Sets the value of a property.  
Retrieves a property’s value.  
Selects the FM tuning frequency.  
Begins searching for a valid frequency.  
Queries the status of previous FM_TUNE_FREQ or FM_SEEK_START  
command.  
0x22  
0x23  
0x24  
FM_TUNE_STATUS  
FM_RSQ_STATUS  
FM_RDS_STATUS  
Queries the status of the Received Signal Quality (RSQ) of the current  
channel (Si4705 only).  
Returns RDS information for current channel and reads an entry from the  
RDS FIFO (Si4705 only).  
Rev. 1.0  
25  
Si4704/05-C40  
Table 14. Selected Si4704/05 Properties  
Prop  
Name  
Description  
Default  
0x1100  
FM_DEEMPHASIS  
Sets deemphasis time constant. Default is 75 us.  
0x0002  
Sets RSSI threshold for stereo blend (Full stereo above  
threshold, blend below threshold). To force stereo set this to 0. 0x0031  
To force mono set this to 127. Default value is 49 dBuV.  
FM_BLEND_STEREO_  
THRESHOLD  
0x1105  
0x1106  
Sets RSSI threshold for mono blend (Full mono below  
threshold, blend above threshold). To force stereo set this to 0. 0x001E  
To force mono set this to 127. Default value is 30 dBuV.  
FM_BLEND_MONO_  
THRESHOLD  
FM_RSQ_INT_  
SOURCE  
0x1200  
0x1302  
Configures interrupt related to Received Signal Quality metrics. 0x0000  
FM_SOFT_MUTE_  
MAX_ATTENUATION  
Sets maximum attenuation during soft mute (dB). Set to 0 to  
0x0010  
disable soft mute. Default is 16 dB.  
FM_SEEK_BAND_  
BOTTOM  
0x1400  
0x1401  
0x1402  
Sets the bottom of the FM band for seek. Default is 8750.  
Sets the top of the FM band for seek. Default is 10790.  
Selects frequency spacing for FM seek.  
0x222E  
0x2A26  
0x000A  
FM_SEEK_BAND_TOP  
FM_SEEK_FREQ_  
SPACING  
FM_SEEK_TUNE_  
SNR_THRESHOLD  
Sets the SNR threshold for a valid FM Seek/Tune. Default value  
is 3 dB.  
0x1403  
0x0003  
FM_SEEK_TUNE_  
RSSI_TRESHOLD  
Sets the RSSI threshold for a valid FM Seek/Tune. Default  
value is 20 dBuV.  
0x1404  
0x1500  
0x1501  
0x0014  
0x0000  
0x0000  
RDS_INT_SOURCE  
Configures RDS interrupt behavior.  
Sets the minimum number of RDS groups stored in the receive  
RDS FIFO required before RDS RECV is set.  
RDS_INT_FIFO_COUNT  
0x1502  
0x4000  
RDS_CONFIG  
RX_VOLUME  
Configures RDS setting.  
Sets the output volume.  
0x0000  
0x003F  
Mutes the audio output. L and R audio outputs may be muted  
independently in FM mode.  
0x4001  
RX_HARD_MUTE  
0x0000  
26  
Rev. 1.0  
Si4704/05-C40  
6. Pin Descriptions: Si4704/05-GM  
20 19 18 17  
NC 1  
FMI 2  
RFGND 3  
LPI 4  
16  
15 DOUT  
14 LOUT  
13 ROUT  
12 GND  
11 VDD  
GND  
PAD  
RST 5  
6
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No connect. Leave floating.  
FM RF input.  
2
FMI  
3
RFGND  
LPI  
RF ground. Connect to ground plane on PCB.  
Loop antenna RF input.  
4
5
RST  
Device reset input (active low).  
Serial enable input (active low).  
Serial clock input.  
6
SEN  
7
SCLK  
SDIO  
RCLK  
8
Serial data input/output.  
9
External reference or crystal oscillator input.  
I/O supply voltage.  
10  
V
IO  
11  
V
Supply voltage. May be connected directly to battery.  
Ground. Connect to ground plane on PCB.  
Right audio analog line output.  
DD  
12, GND PAD  
GND  
ROUT  
LOUT  
DOUT  
DFS  
13  
14  
15  
16  
17  
Left audio analog line output.  
Digital audio output data.  
Digital frame synchronization.  
GPO3/DCLK General purpose output/digital bit synchronous clock or crystal oscillator  
input.  
18  
19  
General purpose output/interrupt.  
General purpose output.  
GPO2/INT  
GPO1  
Rev. 1.0  
27  
Si4704/05-C40  
7. Ordering Guide  
Part Number*  
Description  
Package  
Type  
Operating  
Temperature  
Si4704-C40-GM FM Broadcast Radio Receiver  
QFN  
–20 to 85 °C  
Pb-free  
Si4705-C40-GM FM Broadcast Radio Receiver with RDS/RBDS  
QFN  
–20 to 85 °C  
Pb-free  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option; 2500 quantity per reel.  
28  
Rev. 1.0  
Si4704/05-C40  
8. Package Markings (Top Marks)  
8.1. Si4704 Top Mark  
0440  
CTTT  
YWW  
Figure 14. Si4704 Top Mark  
8.2. Si4705 Top Mark  
0540  
CTTT  
YWW  
Figure 15. Si4705 Top Mark  
8.3. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
04 = Si4704  
05 = Si4705  
Firmware Revision  
R = Die Revision  
40 = Firmware Revision 4.0  
C = Revision C Die.  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier.  
(Bottom-Left Justified)  
Y = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and workweek of the mold date.  
Rev. 1.0  
29  
Si4704/05-C40  
9. Package Outline: Si4704/05-GM  
Figure 16 illustrates the package details for the Si4704/05. Table 15 lists the values for the dimensions shown in  
the illustration.  
Figure 16. 20-Pin Quad Flat No-Lead (QFN)  
Table 15. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
30  
Rev. 1.0  
Si4704/05-C40  
10. PCB Land Pattern: Si4704/05-C40-GM  
Figure 17 illustrates the PCB land pattern details for the Si4704/05-GM. Table 16 lists the values for the dimensions  
shown in the illustration.  
Figure 17. PCB Land Pattern  
Rev. 1.0  
31  
Si4704/05-C40  
Table 16. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component stand-off.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
32  
Rev. 1.0  
Si4704/05-C40  
11. Additional Reference Resources  
Contact your local sales representatives for more information or to obtain copies of the following references:  
EN55020 Compliance Test Certificate  
AN332: Si47xx Programming Guide  
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines  
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure  
Rev. 1.0  
33  
Si4704/05-C40  
DOCUMENT CHANGE LIST  
Revision 0.7 to Revision 0.71  
V
minimum changed from 1.5 V to 1.85 V.  
IO  
Revision 0.71 to Revision 1.0  
Updated patent information on page 1.  
Updated Table 3 on page 5.  
34  
Rev. 1.0  
Si4704/05-C40  
NOTES:  
Rev. 1.0  
35  
Si4704/05-C40  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: FMinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
36  
Rev. 1.0  

相关型号:

SI4704-B20-GM

RF and Baseband Circuit, 3 X 3 MM, 0.55 MM HEIGHT, LEAD FREE, QFN-20
SILICON

SI4704-B20-GMR

RF and Baseband Circuit, 3 X 3 MM, 0.55 MM HEIGHT, LEAD FREE, QFN-20
SILICON

SI4704-C40

Worldwide FM band support (64-108 MHz) integrated antenna support EN55020 compliant
SILICON

SI4704-C40-GM

Audio Single Chip Receiver, 3 X 3 MM, ROHS COMPLIANT, QFN-20
SILICON

SI4704-D50

BROADCAST FM RADIO RECEIVER FOR CONSUMER
SILICON

SI4704-D50-GM

Baseband Circuit, CMOS, QFN-20
SILICON

SI4704-D60

BROADCAST FM RADIO RECEIVER WITH RDS/RBDS
SILICON

SI4704-D60-GM

Audio Single Chip Receiver, FM, CMOS, QFN-20
SILICON

SI4704-D60-GU

Audio Single Chip Receiver, FM, CMOS, QFN-20
SILICON

Si4704-D60-GU2

BROADCAST FM RADIO RECEIVER WITH RDS/RBDS
SILICON

SI4704-D60-GUR

Audio Single Chip Receiver, FM, CMOS, QFN-20
SILICON

SI4704DY

Load Switch with Level-Shift
VISHAY