SI4710-B31-GM [SILICON]

SI4710 BROADCAST FM RADIO TRANSMITTER;
SI4710-B31-GM
型号: SI4710-B31-GM
厂家: SILICON    SILICON
描述:

SI4710 BROADCAST FM RADIO TRANSMITTER

电信 电信集成电路
文件: 总40页 (文件大小:1661K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4710/11-B30  
Si4710/11-B30 FM RADIO TRANSMITTER  
Features  
Integrated receive power  
measurement  
Worldwide FM band support  
(76–108 MHz)  
Requires only two external  
components  
RDS/RBDS encoder (Si4711 only)  
PCB loop and stub antenna  
support with self-calibrated  
capacitor tuning  
Programmable transmit level  
Audio dynamic range control  
Advanced modulation control  
2.7 to 5.5 V supply voltage  
Integrated LDO regulator  
3 x 3 x 0.55 mm 20-pin QFN  
Pb-free and RoHS Compliant  
Designed for compatibility with  
cellular operation  
Frequency synthesizer with  
integrated VCO  
Digital stereo modulator  
Programmable pre-emphasis  
Analog/digital audio interface  
Audio silence detector  
Programmable reference clock  
Ordering Information:  
See page 32.  
Pin Assignments  
Applications  
Si4710/11  
Cellular handsets/hands-free  
MP3 players  
Portable media players  
Wireless speakers/microphone  
Satellite digital audio radios  
Personal computers/notebooks  
(Top View)  
Description  
20 19 18 17  
NC  
NC  
1
16  
The Si4710/11 integrates the complete transmit functions for standards-  
compliant unlicensed FM broadcast stereo transmission. Users must  
comply with local regulations on radio frequency (RF) transmission.  
2
15 RIN  
14 DFS  
13 DIN  
12 GND  
11 VDD  
RFGND  
TXO  
3
4
5
GND  
PAD  
Functional Block Diagram  
RST  
DIGITAL  
AUDIO  
DFS  
DIN  
6
Si4710/11  
7
8
9
10  
LIN  
RIN  
ADC  
ADC  
DAC  
DAC  
Tx  
Ant  
TXO  
DSP  
Patents pending  
L1  
120 nH  
RFGND  
Note: To ensure proper operation and  
performance, follow the guide-  
lines in “AN383: Universal  
Antenna Selection and Layout  
Guidelines.” Silicon Laboratories  
will evaluate schematics and lay-  
outs for qualified customers.  
2.7–5.5 V  
VDD  
GPO  
RDS Si4711  
CONTROL  
INTERFACE  
LDO  
AFC  
C1 GND  
(
)
22 nF  
Rev. 1.1 2/08  
Copyright © 2008 by Silicon Laboratories  
Si4710/11  
Si4710/11-B30  
2
Rev. 1.1  
Si4710/11-B30  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.1. Test Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2. Test Circuit Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Typical Application Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Analog Audio Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Digital Audio Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.3. Typical Application Schematic Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Universal AM/FM RX/FM TX Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1. Universal AM/FM RX/FM TX Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2. FM Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.3. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.4. Line Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.5. Audio Dynamic Range Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.6. Audio Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5.7. Pre-Emphasis and De-Emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.8. RDS/RBDS Processor (Si4711 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.9. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.10. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.11. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.12. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.13. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
5.14. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Commands and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
7. Pin Descriptions: Si4710/11-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
9. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9.1. Si4710 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9.2. Si4711 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9.3. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
10. Package Outline: Si4710/11-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
11. PCB Land Pattern: Si4710/11-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
12. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Rev. 1.1  
3
Si4710/11-B30  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Supply Voltage  
Symbol  
Test Condition  
Min  
2.7  
1.5  
10  
Typ  
Max  
5.5  
3.6  
Unit  
V
V
DD  
Interface Supply Voltage  
V
V
IO  
DDRISE  
Power Supply Powerup Rise Time  
V
µs  
µs  
Interface Supply Powerup Rise  
Time  
V
10  
IORISE  
Ambient Temperature  
T
–20  
25  
85  
C  
A
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
V
DD  
Interface Supply Voltage  
V
V
IO  
IN  
3
Input Current  
I
mA  
V
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Storage Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
T
STG  
4
RF Input Level  
V
PK  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended  
operating conditions for extended periods may affect device reliability.  
2. The Si4710/11 devices are high-performance RF integrated circuits with certain pins having an ESD rating of < 2 kV  
HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, DIN, GPO1, GPO2/INT, and GPO3.  
4. At RF input pin, TXO.  
4
Rev. 1.1  
Si4710/11-B30  
Table 3. DC Characteristics  
Test conditions: VRF = 118 dBµV, stereo, f = 68.25 kHz, fpilot = 6.75 kHz, REFCLK = 32.768 kHz, unless otherwise specified.  
Production test conditions: VDD = 3.3 V, VIO = 3.3 V, TA = 25 °C, FRF = 98 MHz.  
Characterization test conditions: VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz.  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Transmitter from Line Input  
TX Supply Current  
I
18.8  
320  
22.8  
600  
mA  
µA  
TX  
TX Interface Supply Current  
I
IO  
FM Transmitter from Digital Audio Input  
TX Supply Current  
I
DCLK = 3.072 MHz  
DCLK = 3.072 MHz  
18.3  
320  
mA  
µA  
DTX  
TX Interface Supply Current  
Supplies and Interface  
I
DIO  
V
V
Powerdown Current  
I
Powerdown mode  
10  
3
20  
10  
µA  
µA  
DD  
DD  
Interface Powerdown Current  
I
SCLK, RCLK inactive  
Powerdown mode  
IO  
IO  
1
High Level Input Voltage  
V
0.7 x VIO  
–0.3  
VIO + 0.3  
0.3 x VIO  
10  
V
V
IH  
1
Low Level Input Voltage  
V
IL  
1
High Level Input Current  
I
V
= VIO = 3.6 V  
IN  
–10  
µA  
µA  
V
IH  
1
Low Level Input Current  
I
V
= 0 V, V = 3.6 V  
–10  
10  
IL  
IN  
IO  
2
High Level Output Voltage  
V
I
= 500 µA  
0.8 x VIO  
OH  
OUT  
OUT  
2
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x VIO  
V
OL  
Notes:  
1. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, DIN, GPO1, GPO2/INT, and GPO3.  
2. For output pins SDIO, GPO1, GPO2/INT, and GPO3.  
Rev. 1.1  
5
Si4710/11-B30  
Table 4. Reset Timing Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
Important Notes:  
t
SRST  
t
ns  
HRST  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the 1st start condition.  
3. When selecting 3-wire or SPI modes, the user must ensure that a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then  
minimum tSRST is 100 µs, to provide time for on-chip 1 Mdevices (active while RST is low) to pull GPO1 high and  
GPO2 low.  
tHRST  
tSRST  
70%  
30%  
RST  
70%  
30%  
GPO1  
70%  
30%  
GPO2/  
INT  
Figure 1. Reset Timing Parameters for Busmode Select  
6
Rev. 1.1  
Si4710/11-B30  
Table 5. 2-Wire Control Interface Characteristics1,2,3  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIOSetup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIOHold (START)  
SDIO Input to SCLKSetup  
0.6  
100  
0
µs  
ns  
ns  
µs  
µs  
ns  
HD:STA  
SU:DAT  
t
t
4,5  
SDIO Input to SCLKHold  
900  
HD:DAT  
SU:STO  
SCLK input to SDIOSetup (STOP)  
STOP to START Time  
t
0.6  
1.3  
t
BUF  
SDIO Output Fall Time  
t
250  
f:OUT  
Cb  
-----------  
20 + 0.1  
1 pF  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
-----------  
1 pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VIO = 0 V, SCLK and SDIO are low-impedance. 2-wire control interface is I2C compatible.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si4710/11 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum t  
5. HD:DAT specification.  
6. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
Rev. 1.1  
7
Si4710/11-B30  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
SCLK  
30%  
70%  
SDIO  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
SDIO  
A6-A0,  
R/W  
D7-D0  
D7-D0  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
8
Rev. 1.1  
Si4710/11-B30  
Table 6. 3-Wire Control Interface Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
f
CLK  
SCLK High Time  
t
25  
25  
20  
10  
10  
2
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
25  
25  
ns  
CDV  
t
2
ns  
CDZ  
t
t
R
SCLK, SEN, SDIO, Rise/Fall time  
10  
ns  
F
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
Rev. 1.1  
9
Si4710/11-B30  
Table 7. SPI Control Interface Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
f
CLK  
SCLK High Time  
t
25  
25  
15  
10  
5
HIGH  
SCLK Low Time  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
SEN Input to SCLKHold  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
ns  
S
t
ns  
HSDIO  
t
ns  
HSEN  
t
Read  
Read  
2
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t
t
ns  
R, F  
Note: When selecting SPI mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHIGH  
tLOW  
tHSDIO  
tHSEN  
70%  
30%  
tS  
SEN  
tS  
70%  
30%  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
SDIO  
Control Byte In  
8 Data Bytes In  
Figure 6. SPI Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
tCDV  
tS  
tHSEN  
tHSDIO  
70%  
30%  
tS  
SEN  
tCDZ  
70%  
30%  
SDIO  
C7  
C6–C1  
C0  
D7  
D6–D1  
D0  
16 Data Bytes Out  
(SDIO or GPO1)  
Bus  
Turnaround  
Control Byte In  
Figure 7. SPI Control Interface Read Timing Parameters  
10  
Rev. 1.1  
Si4710/11-B30  
Table 8. Digital Audio Interface Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
DCLK pulse width high  
Symbol Test Condition  
Min  
10  
10  
5
Typ  
Max  
Unit  
ns  
t
DCH  
DCLK pulse width low  
t
ns  
DCL  
DFS set-up time to DCLK rising edge  
DFS hold time from DCLK rising edge  
DIN set-up time from DCLK rising edge  
DIN hold time from DCLK rising edge  
t
t
ns  
SU:DFS  
HD:DFS  
5
ns  
t
5
ns  
SU:DIN  
t
5
ns  
HD:DIN  
t
t
R
10  
ns  
DCLK, DFS, DIN, Rise/Fall time  
F
1,2  
1.0  
40.0  
MHz  
DCLK Tx Frequency  
Notes:  
1. Guaranteed by characterization.  
2. The DCLK frequency may be set below the minimum specification if DIGITAL_INPUT_SAMPLE_RATE is first set to 0  
(disable).  
DCLK  
tR  
tF  
tHD:DFS  
tSU:DFS  
DFS  
DIN  
tSU:DIN  
tHD:DIN  
Figure 8. Digital Audio Interface Timing Parameters, I2S Mode  
Rev. 1.1  
11  
Si4710/11-B30  
Table 9. FM Transmitter Characteristics1  
(Test conditions: VRF = 118 dBµV, stereo, f = 68.25 kHz, fpilot = 6.75 kHz, REFCLK = 32.768 kHz, 75 µs pre-emphasis,  
unless otherwise specified.  
Production test conditions: VDD = 3.3 V, VIO = 3.3 V, TA = 25 °C, FRF = 98 MHz.  
Characterization test conditions: VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz.  
All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.  
Parameters are tested in production unless otherwise specified.)  
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
kHz  
2
Transmit Frequency Range  
f
RF  
Transmit Frequency Accuracy and  
–3.5  
2,3  
Stability  
2
Transmit Voltage Accuracy  
V
V
= 103–117 dBµV  
= 102, 118 dBµV  
–2.5  
–2.5  
2.5  
2.5  
dB  
dB  
RF  
RF  
Transmit Voltage Accuracy  
Transmit Voltage Temperature Coef-  
–0.075  
–0.025  
dB/ºC  
2
ficient  
Transmit Channel Edge Power  
Transmit Adjacent Channel Power  
Transmit Alternate Channel Power  
Transmit Emissions  
> ±100 kHz,  
pre-emphasis off  
–20  
–26  
–26  
dBc  
dBc  
dBc  
> ±200 kHz,  
pre-emphasis off  
–30  
–30  
> ±400 kHz,  
pre-emphasis off  
In-band (76–108 MHz)  
70  
45  
58  
53  
5
–30  
dBc  
pF  
pF  
µs  
2
Output Capacitance Max  
C
C
tune  
tune  
2
Output Capacitance Min  
2
Pre-emphasis Time Constant  
TX_PREMPHASIS = 75 µs  
TX_PREMPHASIS = 50 µs  
75  
50  
63  
80  
54  
µs  
2
Audio SNR Mono  
f = 22.5 kHz, Mono,  
dB  
limiter off  
Audio SNR Stereo  
Audio THD Mono  
f = 22.5 kHz,  
fpilot = 6.75 kHz, Stereo,  
limiter off  
53  
58  
dB  
f = 75 kHz, Mono,  
0.1  
0.1  
0.5  
0.5  
%
%
limiter off  
2
Audio THD Stereo  
f = 22.5 kHz,  
fpilot = 6.75 kHz, Stereo,  
limiter off  
2
Audio Stereo Separation  
left channel only  
30  
35  
dB  
Notes:  
1. FM transmitter performance specifications are subject to adherence to Silicon Laboratories guidelines in “AN383:  
Universal Antenna Selection and Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers. Tested with test schematic (L = 120 nH, Q > 30) shown in Figure 9 on page 14.  
2. Guaranteed by characterization.  
3. No measurable fRF/VDD at VDD of 500 mVpk-pk at 100 Hz to 10 kHz.  
12  
Rev. 1.1  
Si4710/11-B30  
Table 9. FM Transmitter Characteristics1 (Continued)  
(Test conditions: VRF = 118 dBµV, stereo, f = 68.25 kHz, fpilot = 6.75 kHz, REFCLK = 32.768 kHz, 75 µs pre-emphasis,  
unless otherwise specified.  
Production test conditions: VDD = 3.3 V, VIO = 3.3 V, TA = 25 °C, FRF = 98 MHz.  
Characterization test conditions: VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz.  
All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VDD = 3.3 V and 25 °C unless otherwise stated.  
Parameters are tested in production unless otherwise specified.)  
Parameter  
Symbol  
Test Condition  
Min  
40  
Typ  
50  
Max  
Unit  
dB  
Sub Carrier Rejection Ratio  
SCR  
2
Powerup Settling Time  
110  
ms  
2
Input Signal Level  
V
0.636  
15 k  
V
PK  
AI  
2
Frequency Flatness  
Mono, ±1.5 dB,  
f = 75 kHz, 0, 50, 75 µs  
pre-emphasis, limiter off  
30  
Hz  
Hz  
Hz  
2
High Pass Corner Frequency  
Mono, –3 dB, f = 75 kHz,  
0, 50, 75 µs pre-emphasis,  
limiter off  
5
30  
2
Low Pass Corner Frequency  
Audio Imbalance  
Mono, –3 dB, f = 75 kHz,  
0, 50, 75 µs pre-emphasis,  
limiter off  
15 k  
16 k  
Mono  
–1  
1
dB  
%
2
Pilot Modulation Rate Accuracy  
f = 68.25 kHz,  
–10  
10  
fpilot = 6.75 kHz, Stereo  
2
Audio Modulation Rate Accuracy  
f = 68.25 kHz,  
–10  
10  
%
fpilot = 6.75 kHz, Stereo  
2
Input Resistance  
LIATTEN[1:0] = 11  
50  
60  
10  
k  
2
Input Capacitance  
pF  
Notes:  
1. FM transmitter performance specifications are subject to adherence to Silicon Laboratories guidelines in “AN383:  
Universal Antenna Selection and Layout Guidelines.” Silicon Laboratories will evaluate schematics and layouts for  
qualified customers. Tested with test schematic (L = 120 nH, Q > 30) shown in Figure 9 on page 14.  
2. Guaranteed by characterization.  
3. No measurable fRF/VDD at VDD of 500 mVpk-pk at 100 Hz to 10 kHz.  
Table 10. Reference Clock Characteristics  
(VDD = 2.7 to 5.5 V, VIO = 1.5 to 3.6 V, TA = –20 to 85 °C, FRF = 76–108 MHz)  
Supported Parameter  
Symbol  
Test Condition  
Min  
31.130 32.768 40,000  
–50 50  
Typ  
Max  
Unit  
kHz  
ppm  
1,2  
RCLK Frequency Range  
1
Frequency Tolerance  
Notes:  
1. Guaranteed by characterization.  
2. The RCLK frequency divided by an integer number (the prescaler value) must fall in the range of 31,130 to 34,406 Hz.  
Therefore, the range of RCLK frequencies is not continuous below frequencies of 311.3 kHz.  
Rev. 1.1  
13  
Si4710/11-B30  
2. Test Circuit  
2.1. Test Circuit Schematic  
C2  
VIO  
0.47 µF  
LIN  
RIN  
C3  
0.47 µF  
1
2
3
4
5
15  
14  
13  
12  
11  
NC  
RIN  
DFS  
DIN  
NC  
U1  
Si4710/11  
RFGND  
TXO  
RST  
GND  
VDD  
C4  
2 pF  
L1  
VBATTERY  
2.7 to 5.5 V  
120 nH  
VTXOUT  
C1  
22 nF  
50  
R1  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
1.5 to 3.6 V  
Notes:  
1. Si4710/11 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the  
guidelines in “AN383: 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
4. LIN, RIN line inputs must be ac-coupled.  
Figure 9. Test Circuit Schematic  
2.2. Test Circuit Bill of Materials  
Table 11. Si4710/11 Test Circuit Bill of Materials  
Component(s)  
Value/Description  
Supply bypass capacitor, 22 nF, 20%, Z5U/X7R  
AC Coupling Capacitor, 0.47 µF  
2 pF, ±.05 pF, 06035JZR0AB  
120 nH inductor, Qmin = 30  
Supplier(s)  
Murata  
C1  
C2, C3  
C4  
Murata  
AVX  
L1  
Murata  
R1  
49.9 , 5%  
Murata  
U1  
Si4710/11 FM Radio Transmitter  
Silicon Laboratories  
14  
Rev. 1.1  
Si4710/11-B30  
3. Typical Application Schematics  
3.1. Analog Audio Inputs  
C2  
VIO  
0.47 µF  
LIN  
RIN  
C3  
0.47 µF  
1
15  
14  
13  
12  
11  
NC  
RIN  
DFS  
DIN  
2
NC  
U1  
Si4710/11  
3
RFGND  
TX Antenna  
4
TXO  
GND  
VDD  
5
RST  
L1  
120 nH  
VBATTERY  
2.7 to 5.5 V  
C1  
22 nF  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
1.5 to 3.6 V  
Notes:  
1. Si4710/11 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the  
guidelines in “AN383: 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
4. LIN, RIN line inputs must be ac-coupled.  
Figure 10. Analog Audio Inputs (LIN, RIN)  
Rev. 1.1  
15  
Si4710/11-B30  
3.2. Digital Audio Inputs  
VIO  
R1  
R2  
DCLK  
DFS  
DIN  
1
2
3
4
5
15  
14  
13  
12  
11  
NC  
RIN  
DFS  
DIN  
R3  
NC  
U1  
Si4710/11  
RFGND  
TXO  
RST  
TX Antenna  
GND  
VDD  
L1  
VBATTERY  
2.7 to 5.5 V  
C1  
22 nF  
120 nH  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
1.5 to 3.6 V  
Notes:  
1. Si4710/11 is shown configured in I2C compatible bus mode.  
2. GPO2/INT can be configured for interrupts with the powerup command.  
3. To ensure proper operation and FM transmitter performance, follow the  
guidelines in “AN383: Si47xx 3 mm x 3 mm QFN Universal Layout Guide.”  
Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
Figure 11. Digital Audio Inputs (DIN, DFS, DCLK)  
3.3. Typical Application Schematic Bill of Materials  
Table 12. Si4710/11 Bill of Materials  
Component(s)  
Value/Description  
Supply bypass capacitor, 22 nF, 20%, Z5U/X7R  
AC Coupling Capacitor, 0.47 µF  
120 nH inductor, Qmin = 30  
2 kResistor  
Supplier(s)  
Murata  
C1  
C2, C3  
L1  
Murata  
Murata  
R1, R2  
R3  
Any  
600 Resistor  
Any  
U1  
Si4710/11 FM Radio Transmitter  
Silicon Laboratories  
16  
Rev. 1.1  
Si4710/11-B30  
4. Universal AM/FM RX/FM TX Application Schematic  
Figure 12 shows an application schematic that supports the Si47xx family of 3 mm x 3 mm QFN products,  
including the Si4702/3/4/5 FM receivers, Si471x FM transmitters, Si472x FM transceivers, and Si473x AM/FM  
receivers.  
FB1  
2.5 k@ 100 MHz  
R 2  
T 5  
S 1  
Right  
Audio  
U2  
Headphone Amplifier  
Left  
Audio  
FB2  
2.5 k@ 100 MHz  
Si4702/03: Populate R12, R13, R21, C14, and C15  
Si4704/05/1x/2x/3x Analog: Populate C7, C8, C14  
and C15 as shown  
Si4704/05/1x/2x/3x Digital: Populate R16, R17,  
R18, R19, and R20 as shown  
J1 HP Jack  
R16  
2 k  
VBATTERY  
2.7 to 5.5 V  
System Component  
GPIO3  
GPIO2  
GPIO1  
C4  
1 nF  
LHEADPHONE  
270 nH  
R13  
0   
C7/R17  
0.39 uF/ 2 k  
LIN  
System Component  
FM Embedded RX/TX Antenna  
RIN  
R12  
0   
C8/R18  
0.39 uF/ 600   
R14  
L1  
D3  
0   
10 nH  
C14/R19  
0.39 uF/ 0   
C17/R21  
3.3pF/0   
D4  
1
2
3
4
5
15  
14  
13  
12  
11  
LSHORT  
NC  
GND/RIN/DOUT  
120 nH  
FMI  
LOUT/DFS  
ROUT/DIN  
GND  
U1  
Si47xx  
RFGND  
TXO/AMI  
RST  
System Component  
C15/R20  
System Component  
0.39 uF/ 0   
AM Ferrite Antenna  
VDD  
VBATTERY  
2.7 to 5.5 V  
System Components  
C1  
22 nF  
LFERRITE  
180–  
600 uH  
C16  
470 nF  
D5  
RST  
SEN  
SCLK  
SDIO  
RCLK  
VIO  
Figure 12. Universal AM/FM RX/FM TX Application Schematic  
Following the schematic and layout recommendations detailed in “AN383: Universal Antenna Selection and Layout  
Guidelines” will result in optimal performance with the minimal application schematic shown in Figure 12. “Universal  
AM/FM RX/FM TX Application Schematic”. System components are those that are likely to be present for any tuner  
or transmitter design.  
Rev. 1.1  
17  
Si4710/11-B30  
4.1. Universal AM/FM RX/FM TX Bill of Materials  
The bill of materials for the expanded application schematic shown in Figure 12 is provided in Table 13. Refer to  
the individual device layout guides and antenna interface guides for a discussion of the purpose of each  
component.  
Table 13. Bill of Materials  
Designator  
Description  
Note  
C1  
U1  
Supply bypass capacitor, 22 nF, 10%, Z5U/X7R, 0402  
Silicon Laboratories Si47xx, 3 mm x 3 mm, 20 pin, QFN  
R12, R13, R19, 0 jumper, 0402  
R12, R13, and R21 for  
Si4702/03 Only  
R20, R21  
C16  
AM antenna ac coupling capacitor, 470 nF, 20%, Z5U/X7R  
AM Ferrite Antenna  
AM Ferrite Antenna  
LFERRITE AM Ferrite loop stick, 180–600 µH  
FB1,FB2  
Ferrite bead, 2.5 k@ 100 MHZ, 0603, Murata BLM18BD252SN1D Headphone Antenna  
LHEADPHONE Headphone antenna matching inductor, 270 nH, 0603, Q>15, Murata Headphone Antenna  
LQW18ANR27J00D  
LSHORT  
Embedded antenna matching inductor, 120 nH, 0603, Q>30, Murata Embedded Antenna  
LQW18ANR12J00D  
R14  
C2  
Embedded antenna jumper, 2.2 , 0402  
Optional  
Optional  
Optional  
Supply bypass capacitor, 22 nF, 10%, Z5U/X7R, 0402  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R, 0402  
C3  
C5, C6  
R7-R11  
C12, C13  
X1  
Headphone amp output shunt capacitor, 100 pF, 10%, Z5U/X7R, 0402 Optional  
Current limiting resistor, 20 –2 k, 0402  
Optional  
Crystal load capacitor, 22 pF, 5%, COG  
Optional  
Crystal, Epson FC-135  
Optional  
C7, C8  
D1-D5  
C11  
Si47xx input ac coupling capacitor, 0.39 µF, X7R/X5R, 0402  
ESD Diode, SOT23-3, California Micro Devices CM1214-01ST  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R, 0402  
System Component  
System Component  
Headphone Amplifier  
C4  
Headphone antenna ac coupling capacitor, 1 nF, 10%, Z5U/X7R, 0402 Headphone Antenna  
Headphone amp output ac coupling capacitor, 125 uF, X7R, 0805 Headphone Amplifier  
Headphone amp input ac coupling capacitor, 0.39 µF, X7R/X5R, 0402 Headphone Amplifier  
C9, C10  
C14, C15  
R1,R2,R3,R4 Headphone amp feedback/gain resistor, 20 k, 0402  
Headphone Amplifier  
Headphone Amplifier  
Headphone Amplifier  
System Component  
System Component  
R5, R6  
U2  
Headphone amp bleed resistor, 100 k, 0402  
Headphone amplifier, National Semiconductor, LM4910MA  
Current limiting resistor, 2 k0402  
R16, R17  
R18  
Current limiting resistor, 600 , 0402  
L1  
VCO filter inductor, 10 nH, 0603, Q30, Murata, LQW18ANR01J00D Optional  
C17  
VCO filter capacitor, 3.3 pF, 0402, COG, Venkel,  
C0402COG2503R3JN  
Optional  
18  
Rev. 1.1  
Si4710/11-B30  
5. Functional Description  
5.1. Overview  
Si4710/11  
DIN  
DIGITAL  
AUDIO  
DFS  
DSP  
Tx  
Ant  
ADC  
ADC  
LIN  
DAC  
DAC  
TXO  
L1  
120 nH  
RIN  
VDD  
RFGND  
2.7–5.5 V  
CONTROL  
INTERFACE  
GPO  
RDS (Si4711)  
LDO  
AFC  
GND C1  
22 nF  
Figure 13. Functional Block Diagram  
The Si4710/11 is the first 100% CMOS FM radio synchronization, and error correction functions. Using  
transmitter with integrated receive functionality to this feature, the Si4711 enables data such as artist  
measure received signal strength. The device leverages name and song title to be transmitted to an RDS/RBDS  
Silicon Labs’ highly successful and proven Si4700/01 receiver.  
FM receiver patent family and offers unmatched  
The transmit output (TXO) connects directly to the  
integration and performance, allowing FM transmit to be  
transmit antenna with only one external inductor to  
added to any portable device with a single chip. The  
provide harmonic filtering. The output is programmable  
Si4710/11 offers industry-leading size, performance, low  
over a 10 dB voltage range in 1 dB steps. The TXO  
output pin can also be configured for loop antenna  
power consumption, flexibility, and ease of use.  
The Si4710/11’s digital integration reduces the required support. Users are responsible for complying with local  
external components of traditional offerings, resulting in regulations on RF transmission (FCC, ETSI, ARIB,  
a solution requiring only an external inductor and etc.).  
bypass capacitor, and PCB space of approximately  
15 mm . This increases the device reliability and  
supports a variety of MSB-first audio data formats  
simplifies the design and manufacturing for companies  
The digital audio interface operates in slave mode and  
2
2
including I S and left-justified modes. The interface has  
adopting this technology.  
three pins: digital data input (DIN), digital frame  
The Si4710/11 performs FM modulation in the digital synchronization input (DFS), and  
a
digital bit  
domain to achieve high fidelity, optimal performance synchronization input clock (DCLK). The Si4710/11  
versus power consumption, and flexibility of design. The supports a number of industry-standard sampling rates  
onboard DSP provides modulation adjustment and including 32, 40, 44.1, and 48 kHz. The digital audio  
audio dynamic range control for optimum sound quality. interface enables low-power operation by eliminating  
the need for redundant DACs and ADCs on the audio  
baseband processor.  
The Si4711 supports the European Radio Data System  
(RDS) and the US Radio Broadcast Data System  
(RBDS) including all the symbol encoding, block The Si4710/11 includes a low-noise stereo line input  
Rev. 1.1  
19  
Si4710/11-B30  
(LIN/RIN) with programmable attenuation. To ensure  
optimal audio performance, the Si4710/11 has a  
transmit line input property that allows the user to  
specify the peak amplitude of the analog input required  
to reach maximum deviation level. The deviation levels  
of the audio, pilot, and RDS/RBDS signals can be  
independently programmed to customize FM transmitter  
designs. The Si4710/11 has a programmable low audio  
level and high audio level indicators that allows the user  
to selectively enable and disable the carrier based on  
the presence of audio content. In addition, the device  
provides an overmodulation indicator to allow the user  
to dynamically set the maximum deviation level. The  
Si4710/11 has a programmable audio dynamic range  
control that can be used to reduce the dynamic range of  
the audio input signal and increase the volume at the  
receiver. These features can dramatically improve the  
end user’s listening experience.  
5.2. FM Transmitter  
The transmitter (TX) integrates a stereo audio ADC to  
convert analog audio signals to high fidelity digital  
signals. Alternatively, digital audio signals can be  
applied to the Si4710/11 directly to reduce power  
consumption by eliminating the need to convert audio  
baseband signals to analog and back again to digital.  
Digital signal processing is used to perform the stereo  
MPX encoding and FM modulation to a low digital IF.  
Transmit baseband filters suppress out-of-channel  
noise and images from the digital low-IF signal. A  
quadrature single-sideband mixer up-converts the  
digital IF signal to RF, and internal RF filters suppress  
noise and harmonics to support the harmonic emission  
requirements of cellular phones, GPS, WLAN, and other  
wireless standards.  
The TXO output has over 10 dB of output level control,  
programmable in approximately 1 dB steps. This large  
output range enables a variety of antennas to be used  
for transmit, such as a monopole stub antenna or a loop  
antenna. The 1 dB step size provides fine adjustment of  
the output voltage.  
The Si4710/11 is reset by applying a logic low on the  
RST pin. This causes all register values to be reset to  
their default values. The digital input/output interface  
supply (V ) provides voltage to the RST, SEN, SDIO,  
IO  
RCLK, DIN, DFS, and DCLK pins and can be connected  
to the audio baseband processor's supply voltage to  
save power and remove the need for voltage level  
translators. RCLK is not required for register operation.  
The TXO output requires only one external 120 nH  
inductor. The inductor is used to resonate the antenna  
and is automatically calibrated within the integrated  
circuit to provide the optimum output level and  
frequency response for supported transmit frequencies.  
Users are responsible for adjusting their system’s  
radiated power levels to comply with local regulations  
on RF transmission (FCC, ETSI, ARIB, etc.).  
The Si4710/11 reference clock is programmable,  
supporting many RCLK inputs as shown in Table 9.  
The Si4710/11 are part of a family of broadcast audio  
solutions offered in standard, 3 x 3 mm 20-pin QFN  
packages. All solutions are layout compatible, allowing  
a single PCB to accommodate various feature offerings.  
The Si4710/11 includes line inputs to the on-chip  
analog-to-digital converters (ADC), a programmable  
reference clock input, and a configurable digital audio  
2
interface. The chip supports I C-compliant 2-wire, 8-bit  
SPI, and a 3-wire control interface.  
20  
Rev. 1.1  
Si4710/11-B30  
5.3.2. Audio Sample Rates  
5.3. Digital Audio Interface  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs and ADCs on  
the audio baseband processor. The sampling rate is  
selected using the DIGITAL_INPUT_SAMPLE_RATE  
property.  
The digital audio interface operates in slave mode and  
supports 3 different audio data formats:  
2
1. I S  
2. Left-Justified  
3. DSP Mode  
5.3.1. Audio Data Formats  
2
The device supports DCLK frequencies above 1 MHz.  
After powerup the DIGITAL_INPUT_SAMPLE_RATE  
property defaults to 0 (disabled). After DCLK is  
In I S mode, the MSB is captured on the second rising  
edge of DCLK following each DFS transition. The  
remaining bits of the word are sent in order, down to the  
LSB. The Left Channel is transferred first when the DFS  
is low, and the Right Channel is transferred when the  
DFS is high.  
supplied,  
property should be set to the desired audio sample rate  
such as 32, 40, 44.1, or 48 kHz. The  
the  
DIGITAL_INPUT_SAMPLE_RATE  
DIGITAL_INPUT_SAMPLE_RATE property must be set  
to 0 before DCLK is removed or the DCLK frequency  
drops below 1 MHz. A device reset is required if this  
requirement is not followed.  
In Left-Justified mode, the MSB is captured on the first  
rising edge of DCLK following each DFS transition. The  
remaining bits of the word are sent in order, down to the  
LSB. The Left Channel is transferred first when the DFS  
is high, and the Right Channel is transferred when the  
DFS is low.  
In DSP mode, the DFS becomes a pulse with a width of  
1 DCLK period. The Left Channel is transferred first,  
followed right away by the Right Channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
In all audio formats, depending on the word size, DCLK  
frequency and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word.  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
Rev. 1.1  
21  
Si4710/11-B30  
INVERTED  
(IFALL = 1)  
DCLK  
(IFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
I2S  
(IMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DIN/DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 14. I2S Digital Audio Format  
INVERTED  
DCLK  
(IFALL = 1)  
(IFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(IMODE = 0110)  
DIN/DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 15. Left-Justified Digital Audio Format  
(IFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DIN/DOUT  
1
2
3
2
n-1  
n
(IMODE = 1100)  
(IMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DIN/DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 16. DSP Digital Audio Format  
22  
Rev. 1.1  
Si4710/11-B30  
The maximum analog input level is 636 mVpK. If the  
analog input level from the audio baseband processor  
exceeds this voltage, series resistors must be inserted  
in front of the LIN and RIN pins to attenuate the voltage  
such that it is within the allowable operating range. For  
example, if the audio baseband's expected peak  
5.4. Line Input  
The Si4710/11 provides left and right channel line inputs  
(LIN and RIN). The inputs are high-impedance and low-  
capacitance, suited to receiving line level signals from  
external audio baseband processors. Both line inputs  
are low-noise inputs with programmable attenuation.  
Passive and active anti-aliasing filters are incorporated  
to prevent high frequencies from aliasing into the audio  
band and degrading performance.  
amplitude is 900 mV and the V supply voltage is 1.8 V,  
IO  
the designer can use 30 kseries resistors in front of  
the LIN and RIN pins and select LIATTEN[1:0] = 11. The  
resulting expected peak input voltage at the LIN/RIN  
pins is 600 mV, since this is just a voltage divider  
between the LIN/RIN input resistance (see Table 14,  
60 kfor this example) and the external resistor. Note  
that the Peak Input Voltage corresponding to the chosen  
LIATTEN[1:0] code still needs to satisfy the condition of  
being just greater than the attenuated voltage. In this  
example, a line attenuation code of LIATTEN[1:0] = 11  
has a Peak Input Voltage of 636 mV, which is just  
greater than the expected peak attenuated voltage of  
600 mV. Also, the expected peak attenuated voltage is  
entered into the LILEVEL[9:0] parameter. Again, in this  
example, 600 mV is entered into LILVEVEL[9:0]. This  
example shows one possible solution, but many other  
solutions exist. The optimal solution is to apply the  
largest possible voltage to the LIN and RIN pins for  
signal-to-noise considerations; however, practical  
resistor values may limit the choices.  
To ensure optimal audio performance, the Si4710/11  
has a TX_LINE_INPUT_LEVEL property that allows the  
user to specify the peak amplitude of the analog input  
(LILEVEL[9:0]) required to reach the maximum  
deviation level programmed in the audio deviation  
property, TX_AUDIO_DEVIATION. A corresponding line  
input attenuation code, LIATTEN[1:0], is also selected  
by the expected peak amplitude level. Table 14 shows  
the line attenuation codes.  
Table 14. Line Attenuation Codes  
LIATTEN[1:0]  
Peak Input  
Voltage [mV] Resistance [k]  
RIN/LIN Input  
00  
01  
10  
11  
190  
301  
416  
636  
396  
100  
74  
Note that the TX_LINE_INPUT_LEVEL parameter will  
affect the high-pass filter characteristics of the ac-  
coupling capacitors and the resistance of the audio  
inputs.  
60  
The line attenuation code is chosen by picking the  
lowest Peak Input Voltage in Table 14 that is just above  
the expected peak input voltage coming from the audio  
baseband processor. For example, if the expected peak  
input voltage from the audio baseband processor is  
400 mV, the user chooses LIATTEN[1:0] = 10 since the  
Peak Input Voltage of 416 mV associated with  
LIATTEN[1:0] = 10 is just greater than the expected  
peak input voltage of 400 mV. The user also enters  
400 mV into the LILEVEL[9:0] to associate this input  
level to the maximum frequency deviation level  
programmed into the audio deviation property. Note that  
selecting a particular value of LIATTEN[1:0] changes  
the input resistance of the LIN and RIN pins. This  
feature is used for cases where the expected peak input  
level exceeds the maximum input level of the LIN and  
RIN pins.  
The Si4710/11 has a programmable low audio level and  
high audio level indicators that allows the user to  
selectively enable and disable the carrier based on the  
presence of audio content. The TX_ASQ_LEVEL_LOW  
and TX_ASQ_LEVEL_HIGH parameters set the low  
level and high level thresholds in dBFS, respectively.  
The time required for the audio level to be below the low  
threshold is set with the TX_ASQ_DURATION_LOW  
parameter, and similarly, the time required for the audio  
level to be above the high threshold is set with the  
TX_ASQ_DURATION_HIGH parameter.  
Rev. 1.1  
23  
Si4710/11-B30  
Figure 18 shows the time domain characteristics of the  
audio dynamic range controller. The attack rate sets the  
speed with which the audio dynamic range controller  
responds to changes in the input level, and the release  
rate sets the speed with which the audio dynamic range  
controller returns to no compression once the audio  
input level drops below the threshold.  
5.5. Audio Dynamic Range Control  
The Si4710/11 includes digital audio dynamic range  
control with programmable gain, threshold, attack rate,  
and release rate. The total dynamic range reduction is  
set by the gain value and the audio output compression  
above  
the  
threshold  
is  
equal  
to  
Threshold/(Gain + Threshold) in dB. The gain specified  
cannot be larger than the absolute value of the  
threshold. This feature can also be disabled if audio  
compression is not desired.  
Threshold  
Audio  
Input  
The audio dynamic range control can be used to reduce  
the dynamic range of the audio signal, which improves  
the listening experience on the FM receiver. Audio  
dynamic range reduction increases the transmit volume  
by decreasing the peak amplitudes of audio signals and  
increasing the root mean square content of the audio  
signal. In other words, it amplifies signals below a  
threshold by a fixed gain and compresses audio signals  
Audio  
Output  
above  
a
threshold  
by  
the  
ratio  
of  
Threshold/(Gain + Threshold). Figure 17 shows an  
example transfer function of an audio dynamic range  
controller with the threshold set at –40 dBFS and a  
Gain = 20 dB relative to an uncompressed transfer  
function.  
Attack  
time  
Release  
time  
Figure 18. Time Domain Characteristics of the  
Audio Dynamic Range Controller  
Input [dBFS]  
–90  
–80  
–70  
–60  
–50 –40  
–30  
–20  
–10  
0
5.6. Audio Limiter  
Compression  
2:1 dB  
The Si4710/11 also includes a digital audio limiter. The  
audio limiter prevents over-modulation of the FM  
transmit output by dynamically attenuating peaks in the  
audio input signal that exceed a programmable  
threshold. The limiter threshold is set to the  
programmed audio deviation + ten percent. The  
threshold ensures that the output signal audio deviation  
does not exceed the programmed levels, avoiding  
audible artifacts or distortion in the target FM receiver,  
and complying with FCC or ETSI regulatory standards.  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
Threshold  
= –40 dB  
No  
Compression  
M = 1  
M = 1  
Gain  
= 20 dB  
The limiter performs as a peak detector with an attack  
rate set to one audio sample, resulting in an almost  
immediate attenuation of the input peak. The recover  
rate is programmable to the customer’s preference, and  
is set by default to 5 ms. This is the recommended  
setting to avoid audible pumping or popping. Please  
refer to “AN332: Universal Programming Guide.”  
Figure 17. Audio Dynamic Range Transfer  
Function  
For input signals below the threshold of –40 dBFS, the  
output signal is amplified or gained up by 20 dB relative  
to an uncompressed signal. Audio inputs above the  
threshold are compressed by a 2 to 1 dB ratio, meaning  
that every 2 dB increase in audio input level above the  
threshold results in an audio output increase of 1 dB. In  
this example, the input dynamic range of 90 dB is  
reduced to an output dynamic range of 70 dB.  
24  
Rev. 1.1  
Si4710/11-B30  
5.7. Pre-Emphasis and De-Emphasis  
5.9. Tuning  
Pre-emphasis and de-emphasis is a technique used by The frequency synthesizer uses Silicon Laboratories’  
FM broadcasters to improve the signal-to-noise ratio of proven technology including a completely integrated  
FM receivers by reducing the effects of high-frequency VCO. The frequency synthesizer generates the  
interference and noise. When the FM signal is quadrature local oscillator signal used to upconvert the  
transmitted,  
a
pre-emphasis filter is applied to low intermediate frequency to RF. The VCO frequency  
accentuate the high audio frequencies. All FM receivers is locked to the reference clock and adjusted with an  
incorporate a de-emphasis filter that attenuates high automatic frequency control (AFC) servo loop during  
frequencies to restore a flat frequency response. Two transmission.  
time constants are used in various regions. The pre-  
emphasis time constant is programmable to 50 or 75 µs  
commands. For example, to tune to 98.1 MHz, the user  
and is set by using the TX_PREEMPHASIS property.  
The tuning frequency can be directly programmed with  
writes the TX_TUNE_FREQ command with an  
argument = 9810.  
5.8. RDS/RBDS Processor (Si4711 Only)  
The Si4710/11 supports channel spacing of 50, 100, or  
The Si4711 implements an RDS/RBDS* processor for  
200 kHz.  
symbol encoding, block synchronization, and error  
correction. Digital data can be transmitted with the  
Si4711 RDS/RBDS encoding feature.  
5.10. Reference Clock  
The Si4710/11 reference clock is programmable,  
RDS transmission is supported with three different  
supporting RCLK frequencies from 31.130 kHz to  
modes. The first mode is the simplest mode and  
40 MHz. The RCLK frequency divided by an integer  
requires no additional user support except for pre-  
number (the prescaler value) must fall in the range of  
loading the desired RDS PI and PTY codes and up to  
31,130 to 34,406 Hz. Therefore, the range of RCLK  
12 8-byte PS character strings. The Si4711 will transmit  
frequencies is not continuous below frequencies of  
the PI code and rotate through the transmission of the  
311.3 kHz. The default RCLK frequency is 32.768 kHz.  
PS character strings with no further control required  
Please refer to “AN332: Universal Programming Guide”  
from outside the device. The second mode allows for  
for using other RCLK frequencies.  
more complicated transmissions. The PI and PTY  
codes are written to the device as in mode 1. The 5.11. Control Interface  
remaining blocks (B, C, and D) are written to a 252 byte  
A serial port slave interface is provided; this allows an  
buffer. This buffer can hold 42 sets of BCD blocks. The  
external controller to send commands to the Si4710/11  
Si4711 creates RDS groups by creating block A from  
and receive responses from the device. The serial port  
the PI code, concatenating blocks BCD from the buffer,  
can operate in three bus modes: 2-wire mode, SPI  
and rotating through the buffer. The BCD buffer is  
mode, or 3-wire mode. The Si4710/11 selects the bus  
circular; so, the pattern is repeated until the buffer is  
mode by sampling the state of the GPO1 and  
changed. Finally, the third mode allows the outside  
GPO2/INT pins on the rising edge of RST. The GPO1  
controller to burst data into the BCD buffer, which  
pin includes an internal pull-up resistor that is  
emulates a FIFO. The data does not repeat, but, when  
connected while RST is low, and the GPO2/INT pin  
the buffer is nearly empty, the Si4711 signals the  
includes an internal pull-down resistor that is connected  
outside device to initiate another data burst. This mode  
while RST is low. Therefore, it is only necessary for the  
permits the outside device to use any RDS functionality  
user to actively drive pins that differ from these states.  
(including open data applications) that it wants.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
Rev. 1.1  
25  
Si4710/11-B30  
from the Si4710/11.  
Table 15. Bus Mode Select on Rising Edge of  
RST  
A 2-wire transaction ends with the STOP condition,  
which occurs when SDIO rises while SCLK is high.  
For details on timing specifications and diagrams, refer  
Bus Mode  
2-Wire  
SPI  
GPO1  
GPO2/INT  
to  
Table 5,  
“2-Wire  
Control  
Interface  
1
0
1,2,3  
Characteristics  
,” on page 7, Figure 2, “2-Wire  
1
1 (must drive)  
0
Control Interface Read and Write Timing Parameters,”  
on page 8, and Figure 3, “2-Wire Control Interface Read  
and Write Timing Diagram,” on page 8.  
3-Wire  
0 (must drive)  
After the rising edge of RST, the pins, GPO1 and 5.11.2. SPI Control Interface Mode  
GPO2/INT, are used as general-purpose output (O) pins  
as described in Section “5.12. GPO Outputs”. In any  
When selecting SPI mode, the user must ensure that a  
rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
bus mode, commands may only be sent after V and  
IO  
V
supplies are applied.  
DD  
SPI bus mode uses the SCLK, SDIO, and SEN pins for  
read/write operations. For reads, the user can choose to  
receive data from the device on either SDIO or GPO1. A  
transaction begins when the user drives SEN low. The  
user then pulses SCLK eight times while driving an 8-bit  
control byte (MSB first) serially on SDIO. The device  
captures the data on rising edges of SCLK. The control  
byte must have one of these values:  
5.11.1. 2-Wire Control Interface Mode  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
2-wire bus mode uses only the SCLK and SDIO pins for  
signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a seven bit  
device address followed by a read/write bit (read = 1,  
write = 0). The Si4710/11 acknowledges the control  
word by driving SDIO low on the next falling edge of  
SCLK.  
0x48 = write eight command/argument bytes (user  
drives write data on SDIO)  
0x80 = read status byte (device drives read data on  
SDIO)  
0xA0 = read status byte (device drives read data on  
GPO1)  
0xC0 = read 16 response bytes (device drives read data  
on SDIO)  
0xE0 = read 16 response bytes (device drives read data  
on GPO1)  
Although the Si4710/11 responds to only a single device  
address, this address can be changed with the SEN pin  
(note that the SEN pin is not used for signaling in 2-wire  
mode). When SEN = 0, the seven-bit device address is  
0010001. When SEN = 1, the address is 1100011.  
When writing a command, after the control byte has  
been written, the user must drive exactly eight data  
bytes (a command byte and seven argument bytes) on  
SDIO. The data will be captured by the device on the  
rising edges of SCLK. After all eight data bytes have  
been written, the user raises SEN after the last falling  
edge of SCLK to end the transaction.  
For write operations, the user then sends an eight bit  
data byte on SDIO, which is captured by the device on  
rising edges of SCLK. The Si4710/11 acknowledges  
each data byte by driving SDIO low for one cycle, on the  
next falling edge of SCLK. The user may write up to  
eight data bytes in a single two-wire transaction. The  
first byte is a command, and the next seven bytes are  
arguments.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high). In SPI  
mode, this is done by sending control byte 0x80 or  
0xA0, followed by reading a single byte on SDIO or  
GPO1. The Si4710/11 changes the state of SDIO or  
GPO1 after the falling edges of SCLK. Data should be  
captured by the user on the rising edges of SCLK. After  
the status byte has been read, the user raises SEN after  
the last falling edge of SCLK to end the transaction.  
For read operations, after the Si4710/11 has  
acknowledged the control byte, it drives an eight-bit  
data byte on SDIO, changing the state of SDIO on the  
falling edge of SCLK. The user acknowledges each data  
byte by driving SDIO low for one cycle, on the next  
falling edge of SCLK. If  
a
data byte is not  
When reading a response, the user must read exactly  
16 data bytes after sending the control byte. It is  
recommended that the user keep SEN low until all bytes  
acknowledged, the transaction ends. The user may  
read up to 16 data bytes in a single two-wire  
transaction. These bytes contain the response data  
26  
Rev. 1.1  
Si4710/11-B30  
have transferred. However, it will not disrupt the  
protocol if SEN temporarily goes high at any time, as  
long as the user does not change the state of SCLK  
while SEN is high. After 16 bytes have been read, the  
user raises SEN after the last falling edge of SCLK to  
end the transaction.  
5.12. GPO Outputs  
The Si4710/11 provides three general-purpose output  
pins. The GPO pins can be configured to output a  
constant low, constant high, or high-Z. The GPO pins  
are multiplexed with the bus mode pins or DCLK  
depending on the application schematic of the  
transmitter. GPO2/INT can be configured to provide  
interrupts.  
At the end of any SPI transaction, the user must drive  
SEN high after the final falling edge of SCLK. At any  
time during a transaction, if SEN is sampled high by the  
device on a rising edge of SCLK, the transaction will be  
aborted. When SEN is high, SCLK may toggle without  
affecting the device.  
5.13. Reset, Powerup, and Powerdown  
Setting the RST pin low will disable analog and digital  
circuitry, reset the registers to their default settings, and  
For details on timing specifications and diagrams, refer disable the bus. Setting the RST pin high will bring the  
to Figure 6 and Figure 7 on page 10.  
device out of reset and place it in powerdown mode.  
5.11.3. 3-Wire Control Interface Mode  
A powerdown mode is available to reduce power  
consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry  
and keep the bus active. For more information  
concerning Reset, Powerup, Powerdown, and  
Initialization, refer to “AN332: Universal Programming  
Guide”.  
When selecting 3-wire mode, the user must ensure that  
a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
3-wire bus mode uses the SCLK, SDIO and SEN pins.  
A transaction begins when the system controller drives  
SEN low. Next, the system controller drives a 9-bit  
control word on SDIO, which is captured by the device  
on rising edges of SCLK. The control word is comprised  
of a three bit chip address (A7:A5 = 101b), a read/write  
bit (write = 0, read = 1), the chip address (A4 = 0), and a  
four bit register address (A3:A0).  
5.14. Programming with Commands  
To ease development time and offer maximum  
customization, the Si4710/11 provides a simple yet  
powerful software interface to program the transmitter.  
The device is programmed using commands,  
arguments, properties, and responses.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
To perform an action, the user writes a command byte  
and associated arguments causing the chip to execute  
the given command. Commands control actions, such  
as powering up the device, shutting down the device, or  
tuning to a station. Arguments are specific to a given  
command and are used to modify the command. For  
example, after the TX_TUNE_FREQ command,  
arguments are required to set the tune frequency. A  
complete list of commands is available in Table 16,  
“Si471x Command Summary,” on page 28.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turnaround. Next,  
the Si4710/11 drives the 16-bit read data word serially  
on SDIO, changing the state of SDIO on each rising  
edge of SCLK.  
A transaction ends when the user sets SEN high, then  
pulses SCLK high and low one final time. SCLK may  
either stop or continue to toggle while SEN is high.  
Properties are a special command argument used to  
modify the default chip operation and are generally  
configured immediately after powerup. Examples of  
In 3-wire mode, commands are sent by first writing each  
argument to register(s) 0xA1–0xA3, then writing the  
command word to register 0xA0. A response is  
retrieved by reading registers 0xA8–0xAF.  
properties  
are  
TX_PREEMPHASIS  
and  
GPO_CONFIGURE. A complete list of properties is  
available in Table 17, “Si471x Property Summary,” on  
page 29.  
For details on timing specifications and diagrams, refer  
to Table 6, “3-Wire Control Interface Characteristics,” on  
page 9, Figure 4, “3-Wire Control Interface Write Timing  
Parameters,” on page 9, and Figure 5, “3-Wire Control  
Interface Read Timing Parameters,” on page 9.  
Responses provide the user information and are  
echoed after a command and associated arguments are  
issued. At a minimum, all commands provide a one-byte  
status update indicating interrupt and clear-to-send  
status information. For a detailed description of using  
the commands and properties of the Si4710/11, see  
“AN332: Universal Programming Guide.”  
Rev. 1.1  
27  
Si4710/11-B30  
6. Commands and Properties  
Table 16. Si471x Command Summary  
Cmd  
Name  
Description  
Power up device and mode selection. Modes include FM transmit  
and analog/digital audio interface configuration.  
0x01  
POWER_UP  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x30  
0x31  
GET_REV  
Returns revision information on the device.  
Power down device.  
POWER_DOWN  
SET_PROPERTY  
GET_PROPERTY  
GET_INT_STATUS  
PATCH_ARGS  
Sets the value of a property.  
Retrieves a property’s value.  
Read interrupt status bits.  
Reserved command used for patch file downloads.  
Reserved command used for patch file downloads.  
Tunes to given transmit frequency.  
PATCH_DATA  
TX_TUNE_FREQ  
TX_TUNE_POWER  
Sets the output power level and tunes the antenna capacitor  
Queries the status of a previously sent TX Tune Freq, TX Tune  
Power, or TX Tune Measure command.  
0x33  
0x34  
0x35  
TX_TUNE_STATUS  
TX_ASQ_STATUS  
TX_RDS_BUFF  
Queries the TX status and input audio signal metrics.  
Si4711 Only. Queries the status of the RDS Group Buffer and loads  
new data into buffer.  
0x36  
0x80  
0x81  
TX_RDS_PS  
GPO_CTL  
GPO_SET  
Si4711 Only. Set up default PS strings.  
Configures GPO3 as output or Hi-Z.  
Sets GPO3 output level (low or high).  
28  
Rev. 1.1  
Si4710/11-B30  
Table 17. Si471x Property Summary  
Prop  
Name  
Description  
Default  
0x0001  
0x0101  
GPO_IEN  
Enables interrupt sources.  
0x0000  
0x0000  
DIGITAL_INPUT _FORMAT  
Configures the digital input format.  
Configures the digital input sample rate in 10 Hz steps.  
Default is 0.  
0x0103 DIGITAL_INPUT _SAMPLE_RATE  
0x0000  
Sets frequency of the reference clock in Hz. The range is  
31130 to 34406 Hz, or 0 to disable the AFC. Default is  
32768 Hz.  
0x0201  
REFCLK_FREQ  
0x8000  
0x0202  
0x2100  
REFCLK_PRESCALE  
Sets the prescaler value for the reference clock.  
0x0001  
0x0003  
Enable transmit multiplex signal components.  
Default has pilot and L-R enabled.  
TX_COMPONENT_ENABLE  
Configures audio frequency deviation level. Units are in  
10 Hz increments. Default is 6285 (68.25 kHz).  
0x2101  
0x2102  
TX_AUDIO_DEVIATION  
TX_PILOT_DEVIATION  
0x1AA9  
0x02A3  
Configures pilot tone frequency deviation level. Units are  
in 10 Hz increments. Default is 675 (6.75 kHz)  
Si4711 Only. Configures the RDS/RBDS frequency  
0x2103  
0x2104  
TX_RDS_DEVIATION  
deviation level. Units are in 10 Hz increments. Default is 0x00C8  
2 kHz.  
Configures maximum analog line input level to the  
LIN/RIN pins to reach the maximum deviation level pro-  
grammed into the audio deviation property TX Audio  
TX_LINE_INPUT_LEVEL  
0x327C  
Deviation. Default is 636 mV  
.
PK  
Sets line input mute. L and R inputs may be indepen-  
dently muted. Default is not muted.  
0x2105  
0x2106  
0x2107  
0x2200  
0x2201  
0x2202  
0x2203  
TX_LINE_INPUT_MUTE  
TX_PREEMPHASIS  
0x0000  
0x0000  
0x4A38  
0x0002  
0xFFD8  
0x0000  
0x0004  
Configures pre-emphasis time constant.  
Default is 0 (75 µS).  
Configures the frequency of the stereo pilot. Default is  
19000 Hz.  
TX_PILOT_FREQUENCY  
TX_ACOMP_ENABLE  
Enables audio dynamic range control.  
Default is 0 (disabled).  
Sets the threshold level for audio dynamic range control.  
Default is –40 dB.  
TX_ACOMP_THRESHOLD  
TX_ACOMP_ATTACK_TIME  
TX_ACOMP_RELEASE_TIME  
Sets the attack time for audio dynamic range control.  
Default is 0 (0.5 ms).  
Sets the release time for audio dynamic range control.  
Default is 4 (1000 ms).  
Sets the gain for audio dynamic range control.  
Default is 15 dB.  
0x2204  
0x2205  
TX_ACOMP_GAIN  
0x000F  
0x0066  
0x0000  
TX_LIMITER_RELEASE_TIME  
Sets the limiter release time. Default is 102 (5.01 ms)  
Configures measurements related to signal quality met-  
rics. Default is none selected.  
0x2300 TX_ASQ_INTERRUPT_SOURCE  
Configures low audio input level detection threshold.  
This threshold can be used to detect silence on the  
incoming audio.  
0x2301  
TX_ASQ_LEVEL_LOW  
0x0000  
Rev. 1.1  
29  
Si4710/11-B30  
Table 17. Si471x Property Summary (Continued)  
Prop  
Name  
Description  
Default  
Configures the duration which the input audio level must  
0x2302  
TX_ASQ_DURATION_LOW  
be below the low threshold in order to detect a low audio 0x0000  
condition.  
Configures high audio input level detection threshold.  
0x2303  
0x2304  
TX_ASQ_LEVEL_HIGH  
This threshold can be used to detect activity on the  
incoming audio.  
0x0000  
0x0000  
Configures the duration which the input audio level must  
be above the high threshold in order to detect a high  
audio condition.  
TX_ASQ_DURATION_HIGH  
Si4711 Only. Configure RDS interrupt sources. Default  
is none selected.  
0x2C00 TX_RDS_INTERRUPT_SOURCE  
0x0000  
0x40A7  
0x0003  
0x2C01  
0x2C02  
TX_RDS_PI  
Si4711 Only. Sets transmit RDS program identifier.  
Si4711 Only. Configures mix of RDS PS Group with  
RDS Group Buffer.  
TX_RDS_PS_MIX  
Si4711 Only. Miscellaneous bits to transmit along with  
RDS_PS Groups.  
0x2C03  
TX_RDS_PS_MISC  
0x1008  
Si4711 Only. Number of times to repeat transmission of  
0x2C04 TX_RDS_PS_REPEAT_COUNT a PS message before transmitting the next PS mes-  
sage.  
0x0003  
0x0001  
0x2C05 TX_RDS_PS_MESSAGE_COUNT Si4711 Only. Number of PS messages in use.  
Si4711 Only. RDS Program Service Alternate Fre-  
quency. This provides the ability to inform the receiver of  
a single alternate frequency using AF Method A coding  
and is transmitted along with the RDS_PS Groups.  
0x2C06  
0x2C07  
TX_RDS_PS_AF  
0xE0E0  
0x0000  
Si4711 Only. Number of blocks reserved for the FIFO.  
Note that the value written must be one larger than the  
desired FIFO size.  
TX_RDS_FIFO_SIZE  
30  
Rev. 1.1  
Si4710/11-B30  
7. Pin Descriptions: Si4710/11-GM  
20 19 18 17  
NC 1  
NC 2  
16  
15 RIN  
14 DFS  
13 DIN  
12 GND  
11 VDD  
RFGND 3  
TXO 4  
RST 5  
6
GND  
PAD  
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 2, 20  
No connect. Leave floating.  
RF ground. Connect to ground plane on PCB.  
3
RFGND  
TXO  
4
FM transmit output connection to transmit antenna.  
Device reset (active low) input.  
Serial enable input (active low).  
Serial clock input.  
5
RST  
6
SEN  
7
SCLK  
SDIO  
RCLK  
8
Serial data input/output.  
9
External reference oscillator input.  
I/O supply voltage.  
10  
V
IO  
11  
V
Supply voltage. May be connected directly to battery.  
Digital input data.  
DD  
13  
DIN  
DFS  
RIN  
LIN  
14  
Digital frame synchronization input.  
Right audio line input.  
15  
16  
Left audio line input.  
17  
GPO3/DCLK General purpose output/digital bit synchronous clock input.  
18  
19  
General purpose output/interrupt request.  
General purpose output.  
GPO2/INT  
GPO1  
12, GND PAD  
GND  
Ground. Connect to ground plane on PCB.  
Rev. 1.1  
31  
Si4710/11-B30  
8. Ordering Guide  
Part Number*  
Description  
Package  
Type  
Operating  
Temperature  
Si4710-B30-GM Portable broadcast FM transmitter  
QFN  
–20 to 85 °C  
Pb-free  
Si4711-B30-GM Portable broadcast FM transmitter with RDS/RBDS  
encoder  
QFN  
Pb-free  
–20 to 85 °C  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option; 2500 quantity per reel.  
32  
Rev. 1.1  
Si4710/11-B30  
9. Package Markings (Top Marks)  
9.1. Si4710 Top Mark  
Figure 19. Si4710 Top Mark  
9.2. Si4711 Top Mark  
Figure 20. Si4711 Top Mark  
9.3. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
10 = Si4710  
11 = Si4711  
Firmware Revision  
R = Die Revision  
30 = Firmware Revision 30  
B = Revision B Die  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier  
(Bottom-Left Justified)  
Y = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the last sig-  
nificant digit of the year and workweek of the mold date.  
Rev. 1.1  
33  
Si4710/11-B30  
10. Package Outline: Si4710/11-GM  
Figure 21 illustrates the package details for the Si4710/11. Table 18 lists the values for the dimensions shown in  
the illustration.  
Figure 21. 20-Pin Quad Flat No-Lead (QFN)  
Table 18. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
34  
Rev. 1.1  
Si4710/11-B30  
11. PCB Land Pattern: Si4710/11-GM  
Figure 22 illustrates the PCB land pattern details for the Si4710/11-GM. Table 19 lists the values for the dimensions  
shown in the illustration.  
Figure 22. PCB Land Pattern  
Rev. 1.1  
35  
Si4710/11-B30  
Table 19. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This land pattern design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a fabrication allowance of 0.05 mm.  
Note: Solder Mask Design  
1. All metal pads are to be non-solder-mask-defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 mm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component standoff.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C  
specification for small body components.  
36  
Rev. 1.1  
Si4710/11-B30  
12. Additional Reference Resources  
Si47xx-Evaluation Board User’s Guide  
AN309: Si4710/11/12/13 Evaluation Board Quick-Start Guide  
AN332: Universal Programming Guide  
AN383: Universal Antenna Selection and Layout Guidelines  
AN388: Universal Evaluation Board Test Procedure  
Si4710/11/12/13 Customer Support Site: http://www.mysilabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software. NDA  
is required for access. To request access, send mysilabs user name and request for access to  
fminfo@silabs.com.  
Rev. 1.1  
37  
Si4710/11-B30  
NOTES:  
38  
Rev. 1.1  
Si4710/11-B30  
DOCUMENT CHANGE LIST  
Revision 0.5 to Revision 1.1  
Updated Table 9 on pages 12 and 13  
Corrected typo in Section 5.3.2 on page 21.  
Updated references to new application notes  
throughout document.  
Updated Table 3 on page 5.  
Updated production test condition in Table 9 on  
page 12.  
Rev. 1.1  
39  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI4710CY

Battery Disconnect Switch
VISHAY

SI4710CY-T1

Power Supply Support Circuit, Fixed, 1 Channel, PDSO8, SOIC-8
VISHAY

SI4710CY-T1-E3

Power Supply Support Circuit, Fixed, 1 Channel, PDSO8, LEAD FREE, SOIC-8
VISHAY

SI4711

FM Radio Transmitter for Portable Applications
SILICON

SI4711-B30

Si4710/11-B30 FM RADIO TRANSMITTER
SILICON

SI4711-B30-GMR

RF and Baseband Circuit, CMOS, 3 X 3 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, QFN-20
SILICON

SI4712

RF and Baseband Circuit, CMOS, QFN-20
SILICON

SI4712DY

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI4712DY-T1-GE3

N-Channel 30-V (D-S) MOSFET with Schottky Diode
VISHAY

SI4713

SI4713 调频广播发射机,用于便携式应用 [FM Radio Transmitter for Portable Applications]
SILICON

SI4713-B30

FM RADIO TRANSMITTER WITH RECEIVE POWER SCAN
SILICON

SI4713-B30-GM

RF and Baseband Circuit, CMOS, 3 X 3 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, QFN-20
SILICON